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Abstract

The growing popularity of social networks has generated interesting data analysis problems.
An important concern in the release of these data for study is their privacy, since social
networks usually contain personal information. Unfortunately, most of the previous
studies on privacy preservation can deal with the attacking by adversaries with structural
knowledge only, and cannot resist the attacks by stronger adversaries who can affect the
structure of the social network graphs actively which is named active attack. In this
thesis, based on the privacy metric (k, `)-anonymity against active attacks, we introduce
two anonymization methods to transform graphs to (k, 1)-anonymous graphs which can
preserve the privacy of individuals and enable useful researches. The two methods are:
Connectivity-Preserving Approach which devotes to preserve the structure of the original
graph to a larger extent, and Edge-Preserving Approach which reaches (k, 1)-anonymity
fast in terms of the number of added edges. The empirical study on both synthetic data
and a social network data, illustrates that anonymized social networks generated by our
methods can still resist against active attacks where the adversary controls more than
one node in the network.
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Chapter 1

Introduction

In this chapter, we present the motivation that led us to develop this research. We
provide an overview of the (k, `)-anonymity concept, which is the privacy metric for
social graphs we use in this thesis. We also summarize our contributions. Finally, the
structure of this thesis is detailed.

1.1 Motivation

A social network is a social structure which is made up of actors and their interactions.
Each actor in the social network can search and check the profile of the social network
members, post comments on their profiles, publish their status, etc. Without any
constraint of the physical spaces, a social network makes it easier to communicate,
interact and socialize for web users than face-to-face communications.

An article1 by Sharon Guadin shows that in 2013 nearly 30% of the world’s population
use social networks like Facebook, Instagram, Google+ each month, which is an increase
by 14.2% from 2012. This increase is predicted to continue by eMarket, a market research
company. Their forecast is shown in Figure 1.1. The growth in the number of social
network users around the world may be slowing but it shows little sign of stopping. By
2017, 2.33 billion people will use social networks.

A recent statistics2 in August, 2015, also provides information on the most popular
worldwide networks, ranked by the number of active accounts as shown in Figure 1.2.
Market leader Facebook is the first social network to surpass 1 billion registered accounts.

The success of these social networks has attracted the attention of the media (e.g.,
[2][7][25][34][37]) and researchers. The research is often built upon the existing literatures
on social network theory (e.g., [17][30][31][47]). To enable researchers’ useful analysis
such as community detection, link prediction, identifying prominent actors, social network
characterization, social network data is usually published in the form of graphs consisting
of nodes and edges. Nodes are representations of either individuals or organizations who
have one or more attributes. The edges denote relationships or interactions between these
nodes, such as financial exchange, friend relationship, web links, disease transmissions,
which is the sensitive information the individuals do not want to reveal. For example, in
Facebook, nodes indicate individuals and edges specify friendships. Users on Facebook
cannot only view the profile of their friends, neighbors of them in the corresponding
graph, but also send instant messages with them, which corresponds to edges in the
graph.

1http://www.emarketer.com/Article/India-Leads-Worldwide-Social-Networking-Growth/1010396
2http://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
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Figure 1.1: Social Network Users Worldwide1, 2012-2017

The structure of social network graphs is usually published for useful analysis which
can be used to fields as varied as marketing [16], sociology [8] and even counter-terrorism
[22][39]. As is shown above, the usage of social networks has become widespread, everyone
can get access to these data after the social network graph is published, thus the privacy
in social networks becomes a serious concern [40].

Our goal is to enable the useful analysis of social network data while protecting the
privacy of individuals. Many works focused on managing the balance between privacy
and utility in data publishing, but they only deal with how to prevent the adversaries
who know the structural background knowledge from attacking the social network after
the social network is released. For example, if the adversary knows the degree of a target
individual and the degree of all the neighbors of this individual, then the target individual
can be easily identified.

The utility we consider in this thesis is the structural property of the graph, such
as the degree of nodes, eccentricity of nodes, diameter of the graph, connectivity of the
graph and so on. It is a property of the graph itself instead of a specific representation of
the graph.

As anonymization is a conventional technique to preserve the privacy, we present in
this thesis new anonymization approaches which preserve both the utility and privacy
of the social network. We consider the simple connected graphs where nodes model
individuals and edges their relationships. Every relationship is unlabeled, in other words,
all the relationships have the same meaning. To protect the social network data, we
mask it according to the privacy metric (k, `)-anonymity proposed in [44], specifically
(k,1)-anonymity. It can evaluate the resistance of social networks against active attacks
where the adversaries can actively affect the structure of the published social network
graphs and make them easier to decipher. Our transformation approaches anonymize
the graph with a few added edges and disturbs as little as possible the social network
structural information.
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Figure 1.2: Leading social networks worldwide as of August 2015, ranked by number of
active users (in millions)2

1.2 Our contribution

The general goal of the present thesis is to provide obfuscation techniques aimed at
transforming social graphs into graphs resistant to active attacks. In particular, we will
focus on social graphs satisfying (1,1)-anonymity, which is the simplest privacy guarantee
possible and transform them into graphs satisfying (k, 1)-anonymity for k > 1. Our
contributions are the followings:

• We show theoretical properties of graphs that satisfy (k,1)-anonymity, particularly
k = 1.
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• Based on these properties, we provide a fundamental principle of transforming
graphs to ones without any vertices of whom the metric representation with respect
to a considered one-vertex subset are different from the other vertices in the same
graph. And according to this principal we propose two obfuscation techniques,
Edge-Preserving Approach (EPA for short), which preserves the original connectivity
of the graph to a large extent, and Connectivity-Preserving Approach (CPA for
short), which reaches to the goal fast.

• We perform experiments on both synthetic graphs and real-life social graphs in
order to evaluate the proposed solutions. The results are that both methods indeed
preserve the privacy of users based on the privacy metric (k, 1)-anonymity. EPA
requires less edge addition operations while CPA arouses less connectivity loss.

• We evaluate one existing active attack, walk-based attack, to social networks
against the proposed obfuscation techniques. The results are that the success rate
of attacking social networks which are transformed by either EPA or CPA is sharply
decreased comparing to the success rate of attacking the original social networks.

1.3 Structure of the thesis

The rest of the thesis is structured as follows. Chapter 2 provides some definitions and
notations we will use later. Chapter 3 reviews the literature on privacy-preserving publica-
tion of social network data. Chapter 4 shows the theoretical properties of (k, 1)-anonymous
graphs, particularly (1,1)-anonymous graphs. Chapter 5 presents the formulation of the
problem and our obfuscation techniques to solve the problem. Experimental results and
the evaluation of our proposed methods CPA and EPA are shown in Chapter 6. Chapter
7 draws conclusions and future work.



Chapter 2

Preliminaries

In this section, we provide some definitions and notations which we will use later and
show these properties on a complete graph as an example.

We model a social network graph G = (V,E) as a simple graph where V represents
individuals and E their relationships. G is a connected and undirected graph without
self-loops, and multiple edges. We often label the vertices with letters v1,...,vn. The
edges could also have some labels and weights but in this thesis we only consider the
simplest form which has neither labels nor weights on both nodes and edges. The graph
is connected if all vertices are connected to each other.

Two vertices are adjacent if they are connected by an edge. The two vertices forming
an edge are named the endpoints of this edge.

The distance dG(v, u) between two vertices v and u in G is the number of edges in the
shortest path connecting them. Notice that there may be more than one shortest path
between two vertices [51]. If there is no path connecting the two vertices, i.e., if they
belong to different connected components, then conventionally the distance is defined as
infinite.

The degree of a vertex is the number of edges connected to it. An end-vertex is a
vertex with degree one. A node with the highest degree in the graph is often called a hub.

Connectivity is another important concept of graph theory, which is used in this thesis
to measure the information loss when transforming graphs. Globally, the connectivity of
a graph is an important measure of its robustness as a network. Formally, it is defined in
[35]:

Definition 1. (Connectivity) The connectivity of a graph is the minimum number of
elements (nodes or edges) whose removal makes the graph disconnected.

If the removed element is a vertex, then vertex-connectivity is considered. If the
removed element is an edge, then edge-connectivity is considered. The vertex-connectivity
of a graph is less than or equal to its edge-connectivity. Both are less than or equal to
the minimum degree of the graph, since deleting all neighbors of a vertex of minimum
degree will disconnect that vertex from the rest of the graph. The local edge-connectivity
of two vertices x, y is the size of a smallest edge cut disconnecting x from y. The edge-
connectivity of the graph is the size of the smallest edge cut. In this thesis, we regard
the edge-connectivity as a metric of information loss and all the mentioned connectivity
points to edge-connectivity.

Definition 2. (Eccentricity) The eccentricity ε(v) of a vertex v in a connected graph is
the greatest number of edges in a shortest path between v and any other vertex in the
graph.

5
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The maximum eccentricity of any vertex in a graph is the diameter of the graph
while the minimum is the radius of the graph. For a disconnected graph, all vertices are
defined to have infinite eccentricity [52].

Definition 3. (Eccentricity path) Let G = (V,E) be a simple connected graph and v a
vertex in V (G). Let u be another vertex in V (G) such that dG(v, u) = ε(v). The shortest
path from v to u is called an eccentricity path of v.

As there might be more than one u such that dG(v, u) = ε(v), there might exist more
than one eccentricity path of v.

Definition 4. (Graph density) For undirected simple graphs, the graph density is defined
as:

Density =
2|E|

|V |(|V | − 1)

where |E| is the number of edges and |V | is the number of vertices in the graph.

For undirected graphs, the maximum number of edges is |V |(|V |−1)2 , so the maximum
density is 1 and the minimum is 0 [12]. If the density of G is near 0, then we say that G
is a sparse graph. If the density of G is near 1, then we say that G is a dense graph. But
there is no absolute limit between sparse graphs and dense graphs. We judge a graph
sparse or dense relatively to each other.

The definition of metric representation in [44] is an important concept when defining
the adversary’s background knowledge. Let G = (V,E) be a simple connected graph
and S = {u1, ..., ut} be an ordered subset of vertices of G. The metric representation
r(v|S) of every v in V (G)−S with respect to S is the vector of all the distances between
v and each vertex in S, i.e., r(v|S) = (d(v, u1), ..., d(v, ut)). When there is only one
vertex w in S, then the metric representation of v with respect to {w} is the vector
r(v|{w}) = (d(v, w)).

