
Refinement-Aware Generation of Attack Trees

Olga Gadyatskaya1, Ravi Jhawar12, Sjouke Mauw1, Rolando Trujillo-Rasua1,
and Tim A. C. Willemse3

1 SnT and University of Luxembourg,
Esch-sur-Alzette, Luxembourg

olga.gadyatskaya, sjouke.mauw, rolando.trujillo @uni.lu
2 ILNAS

Esch-sur-Alzette, Luxembourg
ravi.jhawar@ilnas.etat.lu

3 Eindhoven University of Technology,
Eindhoven, the Netherlands
t.a.c.willemse@tue.nl

Abstract. Attack trees allow a security analyst to obtain an overview
of the potential vulnerabilities of a system. Due to their refinement struc-
ture, attack trees support the analyst in understanding the system vulne-
rabilities at various levels of abstraction. However, contrary to manually
synthesized attack trees, automatically generated attack trees are often
not refinement-aware, making subsequent human processing much har-
der. The generation of attack trees in which the refined nodes correspond
to semantically relevant levels of abstraction is still an open question. In
this paper, we formulate the attack-tree generation problem and pro-
pose a methodology to, given a system model, generate attack trees with
meaningful levels of abstraction.

1 Introduction

Attack trees are a well-known graphical security model [Sch99]. They are wi-
dely used in industry and academia for handling threat modeling and secu-
rity risk assessment [Sho14], as they help the analysts to structure the rea-
soning, facilitate communications across the board, and can store succinctly
very complex threat scenarios [FFG`16]. Yet, the process of creating an at-
tack tree is quite lengthy, tedious, and error-prone [FFG`16,Sho14]. It can be
facilitated by applying industry threat catalogues [FFG`16] and security kno-
wledge bases [GLPS14], but these information sources may be unavailable for
particular organizations or too generic to be useful. This is why recently re-
searchers started to develop techniques for generating attack trees automati-
cally [VNN14,IPHK15,HKT13,PAV15,Gad15].

Automatic generation of attack trees can be interpreted as model transfor-
mation. The initial model is typically a domain-specific language specifying the
system components, their interactions, and the attacker’s goal as an undesired
state of the system, and formalizing attack paths towards the goal. In that regard,
the attack-tree generation problem consists in encoding all attacks achieving a

common goal into an attack tree model. However, this problem formulation over-
looks one of the strengths of attack trees: its refinement structure.

Refining a goal into subgoals is an intuitive process for humans, used in attack
trees and other visual languages, e.g., mind maps. That makes attack trees easily
readable and comprehensible by a simple top-down inspection, as it allows the
analyst to understand the attack potential at various levels of abstraction. This
dimension, however, almost completely escapes in the literature on attack-tree
generation, as we discuss in the following short overview of relevant approaches.

Vigo et al. [VNN14] generate trees from a process calculus system model by
translating algebraic specifications into formulae and backward-chaining these
formulae into a formula for the attacker’s goal success. Reachability-based ap-
proaches, such as [IPHK15,Gad15,HKT13], transform system models into at-
tack trees using information about connected elements in the model. In essence,
these approaches reason that the attacker can reach the desired location from
any system location adjacent to it. This reasoning is applied recursively to tra-
verse complete attack paths. The main drawback of the techniques proposed
in [VNN14,IPHK15,HKT13,Gad15] is that they do not leverage the refinement
structure of attack trees, when parent nodes are more abstract than child nodes.
In fact, [VNN14] does not provide any meaning to intermediate nodes, which only
serve to express how child nodes are combined, while [IPHK15,Gad15,HKT13]
have intermediate nodes at the same level of abstraction as child nodes, repre-
senting actions in the system model.

The attack traces-based approaches rely on a set of successful traces that
capture transitions from the initial state to the state in the system in which
the attacker has achieved the goal. The basic idea of generating successful at-
tack paths has been explored in, e.g., [RA00,SHJ`02], where the authors applied
model-checking to network system models. Dawkins and Hale [DH04] have gene-
rated attack trees from network attack graphs (a formalism different from attack
trees [SHJ`02]) by finding minimum cut sets for successful attack paths (traces).
This approach also does not offer a refinement structure, and each branch in a
generated attack tree corresponds to a sequence of vulnerability exploitations.

The ATSyRA approach [PAV14,PAV15] synthesizes attack trees from attack
graphs. It requires that the analyst first defines a set of actions at several ab-
straction levels in the system model, and a set of rules for refinement of higher-
level actions into combinations of lower-level ones. This action hierarchy allows
to transform successful attack paths in the attack graph (generated by model-
checking) into an attack tree, containing precise actions as leaf nodes, while
intermediate nodes represent more abstract actions. This tree enjoys a refine-
ment structure that is more familiar to the human analyst, but the analyst still
has to define the refinement relation herself; it is not created automatically.

We conclude that there exists a gap between manual and automatic genera-
tion of attack trees that has not been covered in literature yet. Automatic gene-
ration approaches work with concrete attacks, while manual creation of attack
trees focuses on the refinement of goals into subgoals. In this paper, we address
this gap by formalising the attack-tree generation problem that connects both

properties, namely that of encoding a set of attacks and that of respecting a
given refinement structure.

Summary of contributions. This paper presents the following main results:

– We formally define the attack-tree generation problem as a task to generate
a tree with an expected meaning that respects a given refinement structure.

