Cryptographic Enforcement of Interval-Based Access Control Policies

Jason Crampton

Information Security Group
Royal Holloway, University of London

University of Luxembourg, 3 July 2012
Cryptographic Access Control

Space-Time Trade-Offs

Temporal Access Control
 Binary Decomposition
 Multiplicative Decomposition
 Related Work

Extensions to Higher Dimensions

Concluding Remarks
“Traditional” Access Control
"Traditional" Access Control

[Diagram showing a person labeled 'Allow' pointing towards a box labeled 'SECRET']
“Traditional” Access Control
“Traditional” Access Control
Cryptographically-Enforced Access Control
Cryptographically-Enforced Access Control: Scalability
Graph-Based Authorization Policies
Graph-Based Authorization Policies
Graph-Based Authorization Policies
A Generic Single-Key Enforcement Mechanism

- We treat encryption keys like any other protected resource (that is, we encrypt them)
A Generic Single-Key Enforcement Mechanism

- We treat encryption keys like any other protected resource (that is, we encrypt them)
- For every edge \((x, y)\), encrypt \(\kappa(y)\) using \(\kappa(x)\) (iterative key derivation by the end user)
We treat encryption keys like any other protected resource (that is, we encrypt them)

For every edge \((x, y)\), encrypt \(\kappa(y)\) using \(\kappa(x)\) (iterative key derivation by the end user)

Alternatively, for every \(y\) that is reachable from \(x\), encrypt \(\kappa(y)\) using \(\kappa(x)\) (direct key derivation)
A Generic Single-Key Enforcement Mechanism

- We treat encryption keys like any other protected resource (that is, we encrypt them)
- For every edge \((x, y)\), encrypt \(\kappa(y)\) using \(\kappa(x)\) (iterative key derivation by the end user)
- Alternatively, for every \(y\) that is reachable from \(x\), encrypt \(\kappa(y)\) using \(\kappa(x)\) (direct key derivation)

- Clearly, there are trade-offs between
 - the number of keys that need to be encrypted
 - the number of key derivation operations performed by a user
Security Considerations: Key Recovery

- It should be computationally hard for \(u \) to derive \(\kappa(y) \) unless there is a path from \(\lambda(u) \) to \(y \)
- More generally, it should be computationally hard for a group of users \(U_{\text{Collude}} \subseteq U \) to pool key information and derive \(\kappa(y) \) unless there exists \(u \in U_{\text{Collude}} \) such that there is a directed path from \(\lambda(u) \) to \(y \)
- For appropriate choices of encryption function \(E \), edge-based encryption schemes satisfy the above properties
Informally, it should be computationally hard to distinguish between a key $\kappa(y)$ and a random value.

Edge-based encryption schemes do not satisfy this property (since successful key derivation and object decryption provides a means of distinguishing).

Schemes having key indistinguishability can be constructed (modulo certain assumptions about the attack model) by modifying the graph and the labeling function.
Cryptographic Access Control

Space-Time Trade-Offs

Temporal Access Control

Extensions to Higher Dimensions

Concluding Remarks
Introduction

- Given an authorization graph $G_{\text{auth}} = (V, E_{\text{auth}})$ and $x, y \in V$, let $(x, y) \in E_{\text{enf}}$ if and only if $\kappa(y)$ is encrypted using $\kappa(x)$
- We say $E_{\text{enf}} \subseteq V \times V$ is policy-enforcing if and only if $E_{\text{auth}}^* = E_{\text{enf}}^*$
- The distance between $x, y \in V$ is the number of edges in the shortest path from x to y; the diameter of $G = (V, E)$ is defined to be $\max \{ d(x, y) : x, y \in V \}$

$$|E_{\text{auth}}| = 12; \text{ diameter } = 3$$

$$|E_{\text{enf}}| = 25; \text{ diameter } = 1$$
Introduction

- Given an authorization graph $G_{\text{auth}} = (V, E_{\text{auth}})$ and $x, y \in V$, let $(x, y) \in E_{\text{enf}}$ if and only if $\kappa(y)$ is encrypted using $\kappa(x)$
- We say $E_{\text{enf}} \subseteq V \times V$ is policy-enforcing if and only if $E_{\text{auth}}^* = E_{\text{enf}}^*$
- The distance between $x, y \in V$ is the number of edges in the shortest path from x to y; the diameter of $G = (V, E)$ is defined to be $\max \{ d(x, y) : x, y \in V \}$

\[|E_{\text{auth}}| = 12; \text{ diameter } = 3 \quad \text{and} \quad |E_{\text{enf}}| = 25; \text{ diameter } = 1 \]