The concept of k-antiresolving set and metric-antidimension is the basis of (k, `)-
anonymity. A subset S of V (G) is called a k-antiresovling set if k is the greatest positive
integer such that for every u ∈ V (G)−S there exists at least k−1 other different vertices
who have the same metric representation with respect to S. We call S 1-antiresolving
set if there exists at least one vertex whose metric representation with respect to S is
different from the metric representation of any other vertex in G. Another similar concept
is 1-resolving set. We call S a 1-resolving set if the metric representation of every vertex
in G with respect to S is different from each other. The k-metric antidimension of G,
adimk(G) for short, is the minimum cardinality amongst the k-antiresolving sets in G.
Based on these fundamental concepts, the definition of (k, `)-anonymity is following:

Definition 5. ((k, `)-anonymity) A graph G meets (k, `)-anonymity with respect to active
attacks if k is the smallest positive integer such that the k-metric antidimension of G is
lower or equal than `.

For every vertices v, u in a complete graph Kn and a subset S of vertices in Kn where
|S| = {1, ..., n− 1}, the structural properties and privacy evaluation is shown in the table
2.1.
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Properties Values

dKn(u, v) 1

Degree of v n− 1

Connectivity of Kn n− 1

ε(v) 1

Diameter of Kn 1

Radius of Kn 1

Density of Kn 1

Metric representation of v
w.r.t S

|S|︷ ︸︸ ︷
((1), ..., (1))

S is a k-antiresolving set k = n− |S|
Kn meets (k, `)-anonymity k = n− |S|, ` = |S|

Table 2.1: The structural properties and the privacy evaluation of Kn
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Chapter 3

State of the art

In this chapter, we perform a thorough study of literature review, with emphasis on
anonymization methods, two types of attacks and several proposed privacy metrics. Based
on these previous work, we show that our study is a new step towards anonymization
methods against active attacks.

3.1 Anonymization methods

Social network graphs are published in order to perform useful analysis, such as the
prediction of disease transmission or community detection. However once it is released,
users data are available to both legitimate researchers and adversaries. It may result in a
privacy breach if the adversaries with some auxiliary or background information about
the graph have access to the published social network data [13]. The privacy concerns
associated with data analysis over social networks have aroused recent research works
such as [59][11][57][55][9]. Anonymization is a conventional technique to preserve the
privacy of the users in social networks. As mentioned in Chapter 1, there exist some
prior work on privacy-preserving techniques of social network graphs with respect to
different adversary’s background knowledge.

A simple method to anonymize graphs is to remove all the identifiable attributes
of individuals such as names, social security numbers and emails before the graph is
released and replace them with meaningless identifiers. This simple anonymization
method is referred to as naive anonymization of a social network [14]. It is named naive
anonymization because later this anonymization method was proved by Backstrom et
al. to be insufficient to preserve the privacy of social networks. It can only prevent the
adversaries who have no auxiliary knowledge about individuals from re-identifying which
node corresponds to which individual.

However, in practice the adversary may have access to external information about
the individuals in the graph and their relationships. This information may be available
through a public source or by the adversary’s malicious actions. In [33] Narayanan et
al. proposed a re-identification approach showing that one third of users who use both
Flickr and Twitter can be re-identified in the completely anonymized Twitter graph with
only 12% error rate.

In addition to the adversaries with external information, researchers are not interested
in which individual corresponds to which node, instead, the structural properties of
the social network graphs. Useful analysis can be carried out even without identifiers.
Publishing the naive anonymized graph is roughly akin to providing the original graph,
both of which compromise the privacy of individuals.

9
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A study [43] estimated that 87% of the population of the United States can be
uniquely identified by means of the combination of seemingly innocuous attributes gender,
date of birth and 5-digit zip code. These kinds of attributes whose combination can be
used to identify an individual with a significant probability are named quasi-identifiers
[32][6].

As naive anonymization is insufficient to protect users’ privacy. k-anonymity [36] was
proposed to solve the unsolved problem of naive anonymization and amended in [42] for
relational data release. It prevents the adversaries from inferring sensitive information
of individuals through making the individuals indistinguishable from each other. A
released table satisfies k-anonymity if each record on the quasi-identifier attributes is
indistinguishable from at least k − 1 other records in the release. The larger the value of
k is, the better the privacy is preserved.

Privacy-preserving methods for relational databases have been studied extensively,
several models such as approximation k-anonymity[1], t-closeness[27] , m-invariance [54],
`-diversity[29], (k, e)-anonymity [56], privacy skyline[10], anatomy[53] as well as efficient
algorithms such as [15][20][23][24][5] have been proposed. But those methods cannot
be used to social network data straightforwardly because they fail to account for the
interconnectedness of the entities and the background knowledge for the adversaries in
social networks is diverse because of its complex structure compared with relational data.

In a social network, nodes with strong structural similarity are indistinguishable by
the adversary, even if the adversary is rich in external information. This strong form
of structural similarity between nodes is called automorphic equivalence. Two different
nodes u, v ∈ V (G) are automorphically equivalent if there exists an isomorphism from
the graph to itself where u maps to v. In social networks, k-anonymity was later used for
social network data with some variations. A social network graph satisfies k-anonymity if
every node in the graph has at least k− 1 other nodes with identical structural properties
with itself. Depending on various structural background knowledge assumption on the
adversary, different k-anonymity anonymization methods have been presented:

• k-subgraph anonymity[50] This is an anonymization method combining label
anonymization with structural anonymization, which was proposed to limit the
risk of privacy disclosure in social network data publication. The original graph is
partitioned into m unconnected k-subgraphs. In order to maintain the structure
of the original graph and reduce the structural information loss in the process of
k-subgraph partition, they use a k-subgraph connectivity to record how to connect
the separate subgraphs together. Every node in a subgraph has the same label and
same degree, so even if the adversary having the knowledge of the degree or the
label of certain nodes cannot distinguish one node in a subgraph from the other
k − 1 nodes.

• k-degree anonymity[28] Liu et al. considered that the adversary with the
background knowledge of the degree of certain nodes can re-identify individuals.
They proposed an anonymization model for social networks - a graph meets k-
degree anonymity if for every node v, there exist at least k − 1 other nodes in the
graph with the same degree as v. To preserve the utility of the original graph they
required to make minimum edge addition operations to the original edges instead
of transforming to a complete graph which is useless for any study. They devise
simple and efficient algorithms for transforming a graph to k-degree anonymous
graph with minimum number of edge modification operations.

• k-neighbourhood anonymity Zhou and Pei [58] found that an adversary who
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has the knowledge of the neighbours of a target victim and the relationship among
the neighbours can re-identify this target victim even though the victim’s iden-
tity is preserved using conventional anonymization techniques such as the naive
anonymization. Zhou and Pei gave the definition of k-neighbourhood anonymity
which is that a graph is k-neighbourhood anonymous if for every node v in the
graph there exist at least k− 1 other nodes v1, ...vk−1 of which the subgraph of the
neighbours are all isomorphic to the subgraph constructed by the neighbours of v.
They presented a practical solution to battle neighborhood attacks, but they only
handled 1-neighbourhoods.

It is criticized by Narayanan et al. that all these defenses impose arbitrary restrictions
on the information available to the adversary and make arbitrary assumptions about the
properties of the social network. Narayanan et. al. argued that the auxiliary knowledge
which is likely to be available to the attacker is not restricted to the neighborhood of
a single node and the existing models fail to capture self-reinforcing, feedback-based
attacks, where re-identification of some nodes provides the attacker with more auxiliary
information which is then used for further re-identification.

3.2 Two types of attacks

The extent of attacking depends on what kind of knowledge the adversary owns. The
more powerful the knowledge the adversaries hold, the more extent of attacking they
can achieve and the more individuals they can re-identify. Now let us see two kinds of
attacks.

3.2.1 Passive attack

In a passive attack, an adversary simple observes data as it is presented. In the case
of anonymized social networks, passive attacks are carried out by adversaries who try
to re-identify individuals only after the anonymized network has been released. In the
passive attack described in [3], regular users are able to discover their locations in the
graph with the knowledge of the local structure of the network around them. Backstrom
et al. imagine that a few existing passive attackers in the graph, who are also able
to discover their locations, collude to construct a small coalition X. The users in the
coalition know the edges amongst themselves and the names of their neighbors outside
X [21][41]. After the graph is released, the coalition runs a search algorithm to find X
which is a subgraph consisting of a single node connected to all others. According to
the number of vertices outside X the coalition are connected, they locate other users. It
is possible that they cannot locate any specific users other than themselves except that
a coalition is moderately-sized. However, this attack only works on a small scale: the
colluding users can only compromise the privacy of some of their neighbors.

In [33] Narayanan et al. develop another passive attack which takes self-reinforcing,
feedback of the re-identified nodes into consideration. This passive attack runs in two
stages, which are seed identification and propagation. First, the attacker identifies a
small number of seeds, users who have accounts both in the anonymized targeted graph
and attacker’s auxiliary graph, and maps them to each other. Second, according to the
topology of the network and the previously constructed mappings, the propagation step
is an extension of seed mapping to new nodes and the new mapping is fed back to the
algorithm. Compared to the passive attack in [3], seed indentification and propagation
passive attack can be successfully deployed on a very large scale.
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3.2.2 Active attack

In contrast, an adversary in an active attack can actively try to affect the data to
make it easier to identify individuals by creating new user accounts and links before the
anonymized network is released. After the anonymized graph is published, theses new
nodes and edges will be presented in the graph. The adversary recovers the subgraph
constructed by these nodes and compromises individuals’ connections with the help of
these links. As users provide large amounts of private information in social networks,
it is easy for adversaries to create fake user accounts imitating the data they have and
make it undetectable. A research in [38] done by Sophos in 2007 shows that sending a
friend request to 200 random Facebook users by a fabricated account named Freddi Staur
receives 87 users responses, among which 82 users leak their personal information, such
as email address, date of birth, education or current workplace. The reason is that the
default settings of Facebook enable friends to view the profiles of each other and most of
the users do not change the default settings. The adversary may even pay a handful of
users for information about themselves and their friends [26]. All the information helps
the adversary to forge trusty users to mislead the legitimate users in the social network.