– We propose an approach for generating attack trees from traces of successful
attacks in a system model. Our approach utilizes a heuristic for encoding and
decomposing attack traces that is based on the edge biclique problem [Pee03].
Furthermore, we derive the refinement structure from an abstraction relation
on system predicates.

– We demonstrate the feasibility of our approach with a running example of a
network security scenario.

2 The attack-tree generation problem

In this section we first formally introduce attack trees and the notion of a refi-
nement specification. Next, we define what it means for an attack tree to satisfy
a refinement specification and we formulate the attack-tree generation problem.
Informally, this problem requires the derivation of a tree with a given semantics,
that satisfies a given refinement specification.

Intuitively, an attack tree defines how higher (parent) nodes are interpreted
through lower (child) nodes. The interpretations are defined by the refinement
operators: OR specifies that if any of the child nodes is achieved, then the imme-
diate parent node is also achieved; and AND defines that all child nodes need to
be achieved to achieve the parent node’s goal [MO05]. We will consider also the
sequential AND operator, or SAND, that demands that the goals of the child nodes
are to be achieved in a particular order for achieving the parent node [JKM`15].

Formally, let B denote a set of actions, OR and AND be two unranked asso-
ciative and commutative operators, and SAND be an unranked associative but
non-commutative operator. A SAND attack tree t is an expression over the signa-
ture BY tOR, AND, SANDu, generated by the following grammar (for b P B):

t ::“ b | bŸ ORpt, ... , tq | bŸ ANDpt, ... , tq | bŸ SANDpt, ... , tq.

We use TSAND to denote all SAND attack trees generated by the grammar
above. Different to the definition of SAND trees given in [JKM`15], we require
every node in the tree to be annotated with an action. An action in a node
typically provides a generic (sometimes vague) description of the type of attack,
e.g. get a user’s credentials or impersonate a security guard, which is helpful
to a top-down interpretation of the tree. An expression like b Ÿ SANDpt1, ... , tnq
denotes an attack tree of which the top node is labelled with action b, and which
has n children t1, ... , tn that have to be executed sequentially.

Example 1. Figure 1 illustrates a simple SAND attack tree in which the goal of
the attacker is to gain unauthorized access to a server. To achieve this goal, the

log in

access
server

get
credential

eavesdrop
on honest

user

brute-
force

exploit

wait till
user

connects to
client

eavesdrop
on client-

server
connection

a

c l

eu
b

x

w ec

Fig. 1. A human-designed attack tree representing possible threat scenarios

attacker must first get a suitable credential for the server, and then, use this cre-
dential to log in remotely. A suitable credential can be obtained by eavesdropping
on communications of an honest user, who knows the server password. Alternati-
vely, the attacker can bruteforce the password on the server, or use an exploit to
create a new password. Using shorthands for the action names, this tree can be
represented by the following expression: aŸSANDpcŸORpeuŸSANDpw , ecq, b, x q, lq.

We define the auxiliary function top to obtain the action at the root node as
follows (for ∆ P tOR, AND, SANDu):

toppbq “ toppbŸ∆pt, ... , tqq “ b.

We say that t1 is a subtree of t, denoted t1 P t, if t “ t1 or t “ ∆pb, t1, ... , tnq
and t1 P ti for some i P t1, ... , nu, where ∆ P tOR, AND, SANDu.

Given a semantical domain D, an attack-tree semantics S defines a function
r¨sS : TSAND Ñ D. We denote semantic equivalence of two trees t, t1 P TSAND by t “S

t1, which means rtsS “ rt
1sS . In this article we use the SP semantics [JKM`15]

as the semantic domain for SAND attack trees. Notice, nevertheless, that our
attack-tree generation problem formulation abstracts away from any concrete
interpretation of the attack tree semantics.

The SP semantics encodes an attack tree as a set of Series-Parallel graphs
(SP graphs). An SP graph is an edge-labeled directed graph with a source vertex

and a sink vertex. The simplest SP graph has the form u
b
ÝÑ v, where b is an

edge label, u is the source vertex because it has no incoming edges, and v is the
sink vertex because it has no outgoing edges. Any other SP graph is obtained
as the composition of single-edge SP graphs.

Two composition operators are used to build SP graphs: the sequential com-
position operator (¨) and the parallel composition operator (‖). A sequential
composition joins the sink vertex of a graph with the source vertex of the ot-

her graph. For example, given G “ u
b
ÝÑ v and G1 “ x

z
ÝÑ y, we obtain that

G ¨ G1 “ u
b
ÝÑ v

z
ÝÑ y. Note that the source vertex of G1 has been replaced

in G ¨ G1 by the sink vertex v of G. A parallel composition, instead, joins the

source and the sink vertices of both graphs. For example, given G “ u
b
ÝÑ v and

G1 “ x
z
ÝÑ y, the parallel composition G ‖ G1 gives the following SP graph.

u v

b

z

In the SP semantics, edge labels represent basic actions in B, and vertex labels

are ignored. Hence a graph of the type u
b
ÝÑ v

z
ÝÑ y is read as

b
ÝÑ

z
ÝÑ. Moreover,

both composition operators are extended to sets of SP graphs as follows: given
sets of SP graphs G1, ... ,Gk,

G1 ‖ G2 ‖ ... ‖ Gk “ tG1 ‖ ... ‖ Gk | pG1, ..., Gkq P G1 ˆ ...ˆ Gku

G1 ¨ G2 ¨ ... ¨ Gk “ tG1 ¨ ... ¨Gk | pG1, ..., Gkq P G1 ˆ ...ˆ Gku.

