
Formal Analysis of Security APIs

Graham Steel

INRIA & LSV, ENS de Cachan

1/41

2/41

PIN Processing APIs

Photo: redspotted/Flickr

3/41

Verizon Breach Report 2008

Released April 2009

3/41

Verizon Breach Report 2008

Released April 2009

“While statistically not a large percentage of our overall caseload in 2008,

attacks against PIN information represent individual data-theft cases

having the largest aggregate exposure in terms of unique records,”

“In other words, PIN-based attacks and many of the very large

compromises from the past year go hand in hand.”

3/41

Verizon Breach Report 2008

Released April 2009

“While statistically not a large percentage of our overall caseload in 2008,

attacks against PIN information represent individual data-theft cases

having the largest aggregate exposure in terms of unique records,”

“In other words, PIN-based attacks and many of the very large

compromises from the past year go hand in hand.”

“We’re seeing entirely new attacks that a year ago were thought to be only

academically possible,”

3/41

Verizon Breach Report 2008

Released April 2009

“While statistically not a large percentage of our overall caseload in 2008,

attacks against PIN information represent individual data-theft cases

having the largest aggregate exposure in terms of unique records,”

“In other words, PIN-based attacks and many of the very large

compromises from the past year go hand in hand.”

“We’re seeing entirely new attacks that a year ago were thought to be only

academically possible,”

“What we see now is people going right to the source [..] and stealing the

encrypted PIN blocks and using complex ways to un-encrypt the PIN

blocks.”

(Quotes from Wired Magazine interview with report author, Bryan Sartin)

4/41

Cash Machine Network

ATM
Maestro UK

HSBC
Paribas
Banque

5/41

HSMs

Manufacturers include IBM, VISA, nCipher, Thales, Utimaco, HP

Cost around $10 000

6/41

Deriving a PIN: IBM 3624 Method

IPIN derived by:

Encode account number (PAN) as 0000AAAAAAAAAAAA

6/41

Deriving a PIN: IBM 3624 Method

IPIN derived by:

Encode account number (PAN) as 0000AAAAAAAAAAAA

3DES encrypt under a PDK (PIN Derivation Key)

6/41

Deriving a PIN: IBM 3624 Method

IPIN derived by:

Encode account number (PAN) as 0000AAAAAAAAAAAA

3DES encrypt under a PDK (PIN Derivation Key)

Take 4 leftmost hexadecimal digits of result

6/41

Deriving a PIN: IBM 3624 Method

IPIN derived by:

Encode account number (PAN) as 0000AAAAAAAAAAAA

3DES encrypt under a PDK (PIN Derivation Key)

Take 4 leftmost hexadecimal digits of result

Decimalise using a mapping table (’dectab’)

0123456789ABCDEF

0123456789012345

6/41

Deriving a PIN: IBM 3624 Method

IPIN derived by:

Encode account number (PAN) as 0000AAAAAAAAAAAA

3DES encrypt under a PDK (PIN Derivation Key)

Take 4 leftmost hexadecimal digits of result

Decimalise using a mapping table (’dectab’)

0123456789ABCDEF

0123456789012345

PIN = IPIN + Offset (modulo 10 each digit)

7/41

PIN Processing API

Verify PIN:

{PIN}K,PAN,Dectab →

Offset

yes/no ←

K, PDK

7/41

PIN Processing API

Verify PIN:

{PIN}K,PAN,Dectab →

Offset

yes/no ←

K, PDK

If host machine is attacked, PIN should remain secure (ANSI X7.8, ISO

9564 requirement)

8/41

Decimalisaton Table Attack (Clulow ’02, Bond & Zeilinski ’03)

Suppose in a hacked switch, an attacker has a set

{PIN}K,PAN,Dectab,Offset that verifies PIN is correct

8/41

Decimalisaton Table Attack (Clulow ’02, Bond & Zeilinski ’03)

Suppose in a hacked switch, an attacker has a set

{PIN}K,PAN,Dectab,Offset that verifies PIN is correct

Original Dectab

0123456789ABCDEF

0123456789012345

Dectab’

0123456789ABCDEF

1123456789112345

8/41

Decimalisaton Table Attack (Clulow ’02, Bond & Zeilinski ’03)

Suppose in a hacked switch, an attacker has a set

{PIN}K,PAN,Dectab,Offset that verifies PIN is correct

Original Dectab

0123456789ABCDEF

0123456789012345

Dectab’

0123456789ABCDEF

1123456789112345

Repeat verification command with Dectab’

Successful verification indicates no 0s in PIN

9/41

More dectab attack

To find the 0s, try changing the offset

Attacker set offset Result from HSM Knowledge of PIN

0001 Incorrect PIN ????

0010 Incorrect PIN ????

0100 Incorrect PIN ????

1000 Incorrect PIN ????

0011 Incorrect PIN ????

0101 Correct PIN ?0?0

10/41

AnaBlock (TCS 2006)