In [3], Backstrom et al. propose two active attacks, which are, the walk-based attack
and the cut-based attack. In both attacks, the adversary plants a well-constructed and
uniquely identifiable subgraph in the social network graph, and creates links to arbitrary
users which are named targeted users, before the graph is released. For every targeted
vertex there is a corresponding subset which dedicates the connecting knowledge between
this targeted node and attacker nodes and is different from the other targeted nodes.
After the release of the social graph, the adversary retrieves the planted subgraph and
identifies the targeted nodes with the help of the connecting knowledge. Normally the
success rate is high. There are trade-offs between the two active attacks, which are,
the cut-based attack uses fewer new accounts to carry out the attack but is easier to
be detected by the curator of the data than the walk-based attack. Furthermore, with
k = Θ(log n) new accounts where n is the number of vertices in the graph the walk-based
attack has the potential to compromise Θ((log n)2) users, while the cut-based attack
can only compromise O(log n). However, in that paper, there is no practical method
proposed to counter those attacks.

Another active attack against anonymized social networks, named Seed-and-Grow, was
proposed in [49]. Different from the active attack in [3], they drop the assumption that
the adversary has complete control over the connection between new created subgraph
and the rest of the graph, instead, the adversary has a background graph which is in
terms of the social connection similar to the target social network graph but the meaning
of such connections are different. The adversary also creates a uniquely identifiable
subgraph into a social network graph and some link to vertices in the graph(the initial
seeds) before it is released and retrieves it after the graph is published. The second grow
stage is a structure-based vertex matching process from the background knowledge graph
to the published graph. Seed-and-Grow is a progressive and self-reinforcing strategy
starting with the initial seeds and extending the mapping to other vertices after each
round.

3.3 Privacy metrics

Wang et al. [46] adopted description logic as the underlying knowledge representation
formalism and proposed several formal metrics of anonymity which makes it possible to
assess the risk of privacy breach after the social network is published. However, they did
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not propose any preventative method if the assessment of the resistance against attacks
shows that the release of the data is not safe.

Hay. et al.[19][18] also presented a framework for assessing the privacy risk of
publishing anonymized network data. The adversary’s knowledge modeled in their
studies are vertex refinement queries and subgraph knowledge queries. They proposed a
privacy metric k-candidate anonymity which is similar to k-anonymity in relational data
to evaluate the risk of re-identification in real data sets.

Trujillo-Rasua and Yero [44] first presented a privacy metric for evaluating the
resistance of social graphs under active attacks, which is named (k, `)-anonymity. This
privacy measure is created under the circumstance of the active attack, where the ability
of adversaries is more powerful than that under passive attacks. The adversary’ s
background knowledge is modeled as a distance vector of each vertex with respect to
attacker nodes, named metric representation.

In that paper, k is a privacy threshold and ` is an upper bound on the number of
attacker nodes in the network which is much lower than the total number of nodes in the
network. For each subset Si of ` attacker nodes there exists a correspondingly greatest ki
such that every vertex in V (G)− Si has at least ki − 1 other vertices who have the same
metric representation with respect to Si. A graph meets (k, `)-anonymity with respect to
active attacks if k is the smallest positive integer among all these ki when the number of
attacker nodes is equal or lower to `.

Considerable works have been done to anonymize social network graphs against
adversaries with auxiliary information which can preserve both the privacy of users and
the utility of the graphs. However, there is no study on anonymizing social network
graphs against active attacks. In this thesis, we focus on transforming a graph to a
privacy-preserving graph resisting against active attack and at the same time preserve as
much utility of the original graph as possible. The previous mentioned k-neighborhood
anonymity [58] imposes a strong structural requirement on the graph, which is difficult
to achieve without a huge information loss and a large amount of computation. So Zhou
and Pei only deal with the particular case of d-neighborhoods where d = 1. Similarly, in
this thesis we focus on (k, 1)-anonymity rather than on the more general (k, `)-anonymity
concept driven by utility concerns.
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Chapter 4

Theoretical properties of
(k, 1)-anonymous graphs

In this thesis, we consider that there is only one attacker node, which is the simplest case
of (k,`)-anonymity proposed in [44]. In this chapter, we show the theoretical properties
of (1,1)-anonymous graphs and the conditions to be (k,1)-anonymous graphs.

4.1 (1,1)-anonymous graphs

A graph G meets (1, 1)-anonymity with respect to active attack if admin1(G) = 1. If
the metric representation of v in G with respect to S is different from that of any other
nodes in V − S, we name v as an eye-catching node:

Definition 6. (Eye-catching node) Let G = (V,E) be a simple connected graph and let
S = {u1, ..., ut} be an ordered subset of vertices of G. A node v ∈ V (G) is called an
eye-catching node with respect to S if there does not exist another node u in V (G)− S
such that r(v|S) = r(u|S).

Note that, if v is an eye-catching node with respect to S, then S is a 1-antiresolving
set. If a graph has a 1-antiresolving set, then it satisfies (1, 1)-anonymity. Then we have
the next proposition:

Proposition 1. Given a simple connected graph G = (V,E) and a vertex u in V (G),
if there exists an eye-catching node in V − {u} with respect to {u}, then G satisfies
(1, 1)-anonymity.

Proof. As v is an eye-catching node with respect to {u}, then {u} is a 1-antiresolving
set. The 1-metric antidimension of G is 1. Then 1 is the smallest positive integer such
that 1-metric antidimension of G is 1. According to the definition of (1, 1)-anonymity, G
satisfies (1, 1)-anonymity.

As the presence of eye-catching nodes with respect to the set of a single node implies
(1, 1)-anonymity, let us see several lemmas below which provides the conditions of vertices
to be eye-catching nodes.

Lemma 1. For every end vertex u and its neighbour v, it holds that v is an eye-catching
node with respect to {u}.

Proof. If u is an end vertex with a neighbour vertex v, then for all the vertices in the
graph there is only one vertex whose distance to u is 1 and that is its neighbour v.

15
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Lemma 2. Let G = (V,E) be a simple connected graph G = (V,E) and v a vertex in
V (G). Let another vertex u in V (G) − {v} such that d(v, u) = ε(v). If there does not
exist w ∈ V (G) such that d(v, w) = ε(v), then u is an eye-catching node with respect to
{v}.

Proof. Let v be a vertex in V (G). According to the definition of eccentricity in a graph, for
every vertex x ∈ V (G) the eccentricity of V satisfies that ε(v) ≥ dG(v, x). If there exists
one and only one vertex u whose distance to v is equal to ε(v), then for ∀w ∈ V (G)−{u}
it holds that dG(v, w) < ε(v) = dG(v, u), which implies that u is an eye-catching node
with respect to {v}.

Observation 1. In any cycle graph Cn with even order, for every pair of diametral
vertices u, v in V (Cn), u is an eye-catching node with respect to {v}.

Observation 2. Any complete bipartite graph Kr,2 with two disjoint sets U and V ,
where |U | = r > 2 and |V | = 2. Let u, v be the vertices in V , then it holds that u is an
eye-catching node with respect to {v}.

Observation 3. In a rooted tree, if there is only one leaf in a level, then this leaf has
the longest depth to the root and is an eye-catching node with respect to the root.

4.2 (k, 1)-anonymous graphs

After knowing the conditions of vertices to be eye-catching nodes, it can be inferred easily
the conditions for graphs to be (k, 1)-anonymous for k > 1.

Proposition 2. Given a simple connected graph G = (V,E), if there is no eye-catching
node with respect to any one-vertex subset of V (G), then G satisfies (k, 1)-anonymity for
k > 1.

The following theorem shows the conditions of a graph with a bridge to satisfy
(k, 1)-anonymity.

Theorem 1. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs satisfying (k1,1)-
anonymity and (k2,1)-anonymity for k1, k2 > 1 respectively. Let G = (V,E) be the graph
obtained by adding an edge between two random vertices u ∈ V1 and v ∈ V2. Then G
satisfies (k,1)-anonymity for k > 1 if and only if for every vertex x ∈ V1, and y ∈ V2 it
holds that εG1(x) > d(x, u) and εG2(y) > d(y, v).

Proof. (⇒) Let us assume that G is (k, 1)-anonymous for k > 1. In order to find a
contradiction let us say that, without loss of generality, there exists x′ ∈ V1 such that
εG1(x′) ≤ dG1(x′, u).

According to the definition of eccentricity in graph, the eccentricity of x satisfies
that εG1(x) ≥ dG1(x, u) for every x ∈ V1. Therefore, εG1(x) = dG1(x, u). Let w be
a vertex in V1 different to x. Then dG1(x,w) ≤ εG1(x) = dG1(x, u). Because there is
a single path from any vertex in V1 to v in G and such path passes through u, then
dG(x, v) = dG(x, u) + 1, which implies that dG(x, v) > dG(x,w). Consequently, there
does not exist a vertex in V1 whose distance is equal to dG(x, v). It is easy to note that,
for every vertex w′ ∈ V2 − {v}, it holds that dG(x,w′) = dG(x, v) + dG(v, w′) > dG(x, v).
As a result, {x} is a 1-antiresolving set, which is a contradiction with the assumption
that G is (k, 1)-anonymous for k > 1.
(⇐) If for every vertex x ∈ V1, y ∈ V2 it holds that ε1(x) > d(x, u) and ε2(y) > d(y, v),
then it can imply that G is (k,1)-anonymous for k > 1.
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Because for every vertex x ∈ V1 it holds that εG1(x) > dG1(x, u) and in G it holds
that dG(x, v) = dG(x, u) + 1, then εG1(x) ≥ dG(x, v) and there exists y ∈ V1 such that
εG1(x) = dG1(x, y) ≥ dG(x, v) and exists z in the x−y path such that dG(x, z) = dG(x, v),
which implies that v is not eye-catching node with respect to any vertex in V1. The same
with u with respect to any vertex in V2. Because G2 is (k2,1)-anonymous for k2 > 1, then
for every vertex w′ ∈ V2 − {v} there exists at least k2 − 1 different vertices in V2 − {v}
whose distances to v is equal to dG2(v, w′). Because there is a single path from any
vertex in V1 to w′ in G and such path passes through u, v, then for every x ∈ V (G1),
it holds that dG(x,w′) = dG(x, u) + 1 + dG(v, w′), which implies that for every vertex
w′ ∈ V2 − {v} there exists at least k2 − 1 different vertices in V2 − {v} whose distances
to x in G equal to dG(x,w′). Given that G1 satisfies (k1, 1)-anonymity, for every vertex
w ∈ V1 − {x} there exists at least k1 − 1 different vertices in V1 − {x} whose distances to
x equal to dG1(x,w). As a result, for every vertex w′′ ∈ V − {x}, there exists at least
min{k1, k2} different vertices in V − {x} whose distances to x equal to dG(x,w′′). This
will reach to the same result if x ∈ V2. So according to the definition of (k,1)-anonymity
for k > 1, G satisfies (k,1)-anonymity where k=min{k1, k2}.
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Chapter 5

Obfuscation techniques

In this chapter, we first specify adversaries’ background knowledge and the privacy metric
we consider in this thesis in section 5.1 and 5.2. In section 5.3, we propose the problem
on which we are focusing and which is solved by our solutions in section 5.4.

