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Abstract

A vertex cover of a graph G = (V,E) is a set X ⊂ V such that each edge of G is incident to
at least one vertex of X. The vertex cover number τ(G) is the size of a minimum vertex cover
of G. A dominating set D ⊆ V is a weakly connected dominating set of G if the subgraph
G[D]w = (N [D], Ew) weakly induced by D, is connected, where Ew is the set of all edges
having at least one vertex in D. The weakly connected domination number γw(G) of G is
the minimum cardinality among all weakly connected dominating sets of G. In this article we
characterize the graphs where γw(G) = τ(G). In particular, we focus our attention on bipartite
graphs, regular graphs, unicyclic graphs, block graphs and corona graphs.
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1. Introduction

Throughout this paper G = (V,E) will be a finite, undirected, simple graph of order n. A
vertex cover of G is a set X ⊂ V such that each edge of G is incident to at least one vertex of
X. A minimum vertex cover is a vertex cover of smallest possible cardinality. The vertex cover
number τ(G) is the cardinality of a minimum vertex cover of G. A vertex cover of cardinality
τ(G) is called a τ(G)-set. The minimum vertex cover problem arises in various important
applications, including in multiple sequence alignments in computational biochemistry (see for
example [6]). In computational biochemistry there are many situations where conflicts between
sequences in a sample can be resolved by excluding some of the sequences. Of course, exactly
what constitutes a conflict must be precisely defined in the biochemical context. It is possible to
define a conflict graph where the vertices represent the sequences in the sample and there is an
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edge between two vertices if and only if there is a conflict between the corresponding sequences.
The aim is to remove the fewest possible sequences that will eliminate all conflicts, which is
equivalent to finding a minimum vertex cover in the conflict graph. Several approaches, such
as the use of a parameterized algorithm [3] and the use of a simulated annealing algorithm
[11], have been developed to deal with this problem.

A set D ⊆ V is dominating in G = (V,E) if every vertex of V −D has at least one neighbor
in D. The domination number of G, denoted by γ(G), is the minimum cardinality among all
dominating sets in G.

The neighborhood of a vertex v ∈ V is the set N(v) of all vertices adjacent to v in G.
For a set X ⊆ V, the open neighborhood, N(X), is defined to be ∪v∈XN(v) and the closed
neighborhood of X is defined as N [X] = N(X) ∪ X. Then the degree of a vertex v ∈ V is
deg(v) = |N(v)|. Given a vertex v of G = (V,E) and a set X ⊂ V , let NX(v) = {u ∈ X : uv ∈
E}.

Recall that a graph G is (δ1, δ2)-semiregular if all its vertices have degree either δ1 or δ2.
In a (δ1, δ2)-semiregular bipartite graph G = (U ∪W,E) every vertex of U has degree δ1 and
every vertex of W has degree δ2.

A dominating set D ⊆ V is a weakly connected dominating set of G if the subgraph
G[D]w = (N [D], Ew) weakly induced by D, is connected, where Ew is the set of all edges having
at least one vertex in D. Dunbar et al. [2] defined the weakly connected domination number
γw(G) of a graph G to be the minimum cardinality among all weakly connected dominating
sets of G. A weakly connected dominating set of cardinality γw(G) is called a γw(G)-set.

The motivation of studying weakly connected dominating sets comes from the study of ad
hoc wireless networks [1]. A crucial way in which these differ from current cellular networks
is that they do not have a separate routing infrastructure such as a system of base-stations;
the mobiles have to conduct their own communication through routing. In these networks
it is necessary to set up the so-called backbone, i.e., a set of vertices and the links between
them that is in charge of routing. In the specialized literature there is a general consensus
that the backbone should be a dominating set, i.e., each vertex is either in the backbone or
next to some vertex in it. Rajaraman in [7] said that the most basic clustering that has been
studied in the context of ad hoc networks is based on dominating sets. Moreover, the following
additional features are considered to be appealing: (a) the backbone should be “small” and
(b) it should be connected or weakly connected. Computing small connected dominating sets
has been the focus of many articles [8, 9, 10]. While connectivity appears to be a natural
requirement, several authors have argued that the right notion to apply in the wireless context
is weak connectivity [1].

The main goal of this article is the study of analogies and discrepancies between the vertex
cover number and the weakly connected domination number of a graph. To begin with, we
establish some preliminary results.
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2. Preliminaries

Since every vertex cover is also a weakly connected dominating set, the following result
holds.

Proposition 1. [2] For any graph G of order n, γw(G) ≤ τ(G).

The following result will be useful in Section 4 where we show that for regular graphs of
order n, γw(G) = τ(G) if and only if G is bipartite and γw(G) = n

2
.

Theorem 2. [2] For any connected graph G of order n, γw(G) ≤ n
2
.

If T is a tree and D is a minimum weakly connected dominating set of T , then every
edge of T has at least one of its vertices in D. So every weakly connected dominating set in a
non-trivial tree T is also a vertex cover of T and every vertex cover of T is a weakly connected
dominating set.