Definition 1. Let GSP denote the set of SP graphs labeled with the elements
of B. The SP semantics for SAND attack trees is given by the function rr¨ssSP :
TSAND Ñ PpGSPq, which is defined recursively as follows: for b P B, ti P TSAND,
1 ď i ď k,

rrbssSP “ t
b
ÝÑu

rrORpt1, ... , tkqssSP “
Ťk

i“1 rrtissSP

rrANDpt1, ... , tkqssSP “ rrt1ssSP ‖ ... ‖ rrtkssSP
rrSANDpt1, ... , tkqssSP “ rrt1ssSP ¨ ... ¨ rrtkssSP .

We kindly refer the reader to [JKM`15] for more details on the SP semantics.

Example 2. The SAND attack tree in Figure 1 has the following SP semantics:

t
w
ÝÑ

ec
ÝÑ

l
ÝÑ,

b
ÝÑ

l
ÝÑ,

x
ÝÑ

l
ÝÑu. Note that the labels of the internal nodes are not repre-

sented in the SP semantics. Further note that the SP graphs occurring in this
example are linear traces because the tree has no AND nodes.

Refinement specification. The transition from one level in an attack tree to the
next level defines a refinement. More precisely, a refinement is an expression of
the form bŸ∆pb1, ... , bnq, where b, b1, ... , bn P B and ∆ P tOR, AND, SANDu. That is
to say, a refinement corresponds to a tree of depth one. It follows that the set of
refinements, denoted R, is a subset of the set of attack trees TSAND. In particular,
the refinement of the root node of an attack tree is determined by the partial
function ref : TSAND Ñ R, defined by

ref pbŸ∆pt1, ... , tnqq “ bŸ∆ptoppt1q, ... , topptnqq.

This is a partial function, since the refinement of an attack tree that consists of
a single node is not defined. This function can be generalized to non-root nodes,

allowing us to determine the set of all refinements that occur in an attack tree.
Therefore, we define the function refs : TSAND Ñ PpRq, as follows:

refsptq “ tref pt1q | t1 P t^ Db P B : t1 “ bu.

A refinement specification specifies which refinements should be satisfied by
an attack tree. A refinement specification is simply defined as a set of refine-
ments.Given an attack tree t P TSAND and a refinement specification ρ Ď R, we
use t $ ρ to denote that t satisfies ρ. We define satisfaction by t $ ρ ðñ

refsptq Ď ρ. That is, a tree satisfies a refinement specification, if all refined acti-
ons in the tree also occur as refined actions in the specification.

Attack tree generation problem. Given an attack tree semantics and a refine-
ment specification, the challenge is to design or derive an attack tree with this
semantics that satisfies the refinement specification. We call this problem the
attack-tree generation problem.

Definition 2 (The attack-tree generation problem). Let S be an attack-
tree semantics with semantic domain D. The attack-tree generation problem
consists in, given a semantical element d P D and a refinement specification
ρ Ď R, finding an attack tree t P TSAND, such that rtsS “ d and t $ ρ. Such a tree
is called correct with respect to a semantics and refinement specification pd, ρq.

Example 3. Given required semantics t
w
ÝÑ

ec
ÝÑ

l
ÝÑ,

b
ÝÑ

l
ÝÑ,

x
ÝÑ

l
ÝÑu and refinement spe-

cification taŸSANDpc, lq, cŸORpeu, b, xq, euŸSANDpw, ecq, cŸSANDpp, qqu, a possible
solution to the attack-tree generation problem is given in Figure 1. Note that
the last refinement does not occur in the tree.

Clearly, an instance of the attack-tree generation problem may not have a
solution. If it has a solution, the solution may not be unique. Depending on the
purpose of the tree, the application domain, or even the taste of the designer,
one could have a preference for a certain type of tree, aiming at, e.g., trees with
minimal width, balanced trees or trees with a minimum number of leaf nodes.

The remainder of this paper is devoted to addressing the attack-tree genera-
tion problem.

3 Generating correct attack trees

In this section we will specialize the attack-tree generation problem by focusing
only on OR and SAND nodes, and considering the semantic domain for attack
trees to be the SP semantics [JKM`15]. Given this restriction, we develop an
algorithm to generate correct attack trees using a greedy heuristic based on the
edge biclique problem [Pee03].

The motivation for omitting the AND operator is the following. One of the in-
puts to the attack-tree generation problem is the intended semantics of the tree.
We assume that the intended semantics is given by a set of traces, where each

trace is an ordered sequence of actions. Such a set of traces could, e.g., be gene-
rated by a model checker that aims to reach the goal of the attacker [LMO15]. As
traces are totally ordered, we can use the SAND operator to represent a trace and
the OR operator to represent the choice between the alternative traces. Hence,
starting from a set of traces, there is no need for the AND operator. An example
of a trace model based on labelled transition systems is given in Sect. 4.

Properties of correct attack trees. Next we provide necessary and sufficient con-
ditions for a tree to be correct. For the sake of simplicity, we focus on binary
instances of the attack tree operators only. This simplifies the analysis and ge-
neralizes easily due to associativity of all operators.