5.1 Adversary’s background knowledge

Before defining the problem of privacy preservation in the published graph, we need to
formulate the background knowledge that an adversary may use to attack the privacy
of users. According to this knowledge, we find the corresponding method to preserve
the privacy. In a passive attack, the adversary’s background knowledge is modeled as
structural relations on the network, such as vertex degrees, or neighborhood.

For example, the adversary’s knowledge modeled in [28] is the degree of target nodes.
In order to preserve the privacy, the graph is anonymized by edge addition and deletion
operations to make every vertex in the graph to have at least k − 1 other vertices who
have the same degree with it.

The adversary’s knowledge modeled in [58] is the neighborhood of a target victim and
the relationship among the neighbors. Zhou and Pei propose an improved k-anonymity
model, that is, for every vertex u in the graph, there are at least k − 1 other vertices
whose neighborhoods are isomorphic to the neighborhood of u. Their new model prevents
the adversary from attacking the privacy with neighborhood knowledge.

Our work is based on the privacy measure proposed in [44], so we model the adversary’s
background knowledge as in [44]. The adversaries in [44] not only have a global view of
the network, such as the structural properties of the whole graph, but also a local view,
such as the properties from the perspective of a single static vertex. The adversary’s
background knowledge about a target node u is defined as the metric representation of u
with respect to any subset of potential attacker nodes. Since we only consider the case
that there is only one attacker node in the published graph, in this thesis, the adversary’s
background knowledge is the metric representation of a target node u with respect to
a potential set {v} of the attacker node v. This background knowledge, the metric
representation of certain nodes, means that the adversary knows the partial topological
structure of the network.

5.2 Privacy metric

The privacy metric (k, `)-anonymity considers the worst case if there exist ` potential
attacker nodes in the graph, what the value of the smallest k is such that every vertex

19
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cannot be distinguished with probability higher than 1/k. The means to distinguish
vertices is the metric representation of vertices, which is a distance vector. For example,
if the distance between two vertices x and y is 3, then the metric representation of x
with respect to {y} is a vector (3), symmetrically, the metric representation of y with
respect to {x} is also (3).

Table 5.1 shows the metric representation of each vertex in Figure 5.1 with respect to
every possible attacker set Si whose size is 1. From the second column, we can see that
every vertex has another one and only one vertex who has the same metric representation
with respect to each Si. When ` is 1 the smallest positive integer k among all the ki is 2,
which means that the graph is (2,1)-anonymous.

Figure 5.1: An example to explain why we choose `=1

Si
metric representation of each vertex

in V (G)− Si w.r.t Si
ki

{v1} (1) (1) (2) (2) 2

{v2} (1) (1) (2) (2) 2

{v3} (1) (1) (1) (1) 2

{v4} (2) (2) (1) (1) 2

{v5} (2) (2) (1) (1) 2

Table 5.1: Adversary’s knowledge for graph in Figure 5.1 when `=1

However, when the expected number of attacker nodes increases to 2, as it is shown
in Table 5.2, the smallest value k among all these ki is 1. In this case, the graph satisfies
(1,2)-anonymity. Therefore, the graph meets (1,2)-anonymity and (2,1)-anonymity.

Aiming at improving the privacy level of this graph when there are two attacker nodes,
the value of ki with respect to the set of two attacker nodes should be increased. Take
the subset {v1, v2} for example, the metric representation of v3 with respect to {v1, v2}
is (1,1) while that of v4 and v5 with respect to {v1, v2} are the same (2,2). Without
adding any nodes, in order to make the metric representation of v3, v4, v5 with respect
to {v1, v2} the same we need to add four edges, v1 − v4, v1 − v5, v2 − v4 and v2 − v5.
After that, every vertex in V (G)−{v1, v2} has the same metric representation (1,1) with
respect to {v1, v2}. However, it becomes a complete graph, in Figure 5.2, which is useless
for deeper study.

Therefore, we think the privacy measure proposed in [44] is so strong that transforming
a graph to satisfy (k, `)-anonymity costs a lot of structural breach to the original graph.
(k, 1)-anonymity for k > 1 is a simple form of (k, `)-anonymity which can not only protect
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Si
metric representation of each vertex

in V (G)− Si w.r.t Si
ki

{v1} (1) (1) (2) (2) 2

{v2} (1) (1) (2) (2) 2

{v3} (1) (1) (1) (1) 2

{v4} (2) (2) (1) (1) 2

{v5} (2) (2) (1) (1) 2

{v1, v2} (1,1) (2,2) (2,2) 1

{v1, v3} (1,1) (2,1) (2,1) 1

{v1, v4} (1,2) (1,1) (2,1) 1

{v1, v5} (1,2) (1,1) (2,1) 1

{v2, v3} (1,1) (2,1) (2,1) 1

{v2, v4} (1,2) (1,1) (2,1) 1

{v2, v5} (1,2) (1,1) (2,1) 1

{v3, v4} (1,2) (1,2) (1,1) 1

{v3, v5} (1,2) (1,2) (1,1) 1

{v4, v5} (2,2) (2,2) (1,1) 1

Table 5.2: Adversary’s knowledge when `=2 for the graph in Figure 5.1

Figure 5.2: Transforming the graph in Figure 5.1 to satisfy (k, 2)-anonymity.

the privacy of the users in social network but also preserve the utility of the graphs. So in
this thesis, we focus on ` = 1 as a first step to satisfy some sort of privacy against active
attacks. Indeed, we show later in Chapter 6 that graphs satisfying (k, 1)-anonymity also
resist attacks where the adversary controls more than one node in the network, i.e., ` > 1.
For future work, we plan to address the problem with ` > 1. However, as shown in the
example above, the added noise to the graph seems to significantly increases in this case.
Thus, we will also study the relaxed notions of (k, `)-anonymity. We discuss more on this
in Section 7.

5.3 Problem formulation

After defining the adversary’s background knowledge, it is easy to note that if the distance
from a vertex u in the graph to another attacker node v in the graph is unique, then the
adversary can easily re-identify u after publication, which compromises the privacy of
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the corresponding user of u. The more such unique distance exists, the more privacy is
likely to be compromised.

In the Seed and Grow algorithm [49], the adversary plants a node v in the graph
before it is released. After the graph is published, the adversary retrieves v and identifies
its neighbors as the initial seeds, which provides a firm ground for further identification.
Given the background knowledge defined previously, eye-catching nodes with respect to v,
i.e., u, can also be identified and serves as the initial seeds to be grown, which increases
the number of initial seeds. From the comparative study in that paper, we know that
the more initial seeds, the higher ratio of correctly identified nodes. It implies that a
graph satisfying (1, 1)-anonymity helps the attack.

To avoid the augment of initial seeds which is caused by eye-catching nodes, we can
modify the graph to make every vertex in the graph has at least k − 1 other vertices
who have the same distance to v with its distance to v, which can reduce the number
of initial seeds to some extent. This is the privacy measure we are going to use in this
thesis named (k, 1)-anonymity. According to the definition of (k,`)-anonymity in [44], a
graph meets (k, 1)-anonymity for k > 1 with respect to active attack if k is the smallest
positive integer such that the k-metric antidimension of G is equal to 1. If every node in
the graph has at least k − 1 nodes who has the same metric representation with respect
to {v}, then this graph satisfies (k,1)-anonymity.

We use the (k, 1)-anonymity privacy metric mentioned previously to define the
graph anonymization problem. The input to the problem is a simple connected graph
G = (V,E) which is (1, 1)-anonymous. The requirement is to use a set of graph-
modification operations on G to construct a (k, 1)-anonymous graph G′ = (V ′, E′) for
k > 1 which is structurally similar to G. We restrict the graph-modification operations
to edge additions without any edge deletions, which is more probable to break the
connectivity of G. Furthermore, we require that the new graph has the same set of nodes
as the original graph, that is, V ′ = V .

Formally, we define the graph anonymization problem as follows:

Problem 1. Given a graph G = (V,E) satisfying (1, 1)-anonymity, modify G via a
relatively minimum number of edge-addition operations in order to construct a new graph
G′ = (V,E′) such that G′ satisfies (k,1)-anonymity with k > 1.

It is usually possible to transform G to the complete graph Kn, in which the metric
representation of all the nodes in G with respect to attacker node is (n− 1)-dimensional
vector (1,1,...,1) and Kn is (n− 1,1)-anonymous. Although this kind of transformation
can preserve privacy, it would make the anonymized graph useless for any study. As any
edge addition operation breaks the structure of the original graph, considering utility
concerns we ask for as few edges as possible to be added. So we proposed an additional
requirement that the relatively minimum number of edge-additions is made. In this
way, we preserve the utility of the original graph while at the same time we meet the
(k, 1)-anonymity requirement.

5.4 Our solutions

In this section, before solving the problem we first show two preparatory work on end-
vertices elimination and locating eye-catching nodes. Secondly, we provide two solutions
to the proposed problem and show the tradeoffs between them.
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5.4.1 End-vertices elimination

According to Lemma 1, a graph with at least one end-vertex does not satisfy (k,1)-
anonymity where k > 1. So before transforming a graph into a private graph, we need to
deal with these end-vertices.

Firstly, we need to know why end-vertices exist and who they are. In real life social
network, i.e., Facebook, where nodes and edges are on behalf of people and friendship
respectively, these end-vertices represent people who have only one friend. There are
many reasons for this situation. One is that they are new on Facebook. Another may be
that they just created an account, added one friend and gave up using it. Those accounts
which have been given up are valueless for analysis. In this thesis, we treat end-vertices
as new accounts on social network. At the same time, we speculate that they will know
new friends soon by recommendation from both the Internet and real life.