Proposition 3. [2] For any tree T of order n ≥ 2, τ(T ) = γw(T ).

In general, there are some graphs for which these parameters are equal, but the concepts
are not necessarily equivalent. For example, if we consider a cycle C6 = (v1, v2, v3, v4, v5, v6, v1),
then γw(C6) = τ(C6) = 3. The set {v1, v3, v5} is both a minimum weakly connected dominating
set and a minimum vertex cover of C6. But, for instance, the set {v1, v3, v4} is a minimum weakly
connected dominating set, but it is not a vertex cover of C6.

Of course, there are also graphs G for which γw(G) < τ(G). As a simple example, consider
the cycle C2k+1 (k ≥ 1), where γw(C2k+1) = k and τ(C2k+1) = k + 1.

Claim 4. For the cycle graph Cn, γw(Cn) = τ(Cn) if an only if n is even.

In order to show a nontrivial family of graphs where the difference between τ and γw is
arbitrarily large, we establish the following bound on the weakly connected domination number
of the hypercube graphs.

Proposition 5. For every hypercube graph Qk, k ≥ 2,

γw(Qk) ≤ 2k−2 + 1.

Proof. We know that the hypercube Qk can be defined by recurrence as a Cartesian product
graph, i.e., Qk = Qk−1�K2, k ≥ 1, where Q1 = K2. Let {a, b} be the set of vertices of K2. S2 =
{(a, a), (b, b)} is a weakly connected dominating set for Q2 and S3 = {(a, a, a), (b, b, a), (b, b, b)}
is a weakly connected dominating set for Q3.

Now, let S ′3 = {(b, b, a)}. Note that S ′′3 = S3−S ′3 is an independent dominating set for Q3.
So, in Q4, S3 × {a} is a weakly connected dominating set for the copy of Q3 corresponding to
a and S ′′3 × {b} is a dominating set for the copy of Q3 corresponding to b. Notice also that for
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every x ∈ S ′′3 , (x, a) and (x, b) are neighbors in Q4. Thus, S4 = (S3 × {a}) ∪ (S ′′3 × {b}) is a
weakly connected dominating set for Q4.

Following this process, we take S5 = (S4 × {a}) ∪ (S ′′4 × {b}), where S ′′4 = S4 − S ′3 × {a}.
As above, S5 is a weakly connected dominating set for Q5. In general, Sk = (Sk−1 × {a}) ∪
(S ′′k−1 × {b}), is a weakly connected dominating set for Qk, where S ′′k−1 = Sk−1 − S ′k−2 × {a}.

Moreover, |Sk| = 2|Sk−1| − 1, where |S2| = 2 and |S3| = 3. Hence, |Sk| = 2k−2 + 1. The
proof is complete.

It is well-known that for the hypercube Qk, τ(Qk) = 2k−1 (see, for instance, [4]). Thus, by
Proposition 5 we have

τ(Qk)− γw(Qk) ≥ 2k−2 − 1.

So, the difference between τ(Qk) and γw(Qk) is arbitrarily large.
The next sections are devoted to a characterization of those graphsG which satisfy γw(G) =

τ(G). In particular, we focus our attention on bipartite graphs, regular graphs, unicyclic
graphs, block graphs and corona graphs.

3. Bipartite graphs

Theorem 6. (König 1931, Egerváry 1931) For bipartite graphs the size of a maximum matching
equals the size of a minimum vertex cover.

We will use König-Egerváry’s theorem to prove the following result.

Theorem 7. Let G be a Hamiltonian bipartite graph of order n. Then γw(G) = τ(G) if and
only if G is isomorphic to the cycle graph Cn.

Proof. Let G = (U ∪ W,E). We know that if G is Hamiltonian, then |U | = |W |. So, if
(v1, v2, ...vn, v1) is a Hamiltonian cycle of G, then we can take U = {v1, v3, ..., vn−1} and W =
{v2, v4, ..., vn}. Suppose there exists at least one vertex, say v1, of degree greater than two.
Then S = {v1, v4, v6, ..., vn−2} is a dominating set and v1 must be adjacent to at least one vertex
belonging to S−{v1}. Hence, G[S]w is connected and, as a consequence, γw(G) ≤ |S| = n

2
−1.

Since every bipartite Hamiltonian graph has a perfect matching, by König-Egerváry’s theorem
we conclude that τ(G) = n

2
. Therefore, if γw(G) = τ(G), then G has maximum degree δ ≤ 2

and, since G is Hamiltonian, we observe that G is isomorphic to the cycle graph Cn.
The converse is straightforward.

Given a connected graph G = (V,E), we say that X ⊂ V is a cut set if the subgraph of G
induced by V −X is not connected.

