
Computers & Security 88 (2020) 101630

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Attribute evaluation on attack trees with incomplete information

Ahto Buldas a , Olga Gadyatskaya

b , Aleksandr Lenin

a , Sjouke Mauw

b ,
Rolando Trujillo-Rasua

c , ∗

a Tallinn University of Technology and Cybernetica AS, Estonia
b CSC/SnT, University of Luxembourg, Luxembourg
c Centre for Cyber Security Research and Innovation, School of Information Technology, Deakin University, Australia

a r t i c l e i n f o

Article history:

Received 30 April 2019

Revised 21 August 2019

Accepted 29 September 2019

Available online 30 September 2019

Keywords:

Attack trees

Constraint programming

Historical data

Security risk assessment

Quantitative security

Decoration problem

a b s t r a c t

Attack trees are considered a useful tool for security modelling because they support qualitative as well

as quantitative analysis. The quantitative approach is based on values associated to each node in the tree,

expressing, for instance, the minimal cost or probability of an attack. Current quantitative methods for

attack trees allow the analyst to, based on an initial assignment of values to the leaf nodes, derive the

values of the higher nodes in the tree. In practice, however, it shows to be very difficult to obtain reliable

values for all leaf nodes. The main reasons are that data is only available for some of the nodes, that

data is available for intermediate nodes rather than for the leaf nodes, or even that the available data

is inconsistent. We address these problems by developing a generalisation of the standard bottom-up

calculation method in three ways. First, we allow initial attributions of non-leaf nodes. Second, we admit

additional relations between attack steps beyond those provided by the underlying attack tree semantics.

Third, we support the calculation of an approximative solution in case of inconsistencies. We illustrate

our method, which is based on constraint programming, by a comprehensive case study.

© 2019 Elsevier Ltd. All rights reserved.

1

i

t

p

m

(

a

T

t

B

K

e

a

t

c

m

G

r

p

s

a

s

t

n

t

2

r

r

A

r

c

m

t

g

q

h

0

. Introduction

Attack trees are a useful and intuitive graphical model-

ng language. Since the introduction by Amoroso (as threat

rees) (Amoroso, 1994), and Salter et al. (1998) , it has enjoyed

opularity in the security industry, as well as in the research com-

unity. Attack trees have been equipped with various semantics

 Horne et al., 2017; Jhawar et al., 2015; Mauw and Oostdijk, 2006)

nd supported by tools (Amenaza, 2017; Gadyatskaya et al., 2016c).

hey have also been enhanced with various methods for quanti-

ative analysis (Aslanyan and Nielson, 2015; Aslanyan et al., 2016;

istarelli et al., 2006; Buldas and Lenin, 2013; Kordy et al., 2013b;

umar et al., 2015; Lenin, 2015; Lenin and Buldas, 2014; Lenin

t al., 2015; Roy et al., 2012), which allow determining for a given

ttack tree, for example, an organisation’s losses due to an attack,

he probability that such an attack succeeds, or the cost of a suc-

essful attack (Hong et al., 2017).

The underlying assumption upon which all these quantification

ethods are based is similar to the popular divide and conquer
∗ Corresponding author.

E-mail addresses: ahto.buldas@taltech.ee (A. Buldas), olga.gadyatskaya@uni.lu (O.

adyatskaya), aleksandr.lenin@cyber.ee (A. Lenin), sjouke.mauw@uni.lu (S. Mauw),

olando.trujillo@deakin.edu.au (R. Trujillo-Rasua).

s

t

p

r

i

ttps://doi.org/10.1016/j.cose.2019.101630

167-4048/© 2019 Elsevier Ltd. All rights reserved.
aradigm, in which a problem is recursively broken down into

maller problems that are theoretically simpler to reason about

nd solve.

A quantification method for attack trees often reduces to the as-

ignment of attribute values to basic attack steps (leaf nodes in the

ree). Such assignments are used in a bottom-up propagation man-

er to determine the value at the root node, which is a quantifica-

ion measure for the scenario expressed in the tree (Kordy et al.,

013b). It is largely believed that it is relatively easy to assign a

eliable attribute value to a basic attack step, which is precise and

efined enough. Popular tools operating with attack trees, such as

DTool (Gadyatskaya et al., 2016c; Kordy et al., 2013a) and Secu-

ITree (Amenaza, 2017), work exactly under this premise.

In practice, the assumption that attribute values for more con-

rete attack steps are easier to obtain has proven incorrect. Indeed,

ost companies manage to obtain statistical data for abstract at-

acks, e.g. frequency of skimming attacks, while they might strug-

le to come up with similar data for more refined attacks, e.g. fre-

uency of stereo skimming attacks based on audio technology. For

ecurity consultants, it might be feasible to obtain reliable estima-

ions for (at least some) abstract attacks in relevant domains, but

recise historical data for low-level attack steps might be out of

each. Thus, we observe that there is a tension between the lim-

ted availability of data and the requirement to provide data values

https://doi.org/10.1016/j.cose.2019.101630
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2019.101630&domain=pdf
mailto:ahto.buldas@taltech.ee
mailto:olga.gadyatskaya@uni.lu
mailto:aleksandr.lenin@cyber.ee
mailto:sjouke.mauw@uni.lu
mailto:rolando.trujillo@deakin.edu.au
https://doi.org/10.1016/j.cose.2019.101630

2 A. Buldas, O. Gadyatskaya and A. Lenin et al. / Computers & Security 88 (2020) 101630

a

2

o

2

c

t

t

t

f

q

S

t

q

t

fi

a

a

r

r

r

e

v

d

t

t

n

a

l

h

e

t

b

d

d

t

e

d

v

e

t

b

t

v

2

u

e

s

d

t

S

c

f

b

a

r

a

c
for all leaves in an attack tree before proceeding with a quantifica-

tion method.

Today, existing quantitative approaches for attack trees cannot

handle values of intermediate nodes in the tree that may become

available from historical data. Moreover, they do not support the

use of additional constraints over nodes in the tree, which are ob-

tained from external sources of information rather than from the

attack tree model itself. For example, the analysts may be confi-

dent that card skimming attacks are more frequent than physical

attacks on card holders. Such a relation cannot be captured in an

attack tree model, because it is not a hierarchical relation, hence it

is ignored in current quantitative approaches for attack trees.

There is clearly a need for novel computation methods on at-

tack trees that account for available historical data and domain-

specific knowledge. In this paper, we formulate a general attack-

tree decoration problem that treats assignment of values to tree

nodes as a problem of finding a set of data values satisfying a

set of predicates. These predicates arise from the attack tree struc-

ture and the target attribute to be computed (i.e. semantics) and

from the attainable historical values and domain knowledge (i.e.

available data). Our methodology to solve the attack-tree decora-

tion problem accounts for scenarios in which the set of predicates

cannot be jointly satisfied, due to inconsistencies or possible noise

in the data.

Contributions. In this work

• We transform an attack tree semantics together with an at-

tribute interpretation into a constraint satisfaction problem

(Section 3). If the attack tree semantics is consistent with

the attribute interpretation, this allows us to determine ap-

propriate attribute values for all nodes in the tree.

• Because confidence in the available historical data and

domain-specific knowledge may vary, we provide a method-

ology to deal with inconsistencies (Section 4). The useful-

ness of our approach is that any consistent valuation is bet-

ter than no valuation, as it will enable the follow up process

of using the attack tree for what-if analysis. The standard

bottom-up approach would result in absence of any valua-

tion until all leaf node values can be assigned.

• We introduce two concrete approaches to deal with incon-

sistencies (Section 5). The first one determines the smallest

subset of constraints that makes the decoration problem in-

consistent, which is useful to find contradictory or wrong

assumptions. The second one is suitable for constraints that

are expressed in the form of inequalities. In this approach

constraints are regarded consistent and an optimal decora-

tion is always found. The proposed methodology has been

implemented as proof-of-concept software tools 1 .

• We validate our methodology and the implementations

through a comprehensive case study on the security of Au-

tomatic Teller Machines (Sections 6 and 7).

2. Related work

Research articles on quantitative security analysis with attack

trees in all their flavors (attack-defense trees, defense trees, etc.

(Kordy et al., 2014b)) often focus on providing extensions to at-

tack trees enabling more complex scenarios (Arnold et al., 2014;

Aslanyan et al., 2016; Gadyatskaya et al., 2016a; Jhawar et al.,

2016; Kordy et al., 2012) and defining metrics for evaluating sce-

narios captured as attack trees. Various metrics have been con-

sidered in the literature, for instance, the probability/likelihood of

an attack (Bagnato et al., 2012; Lenin, 2015), expected time until

a successful attack (Bagnato et al., 2012), attacker’s utility (Buldas
1 https://github.com/vilena/at-decorator/ .
nd Lenin, 2013; Lenin, 2015; Lenin and Buldas, 2014; Lenin et al.,

015; 2014), return on security investment (Bistarelli et al., 2006),

r assessment of risks (Gadyatskaya et al., 2016b; Potteiger et al.,

016). Bagnato et al. (2012) present a list of metrics found in se-

urity literature that can be computed on attack trees. Yet, all

hese approaches assume that the data values to perform quan-

itative analysis of system security are readily available. Indeed, to

he best of our knowledge, no methodologies have been developed

or integrating historical data and domain-specific knowledge in

uantitative analysis of attack trees. At the same time, even Bruce

chneier, one of the inventors of attack trees, has acknowledged

he painstaking work for data collection that is a prerequisite for

uantitative analysis on the trees (Schneier, 20 0 0 , Chap. 21).

Benini and Sicari (2008) have proposed a framework for attack

ree-based security risk assessment. The approach relies on identi-

cation of security vulnerabilities, that are placed in the leaves of

n attack tree. Quantitative parameters of the vulnerabilities, such

s exploitability and damage potential, allow to estimate security

isks to a system. In Benini and Sicari (2008) , the exploitability pa-

ameters are initially evaluated based on the CVSS scores 2 of the

espective vulnerabilities, and then they are adjusted based on the

xpert judgement about the system context and mutual effect of

ulnerabilities on each other expressed in a vulnerability depen-

ency graph. While this methodology offers more precise quanti-

ative risk assessment with attack trees, it assumes that the at-

ack tree is constructed in a bottom-up manner. All system vul-

erabilities have to be identified using a suitable technology, and

ccommodated in an attack tree. In complex environments it will

ikely be impractical to apply the bottom-up approach due to the

uge amount of potential vulnerability combinations that can be

xploited in various attacks. Indeed, in practice attack trees are

ypically designed in a top-down manner, when the analyst starts

y conjecturing the main attacker’s goal and iteratively breaks it

own into smaller subgoals (Fraile et al., 2016; Mauw and Oost-

ijk, 2006; Schneier, 1999; 2000).

Recently, de Bijl (2017) studied the use of historical data values

o obtain attribute values for attack tree nodes. He proposed sev-

ral heuristics to deal with missing data values, including the stan-

ard bottom-up algorithm to infer parent node values, the reuse of

alues for recurring nodes, and the use of various data sources to

stimate certain attributes. For example, the paper refers to dis-

ance to the police station as a hidden variable influencing proba-

ility of attack. Yet, de Bijl does not define a precise methodology

o perform computations on attack trees with missing leaf node

alues.

