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Abstract—Distance-bounding protocols serve to thwart various
types of proximity-based attacks, such as relay attacks. A
particular class of distance-bounding protocols measures round
trip times of a series of one-bit challenge-response cycles, dur-
ing which the proving party must have minimal computational
overhead. This can be achieved by precomputing the responses
to the various possible challenges. In this paper we study this
class of precomputation-based distance-bounding protocols. By
designing an abstract model for these protocols, we can study
their generic properties, such as security lower bounds in
relation to space complexity. Further, we develop a novel family
of protocols in this class that resists well to mafia fraud attacks.

1. Introduction

Physical proximity is a common requirement in many
access control policies, particularly in those involving phys-
ical access. Most real-world security systems would rise
a security alert if a door has been opened remotely. An
electronic toll payment made by a user whose car is parked
in front of his home can also hardly be considered an ex-
pected behavior. Some access control mechanisms have been
designed in such a way that physical proximity is enforced
easily, e.g., mechanical locks or biometric identification.
However, due to the open nature of wireless channels,
providing the same kind of guarantee in wireless systems
is far from trivial.

Simple proximity enforcing techniques, such as setting
up small communication timeouts or short-range commu-
nication channels, can be easily circumvented in practice
by a variety of attacks [1]. Perhaps, the most popular and
devastating of such attacks is mafia fraud [2], also known
as relay attack [3]. This fraud simply consists in relaying all
communication between two wireless devices, making them
believe that they have a direct communication.

Case in point, let’s assume that Mallory wants to get
unauthorized access to Alice’s office, and that Alice opens
the door of her office by simply swiping her personal
contactless token over the door’s card reader. Mallory can
achieve her goal by executing a mafia fraud attack as fol-
lows. First, a friend of Mallory approaches Alice while she
is away from the office. At the same time, Mallory, who is
in front of the door of Alice’s office, uses a wireless device
that pretends to be Alice’s contactless token. All messages
from the door are relayed by Mallory’s wireless device to

Mallory’s friend, who also uses a wireless device to send
these messages to the contactless token of Alice. Similarly,
all messages from Alice’s contactless token are relayed back
to the door. Even though Alice nor her token is near the
door, her relayed credentials will eventually be accepted by
the door and Mallory will get access to Alice’s office.

The most reliable countermeasure against proximity-
based attacks, such as mafia and distance fraud [4], is
distance-bounding. This countermeasure typically consists
in measuring the Round Trip Time (RTT) of a message ex-
change, i.e., the time a message takes to travel from a verifier
to a prover and back [5]. If we denote the propagation speed
of the communication channel by c, the round trip time by
∆t and the processing time taken by the prover to send back
the message by td, then the distance between the verifier and
the prover is computed by the equation d = c× (∆t − td).

The first design of a distance-bounding protocol based
on RTT measurements dates back to 1993 [4]. Since then,
more than 30 distance-bounding protocols have been pro-
posed1, each of them bringing improvements over their
predecessors or adding new features. Amongst them, we
can find a large class of protocols (e.g., [6], [7], [8], [9],
[10], [11]) following two core principles raised by Hancke
and Kuhn in 2005 [3].

• RTT measurements should exchange single-bit mes-
sages. This reduces the processing time by allowing
the prover to instantly reply upon reception of a
single bit message.

• Each RTT measurement ought to be based on a
challenge-response authentication scheme so that,
even if the protocol stops after a few RTT mea-
surements, some guarantees of proximity can be
provided.

Distance-bounding protocols adhering to the principles
of the Hancke and Kuhn (HK) protocol [3] normally consist
of two phases. The first phase is the slow phase, where the
verifier and the prover exchange nonces and use a shared
key to secretly precompute a lookup table with potential
responses for the next phase. The second phase, known as
fast phase, consists of n RTT measurements. At the ith
RTT measurement with i ∈ {1, . . . , n}, the verifier sends
a random bit-challenge ci to the prover and starts a clock.
The prover replies instantly to the challenge ci by using the
precomputed lookup table. Upon reception of the prover’s

1. http://www.avoine.net/rfid/index.php



reply, the verifier stops the clock and computes the RTT
(∆i). The protocol finishes correctly if all responses are
correct, and if ∆i ≤ ∆ for every i ∈ {1, . . . , n} given
some time threshold ∆.

The simplicity of distance-bounding protocols based on
the above scheme makes it attractive for ubiquitous wire-
less technologies such as RFID systems. However, to the
best of our knowledge, all these protocols fall short in
terms of resistance to mafia fraud attacks in comparison
to cryptographically more expensive approaches, such as
the Brands and Chaum protocol [4]. More precisely, given
a fixed number of RTT measurements n, the best-known
mafia fraud attack to the Brands and Chaum protocol has
probability of success 1

2n [4], while no protocol following
the above principles reduces the success probability of the
same attack below 1

2n (1 + n
2 ) [7]. This good performance

of the Tree-based protocol in [7] comes at the price of
an exponential space requirement. It is not known if the
same performance can be achieved at lower memory costs.
Further, it is also an open question whether this lower bound
can be reduced under the two core principles mentioned
above.

Because all protocols based on these principles have a
similar shape, it would be natural and useful to consider
them as instantiations of the same protocol scheme, with
slight variations. That would provide us with a mathematical
model, allowing us to study theoretical properties that hold
for a large class of protocols. In this article, we propose such
a model based on deterministic finite automata (DFAs). In
more detail, our contributions are the following.

• We propose an abstract model for distance-bounding
protocols that use precomputation and look-up op-
erations. The proposed model is based on DFAs and
captures several state-of-the-art distance-bounding
protocols, such as [3], [6], [7], [10], [11], [12].

• Considering n to be the number of RTT measure-
ments performed during a single execution of the
protocol, we prove that 1

2n (1 + n
2 ) is a tight lower

bound on the security of this type of protocols
against mafia fraud. This result indicates that, within
our model, the Tree-based protocol [7] is optimal in
terms of mafia fraud resistance.

• We study theoretical properties of a subclass of
protocols within the proposed model, such as its re-
sistance to pre-ask attacks and its space complexity.

• We define a novel family of protocols within our
model that has good security properties in terms of
resistance to mafia fraud in relation to its memory.

The rest of this article is organized as follows. In Sec-
tion 2 we provide some basic knowledge on distance bound-
ing protocols and discuss related literature. The HK protocol
and the Tree-based protocol explained in this section will
be used throughout this paper as examples. In Section 3,
we define an abstract model for the description of a class
of distance-bounding protocols. Space complexity and other
relevant properties of this class are introduced in Section 4.
Later on, in Section 5, we perform a generic security anal-

ysis. Finally, in Section 6, we describe a protocol, or rather
a family of protocols, of which the resistance to mafia fraud
is arbitrary close to optimal.

2. Related work

2.1. Distance-bounding protocols

Distance-bounding protocols are authentication proto-
cols that, in addition, compute an upper bound on the
distance between the two parties involved in the protocol.
The distance estimation process relies on a concrete physical
law, stating that Radio Frequency (RF) signals travel at the
speed of light. By using a communication channel whose
propagation speed is close to the physical limit, a distance-
bounding protocol ensures that an adversary interfering in
an RTT measurement by relaying messages cannot decrease
the estimated distance. In the same vein, most distance-
bounding protocols aim to minimize the processing time
on the prover side. A small and deterministic processing
time will improve the precision of the distance estimation
and prevents attacks where the adversary overclocks the
prover [4], [13], [14].

A large variety of distance-bounding protocols exist.
Some are based on expensive cryptographic operations such
as signatures and commitment schemes [4], [15], [16]. Oth-
ers use error detection and correction techniques to deal
with potential noise during the RTT measurements [17]. We
can even find approaches addressing location-privacy con-
cerns [18]. Nevertheless, there are common features shared
by most distance-bounding protocols. For example, they
typically exchange 1-bit messages for RTT measurements,
which reduces the processing time by allowing the prover
to instantly reply upon reception of a single bit message.
Exceptions to this rule are, for example, the Munilla and
Peinado protocol [19] and its generalization [20].

Another characteristic that clearly splits the set of
distance-bounding protocols into two classes is the presence
or not of a so-called final slow phase. We recall that a fast
phase consists of consecutive message exchanges intended
for RTT measurement, while a slow phase is formed by any
other type of message. Hence, a slow phase is said to be
final if it represents the end of the protocol execution. It
was in 2005, twelve years after the pioneering Brands and
Chaum protocol [4], when Hancke and Kuhn proposed the
first distance-bounding protocol without final slow phase [3].
Given its relevance and impact on many recent protocols,
we next detail this protocol in extenso (see also Figure 1).

