
Delayed choice for process algebra withabstractionP. R. D'Argenio1 and S. Mauw21 Depto. de Inform�atica, Fac. de Cs. Exactas, Universidad Nacional de La Plata. CC11 (1900) La Plata. Buenos Aires. Argentina.pedro@info.unlp.edu.ar2 Dept. of Mathematics and Computing Science, Eindhoven University ofTechnology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.sjouke@win.tue.nlAbstract. The delayed choice is an operator which serves to combinelinear time and branching time within one process algebra. We studythis operator in a theory with abstraction, more precisely, in a settingconsidering branching bisimulation. We show its use in scenario speci�-cations and in veri�cation to reduce irrelevant branching structure of aprocess.1 IntroductionThe delayed choice is an operator that allows one to express linear time aspectsin a branching time process algebra. It was introduced in [3] for a basic processalgebra without abstraction. The intuition behind this operator for alternativecomposition is the following. If two processes start with a common initial ac-tion, then the delayed choice between these alternatives consists of executingthis common action before making the choice between the resulting processes.This property is best displayed in the following equation. The delayed choice isdenoted by � (for Trace-+) and the normal non-deterministic choice by +.ab� ac = a(b+ c)If the two alternatives have no initial action in common, the delayed choice andthe non-deterministic choice coincide (a 6= c):ab� cd = ab+ cdIn [3] soundness and completeness of the de�nition was proven and an applicationin the realm of Message Sequence Charts was given.In this paper we study the delayed choice operator in a process algebra theoryextended with abstraction. In this setting, the delayed choice operator shouldalso remove non-determinism due to internal steps. This property can be ex-pressed as follows: �a� b = � (a+ b)The behaviour of the delayed choice operator with respect to internal stepscompares well to the behaviour of the deterministic choice operator 2 from

TCSP [8]. This operator was studied in a branching time setting in [9], where itwas called � -angelic choice.The main purpose of this paper is to show that the de�nition of the delayedchoice operator can be combined with the de�nition of the � -angelic choice op-erator in order to obtain a delayed choice operator for process algebra withabstraction.We use branching bisimulation [11] as the semantics for the silent step. Weconsider divergence free processes only. The case of weak bisimulation is treatedin [10].Applications of this new operator can be found in the areas of speci�cationand veri�cation. Using the delayed choice it is possible to make so-called sce-nario speci�cations. A scenario speci�cation consists of a collection of possiblebehaviours of a system. If two scenarios share an initial action, it is in generalnot the intention to specify a non-deterministic choice between these scenarios.For example, a possible scenario for a vending machine could be the insertion ofa coin followed by choosing co�ee and another scenario could be the insertion ofa coin followed by choosing tea. The intention is not to express that the choicebetween co�ee and tea is made by inserting the coin, which is the interpretationwhen combining these scenarios with a non-deterministic choice. Rather it is toexpress that the selection is made after paying. This can be expressed with thedelayed choice.The second application of the delayed choice operator is in veri�cation. Averi�cation in process algebra in most cases consists of a proof that an abstrac-tion of some implementation speci�cation is equivalent to a given requirementsspeci�cation. Often the structure of such a requirements speci�cation is quitecomplex due to the presence of an excess of internal choices, some of which maynot be relevant for the insight that the implementation is correct. These lessinteresting choices between internal actions can be �ltered out using the delayedchoice, without adopting linear time semantics for the complete system. We givean example in Sect. 4.This paper is structured as follows. In Sect. 2 we introduce the basic theoryBPA�" and extend it with the silent step � . We consider strong bisimulation andbranching bisimulation as semantics. Next, we de�ne the delayed choice operatorand give an operational semantics in Sect. 3. We prove soundness, completenessand several other properties. Finally, we give some examples in Sect. 4.We thank Jos Baeten and Michel Reniers for their valuable comments ondrafts of this paper and Rob van Glabbeek for answering some technical ques-tions. Jan Joris Vereijken was very helpful in doing calculations on the examples.2 Basic Process Algebra with Empty ProcessThe aim of this section is to introduce the algebra of sequential processes [5]. Wedeal with the basic process algebra with empty process for concrete processes(BPA�") [6, 15] and with abstraction in the framework of branching bisimulation(BPA��") [11].