.1. Quantitative analysis of fault trees

Fault trees are close relatives of attack trees that are widely

sed in the reliability domain. There exists a large body of lit-

rature dedicated to quantitative analysis of fault trees. Yet, the

tandard bottom-up approach in attack trees is not the stan-

ard approach in fault trees, where min-cut set analysis and

ranslation into more intricate models are common (Ruijters and

toelinga, 2015).

Fuzzy fault trees address evaluation of fault trees under un-

ertainty (Mahmood et al., 2013), when failure statistics are not

ully available. The main difference is that fuzzy fault trees have

een developed to serve the needs of the reliability community

nd fault tree application methods (fuzzy probability functions, er-

or propagation estimates, etc.), while the security community and

ttack tree application methods have different needs (bottom-up

omputation for a large variety of attributes). Therefore, solutions
2 Common Vulnerability Scoring System https://www.first.org/cvss .

https://github.com/vilena/at-decorator/
https://www.first.org/cvss

A. Buldas, O. Gadyatskaya and A. Lenin et al. / Computers & Security 88 (2020) 101630 3

d

a

2

a

s

o

e

S

r

v

a

2

m

t

g

a

t

u

2

r

t

o

v

a

d

(

t

t

c

s

d

r

i

J

t

s

c

2

o

i

a

i

b

g

f

b

t

s

l

(

a

a

t

v

c

Fig. 1. An attack tree representing stealing money from someone’s bank account.

q

fi

n

o

s

n

a

3

f

s

t

a

3

t

r

t

f

(

a

g

s

E

n

m

t

f

t

g

c

t

s

w

D

(

L

t

i

M
esigned for fault trees do not fully address the problems in the

ttack tree space.

.2. Computations on attack graphs

Attack graphs are a popular related graphical model for security

ssessment. This model establishes possible attack steps through a

ystem and enables quantitative system security evaluation based

n a variety of metrics (probability of compromise, time of attack,

tc.) (Holm et al., 2015; Kordy et al., 2014b; LeMay et al., 2011;

inghal and Ou, 2017). The attack graph methodology extensively

elies on available statistical data and other available metrics (e.g.

ulnerability severity scores). Yet, the issue of uncertainty is known

lso for quantitative analysis of attack graphs (Sommestad et al.,

009). Still, unlike attack trees, attack graphs are usually auto-

atically generated from available system information (network

opology, vulnerabilities present) and thus computations on attack

raphs are well-defined. For the traditionally manually designed

ttack trees, quantitative data are not so readily available because

here is no well-defined semantics of the leaf nodes (i.e. it is only

p to the analyst to decide to stop refining the nodes further).

.3. Data issues in quantitative risk assessment

Attack trees are typically used for threat modeling and security

isk assessment (Shostack, 2014). Thus, it is necessary to evaluate

he data availability perspective also in the more general context

f security risk assessment. Indeed, the general question of data

alidity in quantitative security risk assessment (QSRA for short)

nd the reliability of QSRA results in presence of uncertainty in

ata values has been raised by many practitioners and researchers

 Vose, 2008).

QSRA enables decision making based on quantitative estima-

ions of some relevant variables (e.g. probability of an event, cost,

ime, vulnerability, etc.). These quantitative estimations are typi-

ally aggregated in a model that can then be utilised by a deci-

ion maker (Vose, 2008). Many studies, books on security, and in-

ustry reports have acknowledged that the quality of quantitative

isk analysis, and, correspondingly, the decisions made based on

t, heavily depend on the quality of data used (Baker et al., 2007;

aquith, 2007; Schneier, 2000; Vose, 2008). Notably, it has been es-

ablished that probabilities of particular loss events and costs as-

ociated to security spending can be hard to obtain from histori-

al data (Ahmed et al., 2007; Aven, 2007; Böhme, 2010; Jaquith,

007; Oppliger, 2015). This body of knowledge serves as evidence

f inherent difficulty to obtain meaningful estimates for probabil-

ty and cost of detailed attack steps, i.e., values for leaf nodes in

ttack trees.

Nevertheless, it has been acknowledged that, for instance, for

nsurance companies it might be feasible to get meaningful data,

ecause they have access to an entire population, i.e. they have

ood statistics (Oppliger, 2015). It has also been demonstrated,

or example, that breach statistics can be used to predict future

reaches in different segments (Sarabi et al., 2015), and that statis-

ics pertinent to different user profiles can be applied to estimate

uccess rates of intrusions (Dacier et al., 1996).

Furthermore, for security assessment, it has been long estab-

ished that external data sources, such as threat level indicators

e.g. malware numbers) can be helpful to update quantitative risk

ssessment models (Böhme, 2010). Therefore, enabling better us-

ge of available historical data, which may not directly correspond

o information about low-level attack events (leaf nodes), will be a

aluable enhancement for quantitative analysis of attack trees.

From this review of the relevant scientific literature, we can

onclude that there is a strong need for an approach to perform
uantitative analysis on attack trees in case the analyst cannot con-

dently assign values to all leaf nodes. Furthermore, this approach

eeds to integrate available historical data that can come in form

f values for some abstract attacks (intermediate nodes) or con-

traints (equalities and inequalities) on combinations of attack tree

ode values. In the remainder of this paper, we propose such an

pproach.

. Attack-tree decoration

In this section we give, to the best of our knowledge, the first

ormulation of the attack-tree decoration problem as a constraint

atisfaction problem. We start by introducing the necessary attack

ree basics. The interested reader can find more details about the

ttack tree formalism in the paper by Mauw and Oostdijk (2006) .

.1. Attack trees

In an attack tree the main goal of the attacker is captured by

he root node. This goal is then iteratively refined into subgoals,

epresented by the children of the root node. Leaf nodes in an at-

ack tree are called atomic subgoals , as they are not refined any

urther. Non-leaf nodes, instead, can be of two types: disjunctive

 OR) or conjunctive (AND). A conjunctive refinement expresses that

ll subgoals must to be achieved in order to succeed on the main

oal, while in a disjunctive refinement the achievement of a single

ubgoal is already enough.

xample 3.1. Consider the simple attack tree in Fig. 1 . The root

ode of this tree represents the main goal of the attack: to steal

oney from a bank account. This goal is disjunctively refined into

wo alternative sub-attacks: the attacker may try to get money

rom an automated teller machine (ATM), or they might attempt

o hack the online bank account system. The sub-goal that explores

etting money at an ATM is further conjunctively refined into two

omplementary activities: the attacker must steal the credit card of

he victim and they also needs to obtain the PIN code by shoulder-

urfing. Note that a conjunctive refinement is denoted graphically

ith an arc spanning the child nodes.

efinition 3.2 (Attack tree) . Given a set of labels L , an attack tree

ATree) is constructed according to the following grammar (for � ∈
):

 ::= � | OR (t , . . . , t) � | AND (t , . . . , t) � .

Our grammar above slightly differs from the grammar used

n other notations to represent attack trees (Kordy et al., 2014a;

auw and Oostdijk, 2006), as we require every node in the tree to

4 A. Buldas, O. Gadyatskaya and A. Lenin et al. / Computers & Security 88 (2020) 101630

p

n

p

w

A

l

a

D

a

c

I

{

o

d

m

T

v

f

r

o

c

a

t

d

D

a

b

l

�

i

p

t

f

c

c

w

∧

t

D

t

a

�

k

a

a

i

be annotated with a label � . The reason for this is that, as opposed

to standard attack tree semantics that focus on the leaf nodes, we

render every node in the tree equally important.

To provide a definition of our running example we will use

shorter labels than those in Fig. 3.2 . The actual mapping between

labels should become clear through a quick visual inspection.

OR (AND (card , pin) money-atm

, hack-account) money-account .

We say that an attack tree has unique labels if it does not con-

tain two distinct nodes with the same label. We use T to denote

the universe of attack trees. We also use the auxiliary functions

root : T → L and l abel s : T → P(L) to obtain, respectively, the root

node’s label and all labels of a given tree. Formally,

• root (t) = � ⇐⇒ t ≡ � ∨ t ≡ OR (t 1 , . . . , t n) � ∨ t ≡
AND (t 1 , . . . , t n) � for some t 1 , . . . , t n ∈ T

• l abel s (t) = { � } if t ≡ � , otherwise l abel s (t) = { � } ∪ l abel s (t 1) ∪
· · · ∪ l abel s (t n) when t ≡ OR (t 1 , . . . , t n) � ∨ t ≡ AND (t 1 , . . . , t n) �
for some t 1 , . . . , t n ∈ T

For example, given the tree from Fig. 1 , we

have that root (AND (card , pin) money-atm

) = money-atm and

l abel s (AND (card , pin) money-atm

) = { card , pin , money-atm } .

3.2. The attack-tree decoration problem

We proceed by formulating the attack-tree decoration problem

as a constraint satisfaction problem. Intuitively, we map an attack

tree to a set of boolean expressions whose variables are drawn

from the set of labels of the tree. Such a set of boolean expres-

sions, defined over a given domain, can be seen as a constraint

satisfaction problem whose solutions correspond to solutions of

the attack-tree decoration problem. The remainder of this section

is dedicated to formalising this intuition.

Decorating an attack tree is a process whereby nodes in the

tree are assigned with values. Given an attack tree t , we use a to-

tal function α: labels (t) → D from labels of the tree to values in a

domain D to represent the decoration process, and VAL labels (t) → D to

denote the universe of such functions. To that effect, we often refer

to labels as variables and to α as a valuation . The co-domain D of

a valuation is determined by the attribute of the tree under eval-

uation. For example, minimum time of a successful attack uses the

natural number domain N to express discrete time, while required

attacker skill to succeed typically uses a discrete and categorical do-

main, such as { low , medium , high } .
Definition 3.3 (Attribute semantics) . Given an attack tree t and a

domain D , an attribute semantics is a set of valuations with domain

labels (t) and co-domain D .

Intuititvely, a semantics provides an attribute with the set of

valuations that the attribute regards as valid in a given tree. Be-

cause defining an attribute semantics by exhaustive enumeration

of its valuations might be cumbersome, we consider in this article

attributes whose semantics can be derived from a constraint satis-

faction problem.

An attribute constraint is defined as a boolean expression over

the set of labels of a tree. To that effect, when we use la-

bels in expressions we will consider them as variables over a

given domain D . For example, if the attribute minimum time

taken by an attack is being computed over an attack tree of

the form t ≡ OR (t 1 , . . . , t k) � , it is typically required that � =
min (root (t 1) , . . . , root (t n)) (Kordy et al., 2012). The intuition for

such constraint is that, because � is disjunctively refined, the min-

imum time needed by an attacker to meet the goal � is considered

to be the least time required by any of � ’s children.
We use predicates as short-hand notations for boolean ex-

ressions. For example, min-time (�, � 1 , · · · , � n) can be used to de-

ote the boolean expression � = min (� 1 , . . . , � n) . We say that a

redicate p(� 1 , . . . , � n) is valid under interpretation α, denoted

p(� 1 , . . . , � n)
 α, if p(α(� 1) , . . . , α(� n)) evaluates to true . Like-

ise, a set of predicates A is said to be valid under α, denoted

 α, if all predicates in A are valid under α. When it does not

ead to confusion, we will often refer to a predicate p(� 1 , . . . , � n)

s p .

efinition 3.4 (Attribute constraint-set) . Given an attack tree t

nd a domain D , an attribute constraint-set is a set of predi-

ates { p 1 , . . . , p n } over labels (t) whose variables range over D .

ts semantics is defined by � { p 1 , . . . , p n } � t = { α ∈ VAL l abel s (t) → D |
 p 1 , . . . , p n }
 α} .

