

Equilibria of Strategic-Form Games

Game Theory Seminar

Ton van Deursen

Ch. 3, Equilibria - p. 1/36

This week

Schedule -This week

First solution concept

Nash Equilibrium

Computing Nash Equilibria

- 3.1 Domination and Rationalizability
- 3.2 Nash Equilibrium
- 3.3 Computing Nash Equilibria
- 3.5 The Focal Point Effect

Schedule

```
First solution concept
-Strategic-form game
-A first solution concept
-Example 1
```

Nash Equilibrium

Computing Nash Equilibria

The focal point effect

A strategic-form game Γ is denoted by

 $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N}).$

• N: a set of players,

• C_i : a set of possible strategies for player *i*,

• $u_i: C \to \mathbb{R}$: a utility function for player *i*,

where C is the set of all possible combinations of strategies:

 $C = \mathsf{X}_{i \in N} C_i.$

A first solution concept

Schedule

First solution concept -Strategic-form game -A first solution concept -Example 1

Nash Equilibrium

Computing Nash Equilibria

The focal point effect

Specify a set of strategies $D_i \subseteq C_i$ for all players that each player might reasonably be expected to use.

Define set of strategies other players might choose:

 $D_{-i} = \mathsf{X}_{j \in N-i} D_j.$

Let $G_i(D_{-i})$ be the set of all strategies that are such best responses, i.e. $d_i \in G_i(D_{-i})$ iff there exist some $\eta \in \Delta(D_{-i})$ such that

$$d_i \in \operatorname{argmax}_{c_i \in C_i} \sum_{d_{-i} \in D_{-i}} \eta(d_{-i}) \cdot u_i(d_{-i}, c_i)$$

Schedule

First solution concept -Strategic-form game -A first solution concept -Example 1

Nash Equilibrium

Computing Nash Equilibria

The focal point effect

The solution must satisfy

 $D_i \subseteq G_i(D_{-i})$

Let C_i^{∞} denote the strategies for player *i* after iterative elimination. It can be shown that

 $C_i^{\infty} = G_i(\mathsf{X}_{j \in N-i} C_j^{\infty})$

Thus, our first and weakest solution concept predicts that the outcome of the game should be a profile of iteratively undominated strategies $X_{i \in N} C_i^{\infty}$.

Schedule				C_2	
First solution concept -Strategic-form game		C_1	x_2	y_2	z_2
-A first solution concept -Example 1	x_1	3,0	0,2	0,3	
Nash Equilibrium		y_1	2,0	1,1	2, 0
Computing Nash Equilibria		z_1	0,3	0,2	3,0

Schedule	-			C_2	
First solution concept -Strategic-form game		C_1	x_2	y_2	z_2
-A first solution concept -Example 1		x_1	3,0	0,2	0,3
Nash Equilibrium		y_1	2,0	1,1	2,0
Computing Nash Equilibria	-	z_1	0,3	0,2	3,0

The focal point effect

No strategies are strongly dominated. Therefore $D_1 = \{x_1, y_1, z_1\}$ and $D_2 = \{x_2, y_2, z_2\}$

Notation

Schedule

First solution concept

Nash Equilibrium

- -Notation
- -Expected payoff
- -Nash equilibrium
- -Example 1
- -Example 2
- -Example 3 -Example 4

Computing Nash Equilibria

The focal point effect

Given strategic-form game $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N})$, we denote:

- Set of pure strategies: C_i .
- Set of randomized strategies: $\Delta(C_i)$.
- Set of randomized strategy profiles: $X_{i \in N} \Delta(C_i)$.

For each player *i*, the randomized strategy $\sigma_i \in \Delta(C_i)$ must satisfy:

$$\forall_{c_i \in C_i} \sigma_i(c_i) \ge 0$$

$$\sum_{c_i \in C_i} \sigma_i(c_i) = 1$$

Expected payoff

Schedule

First solution concept

- Nash Equilibrium
 -Notation
 -Expected payoff
- -Nash equilibrium
- -Example 1
- -Example 2
- -Example 3

-Example 4

Computing Nash Equilibria

The focal point effect

For any randomized strategy profile $\sigma \in X_{i \in N} \Delta(C_i)$ the expected payoff for player *i* is defined as follows:

$$u_i(\sigma) = \sum_{c \in C} \left(\prod_{j \in N} \sigma_j(c_j) \right) \cdot u_i(c)$$

If player *i* uses pure strategy d_i , player *i*'s expected payoff is:

$$u_i(\sigma_{-i}, [d_i]) = \sum_{c_{-i} \in C_{-i}} \left(\prod_{j \in N-i} \sigma_j(c_j) \right) \cdot u_i(c_{-i}, d_i)$$

Nash equilibrium

Schedule

First solution concept

Nash Equilibrium -Notation

-Expected payoff

-Nash equilibrium

-Example 1

-Example 2

-Example 3

-Example 4

Computing Nash Equilibria

The focal point effect

Each player *i* wants to choose pure strategies that maximize his expected payoff. This means that strategies that do *not* maximize the payoff should have probability 0:

if
$$\sigma_i(c_i) > 0$$
 then $c_i \in argmax_{d_i \in C_i} u_i(\sigma_{-i}, [d_i])$.