The Hancke and Kuhn protocol (HK) consists of a slow
phase followed by a fast phase. In the slow phase, the verifier
and the prover exchange nonces NV and NP and use a keyed
pseudo-random function (PRF) to agree on a bit-sequence
B = b1 . . . b2n. This bit sequence has size 2n, where n is a
parameter representing the number of RTT measurements.
The fast phase consists of n consecutive rounds. At the ith
round with i ∈ {1, . . . , n}, the verifier sends a random bit-
challenge ci to the prover and starts a clock. Upon reception



of ci, the prover replies with the bit b2i+ci−1. Immediately
after receiving the prover’s answer, the verifier stops the
clock and computes the RTT, ∆i = tf−ts. The HK protocol
finishes correctly if all responses are correct according to the
challenges and bit-sequence B, and if ∆i ≤ ∆ for every
i ∈ {1, . . . , n} given some time threshold ∆.

Prover Verifier
(secret k) (secret k)

slow phase
NV←−−−−−−−−− nonce NV

nonce NP
NP−−−−−−−−−→

b1 . . . b2n =
PRF (k,NV ||NP)

fast phase
for i = 1 to n

random bit ci
ci←−−−−−−−−− start clock ts

ri = b2i+ci−1
ri−−−−−−−−−→ stop clock tf

check ri, and
tf − ts ≤ ∆

Figure 1. Hancke and Kuhn’s protocol

Because Hancke and Kuhn’s protocol relies on a single
pseudo-random function, it is considered to be the first
distance-bounding protocol suitable for resource-constrained
technologies such as RFID systems. An additional feature
of this protocol is that, during the fast phase, the prover
computes the correct reply to the verifier’s challenge via
a simple lookup operation. This significantly reduces the
processing time, ergo it sticks to the basic principles of
RTT measurements. The drawback, however, of the HK
protocol is its low resistance to mafia fraud. An adversary
could execute a so-called pre-ask [21] attack as follows.
First, the adversary relays all the communication between
the prover and the verifier during the slow phase. Before
the beginning of the fast phase, the adversary claims to be
the legitimate verifier and queries the prover n times with
the same challenge 0. As a result, the adversary receives
from the prover the values b1, b3, . . . , b2n−1. Finally, the
adversary uses this knowledge to reply to the verifier’s
challenges during the fast phase. The probability of success
of an adversary executing such an attack is (3/4)n. This can
be easily seen as follows. At every round of the fast phase,
the adversary is challenged with a random bit. If this bit
is a 0, she will answer with the correct (pre-asked) reply.
Otherwise, if the challenge is 1, she can reply with a random
bit, which gives her a chance of 1

2 to reply correctly. In total,
this gives her a success probability of 1

2 × 1 + 1
2 ×

1
2 = 3

4
per round, leading to (3/4)n for n rounds. For an ideal
protocol, the adversary would not be able to achieve any
advantage over randomly guessing the reply, leading to a
success probability of (1/2)n. This probability is achieved

by the Brands and Chaum protocol [4], which uses a final
slow phase for authentication of the exchanged bits.

In [3], Hancke and Kuhn explain the advantage of
avoiding a final slow phase, even at the cost of an apparent
decrease in the resistance to mafia fraud, as follows. In terms
of execution time and computational complexity, the cost of
executing a couple of additional rounds during the fast phase
is significantly lower than the cost of performing expensive
cryptographic operations and message exchanges over a tra-
ditional communication channel. Hence, for practical values
of n, there exists m > n such that the HK protocol with m
rounds is more efficient than the Brands and Chaum protocol
with n rounds, i.e.,

(
3
4

)m
<
(

1
2

)n
.

The precomputation approach started by Hancke and
Kuhn has been extended and improved by many recent
distance-bounding protocols [6], [7], [8], [9], [10], [11],
which we refer to as HK-like protocols. Even though they all
have their own peculiarities, most of them perform simple
lookup operations during the fast phase in order to reply
to the verifier’s challenges. Exceptions to this rule are the
protocols introduced in [8], which uses XOR operations,
and [9], which requires the prover to generate random bits
during the fast phase.

To the best of our knowledge, the best HK-like protocol
in terms of resistance to mafia fraud is the Tree-based proto-
col proposed by Avoine and Tchamkerten [7] in 2009. Their
protocol considers an edge-labeled full-binary tree of depth
n with labels taken from the set {0, 1}, and satisfying that
every two edges with a common parent node have different
labels. Thus, any bit-sequence c1c2 . . . ci with 1 ≤ i ≤ n,
defines a unique path in the tree. At each session, the prover
and the verifier securely agree on a vertex-labeling function
over the considered tree by using two nonces and a secret
key as input to a pseudo-random function. As in the Hancke
and Kuhn protocol, the fast phase consists of n challenges
c1, . . . , cn. The prover replies to these challenges with the
node’s label of the unique path defined by c1 . . . cn. A sketch
of this protocol is shown in Figure 2.

In the Tree-based protocol, the probability of success of
an adversary executing a pre-ask attack is 1

2n (1 + n
2 ) [7],

which has not been improved yet by any HK-like protocol.
The problem is, however, that precomputing a full-binary
tree of depth n is exponential in terms of n. Avoine and
Tchamkerten propose to split the tree into several trees to
overcome this problem [7], while in [6] the Tree-based
approach is generalized to graphs of arbitrary size. From
a decision-making point of view and according to the
framework proposed in [22], graph-based protocols provide
relevant features not provided by other types of distance-
bounding protocols.

The formal model proposed in this article actually cap-
tures the notion of graph-based distance-bounding protocols,
as introduced in [6], [23]. By studying the proposed model
we solve the open question of whether there exists a graph-
based protocol with security 1

2n (1 + n
2 ) against a pre-ask

attack and whose graph contains a polynomial number of
vertices in terms of n. It is worth remarking that our model
is not a simple abstraction and formalization of the notion



Prover Verifier
(secret k) (secret k)

slow phase
NV←−−−−−−−−− nonce NV

nonce NP
NP−−−−−−−−−→

build tree from
PRF (k,NV ||NP)

fast phase
for i = 1 to n

random bit ci
ci←−−−−−−−−− start clock ts

ri = label(c1 . . . ci)
ri−−−−−−−−−→ stop clock tf

check ri, and
tf − ts ≤ ∆

Figure 2. The Tree-based protocol

of graph-based distance-bounding. As we show later, there
exists a novel class of distance-bounding protocols within
our model with resistance to mafia fraud asymptotically
close to 1

2n (1 + n
2 ).

2.2. Modeling distance-bounding protocols

We notice that the current article is not the first attempt
to investigate the limits of distance-bounding protocols with-
out final slow phase. In 2010, Kara et al. [24] defined a class
of distance-bounding protocols named current challenge-
dependent protocol. Similar to the class of protocols that
we consider in this article, current challenge-dependent
protocols don’t have a final slow phase. However, there are
two main aspects that make Kara et al.’s model significantly
different from ours. First, they consider stateless protocols
only, in the sense that all RTT measurements are indepen-
dent of previous ones. Therefore, their model cannot capture,
for example, the class of graph-based distance-bounding
protocols, which is captured by our model. Second, Kara
et al.’s model allows protocols to perform arbitrary com-
putation during the fast phase, as long as this computation
depends exclusively on the current challenge and the session
secrets [24]. Differently, we make the requirement explicit
that only lookup operations are allowed, implying that there
exist protocols within Kara et al.’s model that are not
captured by ours.

3. A model based on State-labeled Determin-
istic Finite Automata

In this section, we provide a simple model that captures
a prominent class of distance-bounding protocols based on
precomputation and without final slow phase. We model
distance-bounding protocols via a particular class of De-
terministic Finite Automata (DFA) with labels attached to

states. We denote them by state-labeled DFA. Formally, a
state-labeled DFA is defined as follows.

Definition 1 (State-labeled DFA). A state-labeled DFA is a
tuple of the form (Σ,Γ, Q, q0, δ, `) where:

• Σ is a finite set of input symbols,
• Γ is a finite set of output symbols
• Q is a finite set of states,
• q0 ∈ Q is the initial state,
• δ : Q× Σ→ Q is a state-transition function,
• ` : Q→ Γ is a labeling function on the states.

Definition 1 above differs from traditional DFAs in two
main aspects. First, it does not define final states. This is
because we use it for modeling the execution of a security
protocol, which might halt at any state. Second, it includes
a labeling function on the states whose output ranges over
the set of output symbols Γ. While transition labels will be
used to express the challenges exchanged in the protocol,
the state labels will define the corresponding responses. We
will make this precise in Definition 5 below.

Similar to normal DFAs, we assume that the state-
transition function is total. When defining or drawing DFAs
we will only specify the relevant transitions and, again
similar to normal DFAs, we assume that specifications are
completed with an implicit trap state that serves as the target
state for all transitions that are not shown.

Definition 2 (Generalized transition function). Given a
state-labeled DFA (Σ,Γ, Q, q0, δ, `), we define the general-
ized transition function δ̂ : Σ∗ → Q recursively as follows.

δ̂(c) =

{
q0 if c = ε,
δ(δ̂(c1 . . . cn−1), cn) if c = c1 . . . cn (n ≥ 1),

where ε represents the empty string.