There exist in literature various ways to relate the value

f a parent node in an attack tree to the values at its chil-

ren (Kordy et al., 2012), of which the bottom-up approach is the

ost common one (Kordy et al., 2014a; Mauw and Oostdijk, 2006).

his bottom-up approach starts from an assignment of concrete

alues to the leaf nodes of the tree and uses two functions (one

or disjunctive refinement and one for conjunctive refinement) to

ecursively calculate the value of a parent node from the values

f its children. We will next define how an attribute constraint-set

an be recursively derived from two unranked aggregation oper-

tors associated with a bottom-up approach. The actual values of

he leaf nodes will have to be defined by the analyst through ad-

itional constraints.

efinition 3.5 (Bottom-up attribute constraint-set) . Let t be

n attack tree, and ∨ and ∧ two unranked function sym-

ols (symbols without fixed arity) with domain D . We use

p̌ (� 1 , . . . , � n +1) to denote the expression � 1 = ∨ (� 2 , . . . , � n +1) . Simi-

arly, the predicate ˆ p (� 1 , . . . , � n +1) denotes the boolean expression

 1 = ∧ (� 2 , . . . , � n +1) . The bottom-up attribute constraint-set P (t) of t

s recursively computed as follows:

• If t ≡ � for some label � , then P (t) = ∅ .
• If t ≡ OR (t 1 , . . . , t n) � with root (t i) = � i for i ∈ { 1 , . . . , n } , then

P (t) = P (t 1) ∪ · · · ∪ P (t n) ∪ { ̌p (�, � 1 , . . . , � n) } ;
• If t ≡ AND (t 1 , . . . , t n) � with root (t i) = � i for i ∈ { 1 , . . . , n } , then

P (t) = P (t 1) ∪ · · · ∪ P (t n) ∪ { ̂ p (�, � 1 , . . . , � n }) .
Definition 3.5 is based on the standard bottom-up ap-

roach (Kordy et al., 2014a; Mauw and Oostdijk, 2006) for attack

rees where child nodes are aggregated together based on two

unctions: ∧ for children of a conjunctive refinement and ∨ for

hildren of a disjunctive refinement. In literature there exist con-

rete definitions of ∧ and ∨ for various attributes. For example,

hen computing probability of success it is usually considered that

 = × and ∨ = + , for cost ∧ = + and ∨ = min , and for minimum

ime ∧ = max and ∨ = min .

efinition 3.6 (The attack-tree decoration problem) . Given an at-

ack tree t and an attribute constraint-set { p 1 , . . . , p n } for t , the

ttack-tree decoration problem consists in finding a valuation in

 { p 1 , . . . , p n } � t .
The attack-tree decoration problem corresponds to the well-

nown Constraint Satisfaction Problem (CSP) (Tsang, 1993), where

 solution is a valuation that satisfies a set of constraints. Finding

 solution or even deciding whether there exists a solution for CSP

s a well-known and complex computational problem.

We say that the attack-tree decoration problem is:

• Determined: If the cardinality of � { p 1 , . . . , p n } � t is one, i.e.

there exists a single valid valuation only.

• Inconsistent: If � { p 1 , . . . , p n } � t = ∅ , i.e. there does not exist a

valid valuation.

A. Buldas, O. Gadyatskaya and A. Lenin et al. / Computers & Security 88 (2020) 101630 5

Fig. 2. (a) An example of undeterminism. (b) An example of inconsistency. (c) A determined attribute domain.

u

d

l

s

P

i

w

b

{

c

v

5

b

e

a

o

fi

u

5

m

d

t

a

b

d

i

s

P

{

m

v

a

f

4

b

m

o

y

p

b

c

4

s

o

a

s

f

l

c

t

D

t

fi

d

b

r

i

t

t

K

c

l

i

4

k

m

c

p

a

t

t
• Undetermined: If the cardinality of � { p 1 , . . . , p n } � t is larger

than one, i.e. the problem is neither inconsistent nor deter-

mined.

We illustrate these concepts with the following example that

tilises a subtree from our running example. Consider the tree t

epicted in Fig. 2 a whose set of labels is

 abel s (t) = { money-account , money-atm , hack-account } .
Further, we consider subsets of the following set of con-

traints:

p 1 := money-account = min (money-atm , hack-account)

p 2 := money-account = 5

p 3 := hack-account = 3

p 4 := money-atm = 7

redicate p 1 follows from the standard interpretation of min-

mum attack time in an attack tree (Kordy et al., 2013b),

here ∧ = max and ∨ = min defined over the natural num-

ers N . This leads to the bottom-up attribute constraint-set

 p 1 }. The attack-tree decoration problem with this attribute

onstraint-set is clearly undetermined given that, for example, the

aluations { money − account
→ 3 , money-atm
→ 3 , hack-account
→
 } and { money − account
→ 3 , money-atm
→ 3 , hack-account
→ 4 }
oth satisfy p 1 .

Now, consider predicates p 2 , p 3 and p 4 . This type of boolean

xpressions represent variable assignments. We observe that the

ttribute constraint-set { p 1 , p 2 , p 3 } leads to an inconsistent dec-

ration problem (see Fig. 2 b), while the decoration problem de-

ned by { p 1 , p 2 , p 4 } is determined as there exists a unique val-

ation satisfying all three predicates, namely { money − account
→
 , money − atm
→ 7 , hack-account
→ 5 } (see Fig. 2 c). Finally, we re-

ark that the attribute constraint-set { p 1 , p 3 , p 4 } also leads to a

ecoration problem that is determined. Moreover, it corresponds

o the standard bottom-up calculation in attack trees.

This last example illustrates the general observation that, given

n assignment of values to the leafs of an attack tree and a

ottom-up attribute constraint-set (Definition 3.5), the attack-tree

ecoration problem is determined. This is formalized in the follow-

ng proposition, which can be easily proved by induction on the

tructure of the tree.

roposition 3.7. Let t be an attack tree with unique labels, let L =
 l 1 , . . . , l n } be the set of labels of its leaf nodes and let D be a do-

ain. Let P L = { l 1 = v 1 , . . . , l n = v n } be a set of constraints assigning

alues v 1 , . . . , v n ∈ D to the leaf nodes and let P (t) be the bottom-up

ttribute constraint-set of t. Then the attack-tree decoration problem
or t and constraint-set P L ∪ P (t) is determined. 0
. A methodology for attack-tree decoration

As indicated above, our approach extends the rather rigid

ottom-up way in which attack trees are currently decorated. Our

ethodology consists of two main steps that complement each

ther: (1) generation of the attribute constraint-set and (2) anal-

sis of valid valuations. The former boils down to the definition of

redicates over the set of labels of a tree. We make a distinction

etween two types of predicates: hard predicates and soft predi-

ates.

.1. Hard predicates

Hard predicates are derived from the attack tree refinement

tructure rather than from knowledge databases or an expert’s

pinion. This choice establishes that all predicates derived from the

ttack tree structure should be satisfied, as otherwise the attribute

emantics and the tree contradict each other. The term hard stems

rom the notion of hard and soft constraints in satisfaction prob-

ems. Soft constraints represent desirable properties, while hard

onstraints are a must.

In this article, we consider hard predicates those con-

ained in the bottom-up attribute constraint-set of the tree (see

efinition 3.5). This is a conservative choice that allows us to ex-

end existing bottom-up quantification methods based on the re-

nement relation of the tree (Kordy et al., 2014a; Mauw and Oost-

ijk, 2006). In fact, it follows from Proposition 3.7 that, if all la-

els in a tree are unique, then the resulting attack-tree deco-

ation problem based on this bottom-up attribute constraint-set

s either undetermined or determined. We remark, nonetheless,

hat our methodology can also be used to model other compu-

ational approaches such as the Bayesian reasoning proposed by

ordy et al. (2014c) . It is ultimately the analyst who decides what

onstitutes a set of hard predicates, although we require the ana-

yst to come up with hard predicates that are satisfiable; as we do

n this article.

.2. Soft predicates

Statistical data and constraints extracted from industry-relevant

nowledge-bases and experts are too valuable to ignore. And our

ethodology treats them as first-class citizens. As usual, we en-

ode this information in predicates. For example, assume that com-

rehensive empirical data indicates that the probability of a bank

ccount being hacked is less than 0.01. The semantics of such at-

ribute in our running example tree can be defined by a set con-

aining the predicate hack-prob (hack-account) := hack-account �
 . 01 .

6 A. Buldas, O. Gadyatskaya and A. Lenin et al. / Computers & Security 88 (2020) 101630

a

t

p

t

t

5

T

t

b

a

t

p

5

i

c

w

a

s

w

t

v

w

a

w

s

p

L

p

t

b

v

t

s

L

f

In our methodology, predicates obtained from experts and

knowledge-bases are regarded as soft. The reason is that, when

it comes to opinion and empirical data, inconsistencies are com-

mon. Hence we do allow these predicates to be violated up

to some extent. For example, consider that for a particular at-

tack tree we obtain that the probability that an account is

hacked is 0.02. Although such an outcome violates the predicate

hack-prob (hack-account) , one may find it acceptable and not far

from the considered empirical data.

4.3. Analysis of attribute semantics with hard and soft predicates

Given an attack tree t and attribute constraint-set { p 1 , . . . , p n }
over labels of t and domain D , we use H (t) and S (t) to de-

note the partition of { p 1 , . . . , p n } into hard and soft predicates,

respectively. As described in the previous section, we analyse

an attribute constraint-set by looking at solutions of the corre-

sponding constraint satisfaction problem. Formally, given an at-

tribute constraint-set H (t) ∪ S (t), we aim at finding a valuation

α ∈ VAL labels (t) → D such that H (t) ∪ S (t)
 α. However, such formula-

tion makes no distinction between hard and soft predicates, which

is a feature we regard important in our methodology. For exam-

ple, it may be the case that no valuation α satisfying H (t) ∪ S (t)
 α
exists, while we can still find α′ ∈ VAL labels (t) → D such that H (t)
 α′ .
Note that, although the constraint-set H (t) is an oversimplifica-

tion of the original attribute constraint-set with all soft constraints

being removed, α′ satisfies all hard constraints and thus may be

worth considering.

In our methodology, when the original attack-tree decoration

problem has no solution we propose to solve a weaker version:

the relaxed attack-tree decoration problem . This new problem allows

soft predicates to be weakened, which consists in replacing any

soft predicate p ∈ S (t) by a predicate p ′ that logically follows from

p . We define this type of entailment on predicates over an attack

tree t by:

p ⇒ p ′ if and only if

∀ α ∈ VAL l abel s (t) → D : p
 α ⇒ p ′
 α.

Using this notation, we can define the notion of a weakening

relation on sets of predicates.

Definition 4.1 (Weakening relation) . Let � be a partial order on

sets of predicates. Then we say that � is a weakening relation if

and only if for all sets of predicates P and P ′ it holds that

P ′ � P ⇒ (∀ p ′ ∈ P ′ ∃ p ∈ P : p ⇒ p ′) .

If P ′ �P , we say that P ′ is a weakening of P under the weakening

relation �. We provide three examples of weakening relations.