A trivial solution to deal with end-vertices is to delete all of them in the graph.
However, this approach fails in low density graphs such as paths and trees, because every
vertex in the paths and trees will be deleted in this case. Another approach is to make
the degree of these end-vertices higher than 1 by adding new edges to each end-vertex.
To achieve this, we should decide how to establish these new connections optimally.

According to [4], there is a high probability that a new vertex will be linked to a
vertex that already has a large number of connections, which is named hub afterwards in
[18]. A hub is a highly connected node in the network. In a graph of email connections, a
hub represents an influential individual. For example, in a graph of email connections, it
is more possible that the end-vertex which represents another ordinary individual sends
an email to this influential person than to other ordinary people.

The studies on high “clustering” in [48] give us more idea to deal with end vertices. If
the distance between this end-vertex and the hub is far in the network, it looks unrealistic
that there is an edge between far-away nodes, even in the future published network.
Watts proposed that there is a high probability that two vertices will be connected
directly to each other if they have another common vertex.

It holds also in real life situation. If two strangers have a common friend, then it is
probable that they will be recommended by their common friend to each other. It is also
possible these two strangers meet each other by accident without any recommendation.
But in general, this possibility of recommendation is higher than the latter case.

Let v be an end-vertex in G and u the neighbor of v. We do not consider the case
that there exist no other neighbors of u except v because the size of social network graphs
is usually large. Taken both statements in [4] and [48] into consideration, we choose the
neighbor of u who has highest degree as the other endpoint of the new edge, since it has
one common neighbor with the end-vertex v and the highest possibility to be linked. If
all the other neighbors of u except v are also end-vertices, then we select one randomly
from them as the other endpoint of the new edge. So our decision is to add an edge
between v and the neighbor of u with highest degree except v (Algorithm 1).

5.4.2 Locating eye-catching nodes

The neighbor u of an end-vertex v is just one of the eye-catching nodes with respect to {v}
in the graph. It is because the distance between u and v is different from the distance from
other vertices to v, more concretely in this case it is smaller. While in other cases, graphs
without end-vertices may still have eye-catching nodes, e.g., Figure 5.3 is a graph without
end-vertices. With respect to {v0}, the metric representation of all the other nodes are
(1), (2), (3), (4), (5), (6), (7), (7), (1), (2), (2) corresponding the vertices from v1 to v11.
For v1 there exists another vertex v9 such that r(v1|{v0}) = r(v9|{v0}). For v2 there
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Algorithm 1 Given a graph G = (V,E), this algorithm outputs a graph G′ = (V,E′)
which has no end-vertex

Let Se be the set of all the end-vertices in G.
Let E′(G′) = E(G).
while Se 6= ∅ do

for every v in Se do
Let u be the neighbor of v.
Let w be a neighbor of u in V (G)− {v} with the largest degree.
Add an edge e between v and w.
Se = Se − {v}
E′(G′)=E′(G′) ∪ {e}

end for
end while
Output G′.

exist another two vertices v10 and v11 such that r(v2|{v0}) = r(v10|{v0}) = r(v11|{v0}).
For v7 there also exists another vertex v8 such that r(v7|{v0}) = r(v8|{v0}). However,
for v3, v4, v5 and v6 there is no other vertex whose metric representation is the same
with its metric representation, respectively. Therefore, in this example v3, v4, v5 and v6
are eye-catching nodes with respect to {v0}. So this graph only satisfies (1, 1)-anonymity.

It can be inferred from Proposition 2 that only graphs without any eye-catching nodes
with respect to each one-vertex set can satisfy (k, 1)-anonymity for k > 1. So removing
all eye-catching nodes with respect to each vertex in the graph is a means to preserve
the privacy of the individuals.

In Figure 5.3, all the eye-catching nodes (shaded vertices) with respect to {v0} have
unique distance values because the distance of the vertices on other paths to v0 is smaller
than these values and the distance of vertices on the same path to v0 is either larger or
smaller than these values. The following lemma shows a predication of the locating path
of eye-catching nodes and gives the proof of the correctness of our predication.

Figure 5.3: An example

Lemma 3. Let G = (V,E) be a simple connected graph and v a vertex in V (G). If there
exists an eye-catching node with respect to {v}, then it is located in one of the eccentricity
paths of v.

Proof. Let us assume that there exists one eye-catching vertex w in V (G) with respect to
{v} such that it is not located in any eccentricity path of v. According to the definition
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of eccentricity in graph, the eccentricity of v satisfies that ε(v) ≥ d(v, y) for every
y ∈ V (G), then it holds that ε(v) ≥ d(v, w). It means that there exists one vertex w′ in
the eccentricity paths of v such that d(v, w′) = d(v, w), which implies that w is not an
eye-catching node with respect to {v}, which is a contradiction with the assumption that
w is an eye-catching vertex with respect to {v}.

According to the definition of the eccentricity path, for a vertex v it is possible that
there exist more than one vertex u such that d(v, u) = ε(v). In this case, assume w is
the other vertex such that d(v, w) = ε(v), if there still exist one eye-catching node x with
respect to {v}, then x is located in the common path of the shortest v − u path and
the shortest v − w path. This is reasonable: If x is located only in the shortest v − u
path instead of the common path of two eccentricity paths of v, there exists another
vertex y in the shortest v − w path such that d(v, x) = d(v, y) which leads to x not an
eye-catching node with respect to {v}.

5.4.3 Our solutions

After knowing where the eye-catching nodes with respect to a subset {v} of V (G) are
located, to achieve our goal the next step is to eliminate them.

In order to continue our study we need to introduce some terminology and notation.
When it comes to the predecessor and the descendant of a vertex, the corresponding

path and the direction is required. The predecessors of v in the shortest path from
x to y are all the vertices in this shortest x − y path whose distance to x is smaller
than the distance between x and v. The immediate predecessor of v from the shortest
path from x to y is the vertex u in this shortest x − y such that d(x, u) = d(x, v) − 1.
Similarly, the descendants of a vertex v in the shortest path from x to y are all the
vertices in this path whose distance to x is larger than the distance between x and v.
The immediate descendant of v in the shortest path from x to y is the vertex u such that
d(x, u) = d(x, v) + 1. In this thesis, when we mention the predecessor or descendant of a
vertex in the eccentricity path of v it means the direction is from v to the vertex u such
that d(v, u) = ε(v) instead of from u to v.

Let dfeye(v) and dneye(v) be two distances to v from the farthest eye-catching node
vf and nearest one vn with respect to {v} respectively and generally it holds that

dfeye(v) ≥ dneye(v). (5.1)

If there is no eye-catching node with respect to {v}, we say that

dfeye(v) = dneye(v) = 0. (5.2)

If there is only one eye-catching node with respect to {v}, we say that

dfeye(v) = dneye(v) 6= 0. (5.3)

Since all the graphs we use now are ones without any end-vertices, it holds that

dneye(v) > 1 and dfeye(v) > 1. (5.4)

Given that we are aiming to remove all eye-catching nodes with respect to a potential
set of one attacker node, which is a one-vertex subset of the graph, it is in accordance
with Equation 5.2 for every v in the graph.

To achieve Equation 5.2, we need to know what kinds of graphs does not have
eye-catching nodes with respect to each one-vertex subset. It can be inferred from
Observation 1 that any cycle graph Cn with odd order does not have any eye-catching
node with respect to any one-vertex subset of V (Cn).
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Lemma 4. A cycle graph Cn with an odd order satisfies (2,1)-anonymity.

Proof. For every vertex v in V (Cn) the distances from other n−1 even number of vertices
to v are pair-wise from 1 to (n− 1)/2 with an interval of 1. So every vertex in Cn has
another vertex who has the same metric representation with respect to {v}, Cn satisfies
(2,1)-anonymity.

This gives us inspiration of eliminating all the eye-catching nodes with respect to
each subset {v} of V (G). If all the eye-catching nodes with respect to {v} are included
into a cycle with odd order, then they are not eye-catching nodes with respect to {v}
any more. In order to create an odd number circle in the graph, an new edge is needed
to be added. It is required that before adding this new edge the distance between two
endpoints of the new edge is even with which the cycle has odd number of vertices.

Theorem 2. Let G = (V,E) be a simple connected graph and v a vertex in G. Let Se
be the set of all the eye-catching nodes in V (G) with respect to {v} where |Se| 6= 0. Let
G′ = (V,E′) be a graph obtained by creating a cycle through one edge addition operation
to G. If all the following conditions are satisfied

• The number of vertices in the cycle is odd,

• The cycle includes all the vertices in Se,

• vn is not an endpoint of new edge,

then in G′ all the vertices in Se are not eye-catching nodes with respect to {v}.

Proof. Let x, y be two endpoints of this new edge. There are two possibilities for the
relationship between v and the cycle depending on whether v is included in the cycle:

• v is in the cycle. As is proved in Lemma 4, with respect to {v} every vertices in
the cycle except v can not be distinguished with probability higher than 1/2. So in
G′ all the vertices in Se are not eye-catching nodes with respect to {v}.

• v is not in the cycle. According to Lemma 3, all the vertices in Se are located in
one of the eccentricity paths of v. Since the cycle includes all the vertices in Se, in
G the vertices in Se are also located in the shortest x− y path. As v is not in the
cycle and x, y are also located in one of the eccentricity paths of v in G, both x
and y are descendants of v. Let us assume that d(v, x) < d(v, y). In G′, x is the
nearest vertex to v compared with other vertices in the cycle. As vn is not one
endpoint of the new edge, x is one predecessor of vn. With respect to {x} there is
no eye-catching nodes in the cycle. If all the distances to x from the other vertices
in the cycle plus d(v, x) are the distances from the vertices in the cycle to v. The
distances are also pair-wise. For every vertex in the cycle, there exists another
vertex who has the same metric representation with respect to {v}. So in G′ all
the vertices in Se are not eye-catching nodes with respect to {v}.

The example below shows the reason why vn cannot be the endpoint of the new edge:

Example 1. In Figure 5.4(a) there are three eye-catching nodes with respect to {v0}
which are v2, v3 and v4. Among these three vertices v2 is the nearest eye-catching node
with respect to {v0} while v4 is the farthest one. If v2 is an endpoint of the new edge,
then after adding an edge between v2 and v4 as is shown in Figure 5.4(b), the metric
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representation of v2 with respect to {v0} is still different from that of other vertices. This
new circle v2 − v3 − v4 − v2 does not have the function of eliminating all the eye-catching
nodes with respect to {v0}.