2.1 The Equational TheoriesThe signature of the several theories is parameterized by a set of constantsA = fa; b; : : :g called atomic actions. There are three distinguished constants notbelonging to A. They are �, called deadlock or inaction, that denotes the processthat has stopped executing actions and cannot proceed; ", the empty process,that denotes the process that does nothing but terminate successfully; and � ,the silent action, that is a special action having the meaning of internal activity.Besides, the signature has two binary operators: the alternative composition(+) which, in x + y, executes process x or y, but not both; and the sequentialcomposition (�) that, given x � y, �rst executes x and, upon completion, startswith the execution of y. We generally omit this operator writing xy instead ofx�y. Besides, we assume that � binds stronger than all the other operators we willdeal with, and + binds weaker. Notice that the signature of BPA�" also includesthe silent action � . It is dealt with as any other action in BPA�" . EquationsA1{A9 from Table 1 de�ne BPA�" . Adding axiom BE, we obtain BPA��" .Table 1. Axioms for BPA�" and BPA��" .A1 x+ y = y + x A6 x+ � = xA2 (x+ y) + z = x+ (y + z) A7 �x = �A3 x+ x = xA4 (x+ y)z = xz + yz A8 x" = xA5 (xy)z = x(yz) A9 "x = xBE a(� (x+ y) + x) = a(x+ y)2.2 Structured Operational Semantics and EquivalencesTable 2 de�nes the operational semantics in a structured way following the styleof [17]. In our system we consider two kinds of predicates, each one having itsown meaning. Predicate # expresses that a process may terminate successfully.For every action a 2 A [f�g, predicate a�! expresses that the �rst argumentcan perform action a and become the second argument. In addition, we de�ne=) as the re
exive transitive closure of ��! .Table 2. Operational semantics for the basic operators (a 2 A [f�g)" # x #x+ y # y + x # x # y #x � y #a a�!" x a�!x0x+ y a�!x0 y + x a�!x0 x a�!x0x � y a�!x0 � y x # y a�!y0x � y a�!y0

In this paper we will deal with divergence free processes only. This meansthat a process cannot perform an in�nite sequence of � -steps.Let T be the set of all closed terms in the signature of BPA�" . Next, wede�ne two well known equivalences over T .De�nition1 (Bisimulation). [16] A (strong) bisimulation is a symmetric re-lation S � T � T satisfying, for all a 2 A [f�g:if pSq and p a�!p0, then 9q0 2 T : q a�!q0 and p0Sq0; andif pSq then p # i� q #.Two processes p and q are bisimilar (notation p$q), if there exists a bisimulationS with pSq.De�nition2 (Branching bisimulation). [11] A branching bisimulation is asymmetric relation S � T � T satisfying, for all a 2 A [f�g:if pSq and p a�!p0, then �a = � and p0Sq; or9q00; q0 2 T : q=)q00 a�!q0 and pSq00 ^ p0Sq0; andif pSq and p #, then 9q0 2 T : q=)q0 # and pSq0.Two processes p and q are branching bisimilar (notation p$bq), if there existsa branching bisimulation S with pSq.Two processes p and q are rooted branching bisimilar , (notation p$rbq) iffor all a 2 A [f�g:1. p a�!p0 implies 9q0 : q a�!q0 and p0$bq0;2. q a�!q0 implies 9p0 : p a�!p0 and p0$bq0;3. p # i� q #.The relations above are ordered by set inclusion: $� $rb � $b. We have:Theorem3 (The term models).1. T =$ is a model for BPA�" . BPA�" is a complete axiomatization for T =$.2. T =$rb is a model for BPA��" . BPA��" is a complete axiomatization for T =$rb .3 The Delayed Choice3.1 Equational TheoryThe delayed choice considered here is an extension of the operator introducedin [3]. The di�erence is that we also consider abstraction. The delayed choice(�) between processes x and y, is the process obtained by joining the observablecommon initial parts of x and y and continuing with a normal choice betweenthe remaining parts. In case internal activity is performed, the choice is delayedin the same way the � -angelic choice [9] does. Thus, after executing an internalstep of x the alternatives from y are still enabled, and vice versa. However, the