- We are interested in the trade-offs between the cardinality of E_{enf} and the diameter of G_{enf}
Let V be a total order on n elements (V, \leq); then there exist sets of enforcing edges E_{enf} such that

\[
\begin{array}{c|c}
|E_{enf}| & d(G_{enf}) \\
\hline
\frac{1}{2} n(n-1) & 1 \\
\Theta(n \log n) & 2 \\
\Theta(n \log \log n) & 3 \\
\Theta(n \log^* n) & 4 \\
n-1 & n-1 \\
\end{array}
\]
Trade-Offs for a Total Order: An Illustration

Consider a total order of 16 elements, for which we will construct a two-hop scheme.
Trade-Offs for a Total Order: An Illustration

Consider a total order of 16 elements, for which we will construct a two-hop scheme.

Step 1 Connect the top eight nodes to a “median node” and connect that node to the remaining nodes.
Trade-Offs for a Total Order: An Illustration

Consider a total order of 16 elements, for which we will construct a two-hop scheme.

Step 1 Connect the top eight nodes to a “median node” and connect that node to the remaining nodes.

Step 2 Repeat for each chain of length 8.
Consider a total order of 16 elements, for which we will construct a two-hop scheme.

Step 1 Connect the top eight nodes to a “median node” and connect that node to the remaining nodes.

Step 2 Repeat for each chain of length 8.

Step 3 Repeat for each chain of length 4.
Trade-Offs for a Total Order: An Illustration

Consider a total order of 16 elements, for which we will construct a two-hop scheme.

Step 1 Connect the top eight nodes to a “median node” and connect that node to the remaining nodes.

Step 2 Repeat for each chain of length 8.

Step 3 Repeat for each chain of length 4.

Step 4 Repeat for each chain of length 2.
Consider a total order of 16 elements, for which we will construct a two-hop scheme.

Step 1 Connect the top eight nodes to a “median node” and connect that node to the remaining nodes.

Step 2 Repeat for each chain of length 8.

Step 3 Repeat for each chain of length 4.

Step 4 Repeat for each chain of length 2.

For a chain of \(n \) elements there are \(\log n \) rounds; each round adds fewer than \(n \) edges; the diameter of the resulting graph is 2.
References

M.J. Atallah, M. Blanton, and K.B. Frikken.
Key management for non-tree access hierarchies.

H. L. Bodlaender, G. Tel, and N. Santoro.
Trade-offs in non-reversing diameter.

J. Crampton, K. M. Martin, and P. Wild.
On key assignment for hierarchical access control.

A. C.-C. Yao.
Space-time tradeoff for answering range queries.
Cryptographic Access Control

Space-Time Trade-Offs

Temporal Access Control

Extensions to Higher Dimensions

Concluding Remarks
Introduction

- Protected data is released periodically.
- Each release period is regarded as a time point.
- An interval is a consecutive sequence of time points: \(V = \{ [i, j] : 1 \leq i \leq j \leq n \} \).
- Each user is authorized for some interval.
- The authorization graph resembles a triangular mesh.
The Naïve Approach

We could just apply the iterative cryptographic enforcement method to the triangular mesh

- We require $m(m - 1)$ edges
- Key derivation requires no more than $m - 1$ hops
We could just apply the iterative cryptographic enforcement method to the triangular mesh

- We require $m(m - 1)$ edges
- Key derivation requires no more than $m - 1$ hops

Alternatively, we could ask what trade-offs are possible for this particular authorization graph and this particular application?

