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Quantitative information flow

Information Flow

System

Secret Information Public Observables

Problem: Leakage of secret information via public observables
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Quantitative information flow
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Programs

High variable values Low variable values

Problem: Leakage of secret information via public observables
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Quantitative information flow

Information Flow

Side channel attacks

Encryption keys Encryption time

Problem: Leakage of secret information via public observables
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Quantitative information flow

Information Flow

Anonymity protocols

Senders Public protocol events

Problem: Leakage of secret information via public observables
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Quantitative information flow

Information Flow

Ideally: No leak

Non-interference [Goguen & Meseguer’82]

In practice: there is almost always some leak

Intrinsic to the problem

Side channels
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Quantitative information flow

Information Flow

Intrinsic leak Side channel
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Quantitative information flow

Quantitative Information Flow

Goal: quantify the notion of information leakage

Most recent proposals use information theoretic approaches

Convergence of different fields: information flow, side channel analysis,

anonymity protocols, . . .
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Quantitative information flow

Systems as Information-Theoretic channels

Channels are noisy: outputs are produced by multiple inputs and each

input can generate multiple outputs

p(oj |si) : probability to observe oj given the input si
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Quantitative information flow

Systems as Information-Theoretic channels

Channels are characterized by their matrix of conditional probabilities

A prior distribution on the secrets models the attacker’s side information
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Quantitative information flow

Useful concepts from information theory

Entropy H(S)

the attacker’s initial uncertainty about the secret (difficulty to guess)

Conditional entropy H(S |O)

the attacker’s uncertainty after observing the output

Leakage = H(S)− H(S |O)

Several notions of entropy (how we measure the attacker’s success)

Shannon entropy

Min-entropy

Guessing entropy

. . .
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Quantitative information flow

Min-entropy [Rényi 61], [Smith 09]

One-try attacks

questions of the form: “is S = s?”

Measure of success:

H∞(S) = − log maxs p(s)

Leakage:

I∞(S ;O) = H∞(S)− H∞(S |O)

C∞ = max I∞ over all input distributions

= log
∑
o maxs p(o|s)
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Quantitative information flow

Min-entropy

C∞ is small when the difference between the rows is small

C∞ = 0 iff p(o|s) = p(o|s ′) for all o, s, s ′
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Differential privacy

Statistical queries

◦ Database: a collection of individuals each having a value from a set V

◦ Goal: publish the result of a statistical query. eg: average salary

◦ Problem: the query reveals information about a user’s value

· Databases can be dynamic, rows might be added/deleted

· Sometimes even the participation in the database should be hidden
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Differential privacy

Statistical queries

◦ We want to reveal global information:

· How many people have epilepsy ?

· What is the average age and weight of men who have epilepsy ?

◦ While protecting individual information:

· Does Daniele Bianchi have epilepsy ?

· What is the name of the last record inserted in the database ?
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Differential privacy

Statistical queries
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Differential privacy

Differential privacy

◦ Ideally: any information obtained from the database should be

obtainable without it

◦ This is impossible [Dwork 06]

◦ Differential Privacy:

· adding a user (or modifying his value) should have negligible affect

on the query’s result
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Differential privacy

Differential privacy

u: number of users

V: set of values, possibly containing an “absence” value ∅

Vu: set of all databases (u-tuples of values in V)

〈1, 4, 5, 2〉 〈1, 4, 5, 9〉 〈2, 9, 6, 3〉

adjacency relation: D ∼ D ′ iff they differ in exactly one value
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Differential privacy

Differential privacy

Differential Privacy

Pr [K(D) = o] ≤ eε Pr [K(D ′) = o] ∀D ∼ D ′, o

Equivalently

Pr [K(D) = o] ≤ eε d(D,D ′) Pr [K(D ′) = o] ∀D,D ′, o

Equivalently

Let D i = {D ′ ∈ V u|D ′j = Dj ∀j 6= i}

Pr [D | o,D i ] ≤ eεPr [D |D i ] ∀D, i , o
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Differential privacy

Achieving Differential privacy

Typical approach: oblivious mechanisms

compute the real answer f (D) to the query, then add noise

the noise depends only on the real answer
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Differential privacy

Achieving Differential privacy

Example: Laplacian mechanism

Global sensitivity: ∆f = maxD∼D ′ |f (D)− f (D ′)|

Draw K(D) from a laplacian distribution with mean f (D) and

variance ∆f /ε
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Differential privacy

Utility

◦ The reported answer is only useful if it provides information about the

real answer

◦ gain function g(i , j)

· how much we gain when we believe i and the real answer is j

◦ we define the utility as the expected gain

◦ it depends on both the gain function and the prior distribution

◦ Goal: find optimal mechanisms for different types of queries
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QIF and Differential Privacy in the same context
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QIF and Differential Privacy in the same context

Statistical queries as noisy channels

Input: the database X

Output: the reported answer Z

Probabilistic behaviour due to the added noise

X

dataset
K

ǫ-diff. priv.
randomized function

Z

reported
answer
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QIF and Differential Privacy in the same context

Statistical queries as noisy channels

Something new: a graph structure on the inputs

Diff. privacy requires rows to be similar, but only adjacent ones
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QIF and Differential Privacy in the same context

Oblivious queries

The noise only depends on the real answer

X

dataset
f

query

Y

real answer
H

randomization
mechanism

Z

reported answer

K (ǫ-diff. priv. randomized function)

Utility

Leakage
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QIF and Differential Privacy in the same context

Leakage and utility

Leakage: I∞(X ;Z )

Utility: U = 2−H∞(Y |Z)

for the binary gain function g(i , j) =

{
1 i = j

0 i 6= j

Questions:

Does ε-d.p. impose a bound on the leakage?