nondeterministic choices which are internal to x or y, are not removed. This isexpressed in the de�nition of the delayed choice in Table 3.The de�nition of the delayed choice has �ve cases. We use three auxiliaryoperators. The �rst one is the join operator (1). x 1 y selects exactly thosesummands of x and y having a common initial action which is observable (i.e.di�erent from �). The unless operator (/) works exactly in the opposite way. Inx / y, only those summands of x having an initial observable action are selectedfor which y does not have any summand with the same initial action or withan initial silent action. Note that summands of x having an initial silent stepare not selected. The � -selecting operator () delays the choice in case of silentactions, i.e., x y selects the summands of x having an initial silent action.Thus, the axioms in Table 3 extend BPA�" and BPA��"with the delayed choiceand the auxiliary operators. We denote these extensions by BPA�" +DCandBPA��" + DC. Table 3. Axioms for delayed choice (a; b 2 A)DC x� y = x 1 y + x / y + y / x+ x y + y xJ1 " 1 x = � U1 " / " = "J2 x 1 " = � U2 " / ax = "J3 � 1 x = � U3 ax / " = axJ4 x 1 � = � U4 � / x = �J5 ax 1 ay = a(x� y) U5 " / � = "J6 a 6= b) ax 1 by = � U6 ax / � = axJ7 (x+ y) 1 z = x 1 z + y 1 z U7 ax / ay = �J8 x 1 (y + z) = x 1 y + x 1 z U8 a 6= b) ax / by = axU9 (x+ y) / z = x / z + y / zU10 x / (y + z) = (x / y) / zTJ1 �x 1 y = � TS1 " x = �TJ2 x 1 �y = � TS2 � x = �TS3 ax y = �TU1 �x / y = � TS4 �x y = � (x� y)TU2 x / �y = � TS5 (x+ y) z = x z + y zOperators 1, / and are needed for a �nite axiomatization. The unlessoperator / is quite similar to the one used in the axiomatization of the priorityoperator [2], but our version �lters according to equality instead of an orderingon observable actions. The � -selecting operator works in a similar way as theleft box of [9] when dealing with summands starting with � , but instead, ouroperator does not select summands having an initially observable action.

Example 1. We give some simple examples in order to make clear the behaviourof the delayed choice. Suppose a, b, c, d, e and f are distinct actions in A, then:BPA�" +DC ` ab� a(c+ d) = a(b+ c+ d)BPA�" +DC ` (ab+ �ac)� de = ab+ � (ac+ de)BPA�" +DC ` (ab+ ac)� a(b+ c) = a(b+ c)BPA�" +DC ` (ab+ �ac)� a(d+ e) = a(b+ d+ e) + �a(c+ d+ e)BPA�" +DC ` (ab+ ac)� (ad+ �f) = a(b+ d) + a(c + d) + � (ab+ ac+ f)BPA�" +DC ` (ab+ ac)� a(� (b+ c) + b) = a(� (b+ c) + b)BPA��" +DC ` (ab+ ac)� a(� (b+ c) + b) = a(b+ c)3.2 Structured Operational SemanticsThe rules in Table 4 de�ne the operational semantics for the delayed choice.In some rules, we make use of negative premises (see [18]). Expression y 6a�!means that process y cannot execute action a. Moreover, our system is in panthformat [18], which introduces several good properties that are useful in provingcompleteness of equational theories.Our choice was to formulate the equational theory and afterwards state theoperational rules which we will prove sound and complete. However, as the rulesystem can be simply translated into one in GSOS format [7] by changing thepredicate # into the action relation p�! as done in [12], we could follow the al-gorithm proposed by [1] in order to help us on �nding a complete axiomatizationstarting from the rules.Table 4. Operational semantics for delayed choice (a; b 2 A)x a�!x0 y a�!y0x� y a�!x0 � y0 x 1 y a�!x0 � y0 x a�!x0 y 6a�! y 6��!x� y a�!x0 y � x a�!x0 x / y a�!x0x # y 6��!x� y # y � x # x / y # x ��!x0x� y ��!x0 � y y � x ��!y � x0 x y ��!x0 � y3.3 Soundness and CompletenessIn this section we prove soundness and completeness of the term models. In orderto do that, we use term rewrite techniques. Axioms A3{A9 in Table 1 and allaxioms in Table 3 can be observed as rewrite rules, if they are oriented from leftto right, i.e. for each axiom s = t we consider the rule s ! t . Nevertheless, this

