Development of a
Network Topology Discovery Algorithm

Thai Son Hoang
David Basin
Hironobu Kuruma
Jean-Raymond Abrial
Thai Son Hoang, Hironobu Kuruma, David Basin, Jean-Raymond Abrial.

Developing Topology Discovery in Event-B

Science of Computer Programming (2009), 74 (11-12).

What is presented here is another development of the same problem
Why it is an Interesting Subject

- The final distributed algorithm is rather simple

- But the corresponding (formal) development is not that simple

- This example proposes some interesting techniques that can be used elsewhere

- We shall also insist on the importance of requirement analysis (requirements: what for?)
- Prologue
- Requirements
- Difficulties and Strategy
- Formal Development
- Conclusion
The **Master** and **Dog** paradigm
The Master rides a bike
The Dog tries to get to his Master
Master m, Dog d, and Goal g
Master and Dog
Master and Dog
Master and Dog: the Master Stops
- The Dog builds a local mental image of his Master’s position.

- The Dog reaches the Master if he stops for a sufficiently long time.
Another Dog, Just for the Fun ;-)
Requirements
- Requirements are very important

- Usually they are missing or poorly defined

- Requirements are informal statements

- They define the correctness criteria of a final implementation
- In our case, the master is a network

- This network may evolve as time goes

| We are given a finite set of nodes connected by oriented links which can be added or removed as time goes, thus forming a dynamic graph | REQ-1 |
The Network
The Network
The Network
The Network
The Network
The Network
- In our case, we have several dogs.

- Each node in the network is a dog.

- Each dog follow the master by forming a local image of the network.

- A node builds the network image by two different approaches (next slide)

- A dog reaches the master when its local image is the same as the network.
Requirements 2: the Dogs

<table>
<thead>
<tr>
<th>REQ-2</th>
<th>When a link from node (a) to node (b) is added to or removed from the network then node (b) is DIRECTLY made aware of it</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQ-3</td>
<td>The neighbors of a node (b) are the nodes that are connected to (b) by a link (l) entering in (b).</td>
</tr>
<tr>
<td>REQ-4</td>
<td>Neighbors of (b) send to (b) their local networks with MESSAGES sent to it through the connecting link</td>
</tr>
</tbody>
</table>

The Network
The Network: Node Q is Made Aware of New Connection PQ
The Network: Node R is Made Aware of New Connection QR
The Network: Local Connection PQ in Q is sent from Q to R
The Network: Node S is Made Aware of New Connection RS
The Network: Local Connection QR in R is sent from R to S
The Network
The Network
The Network
- We have not shown any link removal.

- Messages from one node to the other travelled instantaneously.

- As a consequence, we had no loss of messages.

- But unfortunately:
 - links can be removed
 - messages do not travel instantaneously

- Hence messages between nodes can be lost.
<table>
<thead>
<tr>
<th>Requirement 3: Loss of Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>A message sent from (a) to (b) is lost if the link from (a) to (b), which existed when the message was sent, is broken before the message reaches (b)</td>
</tr>
</tbody>
</table>
A Message m to be Sent from Node Q to Node P
The Message is Travelling
The Link is broken: the Message is Lost
The Link is not broken: the Message Reaches its Destination
- The dog-nodes can all reach together the master-network.

(under certain conditions)

| We must prove that under certain conditions the images of the graph built by nodes are all identical and equal to the graph itself | REQ-6 |

- The conditions are the following:
 - the network is not modified for a certain time,
 - the network is strongly connected when not modified
We are given a finite set of nodes connected by oriented links which can be added or removed as time goes, thus forming a dynamic graph.

<table>
<thead>
<tr>
<th>REQ-1</th>
</tr>
</thead>
</table>

When a link from node a to node b is added to or removed from the network then node b is DIRECTLY made aware of it.

<table>
<thead>
<tr>
<th>REQ-2</th>
</tr>
</thead>
</table>

The neighbors of a node b are the nodes that are connected to b by a link l entering in b.

<table>
<thead>
<tr>
<th>REQ-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighbors of b send to b their local networks with MESSAGES sent to it through the connecting link</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>A message sent from a to b is lost if the link from a to b, which existed when the message was sent, is broken before the message reaches b</td>
</tr>
<tr>
<td>We must prove that under certain conditions the images of the graph built by nodes are all identical and equal to the graph itself</td>
</tr>
</tbody>
</table>
Difficulties and Strategy
Modeling Difficulties

- Two ways of detecting link modifications: direct or with messages.

- Hence contradictory messages may circulate on the network.

- Which one reflects the real situation of the physical graph?

- Messages can be lost.

- What is the final condition (where all nodes know the graph)?

- How to express it?

- Where and how to start the modeling?
- Use abstraction

- Proceed by successive refinements

- Make proofs at each refinement level
Design Strategy: a Proposal

- Initial Model: Introducing the physical network.