In what follows, we denote the ith symbol of the string
c by ci . We also use the terms string and sequence inter-
changeably.

Definition 3 (Generalized labeling function). Let A =
(Σ,Γ, Q, q0, δ, `) be a state-labeled DFA. We define the
generalized labeling function ˆ̀: Σ∗ → Γ, for x ∈ Σ∗ by:

ˆ̀(x) = `(δ̂(x)).

Next, we provide a formal definition for a class of
distance-bounding protocols based on precomputation and
without final slow phase. An important feature of this type
of protocols is that the prover’s answers to the verifier’s chal-
lenges are determined by lookup operations only. Therefore,
we will refer to this type of protocols as lookup-based DB
protocols.

Definition 4 (Lookup-based DB protocol). A lookup-based
DB protocol is a finite set P = {A1, A2, . . . , Am}
of state-labeled DFAs, such that for every pair Ai =
(Σi,Γi, Qi, q

i
0, δi, `i) and Aj = (Σj ,Γj , Qj , q

j
0, δj , `j) in P

it holds that Σi = Σj and Γi = Γj .

We model a protocol as a set of automata, where
each automaton describes the protocol’s behaviour in the



fast phase. The input symbols of the automaton are the
challenges and the output symbols are the corresponding
responses. The structure and labeling of such an automaton
follows from the calculations in the slow phase, in which,
e.g., the nonces are chosen. Consequently, every possible
outcome of the slow phase results in an automaton, so the
number of automata in the set that describes the protocol
is equal to the number of different outcomes of the slow
phase. The execution of a protocol therefore consists of the
(random) selection of one of the automata (the slow phase)
and a run of this automaton consisting of an alternation of
input and output symbols (the fast phase).

As a running example, let’s consider the Hancke and
Kuhn protocol. We recall that the HK protocol (see Fig-
ure 1) precomputes a bit-sequence of size 2n, and all the
prover’s responses are based on lookup operations over the
precomputed bit-sequence. We can define the HK protocol
within our model as the set PHK = {A0, A1, . . . , A22n−1},
where, for every i ∈ {0, . . . , 22n − 1}, the automaton
Ai = (Σi,Γi, Qi, q

i
0, δi, `i) satisfies:

• Σi = Γi = {0, 1},
• Qi = {0, 1, . . . , 2n} and qi0 = 0,
• For every j ∈ Qi such that j ≤ 2n− 2, and c ∈ Σi,

δi(j, c) =

{
j + c+ 2 if j is odd,
j + c+ 1 otherwise,

• For every j ∈ Qi, `i(j) is the jth least significant
digit of the binary representation of i.

The number 22n of state-labeled DFAs used to represent
the HK protocol is not a coincidence, but the result of
representing each possible 2n-size bit-sequence that can be
precomputated by the HK protocol. We used the following
mapping between 2n-size bit-sequences and automata in P :
a bit-sequence b1 . . . b2n is mapped to the automaton Ai

where i in base 2 is equal to b1 . . . b2n. As an example,
Figure 3 shows a graphical representation of the automaton
A24, which represents the HK protocol with n = 4 and
b1 . . . b2n = 00011000. In this example, the states 4 and 5
are labeled with 1 because this is the value of both b4 and
b5, while the remaining states are labeled with 0.

0

10001100 0 2 000110 0 0

300011 0 00 4 0001 1 000

5000 1 1000 6 00 0 11000

70 0 011000 8 0 0011000

0 1

0
1 0

1

0
1 0

1

0
1 0

1

Figure 3. Automaton A24 for the HK protocol with 4 rounds.

Definition 5 (Execution model). Let n be a natural number
and P a lookup-based DB protocol. A correct execution of
P , up to n rounds, is a triple (A,C,R) ∈ P × Σn × Γn

(indicated by (A,C,R) @ P ) such that:

• A is a sample chosen uniformly from the set P ,
• Given A = (Σ,Γ, Q, q0, δ, `), challenges C =

c1 . . . cn, and responses R = r1 . . . rn, it holds that
ri = ˆ̀(c1 . . . ci), ∀i ∈ {1, . . . , n}.

The intuition behind the proposed execution model is
the following. Before the start of the fast phase, the prover
and the verifier agree on a fresh state-labeled DFA, say
A. During the fast phase, the verifier sends n challenges
c1 . . . cn and expects to receive as replies the sequence
ˆ̀(c1) . . . ˆ̀(c1 . . . cn). As an example, let us consider again
automaton A24 depicted in Figure 3. Given the input bit
sequence 1100, this automaton transits over the states 2, 4, 5,
and 7, whose labels are 0, 1, 1, and 0, respectively. Hence,
(A24, 1100, 0110) is a correct execution of the HK protocol,
i.e., (A24, 1100, 0110) @ PHK .

It is worth remarking that, by assuming A to be a uni-
formly distributed sample of the set P , our model assumes
that any correct execution is equally likely to be executed.
In some protocols, such as the HK protocol, that implies
that the pseudo-random function is indeed random.

4. Properties of lookup-based DB protocols

In this section we investigate relevant properties of
lookup-based DB protocols. First, we make our adversarial
model explicit and provide a definition of resistance to mafia
fraud. We also prove that there does not exist a lookup-
based DB protocol whose resistance to mafia fraud is lower
than 1

2n (1 + n
2 ). This result implies that the Tree-based

protocol [7] is optimal in terms of resistance to mafia fraud.
Further we prove a property on the probability distribution
of labels in an optimal lookup-based DB protocol.

4.1. Mafia fraud resistance

As shown in [21], the best-known adversary strategy
to perform a mafia fraud attack against distance-bounding
protocols without final slow phase is the pre-ask attack.
In this attack, the adversary relays all the communication
between the prover and the verifier during the slow phase.
Before the beginning of the fast phase, the adversary claims
to be the legitimate verifier and queries the prover n times
with a sequence of challenges. The responses from the
prover to these challenges are used by the adversary to later
execute the fast phase with the legitimate verifier. Below,
we make this intuitive definition formal.

Definition 6 (Success probability of a pre-ask attack). Let
P be a lookup-based DB protocol and x ∈ Σn an input
sequence. Let A ∈ P be a random automaton and y be an
output sequence such that (A, x, y) is a correct execution.
Let F = {f1, . . . , fn} be a set of functions such that



fi : Σi×Σn×Γn → Γ for every i ∈ {1, . . . , n}. Pr(F ) de-
notes the probability that for a random sequence c1 . . . cn ∈
Σn, the triple (A, c1 . . . cn, z1 . . . zn) is a correct execution
where zi = fi(c1 . . . ci, x, y) for every i ∈ {1, . . . , n}.
The success probability of a pre-ask attack is the maximum
probability Pr(F ) amongst all possible sets of functions F .

In Definition 6, the adversary knowledge is a correct
execution (A, x, y) of P where x is chosen by the adver-
sary and A is randomly chosen in P . In other words, the
adversary is able to query the prover with challenges x and
receive the corresponding answers y. With this knowledge,
the adversary defines a strategy to answer to the verifier’s
challenge. We represent such a strategy as a set of functions
F = {f1, . . . , fn}. Given a sequence of challenges c1 . . . ci
for some i ∈ {1, . . . , i}, the adversary’s answer at the
ith round is uniquely determined by fi(c1 . . . ci, x, y). This
makes the assumption explicit that challenges are unpre-
dictable and that the adversary replies immediately upon
reception of a challenge.

4.2. Properties of optimal lookup-based DB proto-
cols

As stated before, the adversary’s success probability
when performing mafia fraud against the Tree-based pro-
tocol is 1

2n

(
1 + n

2

)
. We will prove that 1

2n

(
1 + n

2

)
is

indeed optimal, i.e., there does not exist a lookup-based
DB protocol whose resistance to mafia fraud is lower than
1

2n

(
1 + n

2

)
. For the complexity analysis we assume the

protocol to have a binary set of input and output symbols,
as is the case in most existing distance bounding protocols.

Theorem 1. The probability value 1
2n

(
1 + n

2

)
is a tight

lower bound on the resistance to mafia fraud of lookup-
based DB protocols with n rounds.

Proof. We define the following adversary strategy to execute
a pre-ask attack as in Definition 6. We consider a set of func-
tions F = {f1, . . . , fn} such that for every i ∈ {1, . . . , n},
c ∈ {0, 1}i, x ∈ {0, 1}n, and y ∈ {0, 1}n:

• fi(c, x, y) = yi if c1 . . . ci = x1 . . . xi,
• fi(c, x, y) is assigned with a random bit, otherwise.