term rewriting system is not con
uent, that is, a term may have two di�erentnormal forms. This is due to the fact that e.g. axiom A9 is sometimes neededin the opposite direction. So, we complete the term rewriting system by addingthe rewrite rules in Table 5. Note that each new rewrite rule is derivable fromthe axioms for the delayed choice. Let TRS be the new term rewriting system.Table 5. Additional rewrite rules (a 6= b)AR1 a 1 a ! a AR8 x 1 � ! � AR15 " / a ! "AR2 a 1 ax ! a(" � x) AR9 a / a ! � AR16 a / " ! aAR3 ax 1 a ! a(x � ") AR10 a / ax ! � AR17 a / � ! aAR4 a 1 b ! � AR11 ax / a ! � AR18 � / x ! �AR5 a 1 bx ! � AR12 a / b ! a AR19 x / � ! �AR6 ax 1 b ! � AR13 a / bx ! a AR20 a x ! �AR7 � 1 x ! � AR14 ax / b ! ax AR21 � x ! � (" � x)Theorem4. TRS is strongly normalizing.Proof. This can be proved by applying the method of the lexicographical pathordering [13, 14]. The details can be found in [10]. utDe�nition5 (Basic Terms). Let B be the class of basic terms over the theoryBPA�" + DC (or BPA��" +DC), de�ned as the smallest class satisfying:1. �; "; � 2 B;A � B2. a 2 A; t 2 B) a � t 2 B3. t 2 B) � � t 2 B4. s; t 2 B) s + t 2 BThe next theorem states that for every closed BPA�" +DC term there existsa basic term (not containing �, 1, / and) such that they can be proved equal.That is why it is called the elimination theorem.Theorem6 (Elimination Theorem in BPA�" + DC). Let t be a closed termover BPA�" + DC . Then, there is a basic term s such that BPA�" +DC ` t = s.Proof. Because of Theorem 4, t has a normal form s. We prove that such an sis a basic term. Firstly, take into account that it is well known that rules A3-A9rewrite a closed BPA�" -term into a basic one. Now, if s contains a � then DCcan be applied and so s is not in normal form which contradicts our assumption.If s contains 1, / or , take a smallest sub-term containing one of them, says1 1 s2, now we can assume that both sub-terms s1 and s2 are already basic

terms, so one of the rules J1{J8, TJ1{TJ2 or AR1{AR8 can be applied. If thissub-term is s1 / s2, one of the rules of U1{U10, TU1{TU2 or AR8{AR19 canbe applied. Finally, if this sub-term is s1 s2, then one of the rules TS1{TS5 orAR20{AR21 can be applied. This concludes the proof. utCorollary 7 (Elimination Theorem in BPA��" +DC). Let t be a closed termover BPA��" + DC . Then, there is a basic term s such that BPA��" + DC ` t = s.Let T � be the set of all closed BPA�" + DC terms. We can immediatelyextend the notion of the several bisimulation equivalences to T �. Now, we havethe following results.Theorem8 (Congruence). $ and $rb are congruences for the �, 1, / andoperators.Proof.($) The set of operational rules for BPA�" + DC satis�es the panth format of[18] and it is also well founded. It remains to prove that it is strati�able. Asin [3], de�ne the function S that, to each step t a�!t0 and termination optiont #, assigns the number of � symbols plus the number of / symbols in t. Itis now easy to prove that S is a strict strati�cation.For proving that $rb is a congruence, we need the following four properties.Their proof is straightforward.1. x=)x0 ^ y=)y0 if and only if x� y=)x0 � y0.2. x y 6a�! for all a 6= � .3. x 1 y 6��!.4. x / y 6��!.Now, it is tedious but not di�cult to prove the following.($rb) Take any rooted branching bisimulation R between x and x0. Let Id bethe identity relation. Then, the following relations are also rooted branchingbisimulations:R1 = f(z � y; z0 � y)j(z; z0) 2 Rg [R [Id R5 = f(x / y; x0 / y)g [RR2 = f(y � z; y � z0)j(z; z0) 2 Rg [R [Id R6 = f(y / x; y / x0)g [IdR3 = f(x 1 y; x0 1 y)g [R1 R7 = f(x y; x0 y)g [R1R4 = f(y 1 x; y 1 x0)g [R2 R8 = f(y x; y x0)g [R2 utNotice that $b is also a congruence for �. However, this is not the case forthe other operators.Theorem9 (Soundness).1. T �=$ j= BPA�" +DC2. T �=$rb j= BPA��" +DC