Does ε-d.p. impose a bound on the utility?

How to construct an ε-d.p. mechanism with maximal utility?
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Results A general bound

A general bound for symmetric graphs

◦ consider a channel X → Z

· and a graph structure (X ,∼) on its inputs

· s.t. ε-d.p. is satisfied

◦ different graphs impose different bounds on the leakage
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Results A general bound

A general bound for symmetric graphs

We consider two families of graphs:

◦ vertex transitive:

for all vertices v ,w there exists an automorphism mapping v to w

◦ distance regular:

for all vertices v and w at distance i the number of vertices adjacent

to w and at distance j from v is the same
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Results A general bound

A general bound for symmetric graphs

Theorem

Assuming that (X ,∼) is distance regular or vertex transitive+, and that

it satisfies ε-d.p., we have

H∞(X |Y ) ≤ − log
1∑
d
nd
eε d

where nd is the number of nodes at distance d from a fixed node r .
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Results Application to the leakage

Application to the leakage

X

dataset
f

query

Y

real answer
H

randomization
mechanism

Z

reported answer

K (ǫ-diff. priv. randomized function)

Utility

Leakage

Channel from X to Z , inputs are databases
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Results Application to the leakage

Application to the leakage

consider the set of databases Vu with the corresp. adjacency relation

aaaa aaab

abababaa

aaba aabb

abbbabba

baaa baab

bbabbbaa

baba babb

bbbbbbba

(Vu,∼) is both distance-regular and vertex-transitive

moreover nd =
(
u
d

)
(v − 1)d
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Results Application to the leakage

Application to leakage

Theorem

Let v = |V|. If K satisfies ε-d.p. then:

I∞(X ;Z ) ≤ −u log2

v eε

v − 1 + eε

The bound is strict.

A stronger bound can be proven for the leakage of a single individual
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Results Application to the utility

Application to the utility

◦ Channel from Y to Z , inputs are real answers

◦ induced graph: the adjacency relation on X induces one on Y

· y ∼ y ′ iff x ∼ x ′, f (x) = y , f (x ′) = y ′

◦ the graph (Y ,∼) depends on the actual query f

X

dataset
f

query

Y

real answer
H

randomization
mechanism

Z

reported answer

K (ǫ-diff. priv. randomized function)

Utility

Leakage
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Results Application to the utility

Two results from the litarature

◦ The geometric mechanism is universally optimal for counting queries

(i.e. the induced graph is a path graph)

p(j |i) = cjα
−|i−j | where cj =


α
α+1 j = 1 or j = n

α−1
α+1 1 < j < n

◦ For all other graphs no universally optimal mechanism exists
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Results Application to the utility

Application to the utility

Theorem

Assuming that (Y ,∼) is distance regular or vertex transitive+, and that

it satisfies ε-d.p., we have

U ≤
1∑
d
nd
eε d
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Results Application to the utility

Constructing an optimal mechanism

we construct a matrix H as follows:

Hi ,j =
c

eε d(i ,j)
c =

1∑
d
nd
eε d

this is a valid matrix that

satisfies ε-d.p

has utility U = 1∑
d
nd
eε d

so under the symmetry assumptions on (Y ,∼) it has optimal utility
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Results Application to the utility

Example

Consider a database with electoral information where each row

corresponds to a voter and contains the following three fields:

Id : a unique (anonymized) identifier assigned to each voter;

City: the name of the city where the user voted; one of

{A,B,C ,D,E ,F}
Candidate: the name of the candidate the user voted for.

Query: “What is the city with the greatest number of votes for a given

candidate?”.

Every two answers are adjacent, i.e. the graph structure of the answers

is a complete graph.
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Results Application to the utility

Example

The optimal matrix is

In/Out A B C D E F

A 2/7 1/7 1/7 1/7 1/7 1/7

B 1/7 2/7 1/7 1/7 1/7 1/7

C 1/7 1/7 2/7 1/7 1/7 1/7

D 1/7 1/7 1/7 2/7 1/7 1/7

E 1/7 1/7 1/7 1/7 2/7 1/7

F 1/7 1/7 1/7 1/7 1/7 2/7
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Results Application to the utility

Related work

Barthe & Köpf have been independently working on the same problem

They provide the first bounds on information leakage imposed by

differential privacy [CSF 2011]

Differences of our approach

different technique, based on graph symmetries

improved bound

we also consider bounds on the utility
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Results Application to the utility

Ongoing work

◦ A generalization of min-entropy leakage by considering the attacker’s

gain function (CSF’12)

◦ This can lead to a closer correspondance with differential privacy

◦ Extend the optimality results to more general families of graphs,

including path graphs

◦ Optimality results for classes of gain functions and prior distributions
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Results Application to the utility

Questions?
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