Lemma 8. Let G = (U ∪W,E) be a bipartite graph where |U | ≤ |W |. Let d be the minimum
among the degrees of the vertices belonging to W . If γw(G) = |U | and d ≥ 3, then for every
pair of vertices u, v ∈ U such that N(u) ∩N(v) 6= ∅, it follows that {u, v} is a cut set.
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Proof. Let U = {u1, u2, ..., ur} and W = {w1, w2, ..., wt}. Suppose, without loss of generality,
that u1 and u2 are adjacent to w1 and {u1, u2} is not a cut set. Let S = {w1, u3, u4, ..., ur}.
Since d ≥ 3, each vertex of W − {w1} must be adjacent to at least one vertex belonging to
S − {w1}. Hence, S is a dominating set.

Now, since {u1, u2} is not a cut set, the subgraph of G obtained by removing u1 and u2
is connected and, as a consequence, G[S]w is connected. Therefore, S is a weakly connected
dominating set and γw(G) ≤ |S| = |U | − 1. Therefore, if γw(G) = |U |, then for every pair of
vertices u, v ∈ U such that N(u) ∩N(v) 6= ∅, it follows that {u, v} is a cut set.

Lemma 9. Let G = (U ∪W,E) be a bipartite graph where |U | ≤ |W |. If γw(G) < |U |, then
there exists a vertex belonging to W of degree greater than or equal to three.

Proof. Let S be a γw(G)-set of G. From γw(G) < |U | we deduce that S∩U 6= ∅ and S∩W 6= ∅,
due to the domination property of S. Let S

(0)
u = S ∩U and S

(0)
w = S ∩W . By the connectivity

of G[S]w, there exist u1 ∈ U −S, u′1 ∈ S
(0)
u and w1 ∈ S(0)

w such that u1w1 ∈ E and u′1w1 ∈ E. If

deg(w1) ≥ 3, then we are done. If deg(w1) = 2, then for S
(1)
u = S

(0)
u ∪{u1} and S

(1)
w = S

(0)
w −{w1}

we have that S(1) = S
(1)
u ∪ S(1)

w is a γw(G)-set.

As above, there exist u2 ∈ U − S(1), u′2 ∈ S
(1)
u and w2 ∈ S

(1)
w such that u2w2 ∈ E and

u′2w2 ∈ E. If deg(w2) ≥ 3, then we are done. If deg(w2) = 2, then for S
(2)
u = S

(1)
u ∪ {u2} and

S
(2)
w = S

(1)
w − {w2} we have that S(2) = S

(2)
u ∪ S(2)

w is a γw(G)-set.
By repeating this argument we conclude that either there exists wk ∈ S ∩W such that

deg(wk) ≥ 3 or there exists a γw(G)-set, say D, such that D∩W = ∅, which is a contradiction.
The proof is complete.

A matching M ⊆ E from U to W is a set of |U | independent edges in G.

Theorem 10 (P. Hall, 1935). A bipartite graph G = (U ∪W,E) contains a matching from U
to W if and only if |N(X)| ≥ |X|, for every X ⊆ U .

We will use Hall’s theorem to prove the following result.

Proposition 11. For any semiregular bipartite graph G(U ∪W,E), τ(G) = min{|U |, |W |}.

Proof. In a (δ1, δ2)-semiregular bipartite graph G = (U ∪W,E) every vertex of U has degree
δ1 and every vertex of W has degree δ2. We suppose |U | ≤ |W | and, as a consequence, δ1 ≥ δ2.
For every X ⊂ U we have δ1|X| ≤ δ2|N(X)| ≤ δ1|N(X)|. Hence, |X| ≤ |N(X)|. Thus, by
Hall’s theorem we conclude that every maximum matching of G has size |U |. As a consequence,
by König-Egerváry’s theorem we conclude τ(G) = |U |.

Proposition 12. Let G = (U ∪W,E) be a bipartite semiregular graph where |U | ≤ |W |. If
γw(G) = τ(G), then for every pair of vertices u, v ∈ U such that N(u) ∩ N(v) 6= ∅, it follows
that {u, v} is a cut set.
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Proof. Assume that G = (U ∪W,E) is a (δ1, δ2)-semiregular bipartite graph which satisfies
the premises. For δ2 = 2 the result is straightforward, while for δ2 ≥ 3 the result is a direct
consequence of Lemma 8 and Proposition 11.

Lemma 13. Let G = (U ∪ W,E) be a connected (δ1, δ2)-semiregular bipartite graph where
|U | ≤ |W |. If for every pair of vertices u, v ∈ U such that N(u) ∩ N(v) 6= ∅, it follows that
{u, v} is a cut set, then δ2 ≤ 2.

Proof. Among all the pairs of vertices a, b ∈ U such that N(a)∩N(b) 6= ∅, we take a pair, say
u, v, that minimizes

µ = min
i∈{1,...,k}

{|Wi|},

where G1 = (U1∪W1, E1), . . . , Gk = (Uk∪Wk, Ek) are the connected components of G−{u, v}.
Let w ∈ W be such that u, v ∈ N(w). Let us assume, without loss of generality, that µ = |W1|.

Note that, each vertex in W1 only has neighbors in U1 or in {u, v}. By the connectivity of
G we have |NW1(u)| < δ1 or |NW1(v)| < δ1.