According to the above strategy, at the ith round
the adversary replies randomly unless the adversary has
guessed all the verifier’s challenges till the ith round, i.e.,
c1 . . . ci = x1 . . . xi. Next, we compute the probability
Pr(F ) of success of this strategy. Considering Mi to be the
event that c1 . . . ci−1 = x1 . . . xi−1 and ci 6= xi for every
i ∈ {1, . . . , n}, we obtain:

Pr(F ) =

n∑
i=1

Pr(F |Mi) Pr(Mi)

+ Pr(F |c = x) Pr(c = x) . (1)

Given that Pr(Mi) = 1
2i and Pr(c = x) = 1

2n , we get:

Pr(F ) =

n∑
i=1

Pr(F |Mi)
1

2i
+ Pr(F |c = x)

1

2n
. (2)

Taking into account that Pr(F |c = x) = 1, Equation 2
gives:

Pr(F ) =

n∑
i=1

Pr(F |Mi)
1

2i
+

1

2n
.

From the adversary’s strategy we obtain that
Pr(F |Mi) = 1

2n−i+1 , because starting from the ith
round the adversary always replies randomly, which gives.

Pr(F ) =

n∑
i=1

1

2n−i+1

1

2i
+

1

2n
=

1

2n

(
1 +

n

2

)
.

We conclude this proof by remarking that this lower
bound is tight, because it is realized by the Tree-based
protocol.

Definition 7 (Optimal lookup-based DB protocol). A
lookup-based DB protocol for n > 0 rounds P is said to be
optimal if its mafia fraud resistance is 1

2n

(
1 + n

2

)
.

Next we proceed to prove a necessary condition for opti-
mal lookup-based DB protocols. This condition establishes
that, given an input sequence x and a lookup-based DB
protocol P , the labels assigned to the states reachable by x
uniformly distribute in P .

Lemma 1. Let P be an optimal lookup-based DB protocol
with n > 0 rounds. For i ∈ {1, . . . , n} and x ∈ {0, 1}i,
let Ex

0 (resp. Ex
1 ) be the event that given a random au-

tomaton (Σ,Γ, Q, q0, δ, `) ∈ P it holds that ˆ̀(x) = 0 (resp.
ˆ̀(x) = 1). Then, for every i ∈ {1, . . . , n} and x ∈ {0, 1}i,
Pr(Ex

0 ) = Pr(Ex
1 ) = 1

2 .

Proof. Let’s assume that there exists j ∈ {1, . . . , n} and
x̄ ∈ {0, 1}j such that Pr(Ex̄

0 ) 6= 1
2 . We define the following

adversary strategy to execute a pre-ask attack as in Defini-
tion 6. We consider a set of functions F = {f1, . . . , fn}
such that for every i ∈ {1, . . . , n}, c ∈ {0, 1}i, x ∈ {0, 1}n,
and y ∈ {0, 1}n:

• fi(c, x, y) = yi if c1 . . . ci = x1 . . . xi,
• fi(c, x, y) = 0 if i = j ∧ c1 . . . cj = x̄1 . . . x̄j 6=

x1 . . . xj ∧ Pr(Ex̄
0 ) > 1

2 ,
• fi(c, x, y) = 1 if i = j ∧ c1 . . . cj = x̄1 . . . x̄j 6=

x1 . . . xj ∧ Pr(Ex̄
0 ) < 1

2 ,
• fi(c, x, y) is assigned with a random bit, otherwise.

As in Theorem 1, we consider Mi to be the event
that c1 . . . ci−1 = x1 . . . xi−1 and ci 6= xi for every
i ∈ {1, . . . , n}. We thus obtain the following:

Pr(F ) =

n∑
i=1

Pr(F |Mi)
1

2i
+

1

2n
. (3)



From the adversary’s strategy we obtain that
Pr(F |Mi) = 1

2n−i+1 unless c1 . . . cj = x̄1 . . . x̄j and
c1 . . . cj 6= x1 . . . xj . In this case, the probability of success
of the adversary at the jth round is Pr(Ex̄

0 ) if Pr(Ex̄
0 ) > 1

2
and 1 − Pr(Ex̄

0 ) otherwise. Therefore, we obtain that
Pr(F |Mi) > 1

2n−i+1 if c1 . . . cj = x̄1 . . . x̄j 6= x1 . . . xj
and Pr(F |Mi) = 1

2n−i+1 otherwise, which implies that
Pr(F |Mi) > 1

2n−i+1 . Applying this result to Equation 3
gives:

Pr(F ) >

n∑
i=1

1

2n−i+1

1

2i
+

1

2n
=

1

2n

(
1 +

n

2

)
. (4)

Equation 4 contradicts the assumption that P is optimal,
which proves that Pr(Ex̄

0 ) = 1
2 . Analogously, we can obtain

that Pr(Ex̄
1 ) = 1

2 .

4.3. Layered and random-labeled lookup-based DB
protocols

Based on Lemma 1, we observe that the state labeling
function of the DFAs in a protocol plays an important role in
the protocol’s resistance to pre-ask attacks. We thus define
the notion of random-labeled lookup-based DB protocols,
which is aimed at capturing those protocols with maximum
uncertainty on the labels of the states.

Definition 8 (Random-labeled lookup-based DB protocol).
Let P be a lookup-based DB protocol. We say that P
is random-labeled if for every (Σ,Γ, Q, q0, δ, `) ∈ P and
for every labeling function `′ : Q → Γ, the automaton
(Σ,Γ, Q, q0, δ, `

′) is also in P .

A random-labeled lookup-based DB protocol P accounts
for all possible labeling functions that can be defined on
a set of states. This property is indeed satisfied by most
existing distance bounding protocols. We show next that
being random-labeled is a sufficient condition to satisfy the
implication of Lemma 1.

Proposition 1. Let Ex
0 and Ex

1 be the events as defined
in Lemma 1. A random-labeled lookup-based DB protocol
satisfies that Pr(Ex

0 ) = Pr(Ex
1 ) = 1

2 for every x ∈ {0, 1}i
with i ∈ {1, . . . , n}.
Proof. Let P be a random-labeled protocol and x ∈ {0, 1}i
a sequence with i ∈ {1, . . . , n}. We consider a relation
Rx ⊆ P × P defined as (A,A′) ∈ Rx if and only if all
the following conditions hold:

• A = (Σ,Γ, Q, q0, δ, `),
• A′ = (Σ,Γ, Q, q0, δ, `

′),
• ˆ̀(x) 6= ˆ̀′(x),
• ∀q ∈ Q : q 6= δ̂(x) =⇒ `(q) = `′(q).

We observe that, by definition of random-labeled, for
every A ∈ P there exists A′ such that (A,A′) ∈ Rx.
Moreover, A′ is unique, implying that Rx is symmetric and
bijective in P .

Now, let Bx
0 (resp. Bx

1 ) be the subset of automata in P
of maximum cardinality such that ∀(Σ,Γ, Q, q0, δ, `) ∈ Bx

0 :

ˆ̀(x) = 0 (resp. ∀(Σ,Γ, Q, q0, δ, `) ∈ Bx
1 : ˆ̀(x) = 1). Given

(A,A′) ∈ Rx, we obtain that A ∈ Bx
0 ⇐⇒ A′ ∈ Bx

1 .
Considering that Rx is bijective, we conclude that |Bx

0 | =
|Bx

1 |. Hence, Pr(Ex
0 ) = Pr(Ex

1 ) = 1
2 .

Another property of lookup-based DB protocols that we
consider in this article is that of being layered. Intuitively, in
a layered lookup-based DB protocol with n rounds we can
partition the set of states of every automaton into n subsets
(layers), in such a way that all states within a layer are only
reachable by input sequences of the same size.

Definition 9 (Layered lookup-based DB protocol). Let P be
a lookup-based DB protocol. We say that P is layered if for
every automaton A = (Σ,Γ, Q, q0, δ, `) ∈ P and for every
pair (x, y) ∈ Σi×Σj with i 6= j, it holds that δ̂(x) 6= δ̂(y).

We observe that all existing lookup-based DB protocols,
except Poulidor [6], are layered and random-labeled. Fig-
ure 3 clearly shows that the example automaton of the HK
protocol is layered, because the states of the ith layer, i.e.
2i − 1 and 2i, with 0 < i ≤ 4, can only be reached by an
input sequence of length i. The labeling function, i.e., the
corresponding association from states to bits, is composed in
a random way. This means that any possible bit assignment
over the elements of the set {1, . . . , 8} may occur.

In the rest of this article we will thus focus on the
analysis of layered and random-labeled lookup-based DB
protocols, and we leave for future work the analysis of other
types of protocols, such as Poulidor [6].

5. Security analysis of layered and random-
labeled lookup-based DB protocols

In this section we provide an optimal adversary strategy
to execute a pre-ask attack in a layered and random-labeled
lookup-based DB protocol. It turns out, as expressed in
Theorem 2 below, that such a strategy consists simply in
sending to the verifier exactly the same responses as those
obtained from the prover in the pre-ask session. As in the
previous section, we assume that the sets of input and output
symbols are binary.