- Refinement 1: Introducing a global logical network (detected).

- Refinement 2: Introducing local networks and message reservoirs.

- Refinement 3: Introducing ages of network changes.

- Refinement 4: Merging events.

- Refinement 5: Removing message reservoirs.

- Refinement 6: Finding the limit condition.

- Refinement 7: Handling loss of messages.
Formal Development
We are given a finite set of nodes connected by oriented links which can be added or removed as time goes, thus forming a dynamic graph.

- The physical network, \(NET \), is represented by a set of links \(L \).
Initial Model: External Events Adding or Removing Links

\[
\text{init} \quad NET := \emptyset
\]

Modify_up
\[
\begin{align*}
\text{any} & \quad l \\
\text{where} & \quad l \not\in NET \\
\text{then} & \quad NET := NET \cup \{l\} \\
\text{end}
\end{align*}
\]

Modify_dn
\[
\begin{align*}
\text{any} & \quad l \\
\text{where} & \quad l \in NET \\
\text{then} & \quad NET := NET \setminus \{l\} \\
\text{end}
\end{align*}
\]

- These events denote changes of the physical network \(NET \)
When a link from node a to node b is added to or removed from the graph then node b is directly made aware of it

variables: NET net

inv1_1: $net \subseteq L$

- We do not introduce the nodes yet (nor the local networks).

- The variable net denotes the global logical image directly detected.

- It is an abstraction representing the direct detection of the network.
First Refinement: Initialisation

\[
\text{init} \\
NET := \emptyset \\
net := \emptyset
\]

- Events modify_up and modify_dn are not modified.
First Refinement: Updating the Logical Network (new events)

\[\begin{align*}
\text{discover_up} & \quad \text{status} \\
& \quad \text{convergent} \\
& \quad \text{any} \\
& \quad l \\
& \quad \text{where} \\
& \quad l \in NET \setminus net \\
& \quad \text{then} \\
& \quad net := net \cup \{l\} \\
& \quad \text{end}
\end{align*}\]

\[\begin{align*}
\text{discover_dn} & \quad \text{status} \\
& \quad \text{convergent} \\
& \quad \text{any} \\
& \quad l \\
& \quad \text{where} \\
& \quad l \in net \setminus NET \\
& \quad \text{then} \\
& \quad net := net \setminus \{l\} \\
& \quad \text{end}
\end{align*}\]

variant1: \((NET \setminus net) \cup (net \setminus NET)\)

- Mind the convergence (Master and Dog)
Second Refinement: Introducing Local Networks

sets: \(N \)

\[\text{axm2}_1: \ finite(N) \]

variables: \(NET \quad net \quad l_net \)

\[\text{inv2}_1: \ l_net \in N \leftrightarrow L \]

- \(l_net \) denotes the local relation between nodes and links

- \(l_net[\{n\}] \) is the set of links recorded in node \(n \)

- The local networks are modified in two distinct ways:
 - either directly when detected in the physical network
 - or indirectly by neighbors
Second Refinement: Introducing **Message Reservoirs**

variables:
\[
\begin{align*}
m_{net_up} & \\
m_{net_dn} &
\end{align*}
\]

<table>
<thead>
<tr>
<th>inv2.2:</th>
<th>(m_{net_up} \in N \leftrightarrow L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>inv2.3:</td>
<td>(m_{net_dn} \in N \leftrightarrow L)</td>
</tr>
</tbody>
</table>

| inv2.4: | \(m_{net_up} \cap m_{net_dn} = \emptyset\) |

- \(n \mapsto l \in m_{net_up}\) means there is a message for node \(n\) about up-link \(l\).

- \(n \mapsto l \in m_{net_dn}\) means there is a message for node \(n\) about dn-link \(l\).

- \(m_{net_up}\) and \(m_{net_dn}\) are abstractions with messages from neighbors

- Such messages are supposed to be in transit in \(m_{net_up}\) and \(m_{net_dn}\)
Second Refinement: Handling Message Reservoirs

discover_up
discover_dn

change_link_dn
change_link_up

m_net_dn
m_net_up
init

\[
\begin{align*}
NET & := \emptyset \\
net & := \emptyset \\
l_{net} & := \emptyset \\
m_{net_up} & := \emptyset \\
m_{net_dn} & := \emptyset
\end{align*}
\]
Second Refinement: Refining Event \texttt{discover_up}

\begin{center}
\begin{tabular}{|l|}
\hline
\texttt{discover_up} \\
\texttt{any} \\
\texttt{l} \\
\texttt{n} \\
\texttt{where} \\
\texttt{l} \in \texttt{NET} \setminus \texttt{net} \\
\texttt{n} \in \texttt{N} \\
\texttt{then} \\
\texttt{net} := \texttt{net} \cup \{l\} \\
\texttt{l_net} := \texttt{l_net} \cup \{n \mapsto l\} \\
\texttt{m_net_up} := \texttt{m_net_up} \cup ((\texttt{N} \setminus \{n\}) \times \{l\}) \\
\texttt{m_net_dn} := \texttt{m_net_dn} \setminus (\texttt{N} \times \{l\}) \\
\texttt{end} \\
\hline
\end{tabular}
\end{center}