We proceed by contradiction. Suppose δ2 ≥ 3. Then, since |W1| ≥ δ1, there exists at least
one vertex w′ ∈ W1 such that |NU1(w

′)| ≥ 2 (otherwise, every vertex of W1 must be adjacent
to u and v and, as a consequence, |NW1(u)| = |NW1(v)| = δ1, which is a contradiction).
Let u′, v′ ∈ U1 be such that u′, v′ ∈ N(w′). If G1 − {u′, v′} is a connected graph, then
G− {u′, v′} also is a connected graph, a contradiction. So, G1 − {u′, v′} is not connected. Let
G′1 = (U ′1 ∪W ′

1, E
′
1), . . . , G

′
k′ = (U ′k′ ∪W ′

k′ , E
′
k′) be the connected components of G1 − {u′, v′}.

Now, given i, j ∈ {1, ..., k′}, i 6= j, if there exist x ∈ W ′
i and y ∈ W ′

j such that x ∈ N(u)
and y ∈ N(v), or vice versa, then x and y belong to the same component of G − {u′, v′},
i.e., x, u, w, v, y is a path in G − {u′, v′}. Thus, as G − {u′, v′} is not connected, there exists
i ∈ {1, ..., k′}, such that x 6∈ N(u) ∪ N(v), for every x ∈ W ′

i . So, G′i = (U ′i ∪ W ′
i , E

′
i) is

a connected component of G − {u′, v′} and |W ′
i | < |W1|, which is a contradiction with the

minimality of |W1|.

Theorem 14. Let G = (U ∪W,E) be a connected (δ1, δ2)-semiregular bipartite graph. Then
γw(G) = τ(G) if and only if min{δ1, δ2} ≤ 2.

Proof. Let us suppose |U | ≤ |W | and, as a consequence, δ1 ≥ δ2. If γw(G) = τ(G), then by
Proposition 12 and Lemma 13 we deduce δ2 ≤ 2.

Conversely, if δ2 = 1, then G is a star graph and γw(G) = τ(G) = 1. Moreover, if δ2 = 2,
then by Lemma 9 we obtain γw(G) = |U |. So, by Proposition 11 we conclude γw(G) = τ(G).

4. Regular graphs

Lemma 15. Let G be a regular graph of order n. Then γw(G) = τ(G) if and only if G is
bipartite and γw(G) = n

2
.
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Proof. Let G = (V,E) be a δ-regular graph of order n. We suppose γw(G) = τ(G). Let S be a
τ(G)-set. Note that S is a weakly connected dominating set and S = V −S is an independent
set. Hence, the size of G is

nδ

2
=
∑
v∈S

|NS(v)|+ 1

2

∑
v∈S

|NS(v)|.

Now, since
∑
v∈S

|NS(v)| = (n− |S|)δ, we obtain

|S|δ =
1

2

(
δn+

∑
v∈S

|NS(v)|

)
. (1)

Thus, if
∑
v∈S

|NS(v)| > 0, then γw(G) = |S| > n
2
, a contradiction. Therefore,

∑
v∈S

|NS(v)| = 0

and, as a consequence, G is bipartite and by (1) we have γw(G) = |S| = n
2
.

Conversely, suppose G is a bipartite graph where γw(G) = n
2
. Since for bipartite graphs

the size of a maximum matching equals the size of a minimum vertex cover (König-Egerváry’s
theorem), and every δ-regular bipartite graph (δ ≥ 1) has a perfect matching, we conclude
τ(G) = n

2
. The proof is complete.

As a direct consequence of Lemma 15 and Theorem 14 we obtain the following result.

Theorem 16. Let G be a regular graph of order n. Then γw(G) = τ(G) if and only if G is
isomorphic to a cycle graph of even order.

5. Unicyclic graphs

Let G be a connected unicyclic graph and let C = {u1, u2, ..., uk} be the set of vertices
belonging to the cycle Ck of G. We suppose that ui is adjacent to ui+1, for every i ∈ {1, 2, ..., k}.
Here the subscripts are taken modulo k. Let Gi = G − {ui−1ui, uiui+1} be the subgraph
obtained from G by removing the edges ui−1ui and uiui+1. Let Ti = (Vi, Ei) be the connected
component of Gi containing ui. Note that Ti is a tree which can be seen as a tree with root
ui. Let F = {Ti : i ∈ {1, ...k}}. We say that Ti belongs to the family F0 ⊂ F if Ti is a trivial
graph or if the root ui does not belong to any γw(Ti)-set. Also, we define the family F1 as
F1 = {Ti ∈ F : Ti 6∈ F0}, i.e., Ti ∈ F1 if and only if there exists a γw(Ti)-set, Si, such that
ui ∈ Si and Ti is not a trivial tree. Note that there exists a γw(G)-set, S, such that ul ∈ S, for
every Tl ∈ F1.

With the above notation we establish the following result.