Theorem 1. Let G be a set of SP graphs with labels in B, ρ a refinement specifi-
cation, and t an attack tree of the form bŸSANDptl, trq (resp. bŸORptl, trq) where
tl and tr are attack trees. The attack tree t is correct w.r.t. pG, ρq if and only if
there exist sets of SP graphs Gl and Gr such that all the following conditions are
satisfied:

1. tl is correct with respect to pGl, ρq,
2. tr is correct with respect to pGr, ρq,
3. G “ Gl ¨ Gr (resp. G “ Gl Y Gr),
4. bŸ SANDptopptlq, topptrqq P ρ (resp. bŸ ORptopptlq, topptrqq P ρ).

Proof. (ñ) Let t be a correct tree w.r.t. pG, ρq of the form bŸ SANDptl, trq (resp.
ORptl, trq). Condition 4 holds by definition given that t $ ρ. Similarly we obtain
that tl and tr must satisfy that tl $ ρ and tr $ ρ, otherwise t & ρ. Condition 3
holds by definition of the SP semantics, where rrtssSP “ rrtlssSP ¨ rrtrssSP if t is of
the form bŸ SANDptl, trq, rrtssSP “ rrtlssSP Y rrtrssSP otherwise. Therefore, tl and
tr are correct w.r.t. prrtlssSP , ρq and prrtrssSP , ρq, respectively.

(ð) Now, let us assume that the four conditions above are satisfied. On the
one hand, because tl and tr are correct w.r.t. pGl, ρq and pGr, ρq, respectively, it
follows that Gl “ rrtlssSP and Gr “ rrtrssSP . Therefore, an attack tree t of the
form bŸ SANDptl, trq (resp. bŸ ORptl, trq) satisfies that rrtssSP “ Gl ¨Gr “ G (resp.
rrtssSP “ GlYGr “ G). On the other hand, because bŸSANDptoppt1q, toppt2qq P ρ
(resp. bŸ ORptoppt1q, toppt2qq P ρ) and t1 and t2 both satisfy ρ, we obtain that t
satisfies ρ as well. This gives that t is correct w.r.t. pG, ρq. [\

According to Theorem 1, a disjunctive refinement requires finding two subsets
Gl and Gr that cover G, i.e. Gl Y Gr “ G. This is a fairly trivial task as, for
example, a partition of a set is also a covering. However, a sequential conjunctive
refinement requires finding a sequential decomposition of G in two sets Gl and
Gr such that Gl ¨ Gr “ G. Clearly, such a decomposition is not always possible.
Therefore, we focus on the problem of finding two sets Gl and Gr such that
Gl ¨Gr Ď G and |Gl ¨Gr| is maximum, which we call the set decomposition problem.

We tackle the set decomposition problem by reducing it to the edge biclique
problem [Pee03], which benefits from well-known efficient algorithms [GG14] in
the graph theory field. The edge biclique problem consists in finding, given a

bipartite graph G, a biclique in G with maximum number of edges. A graph G
is bipartite if its set of vertices can be partitioned into subsets V1 and V2 such
that every edge in G connects a vertex in V1 with a vertex in V2. And G is
said to be a biclique if every pu, vq P V1 ˆ V2 is an edge in G. We usually write
G “ pV1 Y V2, Eq to denote that G is bipartite with partite sets V1 and V2.

Theorem 2. The set decomposition problem is polynomial-time reducible to the
edge biclique problem, and vice-versa.

Proof. (ñ) Let G be a non-empty set of SP graphs. Given an SP graph α “
b1
ÝÑ

...
bn
ÝÑ, let αl

i and αr
i denote the SP graphs

b1
ÝÑ ...

bi
ÝÑ and

bi`1
ÝÝÝÑ ...

bn
ÝÑ, respecti-

vely. Let G “ pV,Eq be a simple graph with set of vertices V “ tαl
i|α P G ^ i ă

|α|u Y tαr
i |α P G ^ i ă |α|u and set of edges E “ tpαl

i, β
r
j q|α

l
i ¨ β

r
j P Gu. Now,

let G1 “ pU 1 Y V 1, E1q be a biclique in G. By construction of G we obtain the
following two results. First, for every pu, vq P U 1 ˆ V 1 it holds that u ¨ v P G.
Hence U 1 ¨V 1 Ď G. Second, for every pair of sets Gl and Gr such that Gl ¨Gr Ď G it
holds that Gl Ď U and Gr Ď V . Hence the subgraph of G induced by the vertices
GlYGr is a biclique. Therefore, G1 “ pU 1YV 1, E1q is a maximum biclique if and
only if pU 1, V 1q is an optimal solution to the set decomposition problem.
(ð) Let G “ pU Y V,Eq be a bipartite graph and G “ tu ¨ v|u P U ^ v P
V ^ pu, vq P Eu. Let Gl and Gr be a decomposition (not necessarily optimal) of
G, i.e. GlYGr Ď G. As before, we obtain by construction the following two results.
First, because Gl Ď U and Gr Ď V , it follows that the subgraph in G induced by
Gl Y Gr is a biclique. Second, for every biclique G1 “ pU 1 Y V 1, E1q in G it holds
that U 1 ¨ V 1 Ď G. Therefore, Gl and Gr form an optimal decomposition of G if
and only if the subgraph in G induced by Gl Y Gr is a maximum biclique. [\

From Theorem 2 we extract two conclusions. First, the set decomposition pro-
blem is NP-complete, given that the edge biclique problem is NP-complete [Pee03].
Second, we can use well-known approximation algorithms for the edge biclique
problem to find approximate solutions for the set decomposition problem. Due
its simplicity, in this article we use the greedy heuristic proposed by Gillis and
Glineur [GG14]. A pseudocode description of such a heuristic is given in Figure 2.

procedure Biclique(G “ pX Y Y,Eq)
Let Z be an empty set of vertices
while G is not bipartite do

Let u be any vertex in G with maximum degree that is not contained in Z
Let W “ X if u R X, W “ Y otherwise
for all v PW such that pu, vq R E do

Remove u from G and the corresponding edges from E

Remove isolated vertices from G
Add u to Z

return G

Fig. 2. Biclique is a greedy heuristic that approximates the edge biclique problem.