Theorem 2. Let P be a layered and random-labeled lookup-
based DB protocol with n > 0 rounds. Given a correct
execution (A, x, y) in P , let F = {f1, . . . , fn} be a pre-ask
strategy (see Definition 6) where fi(c, x, y) = yi for every
i ∈ {1, . . . , n} and every c ∈ {0, 1}i. For every other pre-
ask strategy G = {g1, . . . , gn} where gi : {0, 1}i×{0, 1}n×
{0, 1}n → {0, 1} it holds that Pr(F ) ≥ Pr(G).

Proof. We define P x,y ⊆ P as a subset of P such that
A ∈ P x,y ⇐⇒ (A, x, y) @ P . In other words, P x,y is the
set of all possible automata in P that produce y1 . . . yn as
the corresponding responses for the challenges x1 . . . xn.

We use Fi to denote the event that the adversary
replies correctly to the first i challenges by using the
pre-ask strategy F . Formally, Fi is the event that, given
a random automaton A = (Σ,Γ, Q, q0, δ, `), a correct
execution (A, x, y), and a random bit sequence c1 . . . ci,



fj(c1 . . . cj , x, y) = ˆ̀(c1 . . . cj) for every j ∈ {1, . . . , i}.
It should be noticed that, because P consists of n rounds,
Pr(F ) = Pr(Fn). Analogously, we define the events
G1, . . . , Gn for a given pre-ask strategy G.

Because the verifier’s challenges c and the automaton A
are randomly chosen at each execution of the protocol (see
Definition 6), we can compute Pr(Fi) as follows:

Pr(Fi) =

∑
c∈{0,1}i,A∈Px,y

hi(A, c, F )

2i|P x,y|
, (5)

where 2i is the number of input-sequences of size i, |P x,y|
stands for the cardinality of P x,y, and hi is defined by:

hi(A, c, F ) =


1 if ∀j ∈ {1, . . . , i}

ˆ̀(c1 . . . cj) = fj(c1 . . . cj , x, y),
0 otherwise.

(6)
For every i ∈ {1, . . . , n}, we define hi(A, c,G) and

compute Pr(Gi) analogously to Equations 6 and 5. Next we
proceed by induction in order to prove that Pr(Fi) ≥ Pr(Gi)
for every i ∈ {1, . . . , n}.

Let P x,y
c be a subset of P x,y defined by ∀A =

(Σ,Γ, Q, q0, δ, `) ∈ P x,y : A ∈ P x,y
c ⇐⇒ δ̂(c) 6= δ̂(x).

We also consider a relation Rc ⊆ P x,y
c × P x,y

c defined as
(A,A′) ∈ Rc if and only if all the following conditions
hold:

• A = (Σ,Γ, Q, q0, δ, `),
• A′ = (Σ,Γ, Q, q0, δ, `

′),
• `(δ̂(c)) 6= `′(δ̂(c)),
• ∀q ∈ Q : q 6= δ̂(c) =⇒ `(q) = `′(q).

It should be noticed that the relation Rc is symmetric
and bijective in P x,y

c , given that P is random-labeled.
Let’s now analyze the case i = 1. If A 6∈ P x,y

c and
A = (Σ,Γ, Q, q0, δ, `), then δ̂(c) = δ̂(x), meaning that
f1(c, x, y) = ˆ̀(c) and h1(A, c, F ) = 1 ≥ h1(A, c,G).
If A ∈ P x,y

c and A = (Σ,Γ, Q, q0, δ, `), we obtain that
h1(A, c, F )+h1(A′, c, F ) = h1(A, c,G)+h1(A′, c, G) = 1
where A′ = (Σ,Γ, Q, q0, δ, `

′) and (A,A′) ∈ Rc. Note
that any pre-ask strategy fails either in A or in A′ because
`(δ̂(c)) 6= `′(δ̂(c)). This gives the following results for both
strategies F and G.

∑
(A,A′)∈Rc

h1(A, c, F ) + h1(A′, c, F ) = 2
∑

A∈Px,y
c

h1(A, c, F )

∑
(A,A′)∈Rc

h1(A, c,G) + h1(A′, c, G) = 2
∑

A∈Px,y
c

h1(A, c,G)

(7)

Considering the two cases, we conclude that∑
A∈Px,y h1(A, c, F ) ≥

∑
A∈Px,y h1(A, c,G) for every

c ∈ {0, 1}, implying that Pr(F1) ≥ Pr(G1).
We define as induction hypothesis that Pr(Fi) ≥ Pr(Gi)

for every i ∈ {1, . . . , n − 1}. In order to continue with

an inductive reasoning, we write the function hn(.) in a
recursive way as follows:

hn(A, c1 . . . cn, F ) = hn−1(A, c1 . . . cn−1, F )× (8){
1 if fn(c1 . . . cn, x, y) = ˆ̀(c1 . . . cn),
0 otherwise.

We analogously write hn(A, c1 . . . cn, G) recursively.
As in the base case, we split our analysis in
two cases, depending on whether A ∈ P x,y or
not. If A 6∈ P x,y

c then fn(c, x, y) = ˆ̀(c) and
hn(A, c, F ) = hn−1(A, c1 . . . cn−1, F ). Given that by
definition hn(A, c,G) ≤ hn−1(A, c1 . . . cn−1, G), we
obtain:

∀A ∈ P x,y − P x,y
c :

hn(A, c, F )− hn(A, c,G) ≥
hn−1(A, c1 . . . cn−1, F )− hn−1(A, c1 . . . cn−1, G). (9)

Now, let’s analyze the case where A ∈ P x,y
c . Let

A = (Σ,Γ, Q, q0, δ, `) and A′ = (Σ,Γ, Q, q0, δ, `
′) such

that (A,A′) ∈ Rc. We note that state δ̂(c) is unreachable by
sequences of size smaller than n, because P is layered. On
the other hand, for every state q in Q−{(δ̂(c)} it holds that
`(q) = `′(q). Consequently, the following equalities hold
for every (A,A′) ∈ Rc.

hn−1(A, c1 . . . cn−1, F ) = hn−1(A′, c1 . . . cn−1, F ),
hn−1(A, c1 . . . cn−1, G) = hn−1(A′, c1 . . . cn−1, G). (10)

As in the base case, we observe that any pre-ask strategy
fails either in A or in A′, given that `(δ̂(c)) 6= `′(δ̂(c)). This
observation and Equation 10 lead to the following result.

∑
A∈Px,y

c

hn(A, c, F ) + hn(A′, c, F ) =

2hn−1(A, c1 . . . cn−1, F ),∑
A∈Px,y

c

hn(A, c,G) + hn(A′, c, G) =

2hn−1(A, c1 . . . cn−1, F ).

Because Rc is bijective and symmetric we obtain:

∑
A∈Px,y

c

hn(A, c, F ) = hn−1(A, c1 . . . cn−1, F ),

∑
A∈Px,y

c

hn(A, c,G) = hn−1(A, c1 . . . cn−1, F ).

(11)

Equations 9 and 11 together give:



∑
A∈Px,y

hn(A, c, F )− hn(A, c,G) ≥∑
A∈Px,y

hn−1(A, c1 . . . cn−1, F )− hn−1(A, c1 . . . cn−1, G).

(12)

Considering the induction hypothesis, we finally obtain
that

∑
A∈Px,y hn(A, c, F ) − hn(A, c,G) ≥ 0 for every

c ∈ {0, 1}n. This yields Pr(Fn) ≥ Pr(Gn), which is the
required result.

From now on, we will use F(P ) to denote the success
probability of a pre-ask attack in protocol P , i.e. F(P ) =
Pr(F ) where F is defined as in Theorem 2.

6. A family of protocols that are arbitrarily
close to optimal

We have proven that 1
2n

(
1 + n

2

)
is a tight lower bound

on the resistance to mafia fraud of lookup-based DB proto-
cols with n rounds. Only the Tree-based approach achieves
such lower bound, at the cost of an exponential number of
states, though. In this section we introduce a subclass of
lookup-based DB protocols that contains protocols whose
resistance to pre-ask attacks is arbitrarily close to the above-
mentioned optimal bound.

6.1. Uniform lookup-based DB protocols

Protocols within the proposed subclass are layered and
random-labeled. In addition, they satisfy an additional prop-
erty that we call uniformity. The property is related to the
possibility for an adversary to guess the correct states in
an execution, i.e. to have certainty on the responses. We
formally define the concept of uniformity and later on we
explain our intuition behind it.

Definition 10 (Uniformity). Let P be a layered and random-
labeled lookup-based DB protocol with n > 0 rounds. We
say that P is u-uniform with u ∈ {1, . . . , n}, if for every
k ∈ {1, . . . , n} and for every x, y ∈ {0, 1}k it holds
that δ̂(x) = δ̂(y) ⇐⇒ (k ≤ u ∧ x = y) ∨ (k >
u ∧ xk−u+1xk−u+2 . . . xk = yk−u+1yk−u+2 . . . yk).

