Outline

1. Quantitative information flow
2. Differential privacy
3. QIF and Differential Privacy in the same context
4. Results
 - A general bound
 - Application to the leakage
 - Application to the utility
Outline

1. Quantitative information flow
2. Differential privacy
3. QIF and Differential Privacy in the same context
4. Results
 - A general bound
 - Application to the leakage
 - Application to the utility
Information Flow

Problem: Leakage of *secret information* via *public observables*
Information Flow

Programs

High variable values

Low variable values

Problem: Leakage of secret information via public observables
Information Flow

Side channel attacks

Encryption keys

Encryption time

Problem: Leakage of secret information via public observables
Information Flow

Anonymity protocols

Problem: Leakage of secret information via public observables
Information Flow

Ideally: No leak

Non-interference [Goguen & Meseguer’82]

In practice: there is almost always some leak

Intrinsic to the problem

Side channels
Information Flow

Intrinsic leak

```plaintext
out := OK
for i = 1, ..., N do
  if x_i ≠ K_i then
    out := FAIL
  end if
end for
```

Side channel

```plaintext
out := OK
for i = 1, ..., N do
  if x_i ≠ K_i then
    out := FAIL
    exit()
  end if
end for
```
Quantitative Information Flow

Goal: **quantify** the notion of **information leakage**

Most recent proposals use **information theoretic** approaches

Convergence of different fields: information flow, side channel analysis, anonymity protocols, . . .
Systems as Information-Theoretic channels

Channels are noisy: outputs are produced by multiple inputs and each input can generate multiple outputs

$p(o_j|s_i)$: probability to observe o_j given the input s_i
Systems as Information-Theoretic channels

Channels are characterized by their matrix of conditional probabilities

A prior distribution on the secrets models the attacker’s side information
Useful concepts from information theory

Entropy $H(S)$
- the attacker’s initial uncertainty about the secret (difficulty to guess)

Conditional entropy $H(S|O)$
- the attacker’s uncertainty after observing the output

Leakage = $H(S) - H(S|O)$

Several notions of entropy (how we measure the attacker’s success)
- Shannon entropy
- Min-entropy
- Guessing entropy
- ...
Min-entropy

[Rényi 61], [Smith 09]

One-try attacks

questions of the form: “is $S = s$?”

Measure of success:

$$H_\infty(S) = - \log \max_s p(s)$$

Leakage:

$$l_\infty(S; O) = H_\infty(S) - H_\infty(S|O)$$

$$C_\infty = \max l_\infty \text{ over all input distributions}$$

$$= \log \sum_o \max_s p(o|s)$$
Min-entropy

C_∞ is small when the difference between the rows is small:

$$C_\infty = 0 \text{ iff } p(o|s) = p(o|s') \text{ for all } o, s, s'$$
Outline

1. Quantitative information flow
2. Differential privacy
3. QIF and Differential Privacy in the same context
4. Results
 - A general bound
 - Application to the leakage
 - Application to the utility
Statistical queries

- **Database**: a collection of *individuals* each having a *value* from a set \mathcal{V}
- **Goal**: publish the result of a *statistical query*. eg: average salary
- **Problem**: the query *reveals information* about a user’s value
 - Databases can be dynamic, rows might be added/deleted
 - Sometimes even the participation in the database should be hidden
Statistical queries

- We want to reveal **global** information:
 - How many people have epilepsy?
 - What is the average age and weight of men who have epilepsy?

- While protecting **individual** information:
 - Does Daniele Bianchi have epilepsy?
 - What is the name of the last record inserted in the database?
Statistical queries

<table>
<thead>
<tr>
<th>Name/Id</th>
<th>age</th>
<th>weight</th>
<th>sex</th>
<th>epilepsy</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mario Rossi</td>
<td>65</td>
<td>82</td>
<td>M</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Daniele Bianchi</td>
<td>35</td>
<td>120</td>
<td>M</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Lucia Verdi</td>
<td>40</td>
<td>45</td>
<td>F</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- How many men have epilepsy? 2
- What is the average age / weight of men who have epilepsy? 50 / 101

Insertion of a new record

<table>
<thead>
<tr>
<th>Name/Id</th>
<th>age</th>
<th>weight</th>
<th>sex</th>
<th>epilepsy</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mario Rossi</td>
<td>65</td>
<td>82</td>
<td>M</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Daniele Bianchi</td>
<td>35</td>
<td>120</td>
<td>M</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Lucia Verdi</td>
<td>40</td>
<td>45</td>
<td>F</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Sergio Neri</td>
<td>20</td>
<td>140</td>
<td>M</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- How many men have epilepsy? 3
- What is the average age / weight of men who have epilepsy? 40 / 114

We can deduce the exact age / weight of the new record.
Differential privacy

- Ideally: any information obtained from the database should be obtainable without it

- This is impossible [Dwork 06]

- Differential Privacy:
 - adding a user (or modifying his value) should have negligible affect on the query’s result
Differential privacy