A randomized strategy profile σ is a Nash equilibrium of Γ if it satisfies this equation for every player *i* and every strategy $c_i \in C_i$.

Nash equilibrium

Schedule

First solution concept

Nash Equilibrium -Notation -Expected payoff

-Nash equilibrium

-Example 1

-Example 2

-Example 3

-Example 4

Computing Nash Equilibria

The focal point effect

Each player *i* wants to choose pure strategies that maximize his expected payoff. This means that strategies that do *not* maximize the payoff should have probability 0:

if
$$\sigma_i(c_i) > 0$$
 then $c_i \in argmax_{d_i \in C_i} u_i(\sigma_{-i}, [d_i])$.

A randomized strategy profile σ is a Nash equilibrium of Γ if it satisfies this equation for every player *i* and every strategy $c_i \in C_i$.

Thus, a randomized strategy profile is a Nash equilibrium iff no player could increase his expected payoff by unilaterally deviating from the prediction of the randomized-strategy profile.

Schedule			C_2	
First solution concept	C_1	x_2	y_2	z_2
Nash Equilibrium -Notation -Expected payoff	x_1	3,0	0,2	0,3
-Nash equilibrium -Example 1	y_1	2,0	1,1	2,0
-Example 2 -Example 3 -Example 4	z_1	0,3	0,2	3,0

Computing Nash Equilibria

-Example 2 -Example 3 -Example 4

Equilibria

Computing Nash

The focal point effect

Schedule			C_2	
First solution concept	C_1	x_2	y_2	z_2
Nash Equilibrium -Notation -Expected payoff	x_1	3,0	0,2	0,3
-Nash equilibrium -Example 1	y_1	2,0	1,1	2,0
-Example 2 -Example 3	z_1	0,3	0,2	3,0

Player 1 might choose x_1 , because he expects player 2 to choose x_2 .

Player 2 might choose x_2 , because he expects player 1 to choose z_1 .

-Example 2 -Example 3 -Example 4

Equilibria

Computing Nash

The focal point effect

Schedule			C_2	
First solution concept	C_1	$\overline{x_2}$	y_2	z_2
Nash Equilibrium -Notation -Expected payoff	x_1	$\overline{3,0}$	0,2	0, 3
-Nash equilibrium -Example 1	y_1	2,0	1,1	2,0
-Example 2 -Example 3	z_1	0,3	0,2	3,0

Player 1 might choose y_1 , because he expects player 2 to choose y_2 .

Player 2 might choose y_2 , because he expects player 1 to choose y_1 .

Schedule	
First solution concept	
Nash Equilibrium	
-Notation	
-Expected payoff	
-Nash equilibrium	
-Example 1	
-Example 2	
-Example 3	
-Example 4	

Computing Nash Equilibria

The focal point effect

		C_2	
C_1	x_2	y_2	z_2
x_1	3,0	0,2	0,3
y_1	2,0	1,1	2,0
z_1	0,3	0,2	3,0

Player 1 might choose y_1 , because he expects player 2 to choose y_2 .

Player 2 might choose y₂, because he expects player 1 to choose y₁.

In fact, the randomized strategy profile $([y_1], [y_2])$ is an equilibrium of the game.

Schedule		С	2
First solution concept	G		
Nash Equilibrium	C_1	M	P
-Notation -Expected payoff	Rr	0,0	1, -1
-Nash equilibrium -Example 1 -Example 2	Rf	0.5, -0.5	0, 0
-Example 3 -Example 4	Fr	-0.5, 0.5	1, -1
Computing Nash Equilibria	Ff	0,0	0,0

Schedule		C	2
First solution concept Nash Equilibrium	C_1	M	Р
-Notation -Expected payoff	Rr	0,0	1, -1
-Nash equilibrium -Example 1 -Example 2	Rf	0.5, -0.5	0,0
-Example 3 -Example 4	Fr	-0.5, 0.5	1, -1
Computing Nash Equilibria	Ff	0, 0	0,0

- No equilibria in pure strategies.
- We can expect to find an equilibrium that involves randomization between Rr and Rf and between M and P.
- Let q[Rr] + (1 q)[Rf] and s[M]+(1 s)[P] denote the equilibrium strategies for player 1 and 2.

Schedule		С	2
First solution concept			
Nash Equilibrium	C_1	M	<i>P</i>
-Notation -Expected payoff	Rr	0,0	1, -1
-Nash equilibrium -Example 1 -Example 2	Rf	0.5, -0.5	0,0
-Example 3 -Example 4	Fr	-0.5, 0.5	1, -1
Computing Nash Equilibria	Ff	0, 0	0,0

Player 1 would be willing to randomize between Rr and Rf only if they give him the same expected payoff against s[M] + (1-s)[P], so

$$0s + 1(1 - s) = 0.5s + 0(1 - s)$$

implying $s = \frac{2}{3}$.