1. Set equality (=), which is the trivial weakening relation.

2. Set inclusion (⊆), which allows one to weaken a set of pred-

icates by deleting one or more of its elements.

3. The maximal weakening relation (�M

), which is defined by

P ′ �M

P ⇐⇒ (∀ p ′ ∈ P ′ ∃ p ∈ P : p ⇒ p ′) .

The proofs that these are indeed weakening relations and that

�
M

is maximal are straightforward.

Using this notion of a weakening relation we reformulate the

attack-tree decoration problem as an optimisation problem in the

following way.

Definition 4.2 (The relaxed attack-tree decoration problem) . Let t

be an attack tree and H (t) ∪ S (t) an attribute constraint-set over la-

bels (t) and domain D , where H (t) and S (t) are hard and soft pred-

icates, respectively. Let � be a weakening relation. The relaxed

attack-tree decoration problem consists of two stages:
{
1. Finding a set of predicates S over labels (t) and domain D

such that:

• S �S (t),

• � H (t) ∪ S � t � = ∅ , and

• ∀ S ′ : S � S ′ � S(t) ⇒ (� H(t) ∪ S ′ � t = ∅ ∨ S ′ � S) .

2. Solving the attack tree decoration problem with constraint-

set H (t) ∪ S .

A solution is a pair (S, α), such that α ∈ � H (t) ∪ S � t .

The choice of the weakening relation is relevant in an instanti-

tion of the relaxed attack tree decoration problem, as we show in

he next section. In particular, we analyse two relevant decoration

roblems resulting from two concrete weakening relation defini-

ions, namely the set inclusion (⊆) and maximal weakening rela-

ion (�
M

).

. Decoration algorithm for specific classes of predicates

Solving a constraint satisfaction problem is in general NP-hard.

hus, this section is devoted to instantiating each component of

he developed theory into concrete predicate languages that can

e used in standard solver tools to find solutions for the relaxed

ttack-tree decoration problem. In Section 7 below we show how

hose instantiations of the theory can be used to analyse a com-

rehensive attack tree case study.

.1. Maximal weakening over inequality relations

Here we address the question of whether there exists a mean-

ngful predicate language and constraint satisfaction solver that

an be used to solve the relaxed attack tree decoration problem

ith respect to the maximal weakening relation. Note that, among

ll possible weakening relations the maximal one is the less re-

trictive. Hence it leads to more fine-grained solutions than other

eakening relations.

The chosen predicate language defines predicates of three

ypes, all based on comparing one or two labels to a constant

alue. The three types of predicates are:

1. � ≤ a

2. � � a

3. � � � ′ + a

here � and � ′ are labels and a is a real number (positive or neg-

tive). We denote the set of all such predicates by P ineq and we

ill often use s a ∈ P ineq to denote a predicate in this set with con-

tant value a . It is easy to verify that { p} �
M

{ p ′ } can only hold if

redicates p and p ′ are of the same type.

emma 5.1. Let p, p ′ ∈ P ineq be two predicates, then { p} �M

{ p ′ } im-

lies that, for some labels � 1 , � 2 , and some real numbers a, a ′ ,
p ≡ � 1 � a ∧ p ′ ≡ � 1 � a ′ , or
p ≡ � 1 � a ∧ p ′ ≡ � 1 � a ′ , or
p ≡ � 1 � � 2 + a ∧ p ′ ≡ � 1 � � 2 + a ′ .

The three types of predicates have been chosen in such a way

hat the maximal weakening relation �
M

on single predicates can

e easily characterised by the numerical order of their constant

alues a . This characterisation will allow us later to define the dis-

ance between two predicates as the difference between their con-

tant values a and a ′ .

emma 5.2. Let � 1 , � 2 be labels and a, a ′ be real numbers. Then the

ollowing properties hold.

{ � 1 � a } �M

{ � 1 � a ′ } ⇐⇒ a � a ′
{ � 1 � a } �M

{ � 1 � a ′ } ⇐⇒ a � a ′
 � 1 � � 2 + a } � { � 1 � � 2 + a ′ } ⇐⇒ a � a ′
M

A. Buldas, O. Gadyatskaya and A. Lenin et al. / Computers & Security 88 (2020) 101630 7

i

a

t

t

i

c

d

o

c

A

f

T

b

l

t

t

l

T

c

c

i

t

w

P

t

o

w

m

C

c

f

i

w

o

t

w

m

(

p

i

q

o

i

t

S

s

i

m

p

5

o

t

r

i

S

o

o

l

T

r

i

t

w

t

t

A

s

R

E

a

i

I

r

i

p

t

u

s

t

d

m

t

a

d

w

c

a

w

a
From this lemma it follows, for instance, that for S, S ′ ⊆ P ineq ,

f S �
M

S ′ and (� 1 � a) ∈ S , then there exists (� 1 � a ′) ∈ S ′ , such that

 � a ′ . Hence we consider the set F(S, S ′) containing all total func-

ions f : S → S ′ such that ∀ p ∈ S : f (p) ⇒ p . The Euclidean distance be-

ween two predicate s a , s a ′ ∈ P ineq is given by d(s a , s a ′) = | a − a ′ |
f s a and s a ′ are of the same type, d(s a , s a ′) = ∞ otherwise. Given

f ∈ F(S, S ′) , we define d f (S, S ′) =

√ ∑

p∈ S d 2 (p, f (p)) , and the Eu-

lidean distance d (S, S ′) between two sets of predicates by

(S, S ′) =

{
∞ , if F(S, S ′) = ∅
min f∈F(S,S ′) d f (S, S ′) , otherwise

We restrict the distance measure above to bijective functions

nly. That is to say, we consider from now on F(S, S ′) to be the set

ontaining all bijective functions f : S → S ′ such that ∀ p ∈ S : f (p) ⇒ p .

 consequence of such restriction is that predicate sets with dif-

erent cardinality have distance ∞ , which simplifies the proof of

heorem 5.3 below.

Next we provide sufficient conditions for a set of predicates to

e part of a solution of the relaxed attack-tree decoration prob-

em. It states that a set S , which minimizes its distance ˆ d (S, S(t))

o S (t), where S (t) is the set of soft predicates for a given tree t , and

hat satisfies � H (t) ∪ S � t � = ∅ , where H (t) is the set of hard predicates,

eads to a solution of the relaxed attack-tree decoration problem.

heorem 5.3. Let t be an attack tree and H (t) ∪ S (t) an attribute

onstraint-set for t, where S(t) ⊆ P ineq . Let S ⊆ P ineq be a set of predi-

ates such that � H (t) ∪ S � t � = ∅ and ˆ d (S, S(t)) is minimum and defined,

.e. ˆ d (S, S(t)) � = ∞ . Then there exists a valuation α ∈ � H (t) ∪ S � t such

hat (S, α) is a solution of the relaxed attack-tree decoration problem

ith respect to �
M

.

roof. The interested reader can find the proof in Appendix A . �

This theorem makes it possible to reduce the relaxed attack-

ree decoration problem for the maximal weakening relation �M

n the given types of predicates to an optimisation problem that

e solve via nonlinear programming. The formulation of the opti-

isation problem is given below.

orollary 5.4. Let t be an attack tree and H (t) ∪ S (t) an attribute

onstraint-set for t where S(t) = { p 1 , . . . , p n } contains only predicates

rom P ineq . We create the set of predicates S by replacing every pred-

cate p i ∈ S (t) by.

p α ≡ � � x i if p ≡ � � a
p α ≡ � � x i if p ≡ � � a
p α ≡ � � � ′ + x i if p ≡ � � � ′ + a

here x 1 , . . . , x i are variables. A solution α, x 1 , . . . , x n to the following

ptimisation problem leads to a solution (S, α) of the relaxed attack

ree problem.

minimize
α,x 1 , ... ,x n

d(S, S(t)) subject to α ∈ � H(t) ∪ S � t .

Implementation. To find a valuation function α and a set of

eakening predicates S ′ so that the distance function d (S, S (t)) is

inimised, we relied on the Sequential Quadratic Programming

SQP) problem interpretation of the relaxed attack-tree decoration

roblem. We further refer to this tool as the SQP-based tool. It is

mplemented using the Python scipy library that provides the Se-

uential Least Squares Programming (SLSQP) algorithm for solving

ptimisation problems of this type. Our implementation

3 does not

mpose any burden on the analyst, as it allows a loose interpre-

ation of all constraints together. In case the set of constraints is
3 Code available at https://github.com/vilena/at-decorator/tree/master/

QP _ decorator . C
atisfiable, our tool finds an optimal solution. In case of an unsat-

sfiable set of constraints, our implementation will find an opti-

al solution that minimises the distance function between sets of

redicates.

.2. Set inclusion weakening over propositional logic

As the analyst may require a predicate language richer than the

ne described above, we provide tool support for predicates writ-

en in the propositional logic. We do so via a transformation of a

elaxed attack tree-decoration problem instance into a Satisfiabil-

ty Modulo Theories (SMT) instance (de Moura and Bjørner, 2008).

MT is the problem of determining whether a formula in the first-

rder logic, where some operator symbols are provided with a the-

ry, is satisfiable.

Given a set of predicates S , we use �(S) to denote the first-order

ogic formula formed by all predicates in S in the conjunctive form.

hen the SMT instance resulting from the relaxed attack-tree deco-

ation problem instance with the attribute constraint-set H (t) ∪ S (t)

s defined by �(H (t) ∪ S (t)). If �(H (t) ∪ S (t)) is satisfiable, it follows

hat the decoration problem does not need to be relaxed. Other-

ise, we use Algorithm 1 to find a subset of soft predicates S ⊂ S (t)

hat solves the relaxed attack tree decoration problem with respect

o the inclusion relation.

lgorithm 1 Solving the decoration problem w.r.t. the set inclu-

ion weakening relation.

equire: The relaxed attack-tree decoration problem defined by

attack tree t , attribute constraint-set H(t) ∪ S(t) .

nsure: S is a set of maximum cardinality such that S ⊆ S(t)

and [[H(t) ∪ S]] t � = ∅ .
1: Let S(t) = { p 1 , . . . , p n } be the soft constraint set.

2: S ← ∅
3: for i = 1 .n do

4: S ← S ∪ { p i }
5: if �(H(t) ∪ S) is not satisfiable then

6: S ← S\{ p i }
7: return (S, α) where α ∈ [[H(t) ∪ S]] t .

Initially, the set S is empty. Algorithm 1 works by iteratively

dding predicates to the set S , until the formula �(H (t) ∪ S) is sat-

sfiable, while the formula �(H (t) ∪ S ′) is unsatisfiable for any S ′ ⊃S .

t is easy to prove that such procedure provides a solution to the

elaxed attack-tree decoration problem with respect to the subset

nclusion weakening relation, based on the assumption that hard

redicates are satisfiable.