- Node n, concerned by the change discovery, is chosen arbitrarily

- Local network of node n is updated directly ($l_net := \ldots$)

- New messages about link l are prepared for nodes ($m_net_up := \ldots$)

- Old messages about link l are MAGICALLY discarded ($m_net_dn := \ldots$)
Second Refinement: Refining Event `discover_dn`

```
discover_dn
    any
    l
    n
  where
    l ∈ net \ NET
    n ∈ N
  then
    net := net \ {l}
    l_net := l_net \ {n ↦ l}
    m_net_dn := m_net_dn ∪ ((N \ {n}) × {l})
    m_net_up := m_net_up \ (N × {l})
  end
```

- Node \(n \), concerned by the change discovery, is chosen arbitrarily
- Local network of node \(n \) is updated directly (\(l_net := \ldots \))
- New messages about link \(l \) are prepared for nodes (\(m_net_dn := \ldots \))
- Old messages about link \(l \) are MAGICALLY discarded (\(m_net_up := \ldots \))
change_link_up

status

anticipated

any

n

l

where

n \mapsto l \in m_{\text{net_up}}

then

l_{\text{net}} := l_{\text{net}} \cup \{n \mapsto l\}

m_{\text{net_up}} := m_{\text{net_up}} \setminus \{n \mapsto l\}

end

- anticipated means the convergence is proved later.
Second Refinement: Updating \(l_{\text{net}} \) from "neighbors" (2)

\[
\begin{align*}
\text{change_link_dn} \\
\text{status} \\
\quad \text{anticipated} \\
\quad \text{any} \\
\quad \quad n \\
\quad \quad l \\
\text{where} \\
\quad n \mapsto l \in m_{\text{net_dn}} \\
\text{then} \\
\quad l_{\text{net}} := l_{\text{net}} \setminus \{n \mapsto l\} \\
\quad m_{\text{net_dn}} := m_{\text{net_dn}} \setminus \{n \mapsto l\} \\
\text{end}
\end{align*}
\]
Second Refinement: Updating \texttt{l_net} from "neighbors" (3)

\begin{center}
\begin{verbatim}
change_link_2
 status
 anticipated
 any
 ln
 where
 ln \in N \leftrightarrow L
 then
 l_net := ln
end
\end{verbatim}
\end{center}

- To be explained in next refinement.
Third Refinement: Introducing ages

- Each modification is "decorated" with a natural number: the age.

- An even number for an addition.

- An odd number for a removal.

- Such numbers are always increasing.

- Consequence, removal of:
 - net
 - m_{net_up} and m_{net_dn}
 - l_{net}
constants: \(\text{parity} \)

\begin{align*}
\text{axm3}_1: & \quad \text{parity} \in \mathbb{N} \rightarrow \{0, 1\} \\
\text{axm3}_2: & \quad \text{parity}(0) = 1 \\
\text{axm3}_3: & \quad \forall x \cdot \text{parity}(x + 1) = 1 - \text{parity}(x)
\end{align*}
Third Refinement: The *age* of a Link

variables: \[\text{NET} \quad \text{age} \]

inv3_1: \[\text{age} \in L \rightarrow \mathbb{N} \]

- The age is recorded when events `discover_up` or `discover_dn` occur.

inv3_2: \[\forall l \cdot l \in \text{net} \iff \text{parity}(\text{age}(l)) = 1 \]

- Thanks to inv3_2, variable `net` can be removed (replaced by `age`).
Third Refinement: Locally Recorded Age (1)

variables: \(NET \quad age \quad l_age \)

\textbf{inv3_3:} \(l_age \in N \times L \rightarrow \mathbb{N} \)

- Each local network contains the age (when recorded) of each link

- This locally recorded age is at most equal to the "real" age (\textbf{inv3_4})

\textbf{inv3_4:} \(\forall n, l \cdot l_age(n \mapsto l) \leq age(l) \)
inv3₅: \(\forall n, l \cdot n \mapsto l \in l_{\text{net}} \iff \text{parity}(l_{\text{age}}(n \mapsto l) = 1) \)

- Thanks to inv3₅, variable \(l_{\text{net}} \) can be removed (replaced by \(l_{\text{age}} \)).
Third Refinement: Messages with Ages (1)

variables: \[\ldots m_{\text{net}} \]

inv3_6: \[m_{\text{net}} \in N \times L \leftrightarrow \mathbb{N} \]