Schedule		С	2
First solution concept			
Nash Equilibrium	C_1	M	<i>P</i>
-Notation -Expected payoff	Rr	0,0	1, -1
-Nash equilibrium -Example 1 -Example 2	Rf	0.5, -0.5	0,0
-Example 3 -Example 4	Fr	-0.5, 0.5	1, -1
Computing Nash Equilibria	Ff	0, 0	0,0

Player 2 would be willing to randomize between M and P only if they give him the same expected payoff against q[Rr]+(1-q)[Rf],so

$$0q + -0.5(1 - q) = -1q + 0(1 - q)$$

implying $q = \frac{1}{3}$.

Schedule		C	$\tilde{\gamma}_2$
First solution concept	C_1	M	Р
-Notation -Expected payoff	Rr	0,0	1, -1
-Nash equilibrium -Example 1 -Example 2	Rf	0.5, -0.5	0,0
-Example 3 -Example 4	Fr	-0.5, 0.5	1, -1
Computing Nash Equilibria	Ff	0, 0	0, 0

- Implementing the values for q and s gives us the equilibrium $(\frac{1}{3}[\text{Rr}] + \frac{2}{3}[\text{Rf}], \frac{2}{3}[\text{M}] + \frac{1}{3}[\text{P}])$
 - The expected payoffs are $\frac{1}{3}$ for player 1 and $-\frac{1}{3}$ for player 2.

Schedule

First solution concept

Nash Equilibrium

- -Notation
- -Expected payoff
- -Nash equilibrium
- -Example 1
- -Example 2

-Example 3 -Example 4

Computing Nash Equilibria

The focal point effect

Two suspects are arrested by the police. The police have insufficient evidence for a conviction, and, having separated both prisoners, visit each of them to offer the same deal:

- If one testifies for the prosecution against the other and the other remains silent, the betrayer goes free and the silent accomplice receives the full 6-year sentence.
- If both remain silent, both prisoners are sentenced to only 1 year in jail for a minor charge.

If each betrays the other, each receives a 5-year sentence. Each prisoner must make the choice of whether to betray the other or to remain silent. Each one is assured that the other would not know about the betrayal before the end of the investigation. How should the prisoners act?

Schedule			C_2
First solution concept	C_1	s_2	b_2
Nash Equilibrium		K_K	0.6
-Expected payoff -Nash equilibrium	s_1	5,5	0, 6
-Example 1	b_1	6,0	1,1
-Example 2 -Example 3			

Computing Nash Equilibria

-Example 4

Schedule		($\tilde{\gamma}_2$
First solution concept	C_1	s_2	b_2
-Notation -Expected payoff	s_1	5,5	0, 6
-Nash equilibrium -Example 1 -Example 2	b_1	6,0	1, 1
-Example 3			

The unique Nash equilibrium in this game is $([b_1], [b_2])$.

Computing Nash Equilibria

-Example 4

Schedule					C_2	
First solution concept		a				7
Nash Equilibrium		C_1		s_2		b_2
-Notation -Expected payoff		s_1		5, 5		0, 6
-Nash equilibrium -Example 1		b_1		6, 0		1,1
-Example 2 -Example 3 -Example 4	The uniq	ue Nash	equilibrium	n in this	game is ([b	1],[b ₂]).

Computing Nash Equilibria

The focal point effect

Observation: equilibria may be inefficient

Schedule

First solution concept

Nash Equilibrium

- -Notation -Expected payoff
- -Nash equilibrium
- -Example 1
- -Example 2
- -Example 3
- -Example 4

Computing Nash Equilibria

The focal point effect

Players 1 and 2 are husband and wife and have to decide where to go on Saturday afternoon: to the football match or to the shopping center. Neither spouse would derive any pleasure from being without the other, but the husband would prefer to go to the football match whereas the wife would prefer to go to the shopping center.

Schedule			($\overline{C_2}$
First solution concept				
Nash Equilibrium	C_1		f_2	<i>s</i> ₂
-Notation -Expected payoff	f_1	e	3, 1	0,0
-Nash equilibrium -Example 1	s_1	(0, 0	1,3
-Example 2 -Example 3 -Example 4				

Computing Nash Equilibria

Schedule				C_2
First solution concept				_
Nash Equilibrium		C_1	f_2	s_2
-Notation -Expected payoff		f_1	3, 1	0,0
-Nash equilibrium -Example 1		s_1	0,0	1,3
-Example 2 -Example 3				
-Example 4	Thoro or	o throo	auilibria in this game:	

Computing Nash Equilibria

The focal point effect

There are three equilibria in this game:

- $([f_1], [f_2])$ with expected payoff (3,1).
- $([s_1], [s_2])$ with expected payoff (1,3).

• $(.75[f_1] + .25[s_1], .25[f_2] + .75[s_2])$ with expected payoff $(\frac{3}{4}, \frac{3}{4})$

Schedule				C_2	
First solution concept				02	
	C_1		f_2		s_2
Nash Equilibrium			J 2		
-Notation	f_1		3, 1		0, 0
-Expected payoff	$J\perp$	·	0 , 1		0, 0
-Nash equilibrium			0 0		1 0
-Example 1	s_1		0,0		1,3
-Example 2					
-Example 3					

Computing Nash Equilibria

-Example 4

The focal point effect

- There are three equilibria in this game:
- $([f_1], [f_2])$ with expected payoff (3,1).
- $([s_1], [s_2])$ with expected payoff (1,3).