- Solutions to the problem have either adapted methods for total orders or for arbitrary graphs
- We tackle the problem in a more direct way
A Crucial Observation

Protected objects are associated with a particular time point, not an interval

- The key for time point i is assigned label $[i, i]$
- No object is assigned a label $[i, j]$ with $i < j$

A user only needs to derive keys for labels of the form $[i, i]$

This assertion is not true in general for authorization graphs
Problem Summary

Given $V = \{[i, j] : 1 \leq i \leq j \leq m\}$, find an edge set $E \subseteq V \times V$ such that

1. there exists a path from $[i, j]$ to $[k, k]$ for all $k \in [i, j]$
2. $|E|$ is small
3. the diameter of the graph (V, E) is small
Cryptographic Access Control

Space-Time Trade-Offs

Temporal Access Control
 Binary Decomposition
 Multiplicative Decomposition
 Related Work

Extensions to Higher Dimensions

Concluding Remarks
The One-Hop Scheme

- The one-hop scheme is useful as a base scheme in more complex recursive constructions
 - Every non-“leaf” node is connected to the appropriate “leaf” nodes
 - The diameter of the graph is 1
The One-Hop Scheme

- The one-hop scheme is useful as a base scheme in more complex recursive constructions
 - Every non-“leaf” node is connected to the appropriate “leaf” nodes
 - The diameter of the graph is 1
- \[e_m - e_{m-1} = (t_m - 1), \text{ where } t_m = \frac{1}{2} m(m + 1) \]
The One-Hop Scheme

- The one-hop scheme is useful as a base scheme in more complex recursive constructions
 - Every non-“leaf” node is connected to the appropriate “leaf” nodes
 - The diameter of the graph is 1
- \(e_m - e_{m-1} = (t_m - 1) \), where \(t_m = \frac{1}{2}m(m + 1) \)
 - Whence \(e_m = \sum_{i=1}^{m}(t_m - 1) = \frac{1}{6}m(m - 1)(m + 4) \)
Two Results

Let T_m denote the set of intervals $\{[i,j] : 1 \leq i \leq j \leq m\}$

Proposition

Let E be an enforcing set of edges for T_m. Then $|E| \geq m(m - 1)$.
Two Results

Let T_m denote the set of intervals $\{[i,j]: 1 \leq i \leq j \leq m\}$

Proposition

Let E be an enforcing set of edges for T_m. Then $|E| \geq m(m - 1)$.

Proposition

There exists an enforcing set of edges E such that $|E| = m(m - 1)$ and the diameter of (T_m, E) is $\lceil \log m \rceil$.
An Explicit Construction for T_7
Cryptographic Access Control

Space-Time Trade-Offs

Temporal Access Control

Binary Decomposition

Multiplicative Decomposition

Related Work

Extensions to Higher Dimensions

Concluding Remarks
Nodes and Supernodes

If \(m = ab \), then \(T_m \) can be regarded as a copy of \(T_b \) in which the “supernodes” are copies of \(T_a \) and \(D_a \).
Nodes and Supernodes

If \(m = ab \), then \(T_m \) can be regarded as a copy of \(T_b \) in which the “supernodes” are copies of \(T_a \) and \(D_a \)

- Each interval in \(D_a \) is the disjoint union of no more than \(b \) intervals in copies of \(T_a \)
If \(m = ab \), then \(T_m \) can be regarded as a copy of \(T_b \) in which the “supernodes” are copies of \(T_a \) and \(D_a \):

- Each interval in \(D_a \) is the disjoint union of no more than \(b \) intervals in copies of \(T_a \).
- Given an interval in \(D_a \) add edges to appropriate nodes in copies of \(T_a \).
A Two-Hop Scheme

- Divide T_m into a^2 blocks so that each block contains a single node from each D_a
- Each node in a block occupies the same relative position within its respective copy of D_a
A Two-Hop Scheme

- Divide T_m into a^2 blocks so that each block contains a single node from each D_a
- Each node in a block occupies the same relative position within its respective copy of D_a

- Construct a^2 copies of a 1-hop scheme for T_b and a 1-hop scheme for each copy of T_a
A Two-Hop Scheme