Example 4. To illustrate the procedure of decomposing a set of SP graphs via
the reduction depicted in Theorem 2 and the Biclique heuristic, let us consider

the following set G “ t a
ÝÑ

a
ÝÑ,

b
ÝÑ

a
ÝÑ

a
ÝÑ,

b
ÝÑ

a
ÝÑ

c
ÝÑ,

a
ÝÑ

c
ÝÑu. We first transform G into a

graph G as indicated in Theorem 2. The resulting graph is depicted in Figure 3.
Note that, for the sake of simplicity, we have omitted the arrow (ÝÑ) represen-
ting single-edge SP graphs in the vertex labels in G. By running the Biclique
algorithm depicted in Figure 2, we obtain a subgraph of G that is a biclique.
The obtained complete bipartite graph (see Figure 3) is then transformed into
two sets of SP graphs by considering the vertex set partition. In the example,

the two sets are Gl “ t
a
ÝÑ,

b
ÝÑ

a
ÝÑu and Gr “ t

a
ÝÑ,

c
ÝÑu. The pair of sets satisfies that

Gl ¨Gr “ G, because the biclique found by Biclique is optimal. Otherwise we can
only guarantee that Gl ¨ Gr Ĺ G. A pseudocode description of the decomposition
procedure explained in this example can be found in Figure 4.

al bl bal

ar aar cr acr

al bal

ar cr

Input graph G G after the first iteration

Fig. 3. An example of the execution of Biclique on graph G. The vertex with maxi-
mum degree chosen in this execution is al. The resulting graph is already a biclique.

procedure Decomposition(G)
Let G “ pU Y V,Eq be an empty graph
for all α P G do Ź Vertex set generation (see Theorem 2)

for all i “ 1 to i “ |α| ´ 1 do
Add αl

i to U and αr
i to V

for all pu, vq P U ˆ V do Ź Edge set generation (see Theorem 2)
if u ¨ v P G then

Add pu, vq to E

Let G1 “ pU 1 Y V 1, E1q the output of Biclique on input G
return pU 1, V 1q

Fig. 4. Biclique is a greedy heuristic that approximates the edge biclique problem.

Binary attack trees. We use the Decomposition procedure on a set of SP
graphs to generate correct attack trees, with the peculiarity that the resulting
tree is binary. The algorithm is given in Figure 5.

procedure Gen-Bin-Tree(pG, ρq)
if

b1
ÝÑP G for some b1 P B then Ź A single-edge SP graph exists in G
Let t2 be the output of Gen-Bin-Tree(G ´ t b1

ÝÑu, ρ)
Let b P B such that bŸ ORpb1, toppt2qq P ρ
if b exists then

return bŸ ORp
b1
ÝÑ, t2q

else
Let (Gl,Gr) be the output of Decomposition on input G
if Gl ¨ Gr “ G then

Let t1 be the output of Gen-Bin-Tree(Gl, ρ)
Let t2 be the output of Gen-Bin-Tree(Gr, ρ)
Let b P B such that bŸ SANDptoppt1q, toppt2qq P ρ
if b exists then

return bŸ SANDpt1, t2q

else
Let t1 be the output of Gen-Bin-Tree(Gl ¨ Gr, ρ)
Let t2 be the output of Gen-Bin-Tree(G ´ pGl ¨ Grq, ρ)
Let b P B such that bŸ ORptoppt1q, toppt2qq P ρ
if b exists then

return bŸ ORpt1, t2q

return fail

Fig. 5. Gen-Bin-Tree generates correct and binary attack trees.

The procedure Gen-Bin-Tree focuses on creating an attack tree t such that
rrtssSP “ G, where G is a set of SP graphs given as input. Moreover, Gen-Bin-
Tree guarantees that all refinements in the generated tree are in the refinement
specification ρ, otherwise the algorithm aborts. Therefore, it follows that Gen-
Bin-Tree either generates a correct tree or aborts.

It is worth remarking that Gen-Bin-Tree favours SAND refinements over
OR refinements. The reason is that a SAND refinement requires solving the edge
biclique problem. Thus, whenever a sequential decomposition of G is found, a
SAND refinement is created.

Example 5. To illustrate the attack-tree generation approach, consider the SAND

attack tree in Figure 1, whose SP semantics is G “ t w
ÝÑ

ec
ÝÑ

l
ÝÑ,

b
ÝÑ

l
ÝÑ,

x
ÝÑ

l
ÝÑu. For

the sake of simplicity, let us also consider the existence of a special action ε P B
and a refinement specification ρ defined as the minimum set satisfying that
ε Ÿ ORpb1, b2q P ρ and ε Ÿ ANDpb1, b2q P ρ for every b1, b2 P B. This is for the
moment an oversimplification of the role of the refinement specification. We defer
the task of providing a tree with meaningful refinements to the next section.