Implementation. We implemented our transformation relying on

he well-known theorem prover Z3 from Microsoft 4 . Z3 can be

tilised as a constraint solver, i.e., it can find a solution satisfying a

et of constraints expressed as equalities and inequalities. Our pro-

otype 5 can handle all attribute domains on real numbers that are

efined in the ADTool (Kordy et al., 2013a), e.g. probability, mini-

al cost of attack, and minimal time; and it is trivially extensible

o attribute domains defined on Boolean values, e.g. satisfiability of

 scenario. The analyst can further specify additional constraints, if

esired. The resulting set of constraints is passed to the Z3 prover,

hich reports whether the problem is solvable or not. In case the

onstraint satisfaction problem is solvable, the prover will report

 complete consistent valuation for the given tree. This valuation

ill satisfy the tree structure and the constraints expressed by the

nalyst, and it will agree with the given initial valuation. If the
4 https://github.com/Z3Prover/z3 .
5 Code available at https://github.com/vilena/at-decorator/tree/master/

SP _ decorator .

https://github.com/vilena/at-decorator/tree/master/SQP_decorator
https://github.com/Z3Prover/z3
https://github.com/vilena/at-decorator/tree/master/CSP_decorator

8 A. Buldas, O. Gadyatskaya and A. Lenin et al. / Computers & Security 88 (2020) 101630

Table 1

Historical data values identified for some attack tree nodes from

the ATM Crime report.

Node Prob. Source

atm-fraud 0.0046 ATM Crime Report 2015 (EAST)

card-skimming 0.0172 ATM Crime Report 2015 (EAST)

card-trapping 0.0094 ATM Crime Report 2015 (EAST)

cash-trapping 0.0150 ATM Crime Report 2015 (EAST)

trans-reversal 0.0038 ATM Crime Report 2015 (EAST)

S

s

s

6

t

f

e

o

p

t

f

A

v

r

F

t

t

O

6

t

c

k

i

h

R

f

k

m

i

m

o

F

b

c

6

constraint satisfaction problem is not solvable (i.e. the initial val-

uation is inconsistent), we use Algorithm 1 to find a subset of soft

predicates of maximum cardinality that is satisfiable, and report a

solution satisfying the found maximal predicate set.

6. ATM case study

We now proceed to show how our approach to attack-tree dec-

oration can be applied to a real-life security scenario. The goal is to

show that decoration can be performed in a systematic way even

when the analyst only has partial information about attribute val-

ues.

In this section, we introduce a case study related to capturing

automated teller machine fraud scenarios as an attack tree, and we

describe the historical data available for decorating this tree.

6.1. ATM security: a case study

Automated teller machines (ATMs) are complex and expensive

systems used daily by millions of bank customers worldwide. Be-

cause each carries a significant amount of cash, ATMs are the tar-

get of large-scale criminal actions. Only in 2015 more than 16,0 0 0

ATM incidents were reported in Europe, causing over 300 million

Euros loss. 6

In an attempt to provide structure to the risk assessment pro-

cess and catalogue ATM threats, Fraile et al. created a comprehen-

sive attack-defence tree capturing the most dangerous attack sce-

narios applicable to ATMs (Fraile et al., 2016). The tree modelled

in Fraile et al. (2016) contains three main branches: brute-force at-

tacks, fraud attacks, and logical attacks. The attacks of the logical

type make use of malicious software, while a brute-force attack

typically ends up destroying the ATM. Differently from these two

attack scenarios, ATM fraud attacks involve conventional electronic

devices (such as card skimmers) and require the participation of

the victim.

In this empirical evaluation section we focus on ATM fraud, be-

cause we have more empirical data for these attacks than for the

other types of attacks. Fig. 3 presents an attack tree characterising

such attacks that is loosely based on the attack-defence tree pub-

lished by Fraile et al. (2016) . In ATM fraud, criminals need covert

access to the ATM, as this attack typically requires opening the ma-

chine’s case either by force or with a generic key, and installing

a special device (e.g. a skimmer). Then the attacker waits until a

victim uses the ATM and, as a consequence, enables the installed

device. Lastly, the attacker gets cash from the victim’s account by

means of various techniques, such as cash trapping, card cloning,

etc.

6.2. Decorating the ATM fraud attack tree

The decoration process we propose in this paper consists of

three independent steps that are executed for a given attack tree.

First, an attribute is chosen. In this case study, we focus on proba-

bility of success , that is, the probability that a given ATM machine

is used to successfully execute ATM fraud. The attack tree struc-

ture jointly with the attribute rules determine the hard constraint

set, i.e. the standard bottom-up constraints derived from the at-

tack thee structure. Second, statistical information (historical data)

related to the chosen attribute is gathered. Such statistical val-

ues are used to provide tree nodes with probability values. For

the ATM fraud scenario, the available statistical data is presented

in Section 6.2.1 . Lastly, relations among nodes in the tree are es-

tablished based on the analyst’s insight and domain knowledge.
6 https://www.association- secure- transactions.eu/tag/atm- crime- report/ .

t
ection 6.2.2 presents the corresponding analysis for the ATM fraud

cenario. The full set of constraints for the ATM fraud scenario is

ummarised in Section 6.3 .

.2.1. Statistical analysis

The statistical values we consider here have been derived from

he ATM Crime Report 2015 (EAST). In our case, we analyse ATM

raud incidents in Lisbon, which hosts 300 ATMs. We remark, how-

ver, that these values have been derived for illustrative purposes

nly and may not be accurate.

Between 2010 and 2015, 83 ATM fraud attacks have been re-

orted in Lisbon. This gives a 0.0461 probability of an ATM to be

he target of fraud within a calendar year, if we assume the uni-

orm distribution of these attacks. Because the report categorises

TM fraud into different attack types, we can provide probability

alues for some attack types by analysing the attack frequency as

eported in the EAST report. The results can be found in Table 1 .

or the results reported in this table, we assume that historical at-

acks were uniformly distributed, and we rely on frequencies of at-

acks over long time periods to estimate probabilities, like in the

CTAVE method (Caralli et al., 2007).

.2.2. Domain knowledge constraints

In the previous subsection, we have shown how available sta-

istical data can be used as a constraint in our decoration pro-

ess. Another novelty of our approach is that we allow for domain

nowledge constraints, that is, facts that must be additionally sat-

sfied in the attack tree. The following list of predicates is based on

istorical observations from the previously mentioned ATM Crime

eport 2015 and also on the European Central Bank report on card

raud (2015).

• card-skimming is more likely than take-card-phys . Moreover,

get-credentials is more likely than

cash-trapping , which is more likely than

trans-reversal .

• shoulder-surf is more likely than install -camera .

• install -camera, install-epp and install -skimmer are all equally

likely.

• cash-trapping and card-trapping are equally likely.

Generally, not all historical observations may be used as domain

nowledge constraints. For example, even if some attacks were

ore rarely observed than others, they may become more frequent

n the future if the miscreants adapt their strategies. Thus, experts

ust define domain knowledge constraints with caution. Yet, some

bservations still could be made based on the domain knowledge.

or instance, one encryption system may be known to be easier to

reak than another one. Moreover, as our knowledge changes, the

onstraints could and should be revised.

.3. Full set of predicates

We now list the full set of predicates that will be used by the

ools to solve the decoration problem. To simplify the presentation,

https://www.association-secure-transactions.eu/tag/atm-crime-report/

A. Buldas, O. Gadyatskaya and A. Lenin et al. / Computers & Security 88 (2020) 101630 9

w

c

i

f

S

t

a

t

a

6

e

g

m

t

a

e

a

f

d

u

t

t

m

A

l

r

h

t

w

s

a

I

i

u

F

v

7

a

7

o

i

b

c

s

t

e

a

c

c

b

t

t

l

c

c

i

i

v

m

s

0

a
e use a short-hand notation. All predicates listed in this section

an be straightforwardly transformed into our predicate notation.

Hard predicates. Considering the attribute domain of probabil-

ty of success, the attack tree shown in Fig. 3 corresponds to the

ollowing set of hard predicates:

• atm-fraud = × (access-atm, execute-attack),

• access-atm = + (break-in, social-engineer-staff),

• execute-attack = + (trans-reversal, get-credentials, cash-

trapping),

• get-credentials = × (get-pin, get-card),

• get-pin = + (shoulder-surf, install -camera, install-epp),

• get-card = + (card-skimming, take-card-phys ,

social-engineer-owner),

• card-skimming = × (install -skimmer, clone-card),

• take-card-phys = + (card-trapping, steal-card).

oft predicates. Historical data values from Table 1 are encoded in

he form of soft predicates:

• atm-fraud = 0.0046,

• card-skimming = 0.0172,

• card-trapping = 0.0094,

• cash-trapping = 0.0150,

• trans-reversal = 0.0038.

We will subsequently refer to the soft predicates listed above

s historical data constraints .

Domain knowledge from the ATM Crime report is encoded in

he form of soft predicates as well:

• take-card-phys � card-skimming ,

• cash-trapping � get-credentials ,

• trans-reversal � cash-trapping ,

• install -camera � shoulder-surf ,

• install -camera = install-epp ,

• install -skimmer = install-epp ,

• install -skimmer = install -camera ,

• cash-trapping = card-trapping ,

Subsequently, we will refer to the set of soft predicates above

s domain knowledge predicates .

.4. Goals of the analysis

We consider that the analyst has designed an attack tree cov-

ring ATM fraud scenarios as presented in Fig. 3 . This attack tree

ives them the set of hard constraints given in Section 6.3 . Further-

ore, the analyst has elicited a set of soft constraints based on

heir knowledge of the problem space and the information avail-

ble in the ATM Crime Report (also listed in Section 6.3). How-

ver, the analyst is not able to find enough data to estimate prob-

bilities for all leaf nodes in the attack tree, what prevents them

rom straightforwardly applying the bottom-up evaluation proce-

ure to compute the probabilities for all intermediate nodes and,

ltimately, for the root node.

The analyst can, however, apply our methodology and decorate

he attack tree. We consider the following possible analysis ques-

ions that can be investigated with our approach:

• Are the attack tree and the set of constraints elicited by the

analyst compatible? I.e. does the corresponding decoration

problem have a solution? In our notation, for an attack tree

t , and attribute constraint-set H (t) ∪ S (t), is � H (t) ∪ S (t) � t � = ∅ ?
• What is a solution for the given decoration problem? In

our notation, the analyst is interested in finding a solution

α ∈ � H (t) ∪ S (t) � t .
• If the decoration problem has no solution, what is a so-

lution that is the closest to satisfying all constraints? This

question corresponds to solving the relaxed attack tree dec-

oration problem formulated in Definition 4.2 , for a chosen

weakening relation.

We will demonstrate in the next section how our two imple-

entations solve the relaxed attack tree decoration problem of the

TM case study, for the maximal and set inclusion weakening re-

ations.

Note that one may argue that in our case study the analyst al-

eady has the probability of ATM fraud (the root node) from the

istorical data, and therefore, they can skip decorating the whole

ree. However, the analyst may still want to perform a so-called

hat-if analysis, which consists in analyzing different but related

cenarios. For example, the analyst could answer questions such

s: What if the probability of this attack is in fact higher than

 envisage? How will this affect my security posture? The what-

f analysis requires a fully annotated tree, which can be provided

sing our decoration technique even over partially available data.

urthermore, in general, it cannot be assumed that the root node

alue will always be available from the historical data.

. Empirical evaluation results

We now show how our two implementations can be applied to

nalyse the ATM case study introduced previously.

.1. The CSP-based implementation showcase

We first exemplify the results of the CSP-based implementation

n the ATM case study tree presented in Fig. 3 . The first solution

n Table 2 presents a possible valuation for this attack tree found

y the CSP-based tool with the hard predicates and the histori-

al data predicates listed in Section 6.3 . Fig. B.4 in Appendix B vi-

ualises this solution in the ATM fraud attack tree. We have used

he open source ADTool software (Gadyatskaya et al., 2016c; Kordy

t al., 2013a) for visualising attack trees.