- Divide T_m into a^2 blocks so that each block contains a single node from each D_a
- Each node in a block occupies the same relative position within its respective copy of D_a

- Construct a^2 copies of a 1-hop scheme for T_b and a 1-hop scheme for each copy of T_a
- In total, the number of edges required is

$$
\frac{1}{6}ab(a(b - 1)(b + 4) + (a - 1)(a + 4))
$$
Generalizing the Two-Hop Construction

Writing $36 = 3 \cdot 3 \cdot 4$ we obtain the following decomposition of T_{36}
Generalizing the Two-Hop Construction

Writing $36 = 3 \cdot 3 \cdot 4$ we obtain the following decomposition of T_{36}
Generalizing the Two-Hop Construction

Writing $36 = 3 \cdot 3 \cdot 4$ we obtain the following decomposition of T_{36}
Generalizing the Two-Hop Construction

Theorem
Let \(m = \prod_{i=1}^{d} a_i \), where \(a_i \) is an integer and \(2 \leq a_i \leq a_{i+1} \) for all \(i \). Then there exists an enforcing set of edges \(E \) such that the diameter of \((T_m, E) \) is \(d \) and

\[
|E| = \frac{m^2}{6} \sum_{i=1}^{d} \frac{(a_i - 1)(a_i + 4)}{\pi_i},
\]

where \(\pi_i = a_1 \ldots a_i \).
Some Remarks about the Term $\frac{(a_i-1)(a_i+4)}{\pi_i}$

- Successive terms in the summation are approximately equal when $a_{i+1} \approx a_i^2$ (minimize d)
- The ith term in the summation is minimized when $a_i = 2$ (minimize $|E|$)
- Consider $m = 36$

| Factors | $|E|$ | d |
|---------|--------|-----|
| 6.6 | $36^2 \cdot \frac{175}{108}$ | 2 |
| 4.9 | $36^2 \cdot \frac{153}{108}$ | 2 |
| 3.3.4 | $36^2 \cdot \frac{124}{108}$ | 3 |
| 2.2.3.3 | $36^2 \cdot \frac{109}{108}$ | 4 |
Corollary 1

Theorem

...there exists an enforcing set of edges E such that the diameter of (T_m, E) is d and

$$|E| = \frac{m^2}{6} \sum_{i=1}^{d} \frac{(a_i - 1)(a_i + 4)}{\pi_i}$$

Corollary

If $m = a^d$, then there exists an enforcing edge set E such that

$$|E| = \frac{1}{6} m(m - 1)(a + 4)$$

and the diameter of (T_m, E) is $d = \log_a m$.
Corollary 2

Theorem

... there exists an enforcing set of edges E such that the diameter of (T_m, E) is d and

$$|E| = \frac{m^2}{6} \sum_{i=1}^{d} \frac{(a_i - 1)(a_i + 4)}{\pi_i}$$

Corollary

Let $m = 2^{2^d}$ for some integer $d \geq 2$. Then there exists an enforcing edge set E such that

$$|E| < m^2 \left(1 + \frac{1}{6} \log \log m\right)$$

and the diameter of (T_m, E) is $\log \log m$.
Cryptographic Access Control

Space-Time Trade-Offs

Temporal Access Control
 - Binary Decomposition
 - Multiplicative Decomposition
 - Related Work

Extensions to Higher Dimensions

Concluding Remarks
Related Work

M.J. Atallah, M. Blanton, and K.B. Frikken.
Incorporating temporal capabilities in existing key management schemes.
In *Proceedings of ESORICS 2007*.

 Key management for non-tree access hierarchies.
 In *Proceedings of SACMAT 2006*.

New constructions for provably-secure time-bound hierarchical key assignment schemes.

- B. Dushnik and E.W. Miller.
 Partially ordered sets.