- Each message (when prepared) contains the age of the link
- Messages with the same link and different ages might exist

inv3_7: \[\forall n, l, a \cdot n \mapsto l \mapsto a \in m_{\text{net}} \Rightarrow a \leq \text{age}(l) \]

- The recorded age in a message is at most equal to the real age

inv3_8: \[\forall n, l, a \cdot \text{l_age}(n \mapsto l) < a \land a \leq \text{age}(l) \Rightarrow n \mapsto l \mapsto a \in m_{\text{net}} \]

- Invariant \textbf{inv3_8} will be used in refinement 5
Third Refinement: Messages with Ages (2)

inv3.9: \(\forall n, l \cdot n \mapsto l \in m_{\text{net_up}} \iff n \mapsto l \mapsto \text{age}(l) \in m_{\text{net}} \land \text{parity}(\text{age}(l)) = 1 \)

inv3.10: \(\forall n, l \cdot n \mapsto l \in m_{\text{net_dn}} \iff n \mapsto l \mapsto \text{age}(l) \in m_{\text{net}} \land \text{parity}(\text{age}(l)) = 0 \)

- \(m_{\text{net_up}} \) and \(m_{\text{net_dn}} \) can be removed (replaced by \(m_{\text{net}} \)).
init

\[NET := \emptyset \]
\[age := L \times \{0\} \]
\[l_age := N \times L \times \{0\} \]
\[m_net := \emptyset \]
(abstract.) discover_up

any
l
n
where
l ∈ NET
l /∈ net
n ∈ N
then
net := net ∪ {l}
l_net := l_net ∪ \{n \mapsto l\}
m_net_up := m_net_up ∪ ((N \setminus \{n\}) × \{l\})
m_net_dn := m_net_dn \setminus (N × \{l\})
end

discover_up

any
l
n
where
l ∈ NET
parity(age(l)) = 0 /\ l /∈ net ⇔ parity(age(l)) = 0 (inv3.2) */
n ∈ N
then
\begin{align*}
\text{age}(l) & := \text{age}(l) + 1 \\
\text{l_age}(n \mapsto l) & := \text{age}(l) + 1 \\
\text{m_net} & := \text{m_net} ∪ ((N \setminus \{n\}) \times \{l\} \times \{\text{age}(l) + 1\})
\end{align*}
end
Third Refinement: Events (2)

(abstract-)discover_dn

\[
\begin{align*}
\text{any} & \quad l \\
\text{any} & \quad n \\
\text{where} & \quad l \notin \text{NET} \\
& \quad l \in \text{net} \\
& \quad n \in \mathbb{N} \\
\text{then} & \quad \text{net} := \text{net} \setminus \{l\} \\
& \quad l_net := l_net \setminus \{n \mapsto l\} \\
& \quad m_net_dn := m_net_dn \cup ((\mathbb{N} \setminus \{n\}) \times \{l\}) \\
& \quad m_net_up := m_net_up \setminus (\mathbb{N} \times \{l\}) \\
\end{align*}
\]

end

discover_dn

\[
\begin{align*}
\text{any} & \quad l \\
\text{any} & \quad n \\
\text{where} & \quad l \notin \text{NET} \\
& \quad \text{parity}(\text{age}(l)) = 1 \quad /\!\!/ \quad l \in \text{net} \Leftrightarrow \text{parity}(\text{age}(l)) = 1 \quad \text{(inv3.2) */} \\
& \quad n \in \mathbb{N} \\
\text{then} & \quad \text{age}(l) := \text{age}(l) + 1 \\
& \quad l_age(n \mapsto l) := \text{age}(l) + 1 \\
& \quad m_net := m_net \cup ((\mathbb{N} \setminus \{n\}) \times \{l\} \times \{\text{age}(l) + 1\})) \\
\end{align*}
\]
end
Third Refinement: Events (3)

- Events **discover_up** and **discover_dn** will be merged (same actions).

- The merged event will be convergent
Third Refinement: Events (4)

(abstract-)change link up

```latex
\textbf{status} \quad \text{anticipated}
\textbf{any} \quad n \quad l
\textbf{where} \quad n \mapsto l \in m_{\text{net}_\text{up}}
\textbf{then}
\quad l_{\text{net}} := l_{\text{net}} \cup \{n \mapsto l\}
\quad m_{\text{net}_\text{up}} := m_{\text{net}_\text{up}} \setminus \{n \mapsto l\}
\textbf{end}
```