• $(.75[f_1] + .25[s_1], .25[f_2] + .75[s_2])$ with expected payoff $(\frac{3}{4}, \frac{3}{4})$

Observation: a game may have multiple equilibria.

Support

Schedule

First solution concept

Nash Equilibrium

Computing Nash Equilibria

-Support

- -Example 4
- -Conditions
- -Conditions
- -Conditions
- -Example 5

-Existence theorem

The focal point effect

In a Nash equilibrium, if two different pure strategies of player i both have positive probability, then they must both give him the same expected payoff in the equilibrium.

Support

Schedule

First solution concept

Nash Equilibrium

Computing Nash Equilibria

-Support

-Example 4 -Conditions

-Conditions

-Conditions

-Example 5

-Existence theorem

The focal point effect

In a Nash equilibrium, if two different pure strategies of player *i* both have positive probability, then they must both give him the same expected payoff in the equilibrium.

The support of a randomized strategy profile $\sigma \in X_{i \in N} \Delta(C_i)$ is the set of all pure strategy profiles with positive probability if the players choose their strategies according to σ :

 $\mathsf{X}_{i\in N}\{c_i\in C_i|\sigma_i(c_i)>0\}.$

Schedule		C_{2}	2
First solution concept	C_1	f_2	s_2
Computing Nash	f_1	3,1	0, 0
Equilibria -Support -Example 4	s_1	0,0	1, 3
-Example 4 -Conditions			

-Conditions

-Conditions -Example 5

-Existence theorem

The focal point effect

There are three equilibria in this game:

• $([f_1], [f_2])$

 \blacksquare ([*s*₁], [*s*₂])

 $\blacksquare (.75[f_1] + .25[s_1], .25[f_2] + .75[s_2])$

Schedule			C_2
First solution concept	C_1	f_2	s_2
Nash Equilibrium	f_1	3, 1	0,0
Equilibria -Support -Example 4	s_1	0,0	1,3

There are three equilibria in this game:

- \blacksquare ([f_1], [f_2])
- The focal point effect

-Existence theorem

-Conditions -Conditions

-Conditions -Example 5

- \blacksquare ([*s*₁], [*s*₂])
- $\bullet (.75[f_1] + .25[s_1], .25[f_2] + .75[s_2])$
- The support of the first equilibrium is $\{f_1\} \times \{f_2\}$
- The support of the second equilibrium is $\{s_1\} \times \{s_2\}$
- The support of the third equilibrium is $\{f_1, s_1\} \times \{f_2, s_2\}$

Conditions

Schedule

First solution concept

Nash Equilibrium

Computing Nash

Equilibria

-Support -Example 4

-Conditions

-Conditions

-Conditions

-Example 5

-Existence theorem

The focal point effect

To compute a Nash we first make a guess about the support of that equilibrium. We then check whether there is indeed an equilibrium with this support.

For every player *i*, let D_i be our current guess. If there is an equilibrium σ with support $X_{i \in N} D_i$, then there must exist numbers $(\omega_i)_{i \in N}$ such that the following conditions are met:

Conditions

Schedule

First solution concept

Nash Equilibrium

Computing Nash Equilibria

-Support

-Example 4

-Conditions

-Conditions

-Example 5

-Existence theorem

The focal point effect

To compute a Nash we first make a guess about the support of that equilibrium. We then check whether there is indeed an equilibrium with this support.

For every player *i*, let D_i be our current guess. If there is an equilibrium σ with support $X_{i \in N} D_i$, then there must exist numbers $(\omega_i)_{i \in N}$ such that the following conditions are met:

Each player must get the same payoff, denoted by ω_i from choosing any of his pure strategies with positive probability:

$$\sum_{c_{-i}\in C_{-i}} \left(\prod_{j\in N-i} \sigma_j(c_j)\right) u_i(c_{-i}, d_i) = \omega_i \qquad \forall i\in N, \quad \forall d_i\in D_i$$

Schedule

First solution concept

Nash Equilibrium

Computing Nash

Equilibria

-Support

-Example 4

-Conditions

-Conditions

-Conditions

-Example 5

-Existence theorem

The focal point effect

Every player *i*'s pure strategies outside D_i get zero probability:

 $\sigma_i(e_i) = 0 \qquad \forall i \in N, \quad \forall e_i \in C_i \backslash D_i$

Conditions

Schedule

First solution concept

Nash Equilibrium

Computing Nash

Equilibria

-Support

-Example 4

-Conditions -Conditions

-Conditions

-Example 5

-Existence theorem

The focal point effect

Every player *i*'s pure strategies outside D_i get zero probability:

 $\sigma_i(e_i) = 0 \qquad \forall i \in N, \quad \forall e_i \in C_i \backslash D_i$

For every player *i*, the probabilities assigned to pure strategies in D_i sum to 1:

$$\sum_{c_i \in D_i} \sigma_i(c_i) = 1 \qquad \forall i \in N.$$

Conditions

Schedule

First solution concept

Nash Equilibrium

Computing Nash

Equilibria

-Support

-Example 4

-Conditions

-Conditions

-Conditions

-Example 5

-Existence theorem

The focal point effect

The preceding conditions give a system of equations that can be solved. However, the solution may still not be an equilibrium. The following two conditions have to be met:

