Specifying Internet applications with DiCons

J.C.M. Baeten
Department of Mathematics
and Computing Science,
Eindhoven University of
Technology, P.O. Box 513,
5600 MB Eindhoven,
The Netherlands

josb@win.tue.nl

Keywords
Internet applications, language design, distributed consen-
sus, DiCons.

ABSTRACT

It is not easy to build Internet applications with common
techniques, such as CGI scripts and Perl. Therefore, we
designed the DiCons language, which supports the develop-
ment of a range of Internet applications at the appropriate
level of abstraction. In this paper we discuss the design of
DiCons, we give an overview of the tool support and we
explain the language by means of an example.

1. INTRODUCTION

Some trends concerning the development of new Internet
applications can be observed. First of all, the Internet and
applications of Internet are developed with a tremendous
speed. The first to come with an interesting application
sets the standard for that application area. Many new ser-
vices are realized, for example applications which support
auctions or voting via Internet.

Secondly, large portals replaced the old style search engines.
They provide functionality that goes beyond mere guidance
through the Internet. The longer that the visitor stays at
the portal site and the more often that he uses functionality
provided by the portal, the higher the income from adver-
tisements will be. Therefore, portals must offer interesting
applications and must keep their functionality up to date.
This does not only imply that portals must maintain a large
set of applications, but also that they must be able to rapidly
develop new services. Short time to market is an important
asset.

The third observation is that the number of commercial
transactions on the Internet is growing. Security and de-

H.M.A. van Beek
Eindhoven Embedded
Systems Institute (EESI),
Eindhoven University of
Technology, P.O. Box 513,
5600 MB Eindhoven,
The Netherlands

harm@win.tue.nl

S. Mauw
Department of Mathematics
and Computing Science,
Eindhoven University of
Technology, P.O. Box 513,
5600 MB Eindhoven,
The Netherlands

sjouke@win.tue.nl

pendability are important factors at all levels of interac-
tion. Apart from proper use of cryptographic techniques,
this also requires that the protocols by which information
is exchanged are correct. A voting system, e.g., must guar-
antee that the winner is actually the candidate that has
received most support.

We want to be able to quickly develop secure and depend-
able Internet applications. Some problems that occur are,
firstly, that several languages are involved, such as html, cgi
scripts, and other scripting languages. Secondly, the level of
abstraction of the language used often does not correspond
to the level on which we think about an application: there is
no C-primitive for filling out a Web form. Thirdly, current
practices do not lend themselves to validation or verification.

Thus, our goal is to develop a language at the right level of
abstraction, that is amenable to (formal) validation or ver-
ification. In order to make the problem more concrete and
the solution more feasible, we limit the class of applications
we consider. First of all, we consider applications where sev-
eral users strive to reach a common goal without having to
meet. We call this kind of applications distributed consensus
applications. A central location on an Internet server should
support this. We are interested in asynchronous communi-
cation, as exemplified by the sending of e-mails and Web
forms. Users do not communicate directly but only commu-
nicate with the central application. Finally, we only want
to use standard techniques, so the user does not require
special programs, software or plug-ins. An Internet con-
nection, e-mail and a Web browser should suffice, on any
hardware/software platform.

In this paper a new specification language DiCons (Distri-
buted Consensus) is introduced to specify Internet applica-
tions for distributed comsensus. Major characteristic of this
class of protocols is that a number of users strive to reach a
common goal (e.g. make an appointment, evaluate a paper,
select a “winner”). The problem is that the users do not
want to physically meet to solve their goal, nor will there
be any synchronized communications between the users. A
central system, viz. an Internet application, must be used
to collect and distribute all relevant information.

This class of applications was the starting point for devel-
oping our language. The language must both be expressive

enough and concrete. In order to be applicable to an appro-
priate range of problems, it must have the right expressive
power. The language must be concrete enough, such that
automatic generation of an executable is feasible.

Typical examples of applications that our research targets
at, are: Meeting scheduler, election support system, auc-
tion, and gift selection. These examples have in common
that they support a task which is algorithmically simple but
requires many interactions. This task is taken over by a
central application, handling all interactions with the users.
In this paper, we illustrate this by the example of a gift
selection system.