(abstract-)change link down

```latex
\textbf{status} \quad \text{anticipated}
\textbf{any} \quad n \quad l
\textbf{where} \quad n \mapsto l \in m_{\text{net}_\text{dn}}
\textbf{then}
\quad l_{\text{net}} := l_{\text{net}} \setminus \{n \mapsto l\}
\quad m_{\text{net}_\text{dn}} := m_{\text{net}_\text{dn}} \setminus \{n \mapsto l\}
\textbf{end}
```

change link up

```latex
\textbf{status} \quad \text{convergent}
\textbf{any} \quad n \quad l \quad x
\textbf{where} \quad x = \text{age}(l)
\quad n \mapsto l \mapsto x \in m_{\text{net}} \quad /\!* \text{inv3.9} */\!
\quad \text{parity}(x) = 1
\textbf{then}
\quad l_{\text{age}}(n \mapsto l) := x
\quad m_{\text{net}} := m_{\text{net}} \setminus \{n \mapsto l \mapsto x\}
\textbf{end}
```

change link down

```latex
\textbf{status} \quad \text{convergent}
\textbf{any} \quad n \quad l \quad x
\textbf{where} \quad x = \text{age}(l)
\quad n \mapsto l \mapsto x \in m_{\text{net}} \quad /\!* \text{inv3.10} */\!
\quad \text{parity}(x) = 0
\textbf{then}
\quad l_{\text{age}}(n \mapsto l) := x
\quad m_{\text{net}} := m_{\text{net}} \setminus \{n \mapsto l \mapsto x\}
\textbf{end}
```
- The age x in the message is different from $age(l)$ but node n cannot know that
- It can only observe that it is greater than $l_age(n \mapsto l)$

change_link_2

status
convergent

any
n
l
x

where
$x \neq age(l)$
$n \mapsto l \mapsto x \in m_net$
$x > l_age(n \mapsto l)$

with
$(parity(x) = 0 \Rightarrow ln = l_net \setminus \{n \mapsto l\}) \land$
$(parity(x) = 1 \Rightarrow ln = l_net \cup \{n \mapsto l\})$

then
$l_age(n \mapsto l) := x$
$m_net := m_net \setminus \{n \mapsto l \mapsto x\}$

end

inv3_13: finite(m_net)

variant3: m_net

- Events change_link_up, change_link_dn and change_link_2 will be merged (same actions).
- The merged event will be convergent too.
- These events will be **merged** (same actions)

- But the **merged event will not be convergent**
 (because event discard_2 is not convergent)
discover
refines
discover_up
discover_dn
any
l
n
where
\(l \in NET \Leftrightarrow parity(age(l)) = 0 \)
\(n \in N \)
then
\(age(l) := age(l) + 1 \)
\(m_{net} := m_{net} \cup ((N \setminus \{n\}) \times \{l\} \times \{age(l) + 1\}) \)
\(l_age(n \mapsto l) := age(l) + 1 \)
end

- The guard does not involve the variable \(m_{net} \).
change_link
 refines
 change_link_up
 change_link_dn
 change_link_2
any
 n
 l
 x
where
 n ↦ l ↦ x ∈ m_net
 x > l_age(n ↦ l)
thenunder
 l_age(n ↦ l) := x
 m_net := m_net \ {n ↦ l ↦ x}
end

- In the next refinement, the guard will be made independent from \(m_net \).
discard
 refines
discard_1
discard_2
any
 n
 l
 x
where
 x \leq \text{age}(n \mapsto l)
then
 m_{net} := m_{net} \setminus \{n \mapsto l \mapsto x\}
end

- The guard does not involve the variable \textit{m_{net}}.
constants: \(\text{fst} \quad \text{snd} \quad \text{link} \)

\begin{align*}
\text{axm5.1:} & \quad \text{fst} \in L \rightarrow N \\
\text{axm5.2:} & \quad \text{snd} \in L \rightarrow N \\
\text{axm5.3:} & \quad \text{link} \in N \times N \rightarrow L \\
\text{axm5.4:} & \quad \forall n, m \cdot \text{fst}(\text{link}(n \mapsto m)) = n \\
\text{axm5.5:} & \quad \forall n, m \cdot \text{snd}(\text{link}(n \mapsto m)) = m \\
\text{axm5.6:} & \quad \forall l \cdot \text{link} (\text{fst}(l) \mapsto \text{snd}(l)) = l
\end{align*}
Fifth Refinement: Removing variable m_{net} (1)

```plaintext
change_link
any
  l
  x
  k
where
  k \in NET
  l\_age(snd(k) \mapsto l) < x
  x \leq l\_age(fst(k) \mapsto l)      /* n \mapsto l \mapsto x \in m_{\text{net}} */
with
  n = snd(k)
then
  l\_age(snd(k) \mapsto l) := x
  /* m_{\text{net}} := m_{\text{net}} \setminus \{snd(k) \mapsto l \mapsto x\} */
end
```

- The proof of guard strengthening uses invariant inv3_8

\[\forall n, l, x \cdot l_age(n \mapsto l) < x \land x \leq age(l) \Rightarrow n \mapsto l \mapsto x \in m_{\text{net}} \]