Conditions

Schedule

First solution concept

Nash Equilibrium

Computing Nash

Equilibria -Support

-Example 4

-Conditions

-Conditions

-Conditions

-Example 5

-Existence theorem

The focal point effect

The preceding conditions give a system of equations that can be solved. However, the solution may still not be an equilibrium. The following two conditions have to be met:

The assigned probabilities in d_i must be non-negative:

 $\sigma_i(d_i) \ge 0 \qquad \forall i \in N, \quad \forall d_i \in D_i$

Conditions

Schedule

First solution concept

Nash Equilibrium

Computing Nash Equilibria

-Support

-Example 4

-Conditions

-Conditions

-Conditions

-Example 5

-Existence theorem

The focal point effect

The preceding conditions give a system of equations that can be solved. However, the solution may still not be an equilibrium. The following two conditions have to be met:

The assigned probabilities in d_i must be non-negative:

 $\sigma_i(d_i) \ge 0 \qquad \forall i \in N, \quad \forall d_i \in D_i$

For every player *i*, an equilibrium must be better than any pure strategy outside of D_i :

$$\omega_i \ge \sum_{c_{-i} \in C_{-i}} \left(\prod_{j \in N-i} \sigma_j(c_j) \right) u_i(c_{-i}, e_i) \qquad \forall i \in N \quad \forall e_i \in C_i \backslash D_i.$$

Schedule			C_2	
First solution concept	C_1	L	M	R
Computing Nash	T	7,2	2,7	3, 6
Equilibria -Support -Example 4	В	2,7	7,2	4, 5

-Conditions -Conditions

-Conditions

-Example 5

-Existence theorem

The focal point effect

uni In **Example 5**

Schedule	-			C_2	
First solution concept		C_1		M	R
Computing Nash		T	7,2	2,7	3, 6
Equilibria -Support		В	2,7	7,2	4,5
-Example 4 -Conditions	_				

- There is no equilibrium in which player 1 only chooses one strategy.
- There is no equilibrium in which player 2 only chooses one strategy.

The focal point effect

-Existence theorem

-Conditions

-Conditions -Example 5

Schedule			C_2	
First solution concept Nash Equilibrium	C_1		M	R
Computing Nash	T	7,2	2,7	3, 6
Equilibria -Support -Example 4	В	2,7	7,2	4, 5

A first randomized guess is the support $\{T, B\} \times \{L, M, R\}$

-Existence theorem

-Conditions -Conditions

-Conditions -Example 5

The focal point effect

Equilibria -Support -Example 4 -Conditions -Conditions

-Conditions -Example 5

-Existence theorem

The focal point effect

Schedule			C_2	
First solution concept	C_1	L	M	R
Computing Nash	T	7,2	2,7	3, 6
Equilibria -Support -Example 4	В	2,7	7, 2	4,5

A first randomized guess is the support $\{T, B\} \times \{L, M, R\}$ $\omega_1 = 7\sigma_2(L) + 2\sigma_2(M) + 3\sigma_2(R) = 2\sigma_2(L) + 7\sigma_2(M) + 4\sigma_2(R)$ $\omega_2 = 2\sigma_1(T) + 7\sigma_1(B) = 7\sigma_1(T) + 2\sigma_1(B) = 6\sigma_1(T) + 5\sigma_1(B)$ $\sigma_1(T) + \sigma_1(B) = 1, \quad \sigma_2(L) + \sigma_2(M) + \sigma_2(R) = 1$

Schedule

Equilibria -Support -Example 4 -Conditions -Conditions

-Conditions -Example 5

-Existence theorem

The focal point effect

First solution concept

Nash Equilibrium

Computing Nash

			C_2	
pt	C_1	L	M	R
	T	7,2	2,7	3, 6
	В	2,7	7,2	4,5

A first randomized guess is the support $\{T, B\} \times \{L, M, R\}$ $\omega_1 = 7\sigma_2(L) + 2\sigma_2(M) + 3\sigma_2(R) = 2\sigma_2(L) + 7\sigma_2(M) + 4\sigma_2(R)$ $\omega_2 = 2\sigma_1(T) + 7\sigma_1(B) = 7\sigma_1(T) + 2\sigma_1(B) = 6\sigma_1(T) + 5\sigma_1(B)$ $\sigma_1(T) + \sigma_1(B) = 1, \quad \sigma_2(L) + \sigma_2(M) + \sigma_2(R) = 1$

 $2\sigma_1(T) + 7\sigma_1(B) = 7\sigma_1(T) + 2\sigma_1(B) \text{ implies } \sigma_1(B) = .5$ $7\sigma_1(T) + 2\sigma_1(B) = 6\sigma_1(T) + 5\sigma_1(B) \text{ implies } \sigma_1(T) = 3\sigma_1(B)$

Hence, there is no equilibrium with support $\{T, B\} \times \{L, M, R\}$.