Take a customer configuration and an API spec. as input

10/41

AnaBlock (TCS 2006)

Take a customer configuration and an API spec. as input

Using CLP, generate tree of all possible attacks

10/41

AnaBlock (TCS 2006)

Take a customer configuration and an API spec. as input

Using CLP, generate tree of all possible attacks

Meta-logical predicates allow us to calculate transition probabilities

10/41

AnaBlock (TCS 2006)

Take a customer configuration and an API spec. as input

Using CLP, generate tree of all possible attacks

Meta-logical predicates allow us to calculate transition probabilities

Apply PRISM (Kwiatkowska et. al, 2004)

Get minimum expected number of steps to determine PIN

10/41

AnaBlock (TCS 2006)

Take a customer configuration and an API spec. as input

Using CLP, generate tree of all possible attacks

Meta-logical predicates allow us to calculate transition probabilities

Apply PRISM (Kwiatkowska et. al, 2004)

Get minimum expected number of steps to determine PIN

Generate tree for best attack

11/41

Attack Trees

0.8

0.2

0.6

0.4

0.4 0.6

P3 in 0..7 P3 in 8..9 P3 in 2..3,8..9P3 in 0..1,8..9 P3 in 2..7 P3 in 0..1,4..7

P3 in 0..9

Call Translate
XOR 2 against A1

Call Translate

Call Translate
XOR 10 against A1

against A1
XOR 8

12/41

Results from AnaBlock

No. Attack E(Steps)

(1) ISO-0 (extended) 13.6

(2) Dectab 16.145

(3) Dectab & ISO (restricted) 15.275

No. Attack Range: 400 36 24 14 1

(4) ISO-0 (restricted) 1 0 0 0 0

(5) Dectab no offset 1 1 0.568 0.064 0.001

(6) Dectab no offset 1 1 1 1 0.001

& ISO-0 (restricted)

13/41

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

P
ro

ba
bi

lit
y

No. of Possible PINs

Performance of Dectab attack without offset

Dectab without ISO-0
Dectab with ISO

14/41

More PIN Cracking Attacks

Dectab attacks

Reformatting attacks

Check value attack

Calculate offset attack

Competing verification algorithms attack

All require attacker to make ‘tweaked’ queries to HSM

15/41

Theory Behind Fix

Language based security

15/41

Theory Behind Fix

Language based security

Multilevel view - high and low security

15/41

Theory Behind Fix

Language based security

Multilevel view - high and low security

Non-interference - no ‘flow’ from high to low

15/41

Theory Behind Fix

Language based security

Multilevel view - high and low security

Non-interference - no ‘flow’ from high to low

Declassification - wrt a policy

15/41

Theory Behind Fix

Language based security

Multilevel view - high and low security

Non-interference - no ‘flow’ from high to low

Declassification - wrt a policy

Robustness - introduces integrity

15/41

Theory Behind Fix

Language based security

Multilevel view - high and low security

Non-interference - no ‘flow’ from high to low

Declassification - wrt a policy

Robustness - introduces integrity

Endorsement - allows integrity to be raised

15/41

Theory Behind Fix

Language based security

Multilevel view - high and low security

Non-interference - no ‘flow’ from high to low

Declassification - wrt a policy

Robustness - introduces integrity

Endorsement - allows integrity to be raised

We introduce cryptographically assured endorsement (ESORICS ’09)

using MAC, and a ‘low cost’ version (NordSec ’09)

16/41

More PIN Processing

Wired Magazine, PIN Crackers Nab Holy Grail of Bank Card Security

http://www.wired.com/threatlevel/2009/04/pins/

G. Steel. Formal analysis of PIN block attacks. Theoretical Computer

Science 367(1-2), 2006.

R. Focardi, F. L. Luccio and G. Steel. Blunting Differential Attacks on PIN

Processing APIs. In NordSec’09, LNCS 5838.

M. Centenaro, R. Focardi, F. L. Luccio and G. Steel. Type-based Analysis

of PIN Processing APIs. In ESORICS’09, LNCS 5789

Mohammad Mannan, P.C. van Oorschot. Reducing threats from flawed

security APIs: The banking PIN case, Computers & Security 28 (6), 2009.

http://www.wired.com/threatlevel/2009/04/pins/

17/41

18/41

19/41

Key Management - 1

KeyGenerate :
new n,k
−−−−→ h(n,k);L

Where L = ¬extractable(n),¬wrap(n),¬unwrap(n),

¬encrypt(n),¬decrypt(n),¬sensitive(n)

20/41

Key Management - 2

Wrap :

h(x1,y1),h(x2,y2); wrap(x1), → {y2}y1

extract(x2)

Unwrap :

h(x2,y2),{y1}y2
; unwrap(x2)

new n1−−−−→ h(n1,y1); extract(n1), L

where L =

¬wrap(n1),¬unwrap(n1),¬encrypt(n1),¬decrypt(n1),¬sensitive(n1).