\(u \): number of users

\(\mathcal{V} \): set of values, possibly containing an “absence” value \(\emptyset \)

\(\mathcal{V}^u \): set of all databases (\(u \)-tuples of values in \(\mathcal{V} \))

\(\langle 1, 4, 5, 2 \rangle \quad \langle 1, 4, 5, 9 \rangle \quad \langle 2, 9, 6, 3 \rangle \)

adjacency relation: \(D \sim D' \) iff they differ in exactly one value
Differential privacy

Differential Privacy

\[\Pr[\mathcal{K}(D) = o] \leq e^\epsilon \Pr[\mathcal{K}(D') = o] \quad \forall D \sim D', o \]

Equivalently

\[\Pr[\mathcal{K}(D) = o] \leq e^\epsilon d(D, D') \Pr[\mathcal{K}(D') = o] \quad \forall D, D', o \]

Equivalently

Let \(D^i = \{D' \in V^u | D'_j = D_j \ \forall j \neq i \} \)

\[\Pr[D | o, D^i] \leq e^\epsilon \Pr[D | D^i] \quad \forall D, i, o \]
Differential Privacy

\[
P_r[K(D) = o] \leq e^\epsilon \ P_r[K(D') = o] \quad \forall D \sim D', o
\]

Equivalently

\[
P_r[K(D) = o] \leq e^\epsilon d(D, D') \ P_r[K(D') = o] \quad \forall D, D', o
\]

Equivalently

Let \(D^i = \{D' \in V^u | D'^j = D_j \ \forall j \neq i\} \)

\[
P_r[D | o, D^i] \leq e^\epsilon P_r[D | D^i] \quad \forall D, i, o
\]
Differential privacy

Differential Privacy

$$\Pr[\mathcal{K}(D) = o] \leq e^{\epsilon} \Pr[\mathcal{K}(D') = o] \quad \forall D \sim D', o$$

Equivalently

$$\Pr[\mathcal{K}(D) = o] \leq e^{\epsilon d(D, D')} \Pr[\mathcal{K}(D') = o] \quad \forall D, D', o$$

Equivalently

Let $$D^i = \{D' \in V^u | D'_j = D_j \forall j \neq i\}$$

$$\Pr[D | o, D^i] \leq e^{\epsilon} \Pr[D | D^i] \quad \forall D, i, o$$
Achieving Differential privacy

Typical approach: **oblivious mechanisms**

compute the real answer $f(D)$ to the query, then add noise.

the noise depends only on the real answer.
Achieving Differential privacy

Example: Laplacian mechanism

Global sensitivity: \(\Delta_f = \max_{D \sim D'} |f(D) - f(D')| \)

Draw \(K(D) \) from a laplacian distribution with mean \(f(D) \) and variance \(\Delta_f / \epsilon \)
Utility

- The reported answer is only useful if it provides information about the real answer.

- Gain function $g(i, j)$
 - how much we gain when we believe i and the real answer is j

- We define the utility as the expected gain.

- It depends on both the gain function and the prior distribution.

- Goal: find optimal mechanisms for different types of queries.
Outline

1. Quantitative information flow
2. Differential privacy
3. QIF and Differential Privacy in the same context
4. Results
 - A general bound
 - Application to the leakage
 - Application to the utility
Statistical queries as noisy channels

Input: the database X

Output: the reported answer Z

Probabilistic behaviour due to the added noise
Statistical queries as noisy channels

Something new: a graph structure on the inputs

Diff. privacy requires rows to be similar, but only adjacent ones
Oblivious queries

The noise only depends on the real answer
Oblivious queries

The noise only depends on the real answer
Oblivious queries

The noise only depends on the real answer
Leakage and utility

Leakage: $l_\infty(X; Z)$

Utility: $U = 2^{-H_\infty(Y|Z)}$

for the binary gain function $g(i, j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$

Questions:
- Does ϵ-d.p. impose a bound on the leakage?
- Does ϵ-d.p. impose a bound on the utility?
- How to construct an ϵ-d.p. mechanism with maximal utility?
Outline

1. Quantitative information flow
2. Differential privacy
3. QIF and Differential Privacy in the same context
4. Results
 - A general bound
 - Application to the leakage
 - Application to the utility
A general bound for symmetric graphs

- consider a channel $X \rightarrow Z$
 - and a graph structure (X, \sim) on its inputs
 - s.t. ϵ-d.p. is satisfied
- different graphs impose different bounds on the leakage
A general bound for symmetric graphs

We consider two families of graphs:

- **vertex transitive:**
 for all vertices \(v, w \) there exists an automorphism mapping \(v \) to \(w \)

- **distance regular:**
 for all vertices \(v \) and \(w \) at distance \(i \) the number of vertices adjacent to \(w \) and at distance \(j \) from \(v \) is the same
A general bound for symmetric graphs