Schedule			C_2	
First solution concept	C_1	L	M	R
Computing Nash	T	7,2	2,7	3, 6
Equilibria -Support -Example 4	В	2,7	7,2	4, 5

A second randomized guess is the support $\{T, B\} \times \{M, R\}$

-Existence theorem

-Conditions -Conditions

-Conditions -Example 5

The focal point effect

Equilibria -Support -Example 4 -Conditions -Conditions

-Conditions -Example 5

-Existence theorem

The focal point effect

Schedule			C_2	
First solution concept Nash Equilibrium	C_1	<i>L</i>	M	R
Computing Nash	T	7,2	2,7	3, 6
Equilibria -Support	В	2,7	7,2	4,5

A second randomized guess is the support $\{T, B\} \times \{M, R\}$ $\omega_1 = 2\sigma_2(M) + 3\sigma_2(R) = 7\sigma_2(M) + 4\sigma_2(R)$ $\omega_2 = 7\sigma_1(T) + 2\sigma_1(B) = 6\sigma_1(T) + 5\sigma_1(B)$ $\sigma_1(T) + \sigma_1(B) = 1, \quad \sigma_2(M) + \sigma_2(R) = 1$

Schedule

Equilibria -Support -Example 4 -Conditions -Conditions

-Conditions -Example 5

-Existence theorem

The focal point effect

First solution concept

Nash Equilibrium

Computing Nash

	C_2			
C_1	L	M	R	
 T	7,2	2,7	3, 6	
 B	2,7	7,2	4,5	

A second randomized guess is the support $\{T, B\} \times \{M, R\}$ $\omega_1 = 2\sigma_2(M) + 3\sigma_2(R) = 7\sigma_2(M) + 4\sigma_2(R)$ $\omega_2 = 7\sigma_1(T) + 2\sigma_1(B) = 6\sigma_1(T) + 5\sigma_1(B)$ $\sigma_1(T) + \sigma_1(B) = 1, \quad \sigma_2(M) + \sigma_2(R) = 1$

The unique solution to this set of equations is $\sigma_2(M) = -.25$ $\sigma_2(R) = 1.25$ $\sigma_1(T) = .75$ $\sigma_1(B) = .25$ Thus there is no equilibrium with support $\{T, B\} \times \{M, R\}$

Schedule			C_2	
First solution concept Nash Equilibrium	C_1	L	M	R
Computing Nash	T	7,2	2,7	3, 6
Equilibria -Support -Example 4	В	2,7	7,2	4, 5

A third randomized guess is the support $\{T, B\}$ x $\{L, M\}$

-Existence theorem

-Conditions -Conditions

-Conditions -Example 5

The focal point effect

Equilibria -Support -Example 4 -Conditions -Conditions

-Conditions -Example 5

-Existence theorem

The focal point effect

Schedule		(C_2	
First solution concept Nash Equilibrium	C_1		M	R
Computing Nash	T	7,2	2,7	3, 6
Equilibria -Support	В	2,7	7,2	4,5

A third randomized guess is the support $\{T, B\} \times \{L, M\}$ $\omega_1 = 7\sigma_2(L) + 2\sigma_2(M) = 2\sigma_2(L) + 7\sigma_2(M)$ $\omega_2 = 2\sigma_1(T) + 7\sigma_1(B) = 7\sigma_1(T) + 2\sigma_1(B)$ $\sigma_1(T) + \sigma_1(B) = 1, \quad \sigma_2(L) + \sigma_2(M) = 1$

Schedule

Equilibria -Support -Example 4 -Conditions -Conditions

-Conditions -Example 5

-Existence theorem

The focal point effect

First solution concept

Nash Equilibrium

Computing Nash

		C_2			
	C_1	L	M	R	
	Т	7,2	2,7	3, 6	
	В	2,7	7,2	4,5	

A third randomized guess is the support $\{T, B\} \times \{L, M\}$ $\omega_1 = 7\sigma_2(L) + 2\sigma_2(M) = 2\sigma_2(L) + 7\sigma_2(M)$ $\omega_2 = 2\sigma_1(T) + 7\sigma_1(B) = 7\sigma_1(T) + 2\sigma_1(B)$ $\sigma_1(T) + \sigma_1(B) = 1, \quad \sigma_2(L) + \sigma_2(M) = 1$

The unique solution to this set of equations is $\sigma_2(L) = \sigma_2(M) = .5$ $\sigma_2(T) = \sigma_1(B) = .5$ $\omega_1 = \omega_2 = 4.5$ However, the pure strategy *R* for player 2 would give expected payoff 5.5.

Schedule

Equilibria -Support -Example 4 -Conditions -Conditions

-Conditions -Example 5

-Existence theorem

The focal point effect

First solution concept

Nash Equilibrium

Computing Nash

			C_2			
	C_1	L	M	R		
	T	7,2	2,7	3, 6		
	В	2,7	7,2	4,5		

A third randomized guess is the support $\{T, B\} \times \{L, M\}$ $\omega_1 = 7\sigma_2(L) + 2\sigma_2(M) = 2\sigma_2(L) + 7\sigma_2(M)$ $\omega_2 = 2\sigma_1(T) + 7\sigma_1(B) = 7\sigma_1(T) + 2\sigma_1(B)$ $\sigma_1(T) + \sigma_1(B) = 1, \quad \sigma_2(L) + \sigma_2(M) = 1$

The unique solution to this set of equations is $\sigma_2(L) = \sigma_2(M) = .5$ $\sigma_2(T) = \sigma_1(B) = .5$ $\omega_1 = \omega_2 = 4.5$ However, the pure strategy *R* for player 2 would give expected payoff 5.5.