- and invariant inv3_4

\[\forall n, l \cdot l_age(n \mapsto l) \leq age(l) \]
Fifth Refinement: Removing variable m_{net} (2)

- m_{net} is removed since it does not appear in any guard

```
discover
  any
  l
where
  l ∈ NET ⇔ parity(age(l)) = 0
with
  n = snd(l)
then
  age(l) := age(l) + 1
  l_age(snd(l) ↦ l) := age(l) + 1
end
```
- `m_{net}` is removed since it does not appear in any guard

```
discard
  any
    l
    x
    k
  where
    k ∈ NET
    x ≤ \text{age}(\text{snd}(k) \mapsto l)
  with
    n = \text{snd}(k)
  then
    skip
end
```
Sixth Refinement: Defining the Graph G

variables: age l_{age} G

inv6_1: $G \in N \leftrightarrow N$

inv6_2: $\forall l \cdot l \in NET \leftrightarrow fst(l) \mapsto snd(l) \in G$

inv6_3: $\forall l \cdot age(l) = l_{age}(snd(l) \mapsto l)$

- Invariant **inv6_2** allows us to remove the variable NET.

- Invariant **inv6_3** will allow us to remove the variable age (in next refinement)
Sixth Refinement: Initialisation

\[
\text{init} \\
G \quad := \quad \emptyset \\
age \quad := \quad L \times \{0\} \\
l_age \quad := \quad N \times L \times \{0\}
\]
discover any l

where $\text{fst}(l) \mapsto \text{snd}(l) \in G \iff \text{parity}(\text{age}(l)) = 0$

then

\[
\text{age}(l) := \text{age}(l) + 1
\]

\[
\text{l_age}(\text{snd}(l) \mapsto l) := \text{age}(l) + 1
\]

end
Neighbors of b send to b their local networks with MESSAGES sent to it through the connecting link

change_link

any
l
x
k

where

\[\text{fst}(k) \mapsto \text{snd}(k) \in G \]
\[x > \text{age}(\text{snd}(k) \mapsto l) \]
\[x \leq \text{age}(\text{fst}(k) \mapsto l) \]

/* x is explained in next refinement */

with

\[n = \text{snd}(k) \]

then

\[\text{age}(\text{snd}(k) \mapsto l) := x \]

end

- Node $\text{fst}(k)$ is a neighbor of $\text{snd}(k)$ since $\text{fst}(k) \mapsto \text{snd}(k) \in G$
Sixth Refinement: Finding the Limit Condition (1)

We must prove that under certain conditions the images of the graph built by nodes are all identical and equal to the graph itself

- To be proved

Convergent events discover and change link deadlocks
Physical graph is strongly connected
⇒
Local networks are all equal to physical network

- There is nothing to discover (the graph is still)
- There is nothing significative to transmitt.
- Note that these events are both convergent.
- Guard of the event **discover**:

\[\exists l \cdot \text{fst}(l) \leftrightarrow \text{snd}(l) \in G \iff \text{parity}(\text{age}(l)) = 0 \]

- Negation of the guard of the event **discover** (deadlock condition):

\[\neg \exists l \cdot \text{fst}(l) \leftrightarrow \text{snd}(l) \in G \iff \text{parity}(\text{age}(l)) = 0 \]
\[\iff \forall l \cdot \text{fst}(l) \leftrightarrow \text{snd}(l) \in G \iff \text{parity}(\text{age}(l)) = 1 \]
\[\iff \forall l \cdot l \in NET \iff \text{parity}(\text{age}(l)) = 1 \]
- Guard of the event \texttt{change_link}:

\[
\exists l, x, k \cdot \text{fst}(k) \rightarrow \text{snd}(k) \in G \land
\]
\[
x > \text{age}(\text{snd}(k) \rightarrow l) \land
\]
\[
x \leq \text{age}(\text{fst}(k) \rightarrow l)
\]

- Negation of the guard of the event \texttt{change_link} (deadlock condition):

\[
\neg \exists l, x, k \cdot \text{fst}(k) \rightarrow \text{snd}(k) \in G \land
\]
\[
x > \text{age}(\text{snd}(k) \rightarrow l) \land
\]
\[
x \leq \text{age}(\text{fst}(k) \rightarrow l)
\]
\[
\iff
\]
\[
\forall l, x, k \cdot \text{fst}(k) \rightarrow \text{snd}(k) \in G
\]
\[
\Rightarrow
\]
\[
x \leq \text{age}(\text{snd}(k) \rightarrow l) \lor x > \text{age}(\text{fst}(k) \rightarrow l)
\]
\[
\iff
\]
\[
\forall l, x, a, b \cdot a \leftrightarrow b \in G \Rightarrow x \leq \text{age}(b \leftrightarrow l) \lor x > \text{age}(a \leftrightarrow l)
\]
\[
\iff
\]
\[
\forall l, a, b \cdot a \leftrightarrow b \in G \Rightarrow \text{age}(a \leftrightarrow l) \leq \text{age}(b \leftrightarrow l)
\]
Sixth Refinement: Finding the Limit Condition (4)