Proof. As usual. For every axiom s = t having free variables in X, we de�ne therelation R = f(�(s); �(t))j� substitutes variables in X to closed termsg [Id. Itis not di�cult to prove that R is a bisimulation or rooted branching bisimulationaccording to the soundness property we are proving. utTheorem10 (Equational Conservative Extension).1. BPA�" +DC is a conservative extension of BPA�" .2. BPA��" +DC is a conservative extension of BPA��" .Proof. The operational conservativity follows since our rules are in panth for-mat, and they are pure and well-founded (see [19]). This implies operationalconservativity up to $ and up to $rb. Because the axiomatizations of BPA�"and BPA��" are sound and complete (Theorem 3), and the axiomatizations ofBPA�" + DC and BPA��" +DC are sound (Theorem 9), equational conservativ-ity follows from [19, 4]. utTheorem11 (Completeness).1. BPA�" +DC is a complete axiomatization for T �=$.2. BPA��" +DC is a complete axiomatization for T �=$rb .Proof. Again, following [19, 4] and considering Theorem 6 and Corollary 7, thistheorem is a corollary of the previous one. ut3.4 PropertiesIn this section, we prove several properties that hold for the new operators.Mainly, we show that � satis�es common properties of choice operators (commu-tativity and associativity) and that � is the neutral element for �. Nevertheless,idempotency does not hold for �.Lemma12. The following properties are derivable from BPA�" + DC1. ax� ay = a(x� y)2. a 6= b) ax� by = ax+ byProof.1: ax� ay = ax 1 ay + ax / ay + ay / ax+ ax ay + ay ax= ax 1 ay + � + � + � + � = a(x� y)2: Let a 6= b. Thenax� by = ax 1 by + ax / by + by / ax+ ax by + by ax= � + ax+ by + � + � = ax+ by utRemark. From now on, we will assumeX =Xi aixi +Xj �xj +Xk " Y =Xm bmym +Xn �yn +Xl "

with i 2 I, j 2 J , k 2 K, m 2 M , n 2 N and l 2 L; I, J , K, M , N and L are�nite disjoint sets; and ai 6= � , bm 6= � . In particular, we considerXh2; th = �, or,by A6, we omit it.The proof of the following lemma is by straightforward calculations.Lemma13. Let X and Y be as before. Then1. X 1 Y = Xi;m(ai=bm) ai(xi � ym)2. X / Y = Xi(8m:ai 6=bm^N=;) aixi + Xk(N=;) "3. X Y =Xj � (xj � Y)Theorem14 (Neutral Element). Let x be a closed term. Thenx� � = � � x = xProof. We prove it by induction on the number of symbols of x, say k. The basecase (k = 1) is left to the reader. Assume X as in the previous remark. For theinductive case we have:X � � DC= X 1 � +X / � + � / X +X � + � XJ4, U4, TS2= � +X / � + � +X � + �13= Xi aixi +Xk "+Xj � (xj � �)IH= Xi aixi +Xk "+Xj �xj A1, A2= XThe second part of the theorem goes analogously. utDe�nition15 (Initial Actions). De�ne the set of initial action of a giventerm x as follows:I(�) = ; I(ax) = fag I(x+ y) = I(x) [I(y)I(") = ; I(�x) = f�gLemma16. Let x and y be any closed terms. Then1. I(x 1 y) = (I(x) \ I(y))nf�g2. I(x / y) = � I(x)n(I(y) [f�g) if � =2 I(y); otherwise3. I(x y) = f�g \ I(x)4. I(x � y) =8>><>>: I(x) [I(y) if � =2 I(x) [I(y)I(x) if � 2 I(x) ^ � =2 I(y)I(y) if � =2 I(x) ^ � 2 I(y)I(x) \ I(y) if � 2 I(x) \ I(y)