- M. Thorup.
 Shortcutting planar digraphs.
Comparison

<table>
<thead>
<tr>
<th></th>
<th>Public Storage</th>
<th>Derivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atallah et al. 2007</td>
<td>$\mathcal{O}(m^2 \log m)$</td>
<td>$\mathcal{O}(\log^* m)$</td>
</tr>
<tr>
<td></td>
<td>$\mathcal{O}(m^2)$</td>
<td></td>
</tr>
<tr>
<td>De Santis et al., 2008</td>
<td>$\mathcal{O}(m^2)$</td>
<td>$\mathcal{O}(\log m \log^* m)$</td>
</tr>
<tr>
<td></td>
<td>$\mathcal{O}(m^2 \log m)$</td>
<td>$\mathcal{O}(\log^* m)$</td>
</tr>
<tr>
<td></td>
<td>$\mathcal{O}(m^2 \log m \log \log m)$</td>
<td></td>
</tr>
<tr>
<td>Crampton, 2009</td>
<td>$m(m-1)$</td>
<td>$\lceil \log m \rceil$</td>
</tr>
<tr>
<td></td>
<td>$\frac{1}{6} m(m-1)(\sqrt{m} + 4)$</td>
<td>2</td>
</tr>
<tr>
<td>Crampton, 2010</td>
<td>$m^2 \left(1 + \frac{1}{6} \lceil \log \log m \rceil \right)$</td>
<td>$\lceil \log \log m \rceil$</td>
</tr>
</tbody>
</table>
Practical and Efficient Enforcement

- My approach attacks the problem directly and makes use of specific characteristics of the application.
- My constructions yield explicit formulae (rather than asymptotic behaviour) for the number of edges and the number of hops required.
- My schemes can be implemented directly using existing iterative key encrypting schemes.
Cryptographic Access Control

Space-Time Trade-Offs

Temporal Access Control

Extensions to Higher Dimensions

Concluding Remarks
“Geo-Spatial” Access Control Policies

- Data objects are associated with a point in a two-dimensional grid.
- Users are authorized for rectangles covering a set of points in the grid.
- The set of rectangles ordered by subset inclusion forms a partially ordered set.
- The set of nodes in the authorization graph is $T_m \times T_n$.
- We will write $T_{m,n}$ to denote $T_m \times T_n$.

![Diagram of authorization graph with nodes labeled as $[i,j] \times [k,l]$.]
The Main Results

Theorem
There exists an enforcing set of edges E such that the diameter of the graph $(T_{n,n}, E)$ is bounded by $\lceil \log n \rceil$ and

$$|E| = \frac{1}{3} n^2 (n - 1)(2n + 5) < \frac{8}{3} |T_{n,n}|.$$

Theorem
There exists an enforcing sets of edges E such that the diameter of $(T_{m,km}, E)$ is $\log m + \log k = \log km$ and

$$|E| = \frac{1}{6} km^2 (3(k - 1)m(m + 1) + 2(m - 1)(2m + 5)).$$

Corollary
For $k \geq 1$, there exists an enforcing set of edges E such that the diameter of $(T_{m,km}, E)$ is $\log km$ and

$$|E| < 2 |T_{m,km}| \left(1 + \frac{1}{3k}\right) \leq \frac{8}{3} |T_{m,km}|.$$
Define $T_n^k = T_n \times \cdots \times T_n$ k times.

Theorem

There exists a set of enforcing edges E for T_n^k such that the diameter of (T_n^k, E) is $\log n$ and

$$|E| = \frac{n^k}{2^k} \sum_{i=1}^{k} \binom{k}{i} \frac{(3^i - 1)(n^i - 1)}{2^i - 1}.$$

Corollary

$|E|$ is $\Theta \left(\left(\frac{3}{2} \right)^k |T_n^k| \right)$.

(Cryptographic enforcement.../University of Luxembourg/July 2012)
Sketch Proof: $k = 1$

Consider $[x, y], 1 \leq x \leq y \leq 2m$

- x and y can be regarded as the “corners” of the interval $[x, y]$
- Each corner can be labelled with a bit, where 0 indicates it is less than or equal to m and 1 indicates it is greater than m
- If x and y’s labels are the same, then the interval $[x, y]$ is completely contained in a subinterval of length m
Sketch Proof: $k = 2$

- We only need to add (two) edges in the recursive step if the corner labels are different.

- Hence, the recurrence relation for the number of edges has the form

$$e(2m) = 2a + 2e(m)$$

where a is the number of intervals whose corner labels are different.