(a) The original graph

(b) After adding an edge

Figure 5.4: An example to show vn is not a suitable endpoint of the new edge.

If we create a cycle as mentioned in Theorem 2 for the eye-catching nodes with
respect to every one-vertex subset {v} in the graph, this will eliminate all the existing
eye-catching nodes locally with respect to the considered {v}. Globally this action may
create new eye-catching node with respect to any one-vertex subset. Even with respect to
{v} there may appear new eye-catching nodes in the other paths except any eccentricity
paths of v, let alone with respect to other one-vertex subset. Figure 5.5 is an example to
show this.

Example 2. In Figure 5.5(a), v4 is the only eye-catching node with respect to {v0}. We
create a cycle according to the statement in Theorem 2 by adding an edge between v0 and
v4 as is shown in Figure 5.5(b). In the new obtained graph v4 is not an eye-catching
node with respect to {v0}, instead, v10 is a new eye-catching node with respect to v0.

Based on this feasible solution we propose two specific approaches to solve the
proposed problem in order to achieve our goal. They are Edge-Preserving Approach, EPA
for short and Connectivity-Preserving Approach, CPA for short.

Edge-preserving approach (EPA)

Solution 1. (EPA) Given a simple connected graph G = (V,E) with an attacker node v.
Let x be one of the immediate descendant of v in the eccentricity paths of v, and w be
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(a) The original graph

(b) After creating a cycle

Figure 5.5: An example to show Theorem 2 can only eliminate eye-catching nodes locally
not globally.

a vertex such that d(v, w) = ε(v). Our proposal is to create a cycle by adding an edge
between v and w if ε(v) is even or between x and w if ε(v) is odd.

Algorithm 2 Given a graph G = (V,E) this algorithm outputs a graph G′ = (V,E′)
which satisfies (k,1)-anonymity for k > 1

Let E′(G′) = E(G).
for ∀v ∈ V (G) do

BFS3(v)
Let w be the vertex such that d(v, w) = ε(v) and x an immediate descendant of v in
one of the eccentricity paths of v.
if ε(v) is even then

Add an edge e between v and w
E′(G′)=E′(G′) ∪ {e}

else
Add an edge e between x and w
E′(G′)=E′(G′) ∪ {e}

end if
end for
Output G′.

EPA consists in creating a big cycle with respect to each potential one-vertex subset
in its eccentricity path. The biggest cycle in the eccentricity path of v is created by
adding an edge between v and w if the eccentricity of v is even. If it is odd, we need to
remove x out of the cycle instead of w to reach an odd number of vertices in the cycle.

3Breadth-First Search, BFS for short, is an algorithm for traversing or searching tree or graph data
structure.
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Since it is possible that w is the farthest eye-catching node with respect to {v}. If we add
an edge between v and the immediate predecessor of w, then the cycle does not include
all the eye-catching nodes with respect to {v} which has the possibility of not reaching
the goal of eliminating all the eye-catching nodes with respect to {v}.

Example 3. This is an example to show what happens if we remove w out of the new
created cycle when the eccentricity of v is even. In Figure 5.6(a), v7 is the vertex such
that the distance between v0 and v7 is equal to the eccentricity of v0. The distance is 5,
which is odd. In order to create a biggest circle with odd number of vertices if we add an
edge between v0 and one immediate predecessor of v7, we choose v6 for example in Figure
5.6(b), then v5 becomes a new eye-catching node with respect to {v0}.

So when the eccentricity of v is odd, it is better to add the edge between one of the
immediate descendant of v in the eccentricity paths of v, name it x, and w . No matter
whether x or v is chosen as the endpoint of the new edge, both cases satisfy that the
new created cycle includes all the eye-catching nodes with respect to {v} and has odd
number of vertices. So according to Theorem 2, all the local eye-catching nodes with
respect to {v} are eliminated.

(a) The original graph

(b) After adding an edge

Figure 5.6: An example to show that if w is not the endpoint of the new edge when ε(v)
is odd, then there still exists an eye-catching node v5.

Theorem 3. Let G = (V,E) be a simple connected graph and v a vertex in V (G). After
creating one cycle with respect to {v} using EPA, the eccentricity of v decreases.

Proof. Let w be a vertex such that d(v, w) = ε(v) and z the farthest vertex to v which is
not located in any eccentricity paths of v. After adding an edge between v or x and w
there are three possibilities for the new eccentricity paths of v:
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• The shortest path from v to the middle vertex of the original v−w path where the
distance is b(ε(v) + 1)/2c such that b(ε(v) + 1)/2c < ε(v).

• The shortest path from v to z where the distance is d(v, z) such that b(ε(v)+1)/2c <
d(v, z) < dneye(v) ≤ ε(v).

• The shortest path from v to w where the distance is d′′(v, w) such that d′′(v, w) is
either 1 or 2.

So the new eccentricity of v is max{b(ε(v)+1)/2c, d(v, z)} where both of them are smaller
than ε(v).

Intuitively, one single edge in EPA not only eliminates all the eye-catching nodes
with respect to a one-vertex subset but also make the graph more connected. According
to the definition of edge-connectivity, adding an edge between two vertices improves the
size of smallest edge cut. So it is sensible to confirm that EPA tends to increase the
edge-connectivity of the graph globally. When the endpoint is v and w it really increases
the edge-connectivity of the v−w path while if the endpoint is x and w then it does not.
The more connected the graph is, the less possibility eye-catching nodes exist, less edges
are needed to be added. That is why we name this approach Edge-Preserving Approach.

The following two examples show two circumstances when transforming a graph with
EPA. One is the eccentricity of v0 is odd, i.e., Example 4. The other is the eccentricity
of v0 is even, i.e., Example 5

Example 4. In Figure 5.7(a), v7 and v8 are vertices such that d(v0, v7) = d(v0, v8) =
ε(v0) = 7. The distance between v0 and both of v7 and v8 is odd. So the immediate
descendant of v0 in the eccentricity paths of v0 which is v1 is one endpoint of the new
edge. The other is either v7 or v8. If we add an edge between v1 and v8, then a cycle with
odd number of vertices v1 − v2 − v3 − v4 − v5 − v6 − v8 − v1 is created. In Figure 5.7(b),
there is no eye-catching node with respect to {v0}. The eccentricity of v0 is changed from
7 to 4.

Example 5. Figure 5.8 is an example for another circumstance that the eccentricity of
v0 is even. In Figure 5.8(a) there are three eye-catching nodes with respect to {v0} which
are v3, v4 and v5. The farthest vertices to v0 are v6 and v7. According to EPA adding an
edge between v0 and v6 or v7 eliminates all the local eye-catching nodes with respect to
{v0}, e.g., Figure 5.8(b).

Connectivity-preserving approach (CPA)

Although EPA removes eye-catching nodes with respect to each one-vertex subset of
V (G) and tends to make the graph more connected. Adding an edge between two far
away vertices is less probable in reality than between two nearer vertices, where the
previous operation also compromises the utility of the graph. In order to maintain the
structure of the original graph, we try to create a smallest cycle which seems to make
the least structural breach to the original graph.

Solution 2. (CPA) Given a simple connected graph G = (V,E) with an attacker node v.
Let x be the nearest predecessor of vn in the eccentricity paths of v whose distance to vf
is even. Our proposal is to create a cycle by adding an edge between v and x.
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(a) The original graph

(b) Carry out EPA with respect to {v0}

Figure 5.7: Carry out EPA with respect to {v0} when ε(v) is odd.

To create a smallest cycle, one endpoint is easy to be fixed, that is, vf . To satisfy that
the number of vertices in the cycle are odd we need to find the nearest predecessor of vn
in the eccentricity paths of v whose distance to vf is even. Let x be this vertex. Then
the cycle created by adding an edge between x and vf is the smallest cycle with respect
to {v} because no more vertex can be removed in the cycle to satisfy the statement in
Theorem 2.

There are two possibilities for x. If the distance between vn and vf are odd, then x
is the immediate predecessor of vn in the eccentricity paths of v whose distance to v is
dneye(v)− 1. If the distance between vn and vf is even, x is a predecessor of vn in the
eccentricity paths of v whose distance to vn is 2 and distance to v is dneye(v)− 2. The
smallest cycle is created by adding an edge between vf and x.

There are also three possibilities of the new eccentricity paths of v. Let w be one of
the vertices such that d(v, w) = ε(v) and z the farthest vertex to v who is not located in
any eccentricity paths of v, and the eccentricity after creating a circle with respect to
{v} are:

• The shortest path from v to one of the vertex in the middle of x− vf where the
distance is d(v, x) + d(x, vf )/2 such that d(v, x) + d(x, vf )/2 < d(v, x) + d(x, vf ) <
d(v, x) + d(x, vf ) + d(vf , w) = ε(v)

• The shortest path from v to z where the distance is d(v, z) such that d(v, z) <
dneye(v) ≤ ε(v)

• The new shortest from v to w where the distance is d′′(v, w) = d(v, x) + d(x, vf ) +
d(vf , w) = d(v, x)+1+d(vf , w) such that d(v, x)+1+d(vf , w) < d(v, x)+d(x, vf )+
d(vf , w) = ε(v).
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(a) The original graph

(b) Carry out EPA with respect to {v0}

Figure 5.8: Carry out EPA with respect to {v0} when ε(v) is even.

Example 6. Figure 5.9 shows the circumstance that the distance between vn and vf
is odd. In the original graph in Figure 5.9(a), v3 is the nearest eye-catching node with
respect to {v0} while v6 is the farthest. The distance between v6 and v3 is odd. So x is
the immediate predecessor of v3 in the eccentricity paths of v0 which is v2. After adding
an edge between v2 and v6, a smallest cycle v2 − v3 − v4 − v5 − v6 − v2 is created by CPA,
there is no eye-catching node with respect to {v0}.

Example 7. The graph in Figure 5.10 shows the other circumstance that the distance
between vn and vf is even. In Figure 5.10(a) v3 is the nearest eye-catching node with
respect to {v0} while v5 is the farthest and the distance between them is 2. In this case x
is the predecessor of v3 whose distance to v3 is 2 which is v1. The new transformed graph
by CPA is shown in Figure 5.10(b).