Proof. It follows from De�nition 15 and Lemma 13. utLemma17. Let x, y and z be any closed terms. Then:1. I(y) = I(z)) x / y = x / z2. x / (y � z) = x / (y + z) = (x / y) / zProof. Suppose � 2 I(y) = I(z), then both y and z has a summand with � asinitial action. Hencex / y A1, A2, A3= x / (y + �yj) U9= (x / y) / �yj TU2= �Analogously, x / z = �. Now, suppose � =2 I(y) = I(z). Hence, we can writey =Xm bmym +Xl " and z =Xh chzh +Xf ". Suppose X as before. ThenX / y 13= Xi(8m:ai 6=bm)aixi +Xk " I(y)=I(z)= Xi(8h:ai 6=ch) aixi +Xk " 13= X / zPart (2) follows from Lemma 16, part (4) and the de�nition of initial actionstaking into account whether � is an initial action of y and z or not. utTheorem18 (Commutativity). For all closed terms x and y, we have:1. x 1 y = y 1 x2. x� y = y � xProof. By mutual induction on the sum of symbols of x and y, we can prove (1);(2) follows directly from (1) and DC. utTheorem19 (Associativity). For all closed terms x, y and z, we have:1. (x 1 y) z = x 1 (y z) = (x y) 1 z = (x / y) z = (x y) / z = �2. x 1 (y / z) = (x 1 y) / z = (x / z) 1 y3. x (y � z) = (x y) z = (x z) y4. x 1 (y 1 z) = (x 1 y) 1 z5. x� (y � z) = (x� y) � zProof. Identities of (1) can be deduced from Lemma 13For (2) consider X and Y as before and Z =Xh chzh+Xg �zg +Xf ". Now,we have:(X 1 Y) / Z 13(1)= 0@ Xi;m(ai=bm)ai(xi � ym)1A / Z 13(2)= Xi;m(ai=bm^8h:ai 6=ch^G=;) ai(xi � ym)13(1)= 0B@ Xi(8h:ai 6=ch^G=;) aixi + Xk(G=;) "1CA 1 Y 13(2)= (X / Z) 1 Y

The other equation follows similarly.Properties (3), (4) and (5) are proved by mutual induction on the sum k ofsymbols of x, y and z. For details we refer to [10]. utWe have already stated that � is commutative, associative and has � asneutral element. However, the delayed choice presented here is not idempotentand it does not satisfy the several laws of distributivity, just as the delayed choiceof [3] and the � -angelic choice [9]. We will not repeat the counter examples forthe following fact given in [3].Fact 20 The following equations are not generally valid in the initial algebra:x� x = x(x+ y) � z = (x� z) + (y � z)(x� y) + z = (x+ z) � (y + z)(x� y)z = xz � yzz(x� y) = zx� zy4 ExamplesIn [3] the delayed choice operator was used for the composition of Message Se-quence Charts. In this section, we will show two more examples of its application.4.1 Scenario speci�cationIn communication protocols it is often the case that one can distinguish onemain scenario and several alternative behaviours. If, e.g., the main scenario is acorrect transmission, an alternative scenario could be the occurrence of a channelerror followed by a retransmission. If both scenarios start with the same initialbehaviour, the two alternative scenarios should not be combined with the normalnon-deterministic choice (+). By using the delayed choice instead, the momentof choice is put at the point where the scenarios start to di�er. In this case thebene�t of using the delayed choice is not that it gives a shorter speci�cation, butthat it helps in designing and presenting the speci�cation in a more modularway.Next, we will give an example in which the delayed choice allows for a con-siderably shorter speci�cation than without this operator. Consider an accesscontrol consisting of a digital key pad and a (locked) door. A user can enterany sequence of digits. The door may only be opened if the sequence ends in aspecial four digit code (say, 2908). Let 0{9 denote detection of the indicated keystroke and let grantaccess stand for o�ering the user the option to access, thenthe following is a speci�cation of the access control.AC = (0+ 1+2+3+ 4+ 5+ 6+ 7+ 8+9) �AC � 2 � 9 � 0 � 8 � grantaccess �ACPlease notice that this process is executed in parallel with the user behaviour.After selecting 2908, the user is not forced to take access. He can also enteranother digit and lose access permission for that moment.