Theorem 17. Let G be a connected unicyclic graph. The following assertions hold.
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(i) If |F1| ≥ 2, then γw(G) = τ(G) if and only if for every two trees Ti, Tj ∈ F1 such that
Ti+1, Ti+2, ..., Tj−1 ∈ F0, it follows j − i ≡ 0 (mod 2).

(ii) If F1 = ∅ or |F1| = 1, then γw(G) = τ(G) if and only if the cycle of G has even order.

Proof. To prove the necessity of (i) we proceed by contradiction. We suppose there exist two
trees Ti, Tj ∈ F1 such that Ti+1, Ti+2, ..., Tj−1 ∈ F0 and the path Pk = (Vp, Ep) induced by the
vertices ui+1, ui+2, ..., uj−1 has even order k. Let S be a τ(G)-set (which also is a γw(G)-set)
such that ul ∈ S, for every Tl ∈ F1. Now, let S ′ = S − Vp, S ′′ = S ′ ∪ {ui+3, ui+5, ..., uj−2}, for
j ≥ i + 5, and S ′′ = S ′, for j = i + 3. Let us show that S ′′ is a weakly connected dominating
set. If v ∈ Vp − S ′′, then there exists u ∈ {ui, ui+3, ui+5, ..., uj−2} ⊂ S ′′ such that u and v are
adjacent. If v ∈ V − (Vp ∪ S), then there exists v′ ∈ S ′ ⊂ S ′′, such that v′ and v are adjacent.
Hence, S ′′ is a dominating set. On the other hand, ui+1ui+2 is not an edge of G[S ′′]w but, as
G[S]w = G because S is a cover set, there is a path in G[S ′′]w from ui+2 to ui+1. Moreover, as
Ti+1, Ti+2, ..., Tj−1 ∈ F0, for every ul such that l ∈ {i + 1, i + 2, ..., j − 1} and Tl is not trivial,
there exists at least one vertex of Tl belonging to S ∩ S ′′ which is a neighbor of ul. Therefore,
G[S ′′]w is connected. As a consequence, S ′′ is a weakly connected dominating set. We have
|S ′′ ∩ Vp| = k

2
− 1 and |S ∩ Vp| = τ(Pk) = k

2
, due to G[S]w = G. Therefore, |S ′′| < |S| = γw(G),

which is a contradiction.
To prove the sufficiency of (i) we need to show that there exists a γw(G)-set of cardinality

τ(G). Let D be a γw(G)-set such that ul ∈ D, for every Tl ∈ F1. Let Ti, Tj ∈ F1 such that
Ti+1, Ti+2, ..., Tj−1 ∈ F0 and the path Pk = (Vp, Ep) induced by the vertices ui+1, ui+2, ..., uj−1
has odd order k. If |D ∩ Vp| ≤ k−1

2
− 1, then there are at least two edges of Pk not covered by

D, which is a contradiction with the connectivity of G[D]w, so |D ∩ Vp| ≥ k−1
2

. Since k is odd,
there is a vertex cover of Pk of cardinality k−1

2
and, as a consequence, |D ∩ Vp| = k−1

2
= τ(Pk).

Now let {Pk1 = (Vk1 , Ek1), Pk2 = (Vk2 , Ek2), ..., Pkr = (Vkr , Ekr)} be the set of paths ob-
tained (by the procedure used above to define Pk) from the different pairs of trees Ti, Tj ∈ F1

such that Ti+1, Ti+2, ..., Tj−1 ∈ F0. Let F2 be the set of non-trivial trees belonging to F0. Then
we have

γw(G) = |D| =
∑
Ti∈F1

γw(Ti) +
∑
Ti∈F2

γw(Ti) +
r∑

l=1

|D ∩ Vkl |

=
∑
Ti∈F1

τ(Ti) +
∑
Ti∈F2

τ(Ti) +
r∑

j=1

τ(Pkj)

≥ τ(G).

Therefore, γw(G) = τ(G). The proof of (i) is complete.
To prove (ii) we differentiate two cases.

Case 1: F1 = ∅. As above, F2 denotes the set of trees different from a trivial graph belonging
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to F0. In such a case, every γw(G)-set, S, satisfies

S = Sc ∪

( ⋃
Ti∈F2

γw(Ti)

)
,

where Sc is a γw(Ck)-set. Analogously, every τ(G)-set, S ′, satisfies

S ′ = S ′c ∪

( ⋃
Ti∈F2

τ(Ti)

)
,

where S ′c is a τ(Ck)-set. Since for every tree T , it follows τ(T ) = γw(T ), we have |S| = |S ′| if
and only if γw(Ck) = τ(Ck). Hence, by Claim 4 we conclude γw(G) = τ(G) if and only if k is
even. Therefore, the proof of (ii) for this case is complete.
Case 2: |F1| = 1. If Ti ∈ F1, then Ti+1, Ti+2, ..., Ti−1 ∈ F0. So, the proof of (ii) for this case is
obtained by analogy to the proof of (i) by taking Tj = Ti.