- If the corner labels are different we have m choices for each of x and y, whence $a = m^2$.

Cryptographic enforcement... /University of Luxembourg/July 2012
Sketch Proof: $k = 2$

- The bottom left-hand and top right-hand corners of a rectangle can each be associated with a pair in $\{0, 1\}^2$
- Moreover, if the two corners are represented by (b_1, b_2) and (t_1, t_2) then $b_1 \leq t_1$ and $b_2 \leq t_2$
- A rectangle straddles 2^d squares of side m, where $0 \leq d \leq 2$ is the Hamming distance between these corners
 - The Hamming distance is the number of places in which the two pairs differ
 - For $d > 0$, 2^d is the number of edges required from that rectangle in the recursive step
Sketch Proof: $k = 2$

- The number of choices for the co-ordinates of the corners is also determined by the Hamming distance

 \[
 \left(\frac{1}{2} m(m + 1) \right)^{(2-d)} (m^2)^d
 \]

- If $b_i = t_i$ then there are $\frac{1}{2} m(m + 1)$ choices for the endpoints of the ith interval
- If $b_i < t_i$ then there are m^2 choices

- Finally, the number of corner pairs with Hamming distance d is given by $2^{2-d} \binom{2}{d}$
 - If $b_i = t_i$ then there are two choices for b_i
 - If $b_i < t_i$ then there is only one choice for b_i
 - There are $\binom{2}{d}$ ways in which we can choose corners with Hamming distance d
Sketch Proof: $k = 2$

We deduce the recurrence relation

$$e(2m) = 4e(m) + \sum_{d=1}^{2} \alpha(d)\beta(d)\gamma(d)$$

- $\alpha(d) = 2^d$ is the number of edges required to connect a rectangle with Hamming distance d to sub-rectangles contained with copies of a square of side m
- $\beta(d) = \left(\frac{m+1}{2}\right)^{2-d} m^{d+2}$ is the number of rectangles with Hamming distance d
- $\gamma(d) = 2^{2-d}\binom{2}{d}$ is the number of ways of fitting rectangles with Hamming distance d in a square of side $2m$

That is

$$e(2m) = 4e(m) + m^2 \sum_{d=1}^{2} (2m)^d (m + 1)^{2-d} \binom{2}{d}$$
Sketch Proof: The General Case

- Any “hyperinterval” I in T_{2m}^k can be represented as the union of at most 2^k hyperintervals in copies of the hypercube $[1, m]^k$.
- I is associated with two k-tuples in $\{0, 1\}^k$, which identify the bottom left-hand and top right-hand “hypercorners” of I.
- The Hamming distance $0 \leq d \leq k$ determines the number of:
 - copies of $[1, m]^k$ that I straddles (and hence the out-degree of I), which equals 2^d.
 - choices for the co-ordinates of I, which equals $\left(\frac{1}{2}m(m+1)\right)^{k-d}(m^2)^d$.
 - choices for hypercubes containing the hypercorners, which equals $2^{k-d}\binom{k}{d}$.
- We deduce the following recurrence relation

$$e(2m, k) = 2^k e(m, k) + m^k \sum_{d=1}^{k} (2m)^d (m + 1)^{k-d} \binom{k}{d}$$
Cryptographic Access Control

Space-Time Trade-Offs

Temporal Access Control

Extensions to Higher Dimensions

Concluding Remarks
Contributions

- First work in this area to develop techniques tailored for the problem
- First work to provide exact (and better) bounds for the number of edges
- First work to retain the simplicity of existing iterative schemes
 - Other constructions require auxiliary data structures
 - Other constructions require more complex key derivation algorithms
- First work to provide explicit constructions for higher dimensions that are natural extensions of those for lower dimensions
References

J. Crampton.
Trade-offs in cryptographic implementations of temporal access control.
In *Proceedings of NordSec 2009*.

J. Crampton.
Practical constructions for the efficient cryptographic enforcement of interval-based access control policies.

J. Crampton.
Time-storage trade-offs for cryptographically-enforced access control.
In *Proceedings of ESORICS 2011*.