The purpose of this paper is to give a description of the lan-
guage DiCons and the tools developed for it. To this end, we
first give an overview of the design decisions we took in or-
der to arrive at this language and its prototype tools. Next,
we illustrate the use of DiCons by the example of the gift
selection system. After that, we compare our approach with
other methods and techniques. Finally, we finish with some
concluding remarks and ideas for the further development
of the language and tools.

2. DESIGN OF DICONS

In this section we will discuss the considerations that led to
the current design of the DiCons language and we describe
the basic ingredients of DiCons.

2.1 Restrictions

In order to not have to face the complete problem of writ-
ing Internet applications in general we restrict our problem
setting in several ways. First of all, we focus on a class of
applications which is amenable to formal verification with
respect to behavioral properties. This means that the com-
plexity of the application comes from the various interac-
tions between users and a system, rather than from the data
being exchanged and transformed. Implications for the de-
sign of the language are that the primitive constructs are in-
teractions, which can be composed into complex behavioral
expressions. Furthermore, it implies that the development
of the language and its formal semantics must go hand in
hand. Nevertheless, we will not discuss semantical issues in
the current paper.

A further restriction follows from the assumption that al-
though the users work together to achieve some common
goal, there will be no means for the users to communicate
directly with each other. We assume a single, central appli-
cation that follows a strictly defined protocol in communi-
cation with the users.

The last consideration with respect to the design of DiCons
is that we want to make use of standard Internet technology
only. Therefore, we focus on communication primitives such
as e-mail and Web forms. This means that a user can inter-
act with the system with a standard Web browser, without
the need for additional software such as plug-ins. Of course,
it must be kept in mind that the constructs must be so gen-
eral as to easily support more recent developments, such as
ICQ or SMS messages. Currently, we only consider asyn-
chronous communication between client and server.

2.2 Overview of language constructs

Bearing above considerations with respect to the applica-
tion domain and available technology in mind, we come to a
description of the basic constructs of DiCons. We will first
list the language ingredients and later discuss these in more
detail, without precisely defining their syntax and seman-
tics. The example in Section 4 will serve to show the flavor
of the DiCons syntax and the way in which the language
can be used.

users and roles The first observation is that, since an ap-
plication may involve different users, the application
must be able to identify users. Moreover, since differ-
ent users may want to use the system in the same way,
it must be possible to group users into so-called roles.

interactions We have to identify the communication prim-
itives, which we will call interactions. They form the
basic building blocks of the behavioral descriptions.
Interactions are abstract descriptions which are iden-
tified by their name and may carry input and output
parameters.

behavior A number of interactions with the same user may
be combined to form a session. Sessions and interac-
tions can be composed into complex behavioral de-
scriptions which define an application.

presentations The abstract interactions are represented to
the user by means of concrete communication means,
such as e-mail and Web forms. This is called the pre-
sentation of an interaction.

data In order to transform (user) data and keep state in-
formation, we need a means to define and manipulate
data (expressions, variables, data structures, etc.)

2.3 Usersand roles

A user is an entity that can interact with the system. A
user has three attributes: a name (for reference), an e-mail
address (in case e-mail communication is desired), and a
password (in case user authentication is needed). Users are
grouped according to their role. Users with the same role
are offered the same interaction behavior. In DiCons roles
can be defined and variables can be declared which denote
users with a given role.

2.4 Interactions

The basic problem when defining the interaction primitives
is to determine the right level of abstraction. Taking, e.g., an
http request as a primitive interaction will lead to programs
which are too detailed. On the other hand, if we would
define a complete user session as a primitive interaction,
we could not deal with the variety of different sessions that
occur in an application.