By using the Biclique procedure we obtain that G can be decomposed by

Gl “ t
w
ÝÑ

ec
ÝÑ,

b
ÝÑ,

x
ÝÑu and Gr “ t

l
ÝÑu. The application of the Gen-Bin-Tree

algorithm on input Gl gives the tree displayed in Figure 6. The same figure
depicts the tree obtained on input Gr. The sequential composition of the two
trees is finally the output of Gen-Bin-Tree on input G.

l

Gl

b

x

w ec

b

x

w ec

l

Gr G = Gl x Gr

b x

w ec

l

optimized G

ϵ

ϵ

ϵ

ϵ

ϵ ϵ

ϵ ϵ

ϵ

ϵ

Fig. 6. The attack-tree generation process for the SP-semantics given in Example 2.

We observe that Algorithm Gen-Bin-Tree generates trees that, although
correct, use a rather artificial binary branching structure. We thus use semantics-
preserving transformation rules to optimize the structure of the tree. A semantics-
preserving transformation rule is a total function r : TSAND Ñ TSAND such that
@t P TSAND : rrtssSP “ rrrptqssSP . In our approach we use the following rule: for
every ∆ P tOR, SANDu and every t “ bŸ∆pt1, ... , tkq,

rptq “

"

bŸ∆pt11, ... , t
1
kp1q, ... , t

k
1 , ... , t

k
kpkqq If ti “ bi Ÿ∆pt

i
1, ... , t

i
kpiqq,@i P t1, ... , ku

t otherwise.

This simply amounts to aggregating nodes whenever allowed by associativity
of the operator. Figure 6 shows the result of the application of this rule to the
binary tree obtained by Gen-Bin-Tree algorithm. Note that the semantics-
preserving transformation rule does not take into account the refinement speci-
fication ρ. Thus, if ρ is an arbitrary set of refinements and it is not closed under
the SP-semantics equivalence relation, the optimized tree may not be correct,
while being semantically-equivalent to the original tree.

4 Specifying a system and refinement relation

The attack-tree generation problem is based on two inputs: an intended seman-
tics and a refinement specification. In this section we show how both can be
obtained from an LTS-based system model. Finally, we illustrate our methodo-
logy through a simple example.

System specification. Labelled transition systems are used to describe the be-
haviour of a system by defining the transitions that bring a system from one
state into another. Formally, a Labelled Transition System (LTS) is a quadruple
pS, Σ,Ñ, s0q, where S is a set of states; Σ is a set of labels; Ñ : S ˆΣ ˆ S is a
transition relation; s0 P S is the initial state.

We define a state as a set of predicates. A predicate defines a mutable pro-
perty of the system, such as knowspAlice, pswq, which means that Alice knows
password psw . States are denoted by rp1, ... , pns, where p1, ... , pn are the predi-
cates that determine the state. If s is a state, then by srp1, ... , pns we mean the
state s augmented with predicates p1, ... , pn. If a predicate is preceded by a
symbol it means that the predicate is removed from the state. For instance, if
s0 “ rp1, p2s, then s0rp3, p1s “ rp2, p3s.

The states will be used to label the nodes of the attack tree that will be
generated, so we will equate the set of states and the set of actions in the attack
tree, B “ S.

The transition relation is defined through transition rules. Figure 7 shows
some example transition rules. Every transition rule contains a condition (above
the horizontal line) and a conclusion (below the line). The name of a transition
rule is given left of the line. The condition consists of a number of predicates that
must be present in the current state to enable the transition rule. The conclusion
describes the state change when the transition occurs. The old state is described
left of the transition arrow and the new state right of the arrow. The arrow is
labeled with the event that describes the transition. The predicates may contain
variables, which are implicitly universally quantified.

Refinement specification. The second input to our algorithms is the refinement
relation. We first define a partial order Ď on B, which we call an abstraction
relation. Given that states are sets of predicates, we can define this abstraction
relation as set inclusion, s Ď s1 ðñ s Ď s1. If s Ď s1, we say that s is
more abstract than s1. From this abstraction relation we can derive a refinement
specification, as follows.

Definition 3 (Abstraction-based refinement specification). Let B be a
set of actions with abstraction relation Ď. The abstraction-based refinement re-
lation is the smallest refinement relation ρĎ that satisfies (for @b, b1, ... , bn P B):

if b Ď b1 ^ ...^ b Ď bn then bŸ ORpb1 ¨ ¨ ¨ bnq P ρĎ, and

if b Ď bn then bŸ SANDpb1 ¨ ¨ ¨ bnq P ρĎ.

This definition expresses that the attacker’s goal of an OR node must be more
abstract than the attacker’s goals of its children, and that the attacker’s goal of
a SAND node must be more abstract than the goal of its right-most child.

Note that for more elaborated definitions of the system state, the abstraction
relation can be modified accordingly. We could, for instance, consider a state
consisting of two sets of predicates describing desired and undesired properties.

Network security example. We consider a set of machines M on a simple network
and a set of human actors A that can use these machines. We also consider a
set of credential records R, and a set of user terminals T ĎM .