4.2 Requirements reductionA veri�cation in process algebra in general consists of proving �I(S) = R, whereS is an implementation speci�cation and R is a requirements speci�cation. The�I operator ([5]) is the abstraction operator, which renames actions from the setI into � . It removes all internal actions, but keeps the internal branching struc-ture. It often happens that one has a very simple requirements speci�cation Rin mind, while after calculating �I(S) an expression with an excess of internalchoices remains. These internal choices probably represent implementation deci-sions. Then, there are two obvious ways to proceed. The �rst is to simply forgetabout R and consider �I (S) as the requirements speci�cation, having to accepta more implementation directed requirement. The second way is to discard thebranching structure and proceed in a linear time semantics, where �I (S) = Rholds. In this case we lose all information about the branching structure of therequirements.We propose to use the delayed choice operator. Let D be the operator whichreplaces all occurrences of the non-deterministic choice by the delayed choice, asde�ned in Table 6.Table 6. The operator D for removing non-deterministic choices (a 2 A [f�g)DE1 D(") = "DE2 D(�) = �DE3 D(x+ y) = D(x) �D(y)DE4 D(ay) = a �D(y)Now, a mixed linear time/branching time veri�cation consists of proving�I1 �D � �I2 (S) = RThe set I2 contains all atomic actions which induce only irrelevant choices, whilethe choices between actions from I1 should remain after abstraction.We will illustrate this with parts of the veri�cation of a leader election proto-col. We call this protocol the Paint Ball protocol, because it is a formalization ofthe popular Paint Ball game, in which people �ght each other by shooting paintballs.Suppose that entities Ei (i 2 ID, ID is the set of identi�cations jIDj > 1)have to elect a leader amongst themselves non-deterministically. Every entitycan communicate synchronously with every other entity. Initially all entities areequal. We have the following quite simple requirements speci�cation.R = � � Xi2ID � � leader(i)

where leader(i) denotes that entity i has become leader. Notice that we prependa silent step � to represent some initial internal activity.The Paint Ball protocol is speci�ed as the parallel composition (k, [5]) of allentities. The encapsulation operator @H is applied to enforce successful commu-nications only. It renames all atoms from the set H into �.S = @H �ki2ID EID�figi �Each entity EVi is indexed with a set V . This set contains all other entities thathave not yet been defeated by i. If this set is empty, it means that i has defeatedall other participants and that i will become the leader (Li). If the set is notempty, a choice is made between shooting a paint ball at one of the remainingparticipants (sij), or receiving a paint ball (rji) and entering the failed state (Fi).If all but one of the entities have yielded, the leader informs all failed entitiesthat the elections are �nished (sreadyij) and �nally executes action leader(i).E;i = LiEVi =Pj2V �sij �EV�fjgi + rji � Fi� (V 6= ;)Li = �kj2ID�fig sreadyij� � leader(i)Fi =Pj2ID�fig (rji �Fi + rreadyji)We have the obvious communication function (rijjsij = cij, rreadyijjsreadyij =creadyij) and encapsulation set H = frij; rreadyi;j; sij; sreadyi;j ji; j 2 IDg.Now let I = fcij; creadyi;jji; j 2 IDg and consider �I(S). After several calcula-tions we obtain a reduced speci�cation such that � � �I(S) = P ID.PV = � �Pi2V � � PV�fig (jV j > 1)P fig = � � leader(i)The speci�cation of P shows that during the execution of the protocol someinternal choices are made, which denote that some entity i is removed from thelist of candidates. This continues until one candidate remains. According to ourrequirements speci�cation we are not interested in these implementation details.Using our proposed strategy we calculate (for I2 = fcijji; j 2 IDg)D � �I2(S) = � � Xi2ID ��kj2ID�fig creadyij� � leader(i)�And if we set I1 = fcreadyijji; j 2 IDg then we get the desired equality.�I1 �D � �I2(S) = � � Xi2ID � � leader(i) = R5 ConclusionWe have de�ned the delayed choice operator in process algebra with abstraction.Using this operator we can express linear time speci�cations in a branchingtime setting. We have shown two applications of this operator, namely scenariospeci�cation and requirements reduction. A sound and complete axiomatizationwith respect to branching bisimulation was obtained.