In order to get a feeling of the level of abstraction which
is optimally suitable, look at Figure 1. In this drawing we
sketch a typical scenario of an Internet application which is
called the Meeting Scheduler (see [22]). This is an applica-
tion which assists in scheduling a meeting by keeping track
of all suitable dates and sending appropriate requests and
convocations to the intended participants of the meeting.

msc Basic scenario
Initiator Server Part-1 Part-2 Part-3
| | | | | | | | | |
initialize
invite
invite
invite
info
inffo
info
options
choice
convocate
convcate
convocate
show ggenda
I N DR NN

Figure 1: A scenario of an Internet application

The drawing is a so-called Message Sequence Chart (MSC,
see [17]), which is a standardized visual language, especially
suited for requirements engineering. The example shows
that we have two roles, viz. initiator and participant. In
this scenario, there is only one user with role initiator, while
there are three users with role participant. The MSC shows
that the initiator starts the system by providing it with
meeting information. Next, the system sends an invitation
to the participants who reply by stating which dates suit
them. After collecting this information, the system informs
the initiator about the options for scheduling the meeting
and awaits the choice made by the initiator. Finally, the
system informs the participants about the date and offers
the users to have a look at the agenda. Only participant 2
is interested in the agenda.

This example nicely shows at which level of detail one wants
to specify such an application. The arrows in the diagram
represent the basic interaction primitives. First, look at the
invite messages. Since the participants don’t know that they
will be invited for a meeting, the initiative of this interaction
is at the server side. The way in which a server can actively
inform a client is by sending an e-mail. This interaction only
contains information transmitted from the server to the user.
The messages options and convocate are also implemented
as e-mails.

Next, look at message info. This interaction is initiated by
the user and is best implemented as a Web form supplied by
the server, on request of the user and filled in by the user.
The message choice also stands for a Web form being filled
in.

The last message, show agenda contains information sent by
the server to the user, on request of the user. This is simply
the request and transmission of a non-interactive Web page.

Finally, we look at the first message, initialize. The initiator
has to supply the system with various kinds of information,
such as a list of proposed dates and a list of proposed par-
ticipants. This will probably be implemented as a dialogue
between the user and the system in the form of a series of
Web forms. This is called a session.

We summarize the three basic interaction schemes in Fig-
ure 2. Notice that the third scheme, the session, consists of
a series of more primitive interactions. It starts with a client
requesting a form and submitting it after having it filled in.
This is the interaction which starts the session. Next, comes
a series of zero or more submissions of Web forms. These are
interactions which come in the middle of a session. And, fi-
nally, the session ends with the server sending a simple Web
page after the last submission of the client.

In DiCons we have constructs for these five interaction prim-
itives. We have used a naming scheme for the interaction
primitives which is based on their properties. First, we make
a distinction based on the flow of information. If the infor-
mation goes from the server to the client, we call this a server
push, while if the information flows to the server, we call this
a server pull. Notice that we reason from the viewpoint of
the server in this respect.

The second distinction which we make is on which party
takes the initiative for the interaction. Still reasoning from
the viewpoint of the server we consider an active communi-
cation, which means that the server takes the initiative, a
reactive communication, which means that the client takes
the initiative, and a session oriented communication, which
means that the communication is a response from the server
to a prior submission of a Web form by the client.

Finally, notice that we extend the interaction primitives with
parameters to express which information is being transmit-
ted. An output parameter denotes information sent by the
server to the client, while an input parameter is a variable
in the data space of the server which will contain the infor-
mation sent by the client to the server.

The notation for our communication primitives is given be-
low.

active server push The server takes the initiative to send
information (for o; (0 <4 < n) output parameters):

mail to client < message(oo, ..., 0on)

reactive server push The server sends a Web page on re-
quest of the client (for o; (0 <4 < m) output parame-
ters):
client < message(out oo, ... , out o,)

reactive server pull The server sends a Web form on re-
quest of the client. After that, the client submits the
filled in form. This interaction denotes the starting
of a session. (for 7x (0 < k < m) input parameters,
or (0 < k < n) output parameters and vy (0 < k < p)
input/output parameters):

msc e-mail msc page-query msc session
Client Server Client Server Client Server
req-url

req-url web-form

email submission

web-page web-form

submission

web-page
B] B] & |

Figure 2: Interaction primitives

start session of client — message(in ig, ... , in i,

out og, ..., out o,, var vo,... , var vp)