In other words, u-uniformity means that two input se-
quences of length k reach the same state if and only if the
last u symbols (or k symbols if k ≤ u) of the two sequences
are equal.

Intuitively the notion of uniformity is related to the
possibility for an adversary to predict the correct states in
the pre-ask session. Suppose the adversary chooses a chal-
lenge sequence x1 . . . xn to query the prover. Also, consider
A = (Σ,Γ, Q, q0, δ, `) to be the selected automaton for
the protocol execution, which is unknown to the adversary.
Suppose now y1 . . . yn are the verifier’s challenges. Let’s
call q1 . . . qn and q′1 . . . q

′
n the sequences of states reached

by both challenge sequences, i.e. qi = δ̂(x1 . . . xi) and

q′i = δ̂(y1 . . . yi) for every i ∈ {1, . . . , n}. Intuitively, the
more elements q1 . . . qn and q′1 . . . q

′
n have in common, the

more vulnerable the protocol becomes, since the adversary
has the responses for those states. In the case of a u-
uniform protocol, for the adversary to reach the correct state,
let’s say at round i, he needs to guess all the u (or i if
i ≤ u) last verifier’s challenges in advance. So, the higher
the uniformity value u, the harder it gets for the adversary
to make the correct guesses.

We say that a protocol is uniform if it is u-uniform for
some u. We will refer to u as the uniformity value of a proto-
col. It is ensured that this uniformity value is unique because
the set of input symbols has more than one element. Next,
we show that HK [14] and Tree-based [7] are 1-uniform and
n-uniform, respectively. The proofs that they are layered and
random-labeled are omitted since they belong to our family
of protocols that will be defined later and for which we will
provide a formal proof (see Section 6.3).

Proposition 2. The HK protocol is 1-uniform.

Proof. In this proof we will use the definition of the HK
protocol provided in Section 3.

Let x1 . . . xk and y1 . . . yk be two binary sequences of
length k ∈ {1, . . . , n}. Let qx, qy ∈ Q be two states such
that qx ∈ δ̂(x1 . . . xk−1) and qy ∈ δ̂(y1 . . . yk−1). Notice
that if k = 1 then qx = qy = q0. Hence,

δ̂(x1 . . . xk) = δ̂(y1 . . . yk)

⇐⇒ δ(qx, xk) = δ(qy, yk)

⇐⇒ (qx + xk + 1 + qx(mod 2))(mod 2)

= (qy + yk + 1 + qy(mod 2))(mod 2).

But, (q + q(mod 2) + 1)(mod 2) = 1 for every q ∈ N.
Therefore,

(qx + xk + 1 + qx(mod 2))(mod 2)

= (qy + yk + 1 + qy(mod 2))(mod 2)

⇐⇒ xk(mod 2) = yk(mod 2)

⇐⇒ xk = yk.

Finally, δ̂(x1 . . . xk) = δ̂(y1 . . . yk) ⇐⇒ xk = yk.

Proposition 3. The Tree-based protocol with n > 0 rounds
is n-uniform.

Proof. Consider the following model for the Tree-
based protocol P = {A0, A1, . . . , AN} where Ai =
({0, 1}, {0, 1}, Q, q0, δ, `i) such that Q = {0, 1, . . . , 2n+1−
2}, q0 = 0, δ(d, c) = 2d+ c+ 1, and `i(q) is the qth bit of
the binary representation of i. In addition, N = 2|Q|−1−1 =
22n+1−3 − 1.

Let x1 . . . xk and y1 . . . yk be two binary sequences of
length k ∈ {1, . . . , n}. Let qx, qy ∈ Q be two states such
that qx ∈ δ̂(x1 . . . xk−1) and qy ∈ δ̂(y1 . . . yk−1). Notice
that if k = 1 then qx = qy = q0. Then:

δ̂(x1 . . . xk) = δ̂(y1 . . . yk)

⇐⇒ δ(qx, xk) = δ(qy, yk)

⇐⇒ 2qx + xk + 1 = 2qy + yk + 1.



Now, let us prove that 2qx + xk + 1 = 2qy + yk + 1 ⇐⇒
qx = qy ∧ xk = yk. The implication from right to left is
trivial, so we proceed by proving the implication from left
to right. Indeed,

2qx + xk + 1 = 2qy + yk + 1

=⇒ 2qx + xk + 1(mod 2) = 2qy + yk + 1(mod 2)

=⇒ xk(mod 2) = yk(mod 2) =⇒ xk = yk.

Hence, if 2qx + xk + 1 = 2qy + yk + 1 and xk = yk then
qx = qy. Therefore,

qx = qy

⇐⇒ δ(δ̂(x1 . . . xk−2), xk−1) = δ(δ̂(y1 . . . yk−2), yk−1).

Analogously, we have:

δ(δ̂(x1 . . . xk−2), xk−1) = δ(δ̂(y1 . . . yk−2), yk−1)

⇐⇒ δ̂(x1 . . . xk−2) = δ̂(y1 . . . yk−2) ∧ xk−1 = yk−1

and so on, until reaching x1 = y1. Finally, δ̂(x1 . . . xk) =
δ̂(y1 . . . yk) ⇐⇒ x1 . . . xk = y1 . . . yk.

Next we provide a closed formula to compute the re-
sistance of uniform distance bounding protocols to pre-ask
attacks. Again, for the sake of simplicity, we assume that
the sets of input and output symbols are binary.

6.2. Pre-ask attacks in uniform protocols

To compute the highest success probability of a pre-
ask attack in u-uniform protocols we will use the results
from Theorem 2. That is to say, we will compute the
adversary’s success probability when executing the optimal
pre-ask strategy defined in Theorem 2. We recall that such a
strategy consists in replying to the verifier’s challenges with
the answers received from the prover.

Theorem 3. Let P be a u-uniform lookup-based DB pro-
tocol for n > 0 rounds. Then the success probability of a
pre-ask attack is F(P ) = Rn, where R0 = 1 and

Ri =
1

2i
+

i−1∑
j=0

Ri−j−1

2j+min(u,j+1)+1
,

for i ∈ {1, . . . , n}.
Proof. Let x ∈ {0, 1}n be an input sequence representing
the adversary’s challenges to query the prover in the pre-ask
phase. Let A = (Σ,Γ, Q, q0, δ, `) ∈ P and x′ ∈ {0, 1}n be a
random automaton and a random bit sequence, respectively.
Let y, y′ ∈ {0, 1}n be two binary sequences such that
(A, x, y) @ P and (A, x′, y′) @ P . The input sequence
x′ represents the one picked (randomly) by the verifier to
execute the fast phase.

According to Theorem 2, we have that F(P ) = Pr(y =
y′). In order to compute Pr(y = y′), consider the following
events:

• Si is the event that y1 . . . yi = y′1 . . . y
′
i for every

i ∈ {1, . . . , n}.

• Mi,j is the event that xi−j+1 . . . xi = x′i−j+1 . . . x
′
i∧

xi−j 6= x′i−j for every i ∈ {1, . . . , n} and j ∈
{0, . . . , i− 1}. Note that Mi,0 becomes xi 6= x′i.

• Ei is the event that x1 . . . xi = x′1 . . . x
′
i for every

i ∈ {1, . . . , n}. Notice that Ei occurs if none of the
events Mi,i−1 do, which means that Pr(Ei∨Mi,0∨
· · · ∨Mi,i−1) = 1.

Our goal is to compute the values of Pr(Si) and in particular
Pr(Sn). By the law of total probability we have:

Pr(Si) = Pr(Si|Ei) Pr(Ei) +

i−1∑
j=0

Pr(Si|Mi,j) Pr(Mi,j)

=
1

2i
+

i−1∑
j=0

Pr(Si|Mi,j) Pr(Mi,j), (13)

because Pr(Si|Ei) = 1 and Pr(Ei) = 1
2i . Moreover, for

every i ∈ {1, . . . , n} and j ∈ {1, . . . , i − 1}, since the
sequence x′ is chosen randomly and its bits are independent,
we have that:

Pr(Mi,j) = Pr(xi−j 6= x′i−j)×
i∏

k=i−j+1

Pr(xk = x′k)

=
1

2
× 1

2j
=

1

2j+1
. (14)

Observe that Pr(Mi,0) = Pr(xi 6= x′i) = 1
2 . Now let’s

compute the values Pr(Si|Mi,j) for i ∈ {1, . . . , n} and j ∈
{0, . . . , i− 1}. Given i and j, assume Mi,j occurs, i.e. the
input sequences x1 . . . xi and x′1 . . . x

′
i have the same last j

symbols. So, if j ≥ u, because of the uniformity property,
we have that:

δ̂(x1 . . . xi−j) 6= δ̂(x′1 . . . x
′
i−j),

δ̂(x1 . . . xi−j+1) 6= δ̂(x′1 . . . x
′
i−j+1),

. . .