In order to complete the method that decides whether a given unicyclic graph satisfies
γw(G) = τ(G), we provide a deterministic algorithm that determines whether Ti ∈ F0 or
Ti ∈ F1. For the sake of generality, we recall both families of trees F0 and F1 in terms of a
given root of the tree. This means that a tree T with root v, denoted by Tv, is in F0 if either
T is a trivial graph or the root v does not belong to any γw(T )-set.

Proposition 18. Let Tv = (V,E) be a rooted tree with root v ∈ V . Let T1 = (V1, E1), . . . , Tk =
(Vk, Ek) be the rooted trees resulting from the k connected components of Tv − {v}, where the
corresponding roots v1, . . . , vk are the vertices of Tv such that vj is adjacent to v and vj ∈ Vj,
j ∈ {1, ..., k}. Let F = {Tj ∈ F0 : 1 ≤ j ≤ k}. Then, Tv ∈ F0 if and only if |F | = 0.

Proof. Let S be a τ(Tv)-set and let Sj be a τ(Tj)-set. It should be noted that the set (S −
Vj) ∪ Sj ∪ {vj} is a vertex cover of T . Therefore, if vj ∈ Sj, then |(S − Vj) ∪ Sj ∪ {vj}| =
|(S − Vj) ∪ Sj| = τ(T ). On the other hand, if there does not exist a τ(Tj)-set Sj such that
vj ∈ Sj, then either vj ∈ S and |S∩Vj| = τ(Tj)+1 or vj /∈ S and |S∩Vj| = τ(Tj). Consequently,

τ(Tv) =|{v} ∩ S|+
k∑

j=1

|S ∩ Vj|

=|{v} ∩ S|+
k∑

j=1

τ(Tj) +
∑
Tj∈F

|{vj} ∩ S|.

Let us suppose |F | = 0. In this case for every τ(Tv)-set S we have

τ(Tv) = |{v} ∩ S|+
k∑

j=1

τ(Tj). (2)
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Note that for every j ∈ {1, ..., k} we can take a τ(Tj)-set Sj such that vj ∈ Sj. In such a case,

∪kj=1Sj is a τ(Tv)-set, so τ(Tv) =
∑k

j=1 τ(Tj). Thus, by Equation (2) we obtain that for every
τ(Tv)-set S, v 6∈ S. Therefore, Tv ∈ F0.

Conversely, if Tv ∈ F0, then for every τ(Tv)-set S we have v 6∈ S and, as a consequence,
vj ∈ S for every j ∈ {1, ..., k}. Now, if there exists Tj ∈ F0, then for every τ(Tj)-set Sj we
have vj 6∈ Sj and, as a consequence, |S ∩ Vj| = |Sj| + 1. Then by taking S ′ = S − Vj, we
obtain that S ′′ = S ′∪Sj ∪{v} is a τ(Tv)-set which satisfies v ∈ S ′′, a contradiction. Therefore,
|F | = 0.

Proposition 18 states whether a rooted tree Tv is in F0. Therefore, Algorithm 1 recursively
solves this decision problem in linear time complexity with respect to the number of vertices.

Algorithm 1 Deciding whether Tv ∈ F0

Require: A rooted tree Tv = (V,E).
1: if Tv is a trivial graph then
2: return true
3: end if
4: for all tree Tj child of v with root vj do
5: if Tj ∈ F0 then
6: return false;
7: end if
8: end for
9: return true

5.1. Spanning trees

The set of all spanning trees of a connected graph G is denoted by St(G).

Lemma 19. Let G be a connected graph. For every T ∈ St(G), γw(G) ≤ γw(T ) and τ(T ) ≤
τ(G).

Proof. The inequality γw(G) ≤ γw(T ) immediately follows from the fact that every weakly
connected dominating set of a spanning tree of G is a weakly connected dominating set of G.
Analogously, the inequality τ(T ) ≤ τ(G) follows from the fact that every vertex cover of G is
a vertex cover of any spanning tree of G.

Every spanning tree of a cycle graph Ck is a path graph Pk. For k even we have γw(Ck) =
γw(Pk) = τ(Pk) = τ(Ck) = k

2
and, for k odd we have γw(Ck) = γw(Pk) = τ(Pk) = k−1

2
while

τ(Ck) = k+1
2

.

Proposition 20. Let G be a connected unicyclic graph. If γw(G) = τ(G), then for every
T ∈ St(G), τ(T ) = τ(G) and γw(T ) = γw(G).

10



Proof. If γw(G) = τ(G), then Lemma 19 leads to τ(T ) ≤ τ(G) = γw(G) ≤ γw(T ), for every
T ∈ St(G). Now, since for every tree, γw(T ) = τ(T ), we conclude τ(T ) = τ(G) = γw(G) =
γw(T ).

Given two adjacent vertices x, y of G, we denote by G − {xy} the subgraph obtained by
removing from G the edge xy.

Lemma 21. Let G be a connected unicyclic graph. If γw(G) < τ(G), then the following
assertions hold.