Tradeoffs

Locally, based on Theorem 2 both approaches create a cycle with an odd number of
vertices which includes all eye-catching nodes with respect to each one-vertex subset of
the graph. Both of them eliminate all the existing eye-catching nodes with respect to the
subset {v} of the graph with a single edge. Globally, adding an edge to a graph tends to
make the graph more connected where fewer eye-catching nodes exist, there exists one
ending moment that all the eye-catching nodes are removed.

With respect to a one-vertex subset {v} of the graph, EPA creates the biggest cycle
in the eccentricity path of v. It sharply shortens the eccentricity of v which makes the
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(a) The original graph

(b) Carry out CPA with respect to {v0}

Figure 5.9: Carry out CPA with respect to {v0} when d(vn, vf ) is odd.

Algorithm 3 Given a graph G = (V,E) this algorithm outputs a graph G′ = (V,E′)
which satisfies (k,1)-anonymity for k > 1

Let E′(G′) = E(G).
for ∀v ∈ V (G) do

BFS(v)
Let x be the nearest predecessor of vn in the eccentricity paths of v whose distance
to vf is even.
Add an edge e between x and vf ,
E′(G′)=E′(G′) ∪ {e}

end for
Output G′.

graph more connected. As is known from Theorem 1, it does not mean only graphs
with high-connectivity have no eye-catching nodes. A graph with a bridge can still
satisfy (k, 1)-anonymity for k > 1. The graph in Figure 5.11 is such an example. For
every vertex in the graph there exists at least another one vertex that has the same
metric representation with respect to a subset {v} of the graph, so the graph satisfies
(2,1)-anonymity. But as there is a bridge v4− v5, the edge-connectivity of the graph is 1.

There is no direct relationship between the edge-connectivity of the graph and eye-
catching nodes with respect to a subset of the graph. But it is more possible that the
unique distance to v appears when the graph is less connected. For example, compared
with a complete graph Kn which is maximumly connected, a path Pn with the same
order has more eye-catching nodes with respect to any one-vertex subset of the graph. A
more connected graph has less possibility of containing eye-catching nodes with respect
to every one-vertex subset of the graph.
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(a) The original graph

(b) Carry out CPA with respect to {v0}

Figure 5.10: Carry out CPA with respect to {v0} when d(vn, vf ) is even.

Figure 5.11: A graph satisfies (2,1)-anonymity whose edge-connectivity is 1.

While CPA removes all the eye-catching nodes with respect to every one-vertex subset
{v} of the graph by means of creating a smallest circle with odd number of vertices.
The advantage is obvious that the smallest circle affects the graph partially in terms
of the graph connectivity, which preserves the original structural property of the graph.
Because the connectivity out of the cycle is not changed, the smaller the cycle is the
fewer changes the structure of the graph is made.
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The final aim for the proposal approaches is for the sake of publishing the anonymized
graph instead of the original graph which preserves both the utility of the graph and
the privacy of the individuals for deep study. EPA achieves the goal faster with big
information loss while CPA preserves the utility of the graph to a larger extent, however,
with lower speed.
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Chapter 6

Experiment

In this section we report a systematic empirical study to evaluate our anonymization
method using both synthetic data sets and real data sets. All the experiments were
performed on the UL HPC platform [45].

We first report the anonymization quality on both data sets, show the anonymization
cost in terms of the number of added edges and the information loss evaluated by a
metric named connectivity loss.

It is challenging to evaluate the information loss in anonymizing social network
data. As the structural relationship should be considered, we cannot compare two social
networks by simply comparing the vertices and edges individually. Even though two
graphs have the same number of edges and nodes, they may be quite different structurally.
Therefore, in this thesis, we use a network-wise property, connectivity loss, to measure
the information loss after the anonymization.

Definition 7. (Connectivity Loss) Given an original graph G and its anonymized version
G′, the connectivity loss in G′ is defined as

ConLoss(G,G′) =
Con(G′)− Con(G)

Con(G)

where Con(G) and Con(G′) are the connectivity of G and G′, respectively.

The rationale of using connectivity loss to measure the information loss in G′ is that
a lower connectivity loss indicates that fewer structural changes have been made to the
original graph G. Furthermore, some other statistical network measures such as degree
difference, average shortest-paths and cluster coefficient, are also used to evaluate the
utility of the released network[58][18][28].

Secondly, we consider what happens if an adversary with weaker background knowledge
plants more than one attacker node in the original graph. We used the walk-based active
attack proposed in [3] and show that the success rate of attacking decreases after
anonymizing graphs with our transformation methods.

Recalling the walk-based attack. An attacker first chooses an arbitrary set W =
{w1, w2, ...wb} of users in G as targeted individuals. Secondly, without knowing what G
looks like, the attacker creates a new graph H = (V,E) where V (H) = {x1, x2, ...xk}
and k is greatly smaller than the size n of G. Each xi for i ∈ {1, 2, ...k} has an external
degree 4i indicating the number of edges xi will have to nodes in G − H. For each
vertex wj for j ∈ {1, 2, ...b} it has a distinct set Nj ⊆ {x1, ...xk} containing all the nodes
in H connected to wj , which will be used to identify each wj once G is released. The
attacker generates the random internal edges in H by including the edge (xi, xi + 1) for

37
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i ∈ {1, ...k − 1} and the edge (xi, xj) with probability 1/2. In this way, a subgraph H of
G is created which is in general identified efficiently and uniquely. Once G is released, the
adversary performs a search algorithm to identify H and then re-identifies wj with the
knowledge of Nj for j ∈ {1, 2, ...b}. As a consequence, with k = Θ(log n) new accounts
the attacker can reveal the identities of Θ((log n)2) targeted nodes.

In [3], Backstrom et al. recommend to create k = (2 + δ) log n new accounts for a
small constant δ > 0. In our thesis, we test the success rate of attacking random graphs
when δ ∈ {0.1, 0.5, 1, 1.5} and the average success rate of attacking one social network
graph 100 times when δ is 0.1 which is the smallest among {0.1, 0.5, 1, 1.5}. We choose
(log n)2 random vertices as the targeted vertices. Each 4i is chosen independently and
uniformly at random from the interval [1, log n]. The size of each Nj is limited at most 3.
We plant H in G as mentioned in the walk-based attack and compare the new success
rate of attacking both random graphs and a real-life social network graph which are
anonymized by CPA and EPA with the success rate of attacking their original forms,
respectively.

6.1 Empirical evaluation on random graphs

In the following two subsections, we first show the quality of our anonymization methods
which is measured by (k, 1)-anonymity, the cost of our anonymization on random graphs
which is measured by the number of added edges and the information loss evaluated by
connectivity loss. In the second subsection, we show how the anonymized random graphs
perform facing an active attack when the number of the attacker nodes is bigger than
one. Normally, as our approach changes the metric representation of nodes with respect
to attacker nodes when anonymizing graphs, it tends to make it harder for the adversary
to identify the targeted vertices. If there are more than one vertex connecting the same
subset of attacker nodes, then the adversary cannot distinguish them and this leads to
the decline of the success rate.

6.1.1 Anonymization quality and cost

We measure the performance of both approaches by means of the value of k for (k, 1)-
anonymity which corresponds to the anonymization quality and the number of added
edges corresponding to the anonymization cost. (k, 1)-anonymity is a privacy metric
where any vertex in a (k, 1)-anonymous graph cannot be distinguished with a probability
higher than 1/k. The larger the value of k is, the harder the vertices can be distinguished.
As an edge addition operation changes the structural properties of the graph such as
the vertex degree and the eccentricity of the vertex, the fewer edges are added by the
approach, the fewer changes are done to the graphs, the better performance the approach
owns.

To check the performance of CPA and EPA we ran experiments on random graphs
under different density. We fix 100 as the number of vertices in each random graph. The
number of edges distribute uniformly in the interval [99, 100∗992 ] and the edges are added
randomly to the graph. Without loss of generality, for each density of the graph we
created 100,000 random graphs and transformed them with EPA and CPA, respectively,
examine how much extent of the privacy they can preserve based on (k, 1)-anonymity
and how many edges are needed for the transformation.

With respect to the anonymization quality, before transforming the graphs we examine
the original value of k based on (k, 1)-anonymity for the graphs. Transform the graphs
with the two approaches and record their new value of k. The curve graph in Figure



6.1. EMPIRICAL EVALUATION ON RANDOM GRAPHS 39

6.1 manifests that the privacy preserving level in terms of (k, 1)-anonymity is improved
by both approaches. The horizontal axis indicates the density of the graph and the
vertical axis represents the average value of k for the graphs. We can see from the chart
that when the random graph is sparse, i.e. the graph density is smaller than 0.17, both
methods can increase the value of k slightly. However, when the graph density is between
0.17 and 0.27, even if the original value of k is low, i.e., 1, it is significantly increased by
both methods. As the graph becomes denser, the graph density is larger than 0.27, the
majority of graphs have already satisfied (k, 1)-anonymity for high value of k, the growth
of k becomes slower and finally reaches to 0 when the graph density is 0.35.

Figure 6.1: The curve shows how the value of k in (k, 1)-anonymity changes after the
graph is transformed by CPA and EPA. The table below dedicates the actual value
corresponding to the node in the curve.

In regard to the anonymization cost, we record the number of added edges when
anonymizing graphs with different densities. Figure 6.2 describes the number of added
edges by both methods when the graph density is from 0.01 to 0.43. When the graph
is very sparse, i.e., 0.07, an enormous difference happens to the added edge numbers
between CPA and EPA where less edges is enough for EPA to anonymize the graphs
while CPA needs more than 50 edges for a graph with 4950 edges in total. When the
graph becomes denser, the graph density is higher than 0.09, both methods perform
similar.

From both curves in Figure 6.1 and 6.2, when the graph density is 0.13 the original
random graphs satisfy (2,1)-anonymity which leads to the average added number is 0.
When the graph density is 0.19 the original random graphs satisfy (1,1)-anonymity again,
more than 40 average edges are added to the graph. As the standard deviation for
both methods are also high when the graph density is 0.19 and 0.07, it is reasonable to
believe that if we do experiments on more than 100,000 random graphs the result will be
better. When the graph density is bigger than 0.33, random graphs have already satisfied
(k, 1)-anonymity for k > 1 so no edges are needed.