δ̂(x1 . . . xi−j+u−1) 6= δ̂(x′1 . . . x
′
i−j+u−1), (15)

and

δ̂(x1 . . . xi−j+u) = δ̂(x′1 . . . x
′
i−j+u),

δ̂(x1 . . . xi−j+u+1) = δ̂(x′1 . . . x
′
i−j+u+1),

. . .

δ̂(x1 . . . xi) = δ̂(x′1 . . . x
′
i). (16)

From Equations 15 and 16 and given that the protocol is
random-labeled we derive that, for every k ∈ {i− j, . . . , i}:

Pr(yk = y′k|Mi,j) =

{
1
2 if k ≤ i− j + u− 1,
1 otherwise.

This leads to:

Pr(yi−j . . . yi = y′i−j . . . y
′
i|Mi,j) =

1

2u
. (17)

On the other hand, if j < u then δ̂(x1 . . . xk) 6= δ̂(x′1 . . . x
′
k)

for every k ∈ {i− j, i} and consequently:

Pr(yi−j . . . yi = y′i−j . . . y
′
i|Mi,j) =

1

2j+1
. (18)



Furthermore, the event Si−j−1 and the event that yi−j . . . yi
is equal to y′i−j . . . y

′
i are independent, given the uniformity

property and that xi−j 6= x′i−j . This gives:

Pr(Si|Mi,j) = Pr(Si−j−1|Mi,j)

× Pr(yi−j . . . yi = y′i−j . . . y
′
i|Mi,j).

(19)

Equations 17, 18 and 19 give:

Pr(Si|Mi,j) =
Pr(Si−j−1|Mi,j)

2min(u,j+1)
. (20)

Observe now that the events Mi,j and Si−j−1 are indepen-
dent, which means that Pr(Si−j−1|Mi,j) = Pr(Si−j−1). By
applying this result to Equation 20 we obtain:

Pr(Si|Mi,j) =
Pr(Si−j−1)

2min(u,j+1)
. (21)

Finally, from Equations 13, 14 and 21 and by applying the
substitution Ri = Pr(Si) we obtain the expected recursive
formula. We conclude this proof by remarking that F(P ) =
Pr(Sn) = Rn.

A consequence of this theorem is that, in uniform pro-
tocols, the adversary has no advantage in selecting the
challenges to query the prover. In the next corollaries we
show, by using the previous theorem, a security computation
in terms of pre-ask attacks for the mentioned HK and Tree-
based protocols.

Corollary 1. Let P be the HK-protocol for n > 0 rounds.
Then F(P ) =

(
3
4

)n
.

Proof. Since the HK protocol is 1-uniform (see Proposi-
tion 2), we have:

Ri =
1

2i
+

i−1∑
j=0

Ri−j−1

2j+2
.

By multiplying the previous equation by 2i we have:

2iRi = 1 +

i−1∑
j=0

2i−j−2Ri−j−1

= 1 +
1

2

i−1∑
j=0

2i−j−1Ri−j−1 .

By substituting k = i−j−1, the last equation can be written
as 2iRi = 1 + 1

2

∑i−1
k=0 2kRk, since i − j − 1 goes from 0

to i − 1. Now, by applying the substitution Bi = 2iRi we
obtain, for every i ∈ {1, . . . , n}:

Bi = 1 +
1

2

i−1∑
k=0

Bk , (22)

and for every i ∈ {0, . . . , n− 1}:

Bi+1 = 1 +
1

2

i∑
k=0

Bk . (23)

Now, by subtracting Equation 22 from Equation 23 we
obtain

Bi+1 −Bi =
1

2
Bi ,∀i ∈ {0, . . . , n− 1},

which implies that Bi+1 = 3
2Bi and given that B0 = 1,

we obtain Bi =
(

3
2

)i
. Therefore Ri = Bi

2i =
(

3
4

)i
and

F(P ) = Rn =
(

3
4

)n
.

Corollary 2. Let P be the Tree-based protocol for n > 0
rounds. Then F(P ) = 1

2n

(
1 + n

2

)
.

Proof. Since the Tree-based protocol is n-uniform (see
Proposition 3), we have:

Ri =
1

2i
+

i−1∑
j=0

Ri−j−1

22j+2
.

By multiplying the previous equation by 4i we obtain:

4iRi = 2i +

i−1∑
j=0

4i−j−1Ri−j−1

= 2i +

i−1∑
k=0

4kRk.

Hence, let Bi = 4iRi, then:

Bi = 2i +

i−1∑
k=0

Bk ,∀i ∈ {1, . . . , n}, (24)

and,

Bi+1 = 2i+1 +

i∑
k=0

Bk ,∀i ∈ {0, . . . , n− 1}. (25)

Therefore, by subtracting Equation 24 from Equation 25, for
every i ∈ {0, . . . , n−1}, we have that Bi+1−Bi = 2i +Bi

and consequently Bi+1 = 2Bi + 2i and
Bi+1

2i+1
=
Bi

2i
+

1

2
.

Now, by setting Di = Bi

2i we have that Di+1 = Di + 1
2

and therefore Di = i
2 + D0. Since R0 = 1, we have that

B0 = 1 and D0 = 1. Therefore, Bi = 2i(1 + i
2 ) which

implies that Ri = 1
2i (1 + i

2 ). Finally, F(P ) = Rn =
1

2n

(
1 + n

2

)
.

Next we prove that the resistance to pre-ask attacks of
uniform lookup-based DB protocols monotonically depends
on their uniformity value.

Theorem 4. Let Pu and Pv be two uniform protocols with
uniformity values u and v, respectively. Assume that these
protocols have the same number of rounds n > 0. Then
u ≤ v =⇒ F(Pu) ≥ F(Pv).

Proof. We introduce the notation

Ru
i =

1

2i
+

i−1∑
j=0

Ru
i−j−1

2j+min(u,j+1)+1
(26)



to refer to the recursive equation in Theorem 3 for Pu.
Analogously, we use Rv

i for Pv. Assuming u ≤ v, we
proceed by induction over i to prove that Ru

i ≥ Rv
i for

every i ∈ {0, . . . , n} and in particular that Ru
n ≥ Rv

n, i.e.
F(Pu) ≥ F(Pv).

The base case i = 0 trivially holds, given that Ru
0 =

Rv
0 = 1. Now, let us assume that Ru

j ≥ Rv
j (induction

hypothesis) for every j < i. From u ≤ v it follows that
min(u, j+ 1) ≤ min(v, j+ 1) for every j ∈ {1, . . . , n} and
consequently 2min(u,j+1) ≤ 2min(v,j+1). This implies that

1

2j+min(u,j+1)+1
≥ 1

2j+min(v,j+1)+1
. (27)

Besides, from the induction hypothesis, for every j ∈
{0, . . . , i− 1} we obtain that

Ru
i−j−1 ≥ Rv

i−j−1. (28)

From Equations 26, 27 and 28 we obtain that Ru
i ≥ Rv

i and
in particular Ru

n ≥ Rv
n.

For a given n > 0, consider f : {1, . . . , n} →[
1

2n (1 + n
2 ),
(

3
4

)n]
to be a function such that f(u) = F(Pu)

where Pu is a u-uniform lookup-based DB protocol. The-
orem 4 demonstrates that f is decreasing and approaches
1

2n

(
1 + n

2

)
when u approaches n. Based on these results,

we can affirm that the closer the uniformity value gets to n
(resp. 1) the lower (resp. higher) the success probability of
a pre-ask attack. In particular, n-uniform protocols (such as
Tree-based) are optimal within this class, whereas 1-uniform
(such as HK) perform worst.

In the following, we model a family of uniform lookup-
based DB protocols and describe them in standard crypto-
graphic notation. Also, we show that for every uniformity
value, there exists at least one protocol within our proposed
class. This means that, for every u ≤ n, where n is
the number of rounds, we provide a construction of a u-
uniform protocol. This affirms that we can build a protocol
with mafia-fraud resistance arbitrarily close to optimal, by
defining its uniformity value and using our model. The
proposed protocols require significantly fewer states than
the Tree-based approach.

6.3. A family of uniform protocols

Let n > 0 and u ∈ {1, . . . , n} be two integer num-
bers. Consider the following construction of protocol P
for n rounds. P = {A0, A2, . . . , AN} such that Ai =
({0, 1}, {0, 1}, Q, q0, δ, `i), where

• Q = {(i, d) | 0 ≤ i ≤ n ∧ 0 ≤ d < min(2u, 2i)},
• q0 = (0, 0),
• δ((i, d), c) = (i + 1, (2d + c)(mod 2u)) for every

c ∈ {0, 1} and (i, d) ∈ Q such that i < n,
• N = 2|Q|−1 − 1, and
• for every j ∈ {1, . . . , N}, `j(q) is the kth bit in the

binary representation of j and k is the position of q
in Q− {q0}.