References1. L. Aceto, B. Bloom, and F.W. Vaandrager. Turning SOS rules into equations.Information and Computation, 111(1):1{52, 1994.2. J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and de�ning equations foran interrupt mechanism in process algebra. Fund. Inf., IX(2):127{168, 1986.3. J.C.M. Baeten and S. Mauw. Delayed choice: an operator for joining Message Se-quence Charts. In D. Hogrefe and S. Leue, editors, Formal Description Techniques,VII, pages 340{354. Chapman & Hall, 1995.4. J.C.M. Baeten and C. Verhoef. Concrete process algebra, pages 149{268. Hand-book of logic in computer science (Vol 4, Semantic modelling), eds. S. Abramsky,Dov. M. Gabbay and T.S.E. Maibaum. Clarendon press, Oxford, 1995.5. J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theo-retical Computer Science 18. Cambridge University Press, 1990.6. J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.Information & Control, 60:109{137, 1984.7. B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can't be traced: preliminaryreport. In Proc. 15th ACM symposium on Principles of Programming Languages,pages 229{239. San Diego, California, 1988.8. S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating se-quential processes. Journal of the ACM, 31(3):560{599, 1984.9. P. D'Argenio. � -angelic choice for process algebra. Technical report, LIFIA, Dpto.de Inform�atica, Fac. Cs. Exactas, UNLP, 1994.10. P. D'Argenio and S. Mauw. Delayed choice for process algebra with abstraction.Report, Department of Computer Science, Eindhoven University of Technology,1995. To appear.11. R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimu-lation semantics (extended abstract). In G.X. Ritter, editor, Information Process-ing 89, pages 613{618. North-Holland, 1989.12. J.F. Groote and F.W. Vaandrager. Structured operational semantics and bisimu-lation as a congruence. Information and Computation, 100:202{260, 1992.13. S. Kamin and J.-J. L�evy. Two generalizations of the recursive path ordering. Un-published manuscript, 1980.14. J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, andT. Maibaum, editors, Handbook of Logic in Computer Science, volume II, pages1{116. Oxford University Press, 1992.15. C.P.J. Koymans and J.L.M. Vrancken. Extending process algebra with the emptyprocess. Report LGPS 1, Dept. of Philosophy, University of Utrecht, 1985.16. D.M.R. Park. Concurrency and automata on in�nite sequence. In P. Deussen,editor, Proc. 5th. GI Conference, pages 167{183. LNCS 104, Springer-Verlag, 1981.17. G.D. Plotkin. A structural approach to operational semantics. Report DAIMI-FN-19, Computer Science Department, University of �Arhus, 1981.18. C. Verhoef. A congruence theorem for structured operational semantics with predi-cates and negative premises. In B. Jonsson and J. Parrow, editors, Proc. CONCUR'94, pages 433{448. Uppsala, Springer Verlag, 1994. LNCS 836.19. C. Verhoef. A general conservative extension theorem in process algebra. In E.-R.Olderog, editor, Proc. PROCOMET'94, IFIP 2 Working Conference, pages 149{168. San Miniato, North-Holland, 1994.This article was processed using the LATEX macro package with LLNCS style