Hence, there is no equilibrium with support $\{T, B\} \times \{L, M\}$.

Schedule	-			C_2	
First solution concept		C_1	L	M	R
Computing Nash		T	7,2	2,7	3, 6
Equilibria -Support -Example 4		В	2,7	7, 2	4, 5

A fourth randomized guess is the support $\{T, B\}$ x $\{L, R\}$

-Existence theorem

-Conditions -Conditions

-Conditions -Example 5

The focal point effect

Computing I Equilibria -Support -Example 4 -Conditions -Conditions

-Conditions -Example 5

-Existence theorem

The focal point effect

Schedule			C_2	
First solution concept Nash Equilibrium	C_1	L	M	R
Computing Nash	T	7,2	2,7	3, 6
Equilibria -Support -Example 4	В	2,7	7,2	4,5

A fourth randomized guess is the support $\{T, B\} \times \{L, R\}$ $\omega_1 = 7\sigma_2(L) + \sigma_2(R) = 2\sigma_2(L) + 4\sigma_2(R)$ $\omega_2 = 2\sigma_1(T) + 7\sigma_1(B) = 6\sigma_1(T) + 5\sigma_1(B)$ $\sigma_1(T) + \sigma_1(B) = 1, \quad \sigma_2(L) + \sigma_2(R) = 1$

Schedule

Equilibria -Support -Example 4 -Conditions -Conditions

-Conditions -Example 5

-Existence theorem

The focal point effect

First solution con

Nash Equilibrium

Computing Nash

	C_2			
ncept	C_1	L	M	R
n	T	7,2	2,7	3, 6
	В	2,7	7,2	4,5

A fourth randomized guess is the support $\{T, B\} \times \{L, R\}$ $\omega_1 = 7\sigma_2(L) + \sigma_2(R) = 2\sigma_2(L) + 4\sigma_2(R)$ $\omega_2 = 2\sigma_1(T) + 7\sigma_1(B) = 6\sigma_1(T) + 5\sigma_1(B)$ $\sigma_1(T) + \sigma_1(B) = 1, \quad \sigma_2(L) + \sigma_2(R) = 1$

The unique solution to these equations is $\sigma_2(L) = \frac{1}{6} \quad \sigma_2(R) = \frac{5}{6} \quad \sigma_1(T) = \frac{1}{3} \quad \sigma_1(B) = \frac{2}{3} \quad \omega_1 = \frac{8}{3} \quad \omega_2 = \frac{16}{3}$

Schedule

First solution concep

Nash Equilibrium

Computing Nash

Equilibria -Support -Example 4 -Conditions -Conditions

-Conditions -Example 5

-Existence theorem

The focal point effect

		C_2		
pt	C_1	L	M	R
	T	7,2	2,7	3, 6
	В	2,7	7, 2	4,5

A fourth randomized guess is the support $\{T, B\} \times \{L, R\}$ $\omega_1 = 7\sigma_2(L) + \sigma_2(R) = 2\sigma_2(L) + 4\sigma_2(R)$ $\omega_2 = 2\sigma_1(T) + 7\sigma_1(B) = 6\sigma_1(T) + 5\sigma_1(B)$ $\sigma_1(T) + \sigma_1(B) = 1, \quad \sigma_2(L) + \sigma_2(R) = 1$

The unique solution to these equations is $\sigma_2(L) = \frac{1}{6} \quad \sigma_2(R) = \frac{5}{6} \quad \sigma_1(T) = \frac{1}{3} \quad \sigma_1(B) = \frac{2}{3} \quad \omega_1 = \frac{8}{3} \quad \omega_2 = \frac{16}{3}$

The expected payoff to player 2 from choosing M would be $\frac{11}{3} \leq \frac{16}{3}$. Hence, the equilibrium is $(\frac{1}{3}[T], \frac{2}{3}[B], \frac{1}{6}[L] + \frac{5}{6}[R])$.

Existence theorem

Schedule

First solution concept

Nash Equilibrium

Computing Nash

Equilibria

-Support

-Example 4

-Conditions

-Conditions

-Conditions

-Example 5

-Existence theorem

The focal point effect

Theorem 1. Given any finite game Γ in strategic form, there exists at least one equilibrium in $X_{i \in N} \Delta(C_i)$.

Existence theorem

Schedule

First solution concept

Nash Equilibrium

Computing Nash

Equilibria

-Support

-Example 4

-Conditions

-Conditions

-Conditions

-Example 5

-Existence theorem

The focal point effect

Theorem 2. Given any finite game Γ in strategic form, there exists at least one equilibrium in $X_{i \in N} \Delta(C_i)$.

The proof is presented in Section 3.12.