Theorem
Assuming that \((X, \sim)\) is distance regular or vertex transitive\(^+\), and that it satisfies \(\epsilon\)-d.p., we have

\[
H_\infty(X|Y) \leq -\log \sum_d \frac{1}{e^{\epsilon d}} \frac{n_d}{e^{\epsilon d}}
\]

where \(n_d\) is the number of nodes at distance \(d\) from a fixed node \(r\).
Application to the leakage

Channel from X to Z, inputs are databases
Application to the leakage

consider the set of databases \mathcal{V}^u with the corresp. adjacency relation

$$(\mathcal{V}^u, \sim)$$ is both distance-regular and vertex-transitive

moreover $n_d = \binom{u}{d} (\nu - 1)^d$
Application to leakage

Theorem

Let \(\nu = |\mathcal{V}|. \) If \(\mathcal{K} \) satisfies \(\epsilon \)-d.p. then:

\[
I_{\infty}(X; Z) \leq -u \log_2 \frac{\nu e^\epsilon}{\nu - 1 + e^\epsilon}
\]

The bound is strict.

A stronger bound can be proven for the leakage of a single individual
Application to the utility

- Channel from \(Y \) to \(Z \), inputs are real answers
- **induced graph**: the adjacency relation on \(X \) induces one on \(Y \)
 - \(y \sim y' \) iff \(x \sim x', f(x) = y, f(x') = y' \)
- the graph \((Y, \sim)\) depends on the actual query \(f \)
Two results from the literature

- The geometric mechanism is universally optimal for counting queries (i.e. the induced graph is a path graph)

\[p(j|i) = c_j \alpha^{-|i-j|} \quad \text{where} \quad c_j = \begin{cases} \frac{\alpha}{\alpha+1} & j = 1 \text{ or } j = n \\ \frac{\alpha-1}{\alpha+1} & 1 < j < n \end{cases} \]

- For all other graphs no universally optimal mechanism exists
Application to the utility

Theorem

Assuming that \((Y, \sim)\) is distance regular or vertex transitive+, and that it satisfies \(\epsilon\)-d.p., we have

\[
\mathcal{U} \leq \frac{1}{\sum_d n_d e^{\epsilon d}}
\]
Constructing an optimal mechanism

we construct a matrix \mathcal{H} as follows:

$$\mathcal{H}_{i,j} = \frac{c}{e^\epsilon d(i,j)}$$

$$c = \frac{1}{\sum_d \frac{n_d}{e^\epsilon d}}$$

this is a valid matrix that satisfies ϵ-d.p

has utility $U = \frac{1}{\sum_d \frac{n_d}{e^\epsilon d}}$

so under the symmetry assumptions on (Y, \sim) it has optimal utility
Example

Consider a database with electoral information where each row corresponds to a voter and contains the following three fields:

- **Id**: a unique (anonymized) identifier assigned to each voter;
- **City**: the name of the city where the user voted; one of \{A, B, C, D, E, F\}
- **Candidate**: the name of the candidate the user voted for.

Query: “What is the city with the greatest number of votes for a given candidate?”.

Every two answers are adjacent, i.e. the graph structure of the answers is a complete graph.
Example

The optimal matrix is

<table>
<thead>
<tr>
<th>In/Out</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2/7</td>
<td>1/7</td>
<td>1/7</td>
<td>1/7</td>
<td>1/7</td>
<td>1/7</td>
</tr>
<tr>
<td>B</td>
<td>1/7</td>
<td>2/7</td>
<td>1/7</td>
<td>1/7</td>
<td>1/7</td>
<td>1/7</td>
</tr>
<tr>
<td>C</td>
<td>1/7</td>
<td>1/7</td>
<td>2/7</td>
<td>1/7</td>
<td>1/7</td>
<td>1/7</td>
</tr>
<tr>
<td>D</td>
<td>1/7</td>
<td>1/7</td>
<td>1/7</td>
<td>2/7</td>
<td>1/7</td>
<td>1/7</td>
</tr>
<tr>
<td>E</td>
<td>1/7</td>
<td>1/7</td>
<td>1/7</td>
<td>1/7</td>
<td>2/7</td>
<td>1/7</td>
</tr>
<tr>
<td>F</td>
<td>1/7</td>
<td>1/7</td>
<td>1/7</td>
<td>1/7</td>
<td>1/7</td>
<td>2/7</td>
</tr>
</tbody>
</table>
Related work

Barthe & Köpf have been independently working on the same problem.

They provide the first bounds on information leakage imposed by differential privacy [CSF 2011].

Differences of our approach:
- different technique, based on graph symmetries
- improved bound
- we also consider bounds on the utility
Ongoing work

- A generalization of min-entropy leakage by considering the attacker’s gain function (CSF’12)

- This can lead to a closer correspondence with differential privacy

- Extend the optimality results to more general families of graphs, including path graphs

- Optimality results for classes of gain functions and prior distributions
Questions?