If the analyst introduces the domain knowledge predicates as

n additional set of constraints, the CSP tool indicates that the

onstraint satisfaction problem becomes unsatisfiable. Indeed, the

onstraints on card-trapping and cash-trapping are contradictory,

ecause historical data does not indicate that the probabilities of

hese attacks are exactly equal.

The Z3 solver that we use as the underlying constraint satisfac-

ion engine is capable of finding an unsatisfiable core of the prob-

em. In the ATM fraud case, the solver reports that three predicates

onstitute the unsatisfiable core:

• card-trapping = cash-trapping ,

• card-trapping = 0 . 0094 ,

• cash-trapping = 0 . 015 .

The solver then proceeds to identify a maximal set of predi-

ates that is still satisfiable. In our case, the solver is able to sat-

sfy all predicates but cash-trapping = 0 . 015 . The second solution

n Table 2 , illustrated in Fig. B.5 (Appendix B), shows a possible

aluation found by the CSP-based tool after adding the set of do-

ain knowledge constraints to the original assignment predicate

et (i.e. excluding the constraint on equality of cash-trapping to

.015).

Analysing this valuation, we can see that, for example, the prob-

bility of take-card-phys has dropped significantly, and the proba-

10 A. Buldas, O. Gadyatskaya and A. Lenin et al. / Computers & Security 88 (2020) 101630

Table 2

Solutions of the ATM fraud attack tree decoration problem found by our tools.

Node Label Probability of attack success for tool and set of predicates

CSP CSP SQP

hard predicates + hard predicates + hard predicates +

historical data historical data + historical data +

domain knowledge domain knowledge

atm-fraud 0.0046 0.0046 0.0046

access-atm 0.0068 0.0093 0.0184

break-in 0.0039 0.0078 0.0092

social-engineer-staff 0.0029 0.0015 0.0092

execute-attack 0.6683 0.4914 0.2493

trans-reversal 0.0038 0.0038 0.0038

get-credentials 0.6620 0.4847 0.2324

get-pin 0.875 0.9375 0.5780

shoulder-surf 0.5 0.75 0.3834

install -camera 0.5 0.5 0.0973

install-epp 0.5 0.5 0.0973

get-card 0.7566 0.5170 0.4021

card-skimming 0.0172 0.0172 0.0172

install-skimmer 0.5 0.5 0.0973

clone-card 0.0344 0.0344 0.1768

take-card-phys 0.5047 0.0171 0.0172

card-trapping 0.0094 0.0094 0.0113

steal-card 0.5 0.0078 0.0059

social-engineer-owner 0.5 0.5 0.3677

cash-trapping 0.015 0.0094 0.0131

l

m

7

p

p

v

l

e

d

i

w

i

c

l

s

t

c

s

r

d

d

s

o

w

o

u

t

f

w

f

m
bility of steal-card has decreased with the new constraint set. In-

deed, in the first assignment set there was no constraint that the

probability of take-card-phys is less than the probability of card-

skimming (which is statistically a rare event itself). When we added

this constraint found in the domain knowledge catalogue, the val-

uation for this subtree has changed. This result demonstrates that

even if the analyst cannot obtain a valuation for some attack such

as steal-card , they can get an estimation for it by using other

known parameters and domain knowledge.

7.2. The SQP-based implementation showcase

When running the relaxed tree decoration method considering

the historical data values in Table 1 and the domain knowledge

constraints from Section 6.2.2 , the optimisation task converged to

the solution presented in the third solution of Table 2 . Fig. B.6 in

Appendix B presents the decorated attack tree.

Three of the soft constraints stemming from the historical data

values (atm-fraud, card-skimming, trans-reversal) were satisfied pre-

cisely without weakening. cash-trapping and card-trapping con-

straints were satisfied by weakened predicates. The probability

of card-trapping in historical data was 0.0094, and the optimised

value is 0.0113. The probability of cash-trapping was 0.015 in his-

torical data, and the optimised value is 0.0131.

Six out of seven domain knowledge constraints were satisfied

precisely without weakening. The remaining constraint that was

not satisfied precisely is the knowledge that cash-trapping and

card-trapping are equally likely. In the optimised solution they have

a small difference, the probability of cash-trapping is 0.0131 while

the probability of card-trapping is 0.0113.

In the result of this process, four weakened predicates were

found. The soft and weakened predicates for these four cases are

shown in Table 3 . It is the task of the analysts to decide on

whether such weakened predicates fit their analysis. For exam-

ple, except for the take-card-phys predicate, all other predicates in

Table 3 satisfy that their distance to their weakening predicate is
ower than 10 −2 , and one may argue that in the probability do-

ain a 10 −2 discrepancy is acceptable.

.3. Discussion

We have showcased the application of our methodology on a

ractical scenario of ATM security. We have established in this em-

irical validation that the attack-tree decoration methodology is

ersatile, as it can be realised differently depending on the ana-

yst’s needs. In particular, the analyst can choose a suitable weak-

ning relation and ask the solver to tackle the decoration problem

epending on their confidence in the tree structure and the histor-

cal data available.

When the confidence in the predicate set is high, the analyst

ill work with the relaxed attack-tree decoration problem, e.g. us-

ng our CSP and SQP-based tools, to obtain a solution that is the

losest one to satisfying all available data points. When the ana-

yst has low confidence in the data, they can work with a con-

traint solver, for example, starting from our CSP-based implemen-

ation, to identify whether there is inconsistency in the data. If the

onstraint satisfaction problem is not satisfiable, the reported un-

atisfiable core of the predicates can be the first candidate to be

eviewed with other experts in order to revise the corresponding

ata points.

The limitation of our methodology is that it does not allow to

raw precise conclusions about data accuracy. For example, an un-

atisfiable core reported by the CSP-based implementation in case

f inconsistency does not guarantee that this is indeed the set of

rong predicates. It might be that the real problem lies within an-

ther, co-dependent set of predicates, where considered data val-

es are inaccurate. We plan to investigate the means to evaluate

he decoration accuracy considering e.g. analyst’s confidence level

or each data point and the size of the solution space in future

ork.

Our methodology does not fully remove the intellectual burden

rom the analyst, but it equips them with an insight into confor-

ity of the historical data with the given attack tree structure,

A. Buldas, O. Gadyatskaya and A. Lenin et al. / Computers & Security 88 (2020) 101630 11

Fig. 3. An attack tree modelling ATM fraud. The tree is loosely based on the attack-defence tree published by Fraile et al. (2016) .

Table 3

Weakened predicates found by the optimisation process.

Soft predicate Weakened predicate

card-trapping � 0.0094 card-trapping � 0.0113

cash-trapping � 0.015 cash-trapping � 0.0131

take-card-phys � card-skimming + 0 take-card-phys � card-skimming + 0.0172

cash-trapping � card-trapping + 0 cash-trapping � card-trapping + 0.0018

a

t

h

t

c

t

2

d

t

o

m

a

n

m

p
nd with an initial, complete attack-tree decoration. This decora-

ion can be further improved by the analyst by incorporating more

istorical data or engaging more domain experts whenever needed.

Our two prototypes demonstrate that the methodology is prac-

ical and it works on real attack trees. In general, the non-linear

onstraint satisfaction problem used by the CSP-based implemen-

ation and the SQP problem are NP-hard (Manyem and Ugon,

012; Tsang, 1993). Note that the complexity of the attack-tree
ecoration task itself is unknown. Therefore, our implementa-

ions will not scale to very large attack trees. To the best of

ur knowledge, there are no statistics on the average or maxi-

al sizes of attack trees in practice. However, manually designed

ttack trees, in our own experience, rarely have more than 100

odes, because they quickly become incomprehensible for hu-

ans (Gadyatskaya and Trujillo-Rasua, 2017). Therefore, we ex-

ect that our implementations will work reasonably well with the

12 A. Buldas, O. Gadyatskaya and A. Lenin et al. / Computers & Security 88 (2020) 101630

u

t

C

A

c

o

a

α

t

P

a

o

o

o

c

s

a

t

a

c

i

A

majority of attack trees created by practitioners, as this is our main

target.

Still, manually designed attack trees can be very diverse, and

it might turn out that no historical data is available at an organ-

isation for the given tree. Then the analysts will fall back on the

traditional attack tree application methodology, when experts as-

sign values to the leaf nodes based on their experience and ex-

pectations. The benefit of our approach is to better integrate the

attack trees and the available historical data, allowing to draw mu-

tual insights from historical observations to envisaged threats, and

vice-versa.

Finally, our methodology is showcased with the probability at-

tribute, as we have a suitable collection of historical observations

for the ATM fraud scenario. Probability or likelihood of a given at-

tack is one of the most important attributes in the context of secu-

rity risk assessment (Vose, 2008). However, our approach is appli-

cable to other quantitative attributes defined for attack trees, e.g.,

cost, time, etc. (Bagnato et al., 2012; Kordy et al., 2013b).

8. Conclusions

In this article we proposed the first quantitative attribute ap-

proach for attack trees that is able to deal with incomplete infor-

mation. On the one hand, we have well-known classical attributes

on attack trees expressing relations between nodes in a tree. On

the other hand, we recognise that reliable information can be ob-

tained from historical data and domain knowledge. This type of in-

formation is typically not included in the semantics of attack trees,

and so it has been largely ignored until now. We take these two

views on the world and we verify that they are consistent. Since

Schneier’s definition of attack trees, bottom-up evaluation of at-

tributes was the norm. We are the first to introduce a complete

view on attribute values, including missing values and approxima-

tion.

The main benefit of our computational methodology is that it

allows to obtain a consistent valuation for all attack tree nodes,

even if some leaf nodes data is missing. This is not possible with

the standard bottom-up decoration approaches. We have shown

that the distinction between hard and soft constraints can be

handy, as it allows the analyst to better understand the solution

space and to interactively engage with the decoration problem.

Lastly, we provide two implementations and we demonstrate the

feasibility of the suggested approach on a case study. Our proof-of-

concept implementations demonstrate the viability of the method,

and they can be easily introduced into the established tools work-

ing with attack trees, such as the SecurITree tool and the ADTool.

Declaration of Competing Interest

None.

Acknowledgements

The research leading to these results has received fund-

ing from the European Union Seventh Framework Programme
nder grant agreement number 318003 (TREsPASS), and from

he Fonds National de la Recherche Luxembourg under grant

13/IS/5809105(ADT2P) .

ppendix A. Proof of Theorem 5.3

Theorem Let t be an attack tree and H (t) ∪ S (t) an attribute

onstraint-set for t , where S(t) ⊆ P ineq . Let S ⊆ P ineq be a set

f predicates such that � H (t) ∪ S � t � = ∅ and

ˆ d (S, S(t)) is minimum

nd defined, i.e. ˆ d (S, S(t)) � = ∞ . Then there exists a valuation

∈ � H (t) ∪ S � t such that (S, α) is a solution of the relaxed attack-

ree decoration problem with respect to �
M

.

roof. First, if � H (t) ∪ S (t) � t � = ∅ , then there exists α ∈ � H (t) ∪ S (t) � t
nd

ˆ d (S(t) , S(t)) = 0 , which is minimum. Thus in the remainder

f the proof we assume that � H(t) ∪ S(t) � t = ∅ .
Now, notice that S(t) ��M

S, otherwise � H(t) ∪ S � t = ∅ . Thus we

btain that S �
M

S(t) , implying that S satisfies the first condition

f the relaxed attack tree decoration problem. Moreover, we also

onclude that | S| = | S(t) | , given that ˆ d (S, S(t)) � = ∞ . Next, we will

how that S satisfies the third condition of the problem definition

s well.