- Observe strong connectivity of graph G

\[
\text{thm6}_1: \quad \forall l, a, b \cdot a \leftrightarrow b \in G \Rightarrow \text{l_age}(a \leftrightarrow l) \leq \text{l_age}(b \leftrightarrow l) \\
\forall s \cdot s \neq \emptyset \land G[s] \subseteq s \Rightarrow N \subseteq s \\
\Rightarrow \\
\forall l, n \cdot \text{l_age}(n \leftrightarrow l) = \text{age}(l)
\]

- Hint: instantiate s with $\{ n \mid \text{l_age}(n \leftrightarrow l) = \text{age}(l) \}$.

\[
\text{thm6}_2: \quad \forall l \cdot l \in NET \iff \text{parity}(\text{age}(l)) = 1 \\
\forall l, a, b \cdot a \leftrightarrow b \in G \Rightarrow \text{l_age}(a \leftrightarrow l) \leq \text{l_age}(b \leftrightarrow l) \\
\forall s \cdot s \neq \emptyset \land G[s] \subseteq s \Rightarrow N \subseteq s \\
\Rightarrow \\
\forall l, n \cdot l \in NET \iff \text{parity}(\text{l_age}(n \leftrightarrow l)) = 1
\]
Sixth Refinement: Finding the Limit Condition (5)

thm6.2: \(\forall l \cdot l \in NET \Leftrightarrow \text{parity}(\text{age}(l)) = 1 \)

\(\forall l, a, b \cdot a \mapsto b \in G \Rightarrow \text{age}(a \mapsto l) \leq \text{age}(b \mapsto l) \)

\(\forall s \cdot s \neq \emptyset \land G[s] \subseteq s \Rightarrow N \subseteq s \)

\(\Rightarrow \)

\(\forall l, n \cdot l \in NET \Leftrightarrow \text{parity}(\text{age}(n \mapsto l)) = 1 \)

thm6.3: \(\forall l \cdot l \in NET \Leftrightarrow \text{parity}(\text{age}(l)) = 1 \)

\(\forall l, a, b \cdot a \mapsto b \in G \Rightarrow \text{age}(a \mapsto l) \leq \text{age}(b \mapsto l) \)

\(\forall s \cdot s \neq \emptyset \land G[s] \subseteq s \Rightarrow N \subseteq s \)

\(\Rightarrow \)

\(\forall n \cdot l_\text{net}[\{n\}] = NET \)

- Hint: Use invariant **inv3.5**

inv3.5: \(\forall n, l \cdot l \in l_\text{net}[\{n\}] \Leftrightarrow \text{parity}(\text{age}(n \mapsto l)) = 1 \)
thm6.3:

\[
\forall l \cdot l \in NET \iff \text{parity}(\text{age}(l)) = 1 \\
\forall l, a, b \cdot a \leftrightarrow b \in G \Rightarrow l_{\text{age}}(a \leftrightarrow l) \leq l_{\text{age}}(b \leftrightarrow l) \\
\forall s \cdot s \neq \emptyset \land G[s] \subseteq s \Rightarrow N \subseteq s \\
\Rightarrow \\
\forall n \cdot \text{l.net}[\{n\}] = NET
\]

Event discover deadlocks
Event change_link deadlocks

Physical graph is strongly connected

⇒

Local networks are all equal to physical network
Modify up
any
l
where
\(\text{fst}(l) \mapsto \text{snd}(l) \notin G \)
then
\(G := G \cup \{ \text{fst}(l) \mapsto \text{snd}(l) \} \)
end

Modify dn
any
l
where
\(\text{fst}(l) \mapsto \text{snd}(l) \in G \)
then
\(G := G \setminus \{ \text{fst}(l) \mapsto \text{snd}(l) \} \)
end
discard

any

l

x

k

where

\(\text{fst}(k) \mapsto \text{snd}(k) \in G \)

\(x \leq \text{age}(\text{snd}(k) \mapsto l) \)

then

skip

derase
Seventh Refinement: Introducing Message Channels \(m \)

variables: \(G \), \(l_{age} \), \(m \)

inv7_1: \(m \subseteq L \times L \times \mathbb{N} \)

inv7_2: \(\forall k, l, x \cdot k \mapsto l \mapsto x \in m \Rightarrow x \leq l_{age}(fst(k) \mapsto l) \)

inv7_3: \(\forall k, l, x \cdot k \mapsto l \mapsto x \in m \Rightarrow fst(k) \mapsto snd(k) \in G \)

- \(k \mapsto l \mapsto x \in m \) means a message dealing with link \(l \) and age \(x \) is travelling on link \(k \).