(i) For every γw(G)-set S, G[S]w ∈ St(G).

(ii) There exists T ∈ St(G), such that τ(G) = τ(T ) + 1.

Proof. By definition, for every weakly connected dominating set S of G, G[S]w is a spanning
subgraph of G and which is connected. Moreover, since every vertex cover is a weakly connected
dominating set, if γw(G) < τ(G), then for every γw(G)-set S, there exist two adjacent vertices
x, y of G such that x, y 6∈ S. Let C be the cycle of G. By the connectivity of G[S]w we deduce
that x, y ∈ C. So, G[S]w is a spanning tree of G, i.e., G[S]w = G−{xy}. Therefore, (i) follows.

Moreover, for T = G − {xy} = G[S]w we have γw(G) = γw(T ) = τ(T ). Thus, from
τ(G) > γw(G) we deduce τ(G) > τ(T ). Note that, by the connectivity of G[S]w, there is no
edge x′y′ different from xy such that x′, y′ 6∈ S. Hence, S ∪ {x} is a vertex cover for G and we
conclude τ(G) = τ(T ) + 1. The proof is complete.

By Proposition 20 and Lemma 21 (ii) we obtain the following result.

Theorem 22. Let G be a connected unicyclic graph. Then γw(G) = τ(G) if and only if
τ(G) = τ(T ), for every T ∈ St(G).

To apply Theorem 22 for unicyclic graphs where the cycle is even we can use the shortest
augmenting path algorithm to compute maximum matching (see, for instance, [5]) and then,
by König-Egerváry’s theorem, we obtain the value of γw(G).

6. Block graphs

A graph is a block graph if it is connected and every block (maximal 2-connected compo-
nent) is a clique (a complete subgraph). Note that every block graph can be constructed from
a tree by replacing every edge by a clique of arbitrary size; any two cliques have at most one
vertex in common. So, every tree is a block graph.

We know that for every tree T it follows τ(T ) = γw(T ). So, from now on G denotes a
block graph different from a tree. Let C = (U,E) be a block of G where U = {u1, u2, ..., uk}
and k ≥ 3. Let F = {G1 = (U1, E1), . . . , Gk = (Uk, Ek)} be the set of connected components
resulting from removing the edges of C. We assume that ui ∈ Ui, for every i ∈ {1, ..., k}. With
this notation we establish the following result.
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Proposition 23. If τ(G) = γw(G), then for every i ∈ {1, ..., k} either τ(Gi) = γw(Gi) or Gi

is a trivial graph.

Proof. Let W be a τ(G)-set and let Wi = W ∩Ui. It should be noted that Wi is a vertex cover
of the corresponding non-trivial graph Gi. Let us assume, without loss of generality, that G1

is a non-trivial graph with τ(G1) > γw(G1) and let S1 be a γw(G1)-set. Since k ≥ 3 and C
is a complete graph, all but one vertex of U = {u1, u2, ..., uk} belong to the vertex cover W .
Then, S = S1 ∪W2 ∪ · · · ∪Wk is a weakly connected dominating set of G. Since |S1| < |W1|
by assumption, and |S| = |W | − |W1|+ |S1|, we have |S| < |W |, a contradiction.

Now, we proceed similarly to the analysis for unicycle graphs by defining two families
F0 ⊆ F and F1 ⊆ F . We say that Gi is in F0 if it is a trivial graph or if τ(Gi) = γw(Gi) and
ui does not belong to any τ(Gi)-set. On the other hand, Gi is in F1 if τ(Gi) = γw(Gi) and
there exists a τ(Gi)-set, Si, such that ui ∈ Si. Note that, F0 and F1 do not necessarily form a
partition of F . With this notation we establish the following result.

Theorem 24. τ(G) = γw(G) if and only if |F0| ≤ 1 and for every non-trivial graph Gi,
τ(Gi) = γw(Gi).

Proof. First, let us assume that τ(G) = γw(G). In this case, by Proposition 23 we have that
τ(Gi) = γw(Gi) for every non-trivial graph Gi.

Let W be a τ(G)-set and let Wi = W∩Ui. Notice that Wi is a weakly connected dominating
set of the non-trivial graph Gi. Suppose, without loss of generality, that G1, G2 ∈ F0. Now,
for j ∈ {1, 2}, let Sj be a τ(Gj)-set if Gj is a non-trivial graph and let Sj = ∅ if Gj is a trivial
graph. Since C is a complete graph we have that all but one vertex of U = {u1, u2, ..., uk}
belong to the vertex cover W , so S = S1 ∪ S2 ∪W3 ∪ · · · ∪Wk ∪ {uk} is a weakly connected
dominating set of G. Note that we add uk to S in case uk is not in W . Thus, if uk 6∈ W , then
u1, u2 ∈ W and, as a consequence, |S1| < |W1| and |S2| < |W2|. Moreover, if uk ∈ W , then
u1 ∈ W or u2 ∈ W and, as a consequence, |S1| < |W1| or |S2| < |W2|. In both cases we deduce
|S| < |W |, a contradiction. Therefore, |F0| ≤ 1.