Suppose we have S �
M

S ′ �
M

S(t) , but S ′ ��
M

S. Because S ′ ��
M

S,

here must exist p ′ ∈ S ′ such that no p ∈ S satisfies that p ⇒ p ′ . Let us

nalyse the three possible predicate types of p ′ .

1. Assume p ′ ≡ � � a ′ . Because S ′ �M

S(t) , there must exist

p ′′ ≡ � � a ′′ in S (t) with a ′′ � a ′ . Now, let f : S → S (t) be a

bijective function such that d f (S, S(t)) =

ˆ d (S, S(t)) . Such a

function exists given that ˆ d (S, S(t)) � = ∞ and S �M

S(t) . Let

p ≡ � � a be the predicate in S such that f (p) = p ′′ . Over-

all we obtain that a ′′ � a ′ and a ′′ � a . Now, given that

p does not imply p ′ , according to Lemma 5.2 it must

be the case that a > a ′ . Therefore we obtain the order

a > a ′ � a ′′ . Consider the set of predicates S ′′ = S \ { p} ∪ { p ′ } .
On the one hand, because a ′ � a ′′ it follows that S ′′ �M

S(t) and f ∈ F(S ′′ , S(t)) . On other hand, because a > a ′ and

a ′ � a ′′ , we obtain that d f (S, S (t)) > d f (S
′′ , S (t)). Considering

that d f (S, S(t)) =

ˆ d (S, S(t)) , then

ˆ d (S, S(t)) > d f (S ′′ , S(t)) �
ˆ d (S ′′ , S(t)) , which contradicts the assumption that ˆ d (S, S(t))

is minimum.

2. The case p ′ ≡ � = � ′ � a ′ is analogous to the previous one.

3. Finally assume p ′ ≡ � � a ′ . As in the first case we obtain

that there exist predicates p ≡ � � a and p ′′ ≡ � � a ′′ in S and

S (t), respectively, such that p ′′ ⇒ p ′ and f (p) = p ′′ . Given that

p does not imply p ′ , then we obtain the following order,

a ′′ � a ′ > a . Again, such an order implies that d (p, p ′′) > d (p ′ ,
p ′′). Therefore, the set of predicates S ′′ = S \ { p} ∪ { p ′ } sat-

isfies that ˆ d (S, S(t)) >

ˆ d (S ′′ , S(t)) , which contradicts the as-

sumption that ˆ d (S, S(t)) is minimum.

The proof concludes by remarking that S satisfies the second

ondition of the relaxed attack tree decoration problem, as stated

n the body of the theorem. �

ppendix B. Decorated attack trees for the ATM case study

https://doi.org/10.13039/100011102
https://doi.org/10.13039/501100001866

A. Buldas, O. Gadyatskaya and A. Lenin et al. / Computers & Security 88 (2020) 101630 13

Fig. B.4. A valuation identified by the CSP-based tool for the attack tree in Fig. 3 with the hard constraints and the historical data predicates used as soft constraints

(predicates are listed in Section 6.3).

14 A. Buldas, O. Gadyatskaya and A. Lenin et al. / Computers & Security 88 (2020) 101630

Fig. B.5. A valuation identified by the CSP-based tool for the attack tree in Fig. 3 with the predicates listed in Section 6.2.2 .

A. Buldas, O. Gadyatskaya and A. Lenin et al. / Computers & Security 88 (2020) 101630 15

Fig. B.6. A valuation identified by the SQP-based tool for the attack tree in Fig. 3 with all hard and soft predicates listed in Section 6.2.2 .

16 A. Buldas, O. Gadyatskaya and A. Lenin et al. / Computers & Security 88 (2020) 101630

K

K

L

L

M

M

M

d

O

P

R

S

S
S

S

S

T

V

c

i

f

f

I

i

O

R

U

e

s

A

m

A

i

o

o

H

S

References

Ahmed, A. , Kayis, B. , Amornsawadwatana, S. , 2007. A review of techniques for risk

management in projects. Benchmarking 14 (1), 22–36 .

Amenaza , 2017. SecurITree Software .
Amoroso, E.G. , 1994. Fundamentals of Computer Security Technology. Prentice-Hall,

Inc .
Arnold, F. , Hermanns, H. , Pulungan, R. , Stoelinga, M. , 2014. Time-dependent analysis

of attacks. In: Proc. 3rd Int. Conf. on Principles of Security and Trust (POST’14).
In: LNCS, vol. 8414. Springer, pp. 285–305 .

Aslanyan, Z. , Nielson, F. , 2015. Pareto efficient solutions of attack-defence trees. In:

Proc. 4th Int. Conf. on Principles of Security and Trust (POST’15). In: LNCS, vol.
9036. Springer, pp. 95–114 .

Aslanyan, Z. , Nielson, F. , Parker, D. , 2016. Quantitative verification and synthesis
of attack-defence scenarios. In: Proc. 29th IEEE Computer Security Foundations

Symposium (CSF’16). IEEE, pp. 105–119 .
Aven, T. , 2007. A unified framework for risk and vulnerability analysis covering both

safety and security. Reliabil. Eng. Syst. Saf. 92 (6), 745–754 .
Bagnato, A. , Kordy, B. , Meland, P.H. , Schweitzer, P. , 2012. Attribute decoration of at-

tack–defense trees. Int. J. Secure Soft. Eng. 3 (2), 1–35 .

Baker, W.H. , Rees, L.P. , Tippett, P.S. , 2007. Necessary measures: metric-driven infor-
mation security risk assessment and decision making. Commun. ACM 50 (10),

101–106 .
Benini, M. , Sicari, S. , 2008. Risk assessment in practice: a real case study. Comput.

Commun. 31 (15), 3691–3699 .
de Bijl, M.H. , 2017. Using data analysis to enhance attack trees. In: Proc. Twente

Student Conference .

Bistarelli, S. , Fioravanti, F. , Peretti, P. , 2006. Defense trees for economic evaluation
of security investments. In: Proc. 1st Int. Conf. on Availability, Reliability and

Security (ARES’06). IEEE .
Böhme, R. , 2010. Security metrics and security investment models. In: Proc. 5th Int.

Workshop on Security (IWSEC’10). In: LNCS, vol. 6434. Springer, pp. 10–24 .
Buldas, A . , Lenin, A . , 2013. New efficient utility upper bounds for the fully adaptive

model of attack trees. In: Proc. 4th Int. Conf. on Decision and Game Theory for

Security (GameSec’13). In: LNCS, vol. 8252. Springer, pp. 192–205 .
Caralli, R. , Stevens, J. , Young, L. , Wilson, W. , 2007. Introducing OCTAVE Allegro:

Improving the Information Security Risk Assessment Process. Technical Report
CMU/SEI-2007-TR-012. Software Engineering Institute, Carnegie Mellon Univer-

sity .
Dacier, M. , Deswarte, Y. , Kaâniche, M. , 1996. Models and tools for quantitative as-

sessment of operational security. In: Proc. IFIP Int. Conf. on ICT Systems Security

and Privacy Protection (SEC’96). Springer, pp. 177–186 .
Fraile, M. , Ford, M. , Gadyatskaya, O. , Kumar, R. , Stoelinga, M. , Trujillo-Rasua, R. , 2016.

Using attack-defense trees to analyze threats and countermeasures in an ATM:
a case study. In: Proc. 9th IFIP Working Conference on the Practice of Enter-

prise Modeling (PoEM’16). In: Lecture Notes in Business Information Processing.
Springer, pp. 326–334 .

Gadyatskaya, O. , Hansen, R.R. , Larsen, K.G. , Legay, A. , Olesen, M.C. , Poulsen, D.B. ,

2016a. Modelling attack-defense trees using timed automata. In: Proc. Int. Conf.
on Formal Modeling and Analysis of Timed Systems (FORMATS’16). In: LNCS,

vol. 9884. Springer, pp. 35–50 .
Gadyatskaya, O. , Harpes, C. , Mauw, S. , Muller, C. , Muller, S. , 2016b. Bridging two

worlds: reconciling practical risk assessment methodologies with theory of at-
tack trees. In: Proc. 3rd Int. Workshop on Graphical Models for Security (GraM-

Sec’16). In: LNCS, vol. 9987. Springer, pp. 80–93 .

Gadyatskaya, O. , Jhawar, R. , Kordy, P. , Lounis, K. , Mauw, S. , Trujillo-Rasua, R. , 2016c.
Attack trees for practical security assessment: ranking of attack scenarios with

ADTool 2.0. In: Proc. 13th Int. Conf. on Quantitative Evaluation of Systems
(QEST’16). In: LNCS, vol. 9826. Springer, pp. 159–162 .

Gadyatskaya, O. , Trujillo-Rasua, R. , 2017. New directions in attack tree research:
catching up with industrial needs. In: Proc. of GraMSec. Springer, pp. 115–126 .

Holm, H. , Shahzad, K. , Buschle, M. , Ekstedt, M. , 2015. P2CySeMoL: predictive, prob-
abilistic cyber security modeling language. IEEE Trans. Depend. Secure Comput.

12 (6), 626–639 .

Hong, J.B. , Kim, D.S. , Chung, C.J. , Huang, D. , 2017. A survey on the usability and prac-
tical applications of graphical security models. Comput. Sci. Rev. 26, 1–16 .

Horne, R. , Mauw, S. , Tiu, A. , 2017. Semantics for specialising attack trees based on
linear logic. Fundam. Inform. 153 (1–2), 57–86 .

Jaquith, A. , 2007. Security Metrics. Pearson Education .
Jhawar, R. , Kordy, B. , Mauw, S. , Radomirovi ́c, S. , Trujillo-Rasua, R. , 2015. Attack trees

with sequential conjunction. In: Proc. IFIP TC-11 Int. Information Security and

Privacy Conference (IFIPSec’15). Springer, pp. 339–353 . volume 455 of IFIPAICT.
Jhawar, R. , Lounis, K. , Mauw, S. , 2016. A stochastic framework for quantitative analy-

sis of attack-defense trees. In: Proc. 12th Workshop on Security and Trust Man-
agement (STM’16). In: LNCS, vol. 9871. Springer, pp. 138–153 .

Kordy, B. , Kordy, P. , Mauw, S. , Schweitzer, P. , 2013a. ADTool: security analysis with
attack–defense trees. In: Proc. 10th International Conference on Quantitative

Evaluation of SysTems (QEST’13). In: LNCS, vol. 8054. Springer, pp. 173–176 .

Kordy, B. , Mauw, S. , Radomirovi ́c, S. , Schweitzer, P. , 2014a. Attack–defense trees. J.
Logic Comput. 24 (1), 55–87 .