In this construction, we define Q as a set of pairs of
integers. Each pair (i, d) represents a state, in layer i, where

d is the position in this layer. For two binary strings to
share the last u bits, their decimal representations have to
leave the same remainder when divided by 2u. Based on this
property, we build our state transition function. The expres-
sion δ((i, d), c) = (i+ 1, (2d+ c)(mod 2u)) stands for this
idea. Notice that d(c1 . . . ci) = 2d(c1 . . . ci−1) + ci, where
d(.) represents a function that converts binary strings into
integers (left-to-right order). We use d(.) here as a function
since it relates the second value of the pairs representing the
states. Moreover, for every j ∈ {1, . . . , u} and c ∈ {0, 1}j
the values d(c) have at most 2j different remainders when
divided by 2u, this explains our upper bound for d in
the definition of Q. The last two rules in our construction
represent the random-labeling property, although in practice
this is achieved by generating a distribution of random bits
over the set of states. A formal proof of these ideas is shown
in the next lemma.

Lemma 2. The proposed protocol is u-uniform.

Proof. We first prove that P is layered and random-labeled.
Because of the definition of δ, for every pair x, y ∈
{0, 1}i × {0, 1}j with i 6= j we have that δ̂(x) = (i, ax)
and δ̂(y) = (j, ay), where ax and ay are integer numbers
(they are irrelevant for our proof). Then (i, ax) 6= (j, ay)
and δ̂(x) 6= δ̂(y). Therefore P is layered.

To show the random-labeling property, consider any
labeling function ` : Q − {q0} → {0, 1}. Let B =
b1b2 . . . b|Q|−1 be a binary string such that bi = `(qi)
for every i ∈ {1, . . . , |Q| − 1}. We recall that q0 does
not require a label since it is never used for replies. Let
D =

∑|Q|−1
i=1 2i−1bi be an integer number, i.e. the decimal

representation of B. Then, given that N = 2|Q|−1 − 1 we
have that D ∈ {0, . . . , N} and, because of our construc-
tion, `D = `. This proves that for any `, it holds that
({0, 1}, {0, 1}, Q, q0, δ, `) ∈ P . Every labeling function is
unique since it is related to a unique integer number in D.
This states that P is indeed a set.

Next, we demonstrate that P satisfies the uniformity
property. Let k ∈ {1, . . . , n} and let x = x1 . . . xk, y =
y1 . . . yk be two bit sequences of length k. Because of
our definition of the state-transition function δ, we derive
that δ̂(x) = (k, Sx(mod 2u)) and δ̂(y) = (k, Sy(mod 2u))
where

Sx =

k∑
i=1

2k−ixi ,

Sy =

k∑
i=1

2k−iyi .

In the previous two equations, Sx and Sy are the decimal
representations of the bit strings x and y, respectively.
Hence,

δ̂(x) = δ̂(y) ⇐⇒ Sx(mod 2u) = Sy(mod 2u).



Now we have two cases. If k ≤ u then we have Sx < 2u

and Sy < 2u and, consequently,

δ̂(x) = δ̂(y)

⇐⇒ Sx(mod 2u) = Sy(mod 2u)

⇐⇒ Sx = Sy

⇐⇒ x = y.

On the other hand, if k > u we can write Sx (and
analogously Sy) in the following way:

Sx =

k−u∑
i=1

2k−ixi +

k∑
i=k−u+1

2k−ixi

= 2u

(
k−u∑
i=1

2k−i−uxi

)
+

k∑
i=k−u+1

2k−ixi.

Since k − i − u ≥ 0 for every i ∈ {1, . . . , k − u},
all the elements in the first sum are integers. This im-
plies that Sx(mod 2u) = S′x(mod 2u) and Sy(mod 2u) =
S′y(mod 2u), where

S′x =

k∑
i=k−u+1

2k−ixi ,

S′y =

k∑
i=k−u+1

2k−iyi .

Therefore,

δ̂(x) = δ̂(y)

⇐⇒ Sx(mod 2u) = Sy(mod 2u)

⇐⇒ S′x(mod 2u) = S′y(mod 2u) .

Given that k − i < u for every i ∈ {k − u+ 1, . . . , k}, we
deduce that both S′x and S′y are less than 2u. This implies
that

δ̂(x) = δ̂(y)

⇐⇒ Sx(mod 2u) = Sy(mod 2u)

⇐⇒ S′x(mod 2u) = S′y(mod 2u)

⇐⇒ S′x = S′y
⇐⇒ xk−u+1 . . . xk = yk−u+1 . . . yk .

Finally, from both cases we obtain the necessary and
sufficient condition stated in Definition 10.

The intuition behind the above construction is that the set
of states Q can be partitioned into n sets Q0, Q1, . . . , Qn

such that i ∈ {0, . . . , n} where Qi = {(i, d) | 0 ≤ d <
min(2u, 2i)}. The transition function only connects states
in Qi with states in Qi+1. The corresponding state for a
sequence of input symbols c1 . . . ci ∈ {0, 1}i is the k-th
state in the layer i, where k is the remainder of the division
of
∑i

j=1 2j−1cj by 2u. The composition of the labeling
functions basically represents a random distribution of bits
over the set of states Q.

(0,0)

(1,0)1 (1,1) 0

(2,0)0 (2,1) 1 (2,2) 0 (2,3) 1

(3,0)1 (3,1) 0 (3,2) 1 (3,3) 1

(4,0)0 (4,1) 1 (4,2) 0 (4,3) 0

Figure 4. An automaton representing an instantiation of a 2-uniform
lookup-based DB protocol for n = 4 rounds. Dashed and solid lines
represent transitions when the input symbol is 0 and 1, respectively. With
bold lines we highlight an execution with challenge sequence 0110 and
responses 1110.

An example of an automaton for a 2-uniform protocol
following the model above is depicted in Figure 4. Next,
we describe our protocol in standard cryptographic notation
for distance-bounding protocols. Concretely, the proposed
protocol consists of the following phases:

Initialization phase. The prover and the verifier agree on
the following parameters:

• A shared key x.
• An integer number m > 0 which represents the

length of the nonces.
• An integer number n > 0 which represents the

number of rounds.
• An integer number u ∈ {1, . . . , n} which represents

the uniformity value.
• A pseudo random function g.
• A threshold for the round-trip-time ∆tmax.

Slow phase. Both parties generate nonces, NP for the prover
and NV for the verifier. The value NV is sent to the prover
which constructs the labeling function from g(x,NV , NP).
Then, the prover sends the nonce NP to the verifier and
the latter also computes the function g(x,NV , NP) to agree
with the prover on the labeling function.

• Constructing the labeling function `: The shared
pseudo-random function g outputs n registers
B1||B2|| . . . ||Bn such that Bi is a 2min(u,i)-bit
string. Then `((i, d)) = Bi

d for every i ∈ {1, . . . , n}
and 0 ≤ d < min(2u, 2i).



Prover Verifier
(secret key x) (secret key x)

slow phase
NV←−−−−−−−−− NV = {0, 1}m

NP = {0, 1}m NP−−−−−−−−−→

from g(x,NV , NP)
create `
q0 = (0, 0)

fast phase
for i = 1 to n

random bit ci
ci←−−−−−−−−− start clock ts

qi = δ(qi−1, ci)
ri = `(qi)

ri−−−−−−−−−→ stop clock tf
check ri and

tf − ts ≤ ∆tmax

Figure 5. The proposed u-uniform lookup-based DB protocol.

Fast phase. This phase is composed of n rounds numbered
from 1 to n. At the i-th round, the verifier sends a challenge
bit ci to the prover which moves from the previous state
qi−1 to the next one qi = δ(qi−1, ci) and replies with the
corresponding bit `(qi).

Verification phase. The protocol succeeds if and only if (i)
all the exchange times are less than or equal to the maximum
value ∆tmax and (ii) all the responses are correct.

Memory requirements. The proposed protocol requires
an amount of memory of (n−u+ 2)2u−2 bits. The length
of the first u registers B1, B2, . . . , Bu is 21, 22, . . . , 2u,
respectively. The remaining ones Bu+1, . . . , Bn have 2u bits
each one. So, in total we have

∑u
i=1 2i + (n − u)2u bits,

which is (2u+1 − 2) + (n− u)2u = (n− u+ 2)2u − 2.

7. Conclusions

We have developed an abstract model, based on fi-
nite state automata, for the description of a class of
precomputation-based distance-bounding protocols. Execu-
tion of a protocol’s slow phase is represented by randomly
selecting one instance from a set of automata, while the
execution of the protocol’s fast phase is represented by a
walk through the selected automaton. Our model is suf-
ficiently expressive to describe many published protocols,
among which the well-known HK protocol and the Tree-
based protocol.

The virtue of this model is that it supports generic
analysis of members of this protocol class. For instance,
we can analyze the security limits of a protocol in relation
to the number of rounds. Further, we introduced the notion
of uniformity, which expresses that randomly chosen walks
through the automaton have no bias towards a particular

state. Finally, we developed a family of uniform protocols
in our model and proved that it has an excellent performance
in relation to its memory requirements.
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