Further, we consider the following set of predicates:

– located : AˆM determines to which machines actors are connected;

rstartTerms
s

startTermpa,tq
ÝÝÝÝÝÝÝÝÝÑ srlocatedpa, tqs

rloggingInRems
locatedpa,mq, connectedpm,m1q, storespm1, rq, knowspa, rq

s
loggingInRempa,m,m1,rq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ srlocatedpa,m1qs

rloggingOuts
locatedpa,mq,

s
loggingOutpa,mq
ÝÝÝÝÝÝÝÝÝÝÑ sr locatedpa,mqs

rexploitings
locatedpa,mq, connectedpm,m1q,

s
exploitingpa,m,m1,rq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ srstorespm1, rq, knowspa, rqs

rbruteforcingPsw s
locatedpa,mq, connectedpm,m1qstorespm1, rq

s
bruteforcingPswpa,m,m1,rq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ srknowspa, rqs

reavesdroppings
locatedpa,mq, locatedpa1,mq, connectedpm,m1q, knowspa, rq, storespm1, rq

s
eavesdroppingpa,a1,m,m1,rq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ srknowspa1, rqs

Fig. 7. Transition rules for the example (a, a1 P A, m,m1 PM , t P T and r P R).

– connected : M ˆM defines directly connected machines;
– stores : M ˆR identifies credentials accepted by a machine.
– knows : AˆR determines which credentials are known to actors.

Figure 7 presents a set of transition rules for this system. The first three
rules define the behaviour of legitimate users, and the other three rules introduce
actions for attackers.

As an example system we consider the set M consisting of just two machines,
client C and server S, and the set of terminals T to contain only C. We consider
two actors Alice and Mallory , and two credentials psw and psw1 .
Initial state:
s0 “ rlocatedpMallory , Cq, connectedpC, Sq, storespS, pswq, knowspAlice, pswqs.
Final state: Any state sf that contains locatedpMallory , Sq.
Traces: We consider the following three traces that lead to a successful attack.

Trace T 1:

s0
exploitingpMallory,C,S,psw1 q
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ s0rstorespS, psw1 q, knowspMallory , psw1 qs

loggingInRempMallory,C,S,psw1 q
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ s0rstorespS, psw1 q, knowspMallory , psw1 q, locatedpMallory , Sqs

Trace T 2:

s0
bruteforcingPswpMallory,C,S,pswq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ s0rknowspMallory , pswqs

loggingInRempMallory,C,S,pswq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ s0rknowspMallory , pswq, locatedpMallory , Sqs

Trace T 3:

s0
startTermpAlice,Cq
ÝÝÝÝÝÝÝÝÝÝÝÝÑ s0rlocatedpAlice, Cqs

bruteforcingPsw

exploiting

startTerm

eavesdropping

{located(Mallory,S)}

loggingInRem

{located(Mallory,S)}
F1

2 = F2
2 = F3

3

{stores(S,psw1),
knows(Mallory,psw1)}

F1
1

{knows(Mallory,psw)}
F2

1

{knows(Mallory,psw)}
F3

2

{located(Alice,C)}
F3

1

{knows(Mallory,psw)}
F3

2

{ }

Fig. 8. Generated attack tree for the network example.

eavesdroppingpAlice,Mallory,C,S,pswq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ s0rlocatedpAlice, Cq, knowspMallory , pswqs
loggingInRempMallory,C,S,pswq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ s0rlocatedpAlice, Cq, knowspMallory , pswq, locatedpMallory , Sqs

Intuitively, the tree for Mallory accessing the server S would be as presented
in Fig. 1: Mallory can attempt to eavesdrop on Alice to learn psw or to bruteforce
psw ; or he can exploit S to create a new credential psw1 . Next we show the tree
obtained by using our approach for automated attack-tree generation.

– The path in T 1 is characterised by b11b
1
2, where

b11 “ pH, tstorespS, psw1 q, knowspMallory , psw1 qu and b12 “ ptH, tlocatedpMallory , Squ.
– The path in T 2 is characterised by b21b

2
2, where b21 “ pH, tknowspMallory , pswqu,

b22 “ pH, tlocatedpMallory , Squq.
– The path in T 3 is characterised by b31b

3
2b

3
3, where b31 “ pH, tlocatedpAlice, Cquq,

b32 “ pH, tknowspMallory , pswquq, and b33 “ pH, tlocatedpMallory , Squq.

Based on these runs, our approach generates the tree presented in Fig. 8. In
this figure, the node labels identified by our approach are in boxes. Furthermore,
note that we have also labelled leaf nodes in a more meaningful way (labels in
the red circles) by using the corresponding actions (labels in the LTS) of the
system transitions. At the same time, most of the labels for the intermediate
nodes in the generated tree are also informative, as they specify only the facts
relevant for achieving the attack’s success in a particular subtree.

Note that one intermediate node has a label that represents an empty set of
facts, as there are no common facts for its children. This node has to be inter-
preted by the analyst as a combination of its children nodes. Yet, our approach
can be extended to be able to suggest meaningful labels also for such nodes. This
can be realized, e.g., through supporting first-order logic facts with quantifiers,
such as tDr P R : knowspMallory , rq, storespS, rqu.

It is worth remarking that the generated tree is identical in structure to the
human-designed tree (Fig. 1). However, this is not guaranteed for other scenarios.