The experimental result corresponds to our analysis of tradeoffs between both methods.
EPA removes eye-catching nodes with respect to attacker nodes faster and less edges are
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Figure 6.2: The mean and standard deviation of the added edge numbers for both EPA
and CPA when the graph density differs.

needed when transforming a random graph to privacy-preserving graph which is reflected
obviously when the graph is relatively sparse in the Figure 6.2.

The connectivity loss after transforming the original graphs with different density to
privacy-preserving graphs using both EPA and CPA is shown in Figure 6.3. From the
chart, we can see distinctly that the connectivity loss of CPA is relatively lower than that
of EPA when the graph is sparse, i.e., the graph density is 0.07. As the graph becomes
denser, the difference of the connectivity loss for both methods reduces slightly to 0.

The experimental result for two connectivity loss variation validates our theoretical
analysis that CPA keeps the original graph connectivity to a relatively larger extent than
EPA when transforming random graphs to privacy-preserving graphs.

6.1.2 Evaluation of the anonymization against the walk-based active
attack

We choose four numbers which are 4, 5, 6, 7 as the attacker nodes m = (2 + δ) log n
where n = 100 by changing the value of δ ∈ {0.1, 0.5, 1, 1.5}, respectively.

We attack 100,000 random graphs and record the success rates for each value of m.
We define success when the identified vertex corresponds to the targeted vertex. If all the
identified vertices correspond to the targeted vertices, the success rate of the attack is 1,
otherwise it is a ratio between 0 and 1. The closer the ratio is to 1, the better performance
of attacking, the worse the ability of preserving the privacy the anonymization method
owns. In order to validate whether our proposed approaches preserve the privacy of
the individuals, we transform these random graphs with EPA and CPA respectively
and attack them with different number of attacker nodes. Compare the success rate of
attacking transformed graphs by both methods with the success rate of attacking the
original graphs.

Figure 6.4 illustrates the success rate before and after transformation by both ap-
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Figure 6.3: The connectivity loss of both EPA and CPA when the graph density varies.

proaches when the graph density differs for m ∈ {4, 5, 6, 7}. As is shown in 6.4(a), both
EPA and CPA can decrease the success rate sharply to a low value comparing to that
of attacking the original graphs. When the graph is sparse, i.e., the graph density is
smaller than 0.1, CPA decreases the success rate to a lower value than EPA. When the
graph density is larger than 0.1, the success rate of attacking the graphs transformed by
either EPA or CPA is similarly low. Other three charts in Figure 6.4(b), 6.4(c), 6.4(d)
for m ∈ {5, 6, 7} have the same circumstance with the first chart where m=4.

Using the same data Figure 6.5 shows the success rate before and after the graph is
transformed by EPA and CPA, respectively, which is easier to evaluate them individually.
From both charts, we can conclude that the walk-based attack usually succeeds with a
success rate higher than 70% even the number of attacker nodes is small and the more
nodes the higher the success rate is. Furthermore, both anonymization methods decrease
the success rate among which the lowest decreased success rate is lower than 0.1 when
the number of attacker nodes is 4. When the attacker plants fewer vertices, i.e., 4, in
the original random graphs, the success rate of attacking is easier to be decreased by
both methods. On the contrary, when the attacker plants a subgraph with 7 nodes in
the random graphs, the success rate of attacking is also decreased but relatively to a less
extent.

6.2 Empirical evaluation on real-life social graphs

In this subsection, we show the quality of our anonymization methods and the cost of
the transformation on a real-life social network graph. We validate the resistance against
active attack of our anonymization methods which can improve the privacy protection
while preserving the utility by means of comparing the success rate of attacking the social
network graph before and after it is transformed by both CPA and EPA, respectively.
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(a) m=4

(b) m=5

Figure 6.4: The adversary’s success rate for attacker nodes m ∈ {4, 5, 6, 7}.
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(c) m=6

(d) m=7

Figure 6.4: The adversary’s success rate for attacker nodes m ∈ {4, 5, 6, 7} (cont.)
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(a) EPA

(b) CPA

Figure 6.5: The attacker’s success rate before and after the graph is transformed by EPA
and CPA, respectively

6.2.1 Anonymization quality and cost

The social network data originated from an online community for students at University
of California which is referred as Panzarasa graph in [44] and satisfies (1, 1)-anonymity
only. It recorded 59,835 messages sent between 1899 students from 23th, March, 2004 to
26th, Oct, 2004. As it is a directed and weighted graph, we converted each directed edge
to an undirected edge and deleted all the weights of the edges and self-loops. It happens
that one student sends to another more than one message at different time, so we only
kept one record if the sender and the receiver are the same in the data sets. Furthermore,
we deleted six isolated nodes, then we got a simple undirected graph without weights and
multiple loops, where the number of vertices and edges are 1893 and 20296, respectively.
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The density of the input graph is:

density =
2 ∗ 20296

1893 ∗ (1893− 1)
= 0.01133362.

The statistical property information about this social network graph before and after
normalization is shown in Table 6.1

Original graph After normalization

Number of vertices 1899 1893

Number of edges 59,835 20,296

density 0.03320199 0.01133362

Table 6.1: The property information about Panzarasa graph

We deal with end-vertices in the graph first as mentioned in Section 5.4.1 and
transform the graph 100 times with CPA and EPA respectively considered that the
transformation starts from the different vertex every time. The results is shown in Table
6.2. As shown in the Table 6.2, both methods improve the privacy protection where the

Original graph
Transformed

by CPA
Transformed

by EPA

(k, 1)-anonymity (1,1)-anonymity (2,1)-anonymity (2,1)-anonymity

Connectivity 1 2 2

Average
added edges

0 34.65 34.53

Table 6.2: The anonymization quality and cost of transforming the social network graph
with both methods.

social network graph satisfies (2,1)-anonymity after transformed by both methods while
meets only (1,1)-anonymity previously. Both of them increase the connectivity of the
graph from 1 to 2. The transformation cost of CPA and EPA are 34.65 and 34.53, in
terms of average added edges, respectively, which is not very big compared to the number
of edges in the graph. As the density of this social network graph is close to 0.01, the
result also validates that in order to anonymize sparse graphs, i.e., the graph density is
0.01, EPA adds less edges than CPA.

6.2.2 Evaluation of the anonymization against the walk-based active
attack

As is known from [3], to achieve the high success rate only a small number of attacker
nodes are needed although the attacker only knows the connection with its neighbors
and the connection between itself.

We create (2 + 0.1) log 1893 ≈ 7 vertices for the adversary graph H where δ = 0.1
according to (2 + δ) log n and select (log 1893)2 ≈ 11 targeted vertices randomly from the
social network graph. Construct the subgraph H and plant it into Panzarasa graph, Gp

for short. We call the new graph Gp +H. After Gp +H is released, we retrieve H and
identify targeted nodes with the help of Nj for the jth targeted node for j ∈ {1, ..., 11}.
If for each Nj there is only one vertex in the published graph Gp connecting the vertices
in Nj , then we treat it successful otherwise failure.

To validate the performance of our proposed approaches, we still create an attacker
graph H with 7 attacker vertices and plant it into Gp. We transform Gp + H to
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(Gp +H)CPA with CPA and transform Gp +H to (Gp +H)EPA with EPA, respectively.
After the anonymized graph is released, recover H and identify targeted vertices according
to Nj . The results are shown in Table 6.3.

Gp +H (Gp +H)CPA (Gp +H)EPA

Attacker nodes 7 7 7

Average
Success rate

64.83% 43.01% 43.59%

Standard Deviation
of Success rate

0.0647 0.0982 0.0938

Table 6.3: The average success rate and the standard deviation of the success rate, before
and after the social network graph is transformed by EPA and CPA, respectively.

After the social network graph is transformed by CPA the metric representation of
nodes with respect to the set of 7 attacker nodes is different from that previously because
of nearly 35 added edges to the graph, the same as nearly 35 edges for EPA. Owing to
this changes it is acceptable that the vertex connecting to the nodes in Nj is not unique,
which prevents the adversary from identifying the targeted nodes and the success rate
goes down. As is shown in Table 6.3, both methods decreases the success rate from
64.83% to 43.01% and 43.59%, respectively. It can be inferred that graphs satisfying
(k, 1)-anonymity for k > 1 can also resist against active attacks where the number of
attacker nodes is bigger than 1.
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Conclusions and future work

In this thesis, we have addressed issues related to preserving both privacy and utility of
published social networks.

We performed a thorough study of the state of the art, with emphasis on anonymiza-
tion methods, privacy metrics, passive attacks and active attacks. We studied the
theoretical properties of (k, 1)-anonymous graphs, in particularly (1,1)-anonymous graphs.
Considering the metric representation as the background knowledge, we focused on
the anonymization methods against the walk-based attack. We presented two privacy-
preserving methods for the publication of social networks considering (k, 1)-anonymity
as a privacy metric.

According to different emphasis, the Connectivity-Preserving Approach is able to
transform graphs to (k, 1)-anonymous graphs for k > 1 by creating smallest cycle with
respect to each one-vertex subset of the graph which arouses less structural breach than
Edge-Preserving Approach. While, Edge-Preserving Approach can also anonymize graphs
to satisfy (k, 1)-anonymity for k > 1 by creating the biggest cycle in the eccentricity path
of each vertex with fewer edges to be added than Connectivity-Preserving Approach,
however, it leads to more information loss.

Furthermore, we demonstrated their resistance against the walk-based attack where
there are more than one attacker node in the graph. The results of the decreasing success
rate validated that both approaches can preserve individuals’ privacy against the active
attack.

7.1 Future work

Several lines are still open, and have not been addressed yet, specially due to lack of
time. Then, we show those research directions that we believe are interesting:

• We only handle (k, `)-anonymity where ` = 1 in this thesis. It could be desirable
and interesting to propose privacy-preserving methods for the publication of social
networks regarding (k, `)-anonymity as a privacy metric for ` > 1.

• We study (k, `)-anonymity individually, but there may be relationship between
(k, `)-anonymity and other proposed privacy-preserving measures. For example, a
graph satisfies k-isomorphism may also satisfies (k, `)-anonymity.

• Transforming a graph to satisfy (k, `)-anonymity induces a large number of edge
additions which breaks the privacy of the original graphs. Relaxing the (k, `)-
anonymity concept in order to capture the notion that the adversary might not be
able to learn the distance to every vertex in the graph, i.e., the adversaries only

47
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knows the metric representation of vertices whose distance to them is smaller than
5, is another desirable direction.
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