21/41

22/41

Key Management - 3

Set Wrap : h(x1,y1); ¬wrap(x1) → ;wrap(x1)

Set Encrypt : h(x1,y1); ¬encrypt(x1) → ;encrypt(x1)
...

...

UnSet Wrap : h(x1,y1); wrap(x1) → ;¬wrap(x1)

UnSet Encrypt : h(x1,y1); encrypt(x1) → ;¬encrypt(x1)
...

...

Some restrictions, e.g. can’t unset sensitive

23/41

Key Usage

Encrypt :

h(x1,y1),y2; encrypt(x1) → {y2}y1

Decrypt :

h(x1,y1),{y2}y1
; decrypt(x1) → y2

24/41

Key Separation Attack (Clulow, 2003)

Intruder knows: h(n1,k1), h(n2,k2).

State: wrap(n2), decrypt(n2), sensitive(n1), extract(n1)

Wrap: h(n2,k2), h(n1,k1)→ {k1}k2

Decrypt: h(n2,k2), {k1}k2
→ k1

25/41

26/41

Re-import attack (DKS, 08)

Intruder knows: h(n1,k1), h(n2,k2), k3

State: sensitive(n1),extract(n1), extract(n2)

Set wrap: h(n2,k2) → ;wrap(n2)

Set wrap: h(n1,k1) → ;wrap(n1)

Wrap: h(n1,k1),h(n2,k2) → {k2}k1

Set unwrap: h(n1,k1) → ;unwrap(n1)

Unwrap: h(n1,k1),{k2}k1

newn3−−−−→ h(n3,k2)

Wrap: h(n2,k2),h(n1,k1) → {k1}k2

Set decrypt: h(n3,k2) → ;decrypt(n3)

Decrypt: h(n3,k2),{k1}k2
→ k1

27/41

28/41

Two kinds of problem

A bad ‘attribute policy’

One can set conflicting attributes for a key

Policy not enforced

By copying the key using wrap/unwrap, can ‘escape’ the policy

28/41

Two kinds of problem

A bad ‘attribute policy’

One can set conflicting attributes for a key

Policy not enforced

By copying the key using wrap/unwrap, can ‘escape’ the policy

Attack this problem by first formalising ‘attribute policy’

29/41

KeyGenerate :
new n1,k1
−−−−−→ h(n1,k1); L(n1),¬extract(n1)

Wrap :

h(x1,y1),h(x2,y2); wrap(x1),extract(x2) → {y2}y1

Unwrap :

h(x2,y2),{y1}y2
; unwrap(x2)

new n1−−−−→ h(n1,y1); L(n1)

Encrypt : h(x1,y1),y2; encrypt(x1) → {y2}y1

Decrypt : h(x1,y1),{y2}y1
; decrypt(x1) → y2

Set Encrypt : h(x1,y1); ¬encrypt(x1) → encrypt(x1)

UnSet Encrypt : h(x1,y1); encrypt(x1) → ¬encrypt(x1)
...

...

30/41

KeyGenerate :
new n1,k1
−−−−−→ h(n1,k1); A(n1)

Wrap :

h(x1,y1),h(x2,y2); wrap(x1),extract(x2) → {y2}y1

Unwrap :

h(x2,y2),{y1}y2
; unwrap(x2)

new n1−−−−→ h(n1,y1); A(n1)

Encrypt : h(x1,y1),y2; encrypt(x1) → {y2}y1

Decrypt : h(x1,y1),{y2}y1
; decrypt(x1) → y2

Set Attribute Value : h(x1,y1); A1(x1) → A2(x1)

31/41

Attribute Policy

An attribute policy is a finite directed graph P = (SP,→P) where SP is the

set of allowable object states, and→P ⊆ SP×SP is the set of allowable

transitions between the object states.

31/41

Attribute Policy

An attribute policy is a finite directed graph P = (SP,→P) where SP is the

set of allowable object states, and→P ⊆ SP×SP is the set of allowable

transitions between the object states.

An attribute policy P = (S,→) is complete if P consists of a collection of

disjoint, disconnected cliques, and for each clique C,

c0,c1 ∈C⇒ c0∪ c1 ∈C

31/41

Attribute Policy

An attribute policy is a finite directed graph P = (SP,→P) where SP is the

set of allowable object states, and→P ⊆ SP×SP is the set of allowable

transitions between the object states.