5 Conclusions

In this paper we have introduced the attack-tree generation problem as a task of
constructing a correct attack tree that both has some expected meaning and re-
spects a pre-defined refinement relation. This problem definition supports a more
uniform treatment of the issues arising in both manual creation of attack trees
and automatic generation from system models. Furthermore, we have developed
a solution for this problem that utilizes an abstraction-based refinement speci-
fication derived from a system model and a set of traces representing successful
attack scenarios in the model to generate a correct attack tree.

The trees we generate are refinement-aware, and thus provide more insight
to the analyst than attack trees generated by previously proposed approaches,
such as [IPHK15,Gad15,HKT13,VNN14]. Furthermore, our approach derives the
refinement relation from the system model itself, and so it reduces the load on
the analyst in comparison to the ATSyRA approach [PAV15].

The novelty of our approach consists also in the labelling technique for in-
termediate and leaf nodes. Our labelling is based on the facts about the system
state that the attacker wants to achieve or avoid in order to realize the attack.
Our running example of the network security case has shown that the propo-
sed generation and labelling technique is practical and yields meaningful attack
trees.

To continue this work, we plan to integrate a model checker for obtaining
system traces, and to implement the generation algorithm in the open-source
attack tree software ADTool [GJK`16].

Acknowledgements. The research leading to these results has received fun-
ding from the European Union Seventh Framework Programme under grant
agreement number 318003 (TREsPASS) and from the Fonds National de la Re-
cherche Luxembourg under grant C13/IS/5809105 (ADT2P).

References

[DH04] J. Dawkins and J. Hale. A systematic approach to multi-stage network
attack analysis. In Proc. of Inf. Assurance Workshop. IEEE, 2004.

[FFG`16] M. Ford, M. Fraile, O. Gadyatskaya, R. Kumar, M. Stoellinga, and
R. Trujillo-Rasua. Using attack-defense trees to analyze threats and coun-
termeasures in an ATM: A case study. In Proc. of PoEM. Springer, 2016.

[Gad15] O. Gadyatskaya. How to generate security cameras: Towards defence gene-
ration for socio-technical systems. In Proc. of GraMSec. Springer, 2015.

[GG14] N. Gillis and Fr. Glineur. A continuous characterization of the maximum-
edge biclique problem. J. Global Optimization, 58(3):439–464, 2014.

[GJK`16] O. Gadyatskaya, R. Jhawar, P. Kordy, K. Lounis, S. Mauw, and R. Trujillo-
Rasua. Attack trees for practical security assessment: Ranking of attack
scenarios with ADTool 2.0. In Proc. of QEST. Springer, 2016.

[GLPS14] H. Ghani, J. Luna, I. Petkov, and N. Suri. User-centric security assessment
of software configurations: A case study. In Proc. of ESSoS. Springer, 2014.

[HKT13] J. B. Hong, D. S. Kim, and T. Takaoka. Scalable attack representation
model using logic reduction techniques. In Proc. of TrustCom. IEEE, 2013.

[IPHK15] M. G. Ivanova, C. W. Probst, R. R. Hansen, and F. Kammuller. Trans-
forming graphical system models to graphical attack models. In Proc. of
GraMSec. Springer, 2015.

[JKM`15] R. Jhawar, B. Kordy, S. Mauw, S. Radomirović, and R. Trujillo-Rasua.
Attack trees with sequential conjunction. In Proc. of SEC, volume 455 of
IFIP AICT. Springer, 2015.

[KMRS14] B. Kordy, S. Mauw, S. Radomirovic, and P. Schweitzer. Attack-defense
trees. Oxford Univ. Press J. Logic and Computation, 24(1):55–87, 2014.

[LMO15] G. Lenzini, S. Mauw, and S. Ouchani. Security analysis of socio-technical
physical systems. Elsevier Computers & Electrical Engineering, 2015.

[MO05] S. Mauw and M. Oostdijk. Foundations of Attack Trees. In Proc. of ICISC,
pages 186–198. Springer, 2005.

[PAV14] S. Pinchinat, M. Acher, and D. Vojtisek. Towards synthesis of attack trees
for supporting computer-aided risk analysis. In Proc. of SEFM and Works-
hops, volume 8938 of LNCS, pages 363–375, 2014.

[PAV15] S. Pinchinat, M. Acher, and D. Vojtisek. ATSyRa: an integrated environ-
ment for synthesizing attack trees. In Proc. of GraMSec. Springer, 2015.

[Pee03] R. Peeters. The maximum edge biclique problem is NP-complete. Discrete
Appl. Math., 131(3):651–654, September 2003.

[RA00] R. W Ritchey and P. Ammann. Using model checking to analyze network
vulnerabilities. In Proc. of S&P Symposium, pages 156–165. IEEE, 2000.

[RKT12] A. Roy, D. S. Kim, and K. Trivedi. Attack countermeasure trees (ACT):
towards unifying the constructs of attack and defense trees. Security and
Comm. Networks, 5(8), 2012.

[Sch99] B. Schneier. Attack Trees: Modeling Security Threats. Dr. Dobb’s Journal
of Software Tools, 24(12):21–29, 1999.

[SHJ`02] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated
generation and analysis of attack graphs. In Proc. of S&P Symposium, pages
273–284. IEEE, 2002.

[Sho14] A. Shostack. Threat modeling: Designing for security. Wiley, 2014.
[VNN14] R. Vigo, F. Nielsen, and H. R. Nielson. Automated generation of attack

trees. In Proc. of CSF, pages 337–350. IEEE, 2014.