Now, let us assume that τ(Gi) = γw(Gi) for every non-trivial graph Gi and at most one of
them, say G1, is in F0. This means that every subgraph Gi for i ∈ {2, ..., k} is non-trivial. Let
S be a γw(G)-set and let Si = S ∩Ui, as before, every Si is a weakly connected dominating set
of the non-trivial graph Gi. Therefore,

|S| ≥ |S1|+
k∑

i=2

γw(Gi) = |S1|+
k∑

i=2

τ(Gi).

So we have
k∑

i=2

τ(Gi) ≤ |S| − |S1|.
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On the other hand, for i ∈ {2, ..., k} let Wi be a τ(Gi)-set such that ui ∈ Wi. Also, let
W1 = ∅ if G1 is a trivial graph and let W1 be a τ(G1)-set if G1 is a non-trivial graph. Then,
W = W1 ∪ · · · ∪Wk is a vertex cover of G and |W | = |W1| +

∑k
i=2 τ(Gi) ≤ |W1| + |S| − |S1|.

However, it should be noted that if G1 is a trivial graph, then |W1| = 0 ≤ |S1|, otherwise
|W1| = τ(G1) = γw(G1) ≤ |S1|. So, |W | ≤ |S| = γw(G) ≤ τ(G) and, as a consequence,
|W | = |S| = τ(G) = γw(G).

Theorem 24 leads to Algorithm 2 that determines whether τ(G) = γw(G) for block graphs.

Algorithm 2 Determining whether τ(G) = γw(G) for a block graph G.

Require: A block graph G.
1: Let C = (U,E) be a block of G of maximum order, where U = {u1, u2, ..., uk}.
2: if k = 2 then
3: return true. // Note that in this case G is a tree.
4: end if
5: Let G1 = (U1, E1), . . . , Gk = (Uk, Ek) be the connected components resulting from remov-

ing the edges of C.
6: Call Algorithm 3 so as to build two sets F0 = {Gi : Gi ∈ F0} and F1 = {Gi : Gi ∈ F1}.
7: if |F0| ≤ 1 and |F0|+ |F1| = k then
8: return true.
9: else

10: return false.
11: end if

7. Corona graphs

Let G and H be two graphs of order n1 and n2, respectively. Recall that the corona product
G ◦H is defined as the graph obtained from G and H by taking one copy of G and n1 copies of H
and joining by an edge each vertex from the ith-copy of H with the ith-vertex of G. We will denote
by V = {v1, v2, ..., vn} the set of vertices of G and by Hi = (Vi, Ei) the copy of H such that vi ∼ v
for every v ∈ Vi. We denote by Nk the null graph of order k.

Proposition 25. For any connected graph G, γw(G ◦H) = τ(G ◦H) if and only if H ∼= Nk.

Proof. Let G = (V,E). We know that V, is a γ(G◦H)-set. Since G◦H[V ]w is connected, we have that
γw(G ◦H) = |V |. Thus, if H ∼= Nk, then V is a vertex cover of G ◦H. Hence, γw(G ◦H) = τ(G ◦H).
Now, let W be a τ(G ◦H)-set. If the size of H is different from zero, then for each vertex v ∈ V , the
vertex cover W contains at least two vertices belonging to the copy of H corresponding to v. Hence,
τ(G ◦H) > |V | = γw(G ◦H). The proof is complete.
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Algorithm 3 Determining if a block graph G = (U,E) with extreme vertex u belongs to F0,
to F1, or to none of them.

Require: G a block graph and u an extreme vertex in G.
1: if G is a trivial graph then
2: return G belongs to F0.
3: end if
4: Let C = ({u1, · · · , uk}, E ′) be the block of G containing u.
5: Let G1 = (U1, E1), . . . , Gk = (Uk, Ek) be the connected components of G resulting from

removing the edges of C from G, such that ui ∈ Ui ∀i ∈ {1, · · · , k}.
6: Let F0 and F1 be two sets.
7: for i ∈ {1, · · · , k} do
8: Recursively call Algorithm 3 on input the block graph Gi and the extreme vertex ui.
9: if Gi ∈ F0 then

10: F0 = F0 ∪ {Gi}
11: else if Gi ∈ F1 then
12: F1 = F1 ∪ {Gi}
13: end if
14: end for
15: if k = 2 and |F0| = 2 then
16: return G belongs to F1. //interchangeably either u1 or u2 needs to be in a τ(G)-set.
17: end if
18: if k = 2 and |F0| = |F1| = 1 then
19: return Gi belongs to F0. //none τ(G)-set contains u.
20: end if
21: if |F0| > 1 or |F0|+ |F1| < k then
22: return Gi does not belong neither to F0 nor to F1. //applying Theorem 24
23: else
24: return Gi belongs to F0. //Applying Theorem 24 and considering that the isolated

vertex u is that graph belonging to F0.
25: end if
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