- **inv7_2** says that ages at the origin of a message, \(l_{age}(fst(k) \mapsto l) \), can only increase while message is travelling.

- **inv7_3** says that a message is always travelling on an existing link.
init

\[G := \emptyset \]
\[m := \emptyset \]
\[l_age := N \times L \times \{0\} \]
A message sent from \(a \) to \(b \) is lost if the link from \(a \) to \(b \), which existed when the message was sent, is broken before the message reaches \(b \)

- All messages travelling on link \(l \) are lost when \(l \) is broken.
Seventh Refinement: Events (2)

(abstract-)discover

\[
\begin{align*}
\text{any} & \quad l \\
\text{where} & \quad \text{fst}(l) \mapsto \text{snd}(l) \in G \iff \text{parity}(\text{age}(l)) = 0 \\
\text{then} & \quad \text{age}(l) := \text{age}(l) + 1 \\
\text{end} \\
\text{end}
\end{align*}
\]

\text{inv6.3: } \forall l \cdot \text{age}(l) = \text{l_age(snd(l) }\mapsto l)

\[
\begin{align*}
\text{discover} & \quad \text{any} \\
\text{any} & \quad l \\
\text{where} & \quad \text{fst}(l) \mapsto \text{snd}(l) \in G \iff \text{parity}(\text{l_age(snd(l) }\mapsto l)) = 0 \\
\text{then} & \quad \text{l_age(snd(l) }\mapsto l) := \text{l_age(snd(l) }\mapsto l) + 1 \\
\text{end}
\end{align*}
\]
Neighbors of b send to b their local networks with MESSAGES sent to it through the connecting link

send_message
 any
 k
 l
 where
 $\text{fst}(k) \mapsto \text{snd}(k) \in G$
 $l \in L$
 then
 $m := m \cup \{k \mapsto l \mapsto \text{age}(\text{fst}(k) \mapsto l)\}$
end

- Observe the non-determinacy on l
- This event is not convergent: a message can always be sent.
Seventh Refinement: Events (3)

(abstract-)change

any
l
x
k
where
\(\text{fst}(k) \mapsto \text{snd}(k) \in G \)
\(x > \text{age}(\text{snd}(k) \mapsto l) \)
\(x \leq \text{age}(\text{fst}(k) \mapsto l) \)
with
\(n = \text{snd}(k) \)
then
\(\text{age}(\text{snd}(k) \mapsto l) := x \)
end

inv7.2: \(\forall k, l, x \cdot k \mapsto l \mapsto x \in m \Rightarrow x \leq \text{age}(\text{fst}(k) \mapsto l) \)

inv7.3: \(\forall k, l, x \cdot k \mapsto l \mapsto x \in m \Rightarrow \text{fst}(k) \mapsto \text{snd}(k) \in G \)

(abstract-)discard

any
l
x
k
where
\(\text{fst}(k) \mapsto \text{snd}(k) \in G \)
\(x \leq \text{age}(\text{snd}(k) \mapsto l) \)
then
skip
end

accept_message
refines
change_link
any
l
x
k
where
\(k \mapsto l \mapsto x \in m \)
\(x > \text{age}(\text{snd}(k) \mapsto l) \)
then
\(\text{age}(\text{snd}(k) \mapsto l) := x \)
\(m := m \setminus \{ k \mapsto l \mapsto x \} \)
end

discard_message
refines
discard
any
l
x
k
where
\(k \mapsto l \mapsto x \in m \)
\(x \leq \text{age}(\text{snd}(k) \mapsto l) \)
then
\(m := m \setminus \{ k \mapsto l \mapsto x \} \)
end
- The final result is particularly simple:

 - Three variables:
 - G, l_{age}, m

 - Simple events:
 - Modify_up, Modify_dn
 - discover
 - send_message
 - accept_message
 - discard_message

- However, the development is not that simple
Conclusion: Proof Statistics

<table>
<thead>
<tr>
<th>model</th>
<th>proofs</th>
<th>auto.</th>
<th>manual</th>
<th>% auto.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. 1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Ref. 2</td>
<td>19</td>
<td>19</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Ref. 3</td>
<td>115</td>
<td>79</td>
<td>36</td>
<td>68</td>
</tr>
<tr>
<td>Ref. 4</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>83</td>
</tr>
<tr>
<td>Ref. 5</td>
<td>18</td>
<td>17</td>
<td>1</td>
<td>94</td>
</tr>
<tr>
<td>Ref. 6</td>
<td>13</td>
<td>10</td>
<td>3</td>
<td>76</td>
</tr>
<tr>
<td>Ref. 7</td>
<td>38</td>
<td>32</td>
<td>6</td>
<td>84</td>
</tr>
<tr>
<td>Total</td>
<td>212</td>
<td>165</td>
<td>47</td>
<td>77</td>
</tr>
</tbody>
</table>
THAT’S ALL