Kordy, B. , Mauw, S. , Schweitzer, P. , 2013b. Quantitative questions on attack-defense
trees. In: Proc. 15th Annual International Conference on Information Security

and Cryptology (ICISC’12). In: LNCS, vol. 7839. Springer, pp. 49–64 .
Kordy, B. , Piètre-Cambacédès, L. , Schweitzer, P. , 2014b. DAG-based attack and de-

fense modeling: dont miss the forest for the attack trees. Comput. Sci. Rev. 13,

1–38 .
ordy, B. , Pouly, M. , Schweitzer, P. , 2012. Computational aspects of attack–defense
trees. In: Int. Joint Conferences on Security and Intelligent Information Systems

(SIIS’11). In: LNCS, vol. 7053. Springer, pp. 103–116 .
ordy, B. , Pouly, M. , Schweitzer, P. , 2014c. A probabilistic framework for security

scenarios with dependent actions. In: Proc. Integrated Formal Methods (IFM’14).
In: LNCS, vol. 8739, pp. 256–271 .

Kumar, R. , Ruijters, E. , Stoelinga, M. , 2015. Quantitative attack tree analysis via
priced timed automata. In: Proc. Int. Conf. on Formal Modeling and Analysis

of Timed Systems (FORMATS’15). In: LNCS, vol. 9268. Springer, pp. 156–171 .

eMay, E. , Ford, M.D. , Keefe, K. , Sanders, W.H. , Muehrcke, C. , 2011. Model-based se-
curity metrics using adversary view security evaluation (ADVISE). Quantitative

evaluation of systems (QEST). IEEE .
Lenin, A. , 2015. Reliable and Efficient Determination of the Likelihood of Rational

Attacks. Tallinn University of Technology Ph.D. Thesis . TUT Press.
enin, A . , Buldas, A . , 2014. Limiting adversarial budget in quantitative security as-

sessment. In: Proc. 5th Int. Conf. on Decision and Game Theory for Security

(GameSec’14). In: LNCS, vol. 8840. Springer, pp. 155–174 .
Lenin, A. , Willemson, J. , Charnamord, A. , 2015. Genetic approximations for the fail-

ure-free security games. In: Proc. 6th Int. Conf. on Decision and Game Theory
for Security (GameSec’15). In: LNCS, vol. 9406. Springer, pp. 311–321 .

Lenin, A. , Willemson, J. , Sari, D.P. , 2014. Attacker profiling in quantitative security
assessment based on attack trees. In: 19th Nordic Conference on Secure IT Sys-

tems (NordSec’14). In: LNCS, vol. 8788. Springer, pp. 199–212 .

ahmood, Y.A. , Ahmadi, A. , Verma, A.K. , Srividya, A. , Kumar, U. , 2013. Fuzzy fault
tree analysis: a review of concept and application. Int. J. Syst. Assur. Eng. Manag.

4 (1), 19–32 .
anyem, P. , Ugon, J. , 2012. Computational complexity, NP completeness and opti-

mization duality: a survey. Electron. Colloq. Comput. Complex. 19 (9) .
auw, S. , Oostdijk, M. , 2006. Foundations of attack trees. In: Proc. 8th Int. Conf.

on Information Security and Cryptology (ICISC’05). In: LNCS, vol. 3935. Springer,

pp. 186–198 .
e Moura, L.M. , Bjørner, N. , 2008. Z3: an efficient SMT solver. In: TACAS, volume

4963. Springer, pp. 337–340 . Lecture Notes in Computer Science.
ppliger, R. , 2015. Quantitative risk analysis in information security management: a

modern fairy tale. IEEE Secur. Priv. 13 (6), 18–21 .
otteiger, B. , Martins, G. , Koutsoukos, X. , 2016. Software and attack centric inte-

grated threat modeling for quantitative risk assessment. In: Proc. Symposium

and Bootcamp on the Science of Security (HotSos’16). ACM, pp. 99–108 .
Roy, A. , Kim, D.S. , Trivedi, K. , 2012. Scalable optimal countermeasure selection us-

ing implicit enumeration on attack countermeasure trees. In: Proc. IEEE/IFIP Int.
Conf. on Dependable Systems and Networks (DSN’12). IEEE .

uijters, E. , Stoelinga, M. , 2015. Fault tree analysis: a survey of the state-of-the-art
in modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 .

alter, C. , Saydjari, O.S. , Schneier, B. , Wallner, J. , 1998. Toward a secure system engi-

neering methodolgy. In: Proceedings of NSPW. ACM, pp. 2–10 .
Sarabi, A. , Naghizadeh, P. , Liu, Y. , Liu, M. , 2015. Prioritizing security spending: a

quantitative analysis of risk distributions for different business profiles. In: Proc.
14th Annual Workshop on the Economics of Information Security (WEIS’15) .

chneier, B. , 1999. Attack Trees. Dr Dobb’s J. Softw. Tools 24 (12), 21–29 .
chneier, B. , 20 0 0. Secrets & Lies: Digital Security in a Networked World. John Wiley

& Sons, Inc., New York, NY, USA .
hostack, A. , 2014. Threat Modeling: Designing for Security. John Wiley & Sons .

Singhal, A. , Ou, X. , 2017. Security risk analysis of enterprise networks using proba-

bilistic attack graphs. In: Network Security Metrics. Springer, pp. 53–73 .
ommestad, T. , Ekstedt, M. , Johnson, P. , 2009. Cyber security risks assessment with

Bayesian defense graphs and architectural models. In: 2009 42nd Hawaii Inter-
national Conference on System Sciences. IEEE, pp. 1–10 .

sang, E.P.K. , 1993. Foundations of Constraint Satisfaction. Computation in Cognitive
Science. Academic Press .

ose, D. , 2008. Risk Analysis: A Quantitative Guide. John Wiley & Sons .

Ahto Buldas is a professor of cryptography at Tallinn University of Technology, and
a senior research fellow at Cybernetica AS. Studied computer science at Tallinn Uni-

versity of Technology (1985–1991). M.Sc. on simulation techniques for Boolean cir-
uits (1992). Ph.D. on Computational Algebraic Graph Theory (1999). His research

nterests are related to applied cryptography. Timestamping related research started

rom 1997, during which he has published papers in Crypto, Asiacrypt and PKC con-
erences. Participated in the development of the Estonian Digital Signature Act and

D-card (1996–2002). Current research interests also include risk analysis methods,
ncluding attack-tree semantics and game-theoretical approach to risk analysis.

lga Gadyatskaya holds Ph.D. in mathematics from Novosibirsk State University,
ussia. After a postdoc at the University of Trento, Italy, in 2014 she has joined the

niversity of Luxembourg, Luxembourg as a research associate. Her research inter-

sts span from security risk management with attack trees to Android application
ecurity and reliability.

leksandr Lenin is a visiting lecturer in cryptography and information security risk
anagement at Tallinn University of Technology, and a researcher at Cybernetica

S. Studied computer science at Tallinn University of Technology. M.Sc. in engineer-
ng (2012), Ph.D. in computer science (2015). His research interests include cryptol-

gy, quantitative aspects of system security, machine learning, and the foundations

f mathematics. He publishes in venues for information security and cryptography.
e has participated in the development of the SplitKey Authentication and Digital

ignature Platform.

http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0001
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0001
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0001
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0001
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0002
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0002
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0003
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0003
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0004
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0004
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0004
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0004
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0004
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0005
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0005
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0005
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0006
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0006
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0006
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0006
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0007
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0007
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0008
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0008
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0008
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0008
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0008
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0009
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0009
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0009
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0009
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0010
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0010
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0010
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0011
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0011
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0012
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0012
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0012
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0012
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0013
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0013
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0014
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0014
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0014
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0015
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0015
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0015
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0015
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0015
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0016
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0016
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0016
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0016
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0017
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0017
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0017
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0017
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0017
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0017
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0017
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0018
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0018
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0018
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0018
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0018
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0018
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0018
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0019
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0019
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0019
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0019
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0019
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0019
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0020
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0020
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0020
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0020
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0020
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0020
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0020
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0021
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0021
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0021
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0022
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0022
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0022
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0022
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0022
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0023
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0023
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0023
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0023
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0023
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0024
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0024
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0024
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0024
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0025
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0025
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0026
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0026
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0026
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0026
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0026
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0026
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0026
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0027
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0027
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0027
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0027
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0028
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0028
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0028
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0028
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0028
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0029
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0029
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0029
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0029
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0029
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0030
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0030
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0030
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0030
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0031
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0031
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0031
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0031
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0032
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0032
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0032
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0032
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0033
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0033
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0033
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0033
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0034
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0034
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0034
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0034
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0035
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0035
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0035
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0035
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0035
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0035
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0036
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0036
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0036
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0037
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0037
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0037
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0038
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0038
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0038
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0038
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0039
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0039
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0039
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0039
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0040
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0040
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0040
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0040
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0040
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0040
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0041
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0041
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0041
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0042
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0042
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0042
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0043
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0043
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0043
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0043
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0044
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0044
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0045
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0045
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0045
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0045
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0046
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0046
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0046
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0046
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0047
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0047
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0047
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0048
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0048
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0048
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0048
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0048
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0049
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0049
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0049
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0049
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0049
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0050
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0050
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0051
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0051
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0052
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0052
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0053
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0053
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0053
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0054
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0054
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0054
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0054
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0055
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0055
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0056
http://refhub.elsevier.com/S0167-4048(19)30177-4/sbref0056

A. Buldas, O. Gadyatskaya and A. Lenin et al. / Computers & Security 88 (2020) 101630 17

S

H

v

S

t

p

a

R

c

v

s

a

jouke Mauw is professor in computer security at the University of Luxembourg.
e holds a master in mathematics and a Ph.D. in computer science from the Uni-

ersity of Amsterdam. He is head of the SaToSS (Security and Trust of Software
ystems) research group, which focuses on the application of formal methods to

he design and analysis of secure systems. His research interests include security
rotocols, e-voting, security assessment, trust and risk management, privacy, and

ttack trees.
olando Trujillo-Rasua is a lecturer in Cyber Security at Deakin University. He
ompleted a Masters and Ph.D. in computer engineering from Rovira i Virgili Uni-

ersity, and shortly after joined the University of Luxembourg as a Postdoctoral re-
earcher. His research interests span the areas of formal methods, computer security

nd privacy protection.

	Attribute evaluation on attack trees with incomplete information
	1 Introduction
	2 Related work
	2.1 Quantitative analysis of fault trees
	2.2 Computations on attack graphs
	2.3 Data issues in quantitative risk assessment

	3 Attack-tree decoration
	3.1 Attack trees
	3.2 The attack-tree decoration problem

	4 A methodology for attack-tree decoration
	4.1 Hard predicates
	4.2 Soft predicates
	4.3 Analysis of attribute semantics with hard and soft predicates

	5 Decoration algorithm for specific classes of predicates
	5.1 Maximal weakening over inequality relations
	5.2 Set inclusion weakening over propositional logic

	6 ATM case study
	6.1 ATM security: a case study
	6.2 Decorating the ATM fraud attack tree
	6.2.1 Statistical analysis
	6.2.2 Domain knowledge constraints

	6.3 Full set of predicates
	6.4 Goals of the analysis

	7 Empirical evaluation results
	7.1 The CSP-based implementation showcase
	7.2 The SQP-based implementation showcase
	7.3 Discussion

	8 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Proof of Theorem 5.3
	Appendix B Decorated attack trees for the ATM case study
	References