An attribute policy P = (S,→) is complete if P consists of a collection of

disjoint, disconnected cliques, and for each clique C,

c0,c1 ∈C⇒ c0∪ c1 ∈C

We insist on complete policies, assuming intruder can always copy keys.

32/41

33/41

34/41

Endpoints

We call the object states of S that are maximal in S with respect to set

inclusion end points of P.

Theorem: Derivation in API with complete policy iff derivation in API with

(static) endpoint policy

35/41

Bounds

Assume endpoint policies

Make series of simple transformations

35/41

Bounds

Assume endpoint policies

Make series of simple transformations

Bound number of fresh keys to number of endpoints #ep

- get the same key every time a particular endpoint is requested

35/41

Bounds

Assume endpoint policies

Make series of simple transformations

Bound number of fresh keys to number of endpoints #ep

- get the same key every time a particular endpoint is requested

Bound number of handles to (#ep)2

- for each key, get one handle for each endpoint

35/41

Bounds

Assume endpoint policies

Make series of simple transformations

Bound number of fresh keys to number of endpoints #ep

- get the same key every time a particular endpoint is requested

Bound number of handles to (#ep)2

- for each key, get one handle for each endpoint

Intruder always starts with his own key

so require #ep+1 keys and (#ep+1)2 handles

36/41

KeyGenerate :
new n1,k1
−−−−−→ h(n1,k1);A(n1)

Wrap :

h(x1,y1),h(x2,y2); wrap(x1),A(x2)
new mk−−−−→ enc(y2,y1),enc(mk,y1)

hmacmk
(y2,A)

Unwrap :

h(x2,y2),enc(y1,y2),enc(xm,y2),
new n1−−−−→ h(n1,y1); A(n1)

hmacxm
(y1,A); unwrap(x2)

Encrypt : h(x1,y1),y2; encrypt(x1) → enc(y2,y1)

Decrypt : h(x1,y1),enc(y2,y1); decrypt(x1) → y2

P = ({e,d,ed,w,u,wu},→) (where→ makes the obvious cliques)

37/41

Model checking

We use SATMC from the AVISPA project.

Why?

Can customize sort theory

Can have protocols with loops

– recent work by Roberto Carbone to detect fixpoints

Good performance on previous API experiments

38/41

Model checking - 2

A known key is a key k such that the intruder knows the plaintext value k

and the intruder has a handle h(n,k).

Property 1 If an intruder starts with no known keys, he cannot obtain any

known keys.

Verified for our API in 0.4 sec

38/41

Model checking - 2

A known key is a key k such that the intruder knows the plaintext value k

and the intruder has a handle h(n,k).

Property 1 If an intruder starts with no known keys, he cannot obtain any

known keys.

Verified for our API in 0.4 sec

Property 2 If an intruder starts with a known key ki with handle h(ni,ki),

and ed(ni) is true, then he cannot obtain any further known keys.

Attack

39/41

Lost session key attack

Initial knowledge: Handles h(n1,k1), h(n2,k2), and h(ni,ki). Key ki.

Attributes ed(n1),wu(n2),ed(ni).

Trace:

Wrap: (ed) h(n2,k2), h(ni,ki)→

{ki}k2
, {k3}k2

, hmack3
(ki,ed)

Unwrap: (wu) h(n2,k2), {ki}k2
, {ki}k2

,

hmacki
(ki,wu)→ h(n2,ki)

Wrap: (ed) h(n2,ki), h(n1,k1)→

{k1}ki
, {k3}ki

, hmack3
(k1,ed)

Decrypt: ki, {k1}ki
→ k1

40/41

Revised API

Wrap :

h(x1,y1),h(x2,y2); wrap(x1),A(x2)
new mk−−−−→ enc(y2,y1),enc(mk,y1)

hmacmk
(y2,A ,y1)

Unwrap :

h(x2,y2),enc(y1,y2),enc(xm,y2),
new n1−−−−→ h(n1,y1); A(n1)

hmacxm
(y1,A ,y2); unwrap(x2)

Property 2 now verified by SATMC

Can also verify attribute policy is enforced

41/41

More Key Management APIs

S. Delaune, S. Kremer and G. Steel. Formal Analysis of PKCS#11 and

Proprietary Extensions. To appear in JCS

V. Cortier and G. Steel. A Generic API for Symmetric Key Management. In

ESORICS ’09.

S. Fröschle and G. Steel. Analysis of PKCS#11 APIs with Unbounded

Fresh Data, ARSPA-WITS ’09.

V. Cortier, G. Keighren, and G. Steel. Automatic analysis of the security of

XOR-based key management schemes. TACAS 2007.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