Focal equilibria

Schedule

First solution concept

Nash Equilibrium

Computing Nash Equilibria

The focal point effect

-Focal equilibria -Tradition

- -Focal arbitrator
- -Utility payoff
- -Focal non-equilibria

-Conclusion

A focal equilibrium is an equilibrium that has some property that conspicuously distinguishes it from all the other equilibria.

According to the focal-point effect, if there is one focal equilibrium in a game, then we should expect to observe that equilibrium.

Tradition

Schedule			C_2
First solution concept	C_1	f_2	s_2
Computing Nash	f_1	3,1	0, 0
Equilibria	s_1	0,0	1,3

The focal point effect

-Focal equilibria

-Tradition

-Focal arbitrator -Utility payoff

-Focal non-equilibria

-Conclusion

There are three equilibria in this game:

 $\bullet ([f_1], [f_2])$

$$\bullet ([s_1], [s_2])$$

 $\bullet (.75[f_1] + .25[s_1], .25[f_2] + .75[s_2])$

■ ...

Schedule

First solution concept

Nash Equilibrium

Computing Nash Equilibria

The focal point effect

-Focal equilibria

-Tradition

-Focal arbitrator -Utility payoff

-Focal non-equilibria

-Conclusion

A focal arbitrator can determine the focal equilibrium in a game by publicly suggesting to the players that they should all implement this equilibrium.

- Supervisor in a job conflict
- Oldest member of a group

Utility payoff

Schedule

First solution concept

Nash Equilibrium

Computing Nash Equilibria

The focal point effect

-Focal equilibria

-Tradition

-Focal arbitrator

-Utility payoff

-Focal non-equilibria

-Conclusion

The focal equilibrium can be determined by intrinsic properties of the utility payoffs.

Divide the dollars game: $C_1 = C_2 = \{x \in \mathbb{R} | 0 \ge x \ge 100\}$ with payoff function $u_i(c_1, c_2) = 0$ if $c_1 + c_2 > 100$ $u_i(c_1, c_2) = c_i$ if $c_1 + c_2 \le 100$

Utility payoff

Schedule

First solution concept

Nash Equilibrium

Computing Nash Equilibria

The focal point effect

-Focal equilibria

-Tradition

-Focal arbitrator

-Utility payoff

-Focal non-equilibria

The focal equilibrium can be determined by intrinsic properties of the utility payoffs.

Divide the dollars game: $C_1 = C_2 = \{x \in \mathbb{R} | 0 \ge x \ge 100\}$ with payoff function $u_i(c_1, c_2) = 0$ if $c_1 + c_2 > 100$ $u_i(c_1, c_2) = c_i$ if $c_1 + c_2 \le 100$

For any number x between 0 and 100, the pure strategy pair (x, 100 - x) is an equilibrium. There is also an equilibrium in (100, 100) in which both players have payoff 0.

Schedule

First solution concept

Nash Equilibrium

Computing Nash Equilibria

The focal point effect -Focal equilibria

-Tradition

-Focal arbitrator

-Utility payoff

-Focal non-equilibria -Conclusion The focal equilibrium can be determined by intrinsic properties of the utility payoffs.

Divide the dollars game: $C_1 = C_2 = \{x \in \mathbb{R} | 0 \ge x \ge 100\}$ with payoff function $u_i(c_1, c_2) = 0$ if $c_1 + c_2 > 100$ $u_i(c_1, c_2) = c_i$ if $c_1 + c_2 \le 100$

For any number x between 0 and 100, the pure strategy pair (x, 100 - x) is an equilibrium. There is also an equilibrium in (100, 100) in which both players have payoff 0.

An impartial arbitrator would probably suggest (50, 50), but even without an arbitrator this equilibrium could be focal.

Cabadula	The focal-point effect ca
Schedule	
First solution concept	implement a strategy pro
Nash Equilibrium	
Computing Nash Equilibria	C_1
The focal point effect -Focal equilibria	$\overline{x_1}$
-Tradition -Focal arbitrator	y_1
-Utility payoff -Focal non-equilibria	
-Conclusion	

he focal-point effect cannot lead intelligent rational players to plement a strategy profile that is not an equilibrium.

 x_2

5, 1

4, 4

 C_2

 y_2

0, 0

1, 5

•		• •
	($\overline{\mathcal{C}_2}$
C_1	$\overline{x_2}$	y_2
x_1	5,1	0,0
y_1	4,4	1, 5
	implement a strategy $\frac{C_1}{x_1}$	$\begin{array}{c c} \hline C_1 & x_2 \\ \hline x_1 & 5, 1 \\ \hline \end{array}$

-Conclusion

The strategy profile (y_1, x_2) cannot be a self-fulfilling prophecy because if player 1 thought that player 2 would choose x_2 , player 1 would choose x_1 instead of y_1 .

Conclusion

Schedule

First solution concept

Nash Equilibrium

Computing Nash Equilibria

The focal point effect

- -Focal equilibria
- -Tradition
- -Focal arbitrator
- -Utility payoff
- -Focal non-equilibria

-Conclusion

This week, we have seen:

- A first solution concept to games
- The Nash equilibrium
- Computation of Nash equilibria