session-oriented server pull The server sends a Web form
to the client as a response to a prior form submission
by the client. After that, the client submits the filled
in form. This interaction is repeated in the middle
of a session. (for ix (0 < k < m) input parameters,
or (0 < k < n) output parameters and vy (0 < k < p)
input/output parameters):

session of client — message(in ig,... , in iy,
out og,..., out o,, var vg,..., var vp)

session-oriented server push The server sends a non-in-
teractive Web page to the client in response to a prior
form submission by the client. This interaction is the
last interaction of a session. (for o; (0 < i < n) output
parameters):

end session of client + message(out oo, ... , out 0,)

Please notice that in our list of interaction primitives we
did not mention the active server pull. The reason for this
is simply that with standard Internet technology this inter-
action cannot be implemented. A Web server cannot take
the initiative to obtain information from a client.

2.5 Behavior

Now that we have defined the basic interaction primitives,
we can discuss the means to compose them into sessions
and applications. An application describes the protocol to
be executed by the server. A number of standard program-
ming language constructs are supported in DiCons. We
mention the following: sequential composition (denoted by
a semi-colon), conditional branching (if-then-else-fi), repe-
tition (for-all-do-od, and while-do-od, which is a parallel
repetition), Since in most applications that we have studied
users have to react before a given deadline, we have included
a time-out construct in DiCons (until-do-od, which means
that the body of this expression may execute until the given
deadline). Finally, in order to manipulate the internal state
of the application, we have assignments to variables and pro-
cedure calls. A session is simply a program fragment with

the requirement that execution starts with a session-start
interaction and ends with a corresponding session-end in-
teraction.

2.6 Presentations

The interactions which are composed into a DiCons appli-
cation are abstract in the sense that they only carry a name
and possibly some parameters. Additional information is
needed to determine how the interaction is implemented. In
case of an e-mail, we need to specify the addresses of the
sender and the receiver, the subject field, the body text and
the places where the values of the output parameters must
be filled in.

In case of a Web form, we must also define the fields where
the user can type in values which are stored in the input pa-
rameters of the interaction. Furthermore, DiCons supports
the inclusion of Java scripts which can put syntactic restric-
tions on the input provided by the user. Other supported
features are pull-down selection menus, submit buttons, ra-
dio buttons and check boxes.

2.7 Data

Storing and manipulating data occurs at several places in
a DiCons application. Therefore, a well equipped data lan-
guage must be part of DiCons. Many programming lan-
guages have been developed to support the manipulation of
data, so, rather than developing our own dedicated data lan-
guage, we decided to include an existing language, namely
Java [12]. The main reason for selecting Java, lies in its pop-
ularity in the Internet community, but also implementation
issues made us decide for Java (because we use Java servlets,
see Section 3).

In order to make DiCons as independent from the chosen
data language as possible, we have defined the language in
such a way that the included data language and the other
parts of the language are orthogonal. Java fragments are
only allowed in the definition of functions and procedures.
Interaction with the other parts of the language takes place
by calling these functions. In this way, Java can be easily
substituted by other languages, such as C.

3. TOOLSFOR DICONS

We make use of several existing (Internet) techniques. First
of all, we make use of Java servlets [16, 28]. These servlets
generate HTML pages and HTML forms [25]. If data con-
straints are included into Web form, these constraints are
checked by a piece of JavaScript code [14] which makes use
of the regular expression, specified in the Perl/JavaScript
regular expression syntax [11].

3.1 JavaCC

To implement a parser we have chosen to use the Java
parser generator Java Compiler Compiler (JavaCC) [23].
This choice is made because we are specifying an Internet
application and Java is the Internet specification language
par excellence. JavaCC is a parser generator that produces
parsers in Java from grammar specifications written in a
lex/yacc-like manner.

We have implemented a package of classes which specify the
different parts of the language: roles, types, variables, func-
tions, interactions, sessions and the execution. After parsing
an application, an object of type DiConsApplication is cre-
ated. This object consists of different objects, all specifying
one part of the application. These objects all have a method
to convert that specific part of the application to a piece of
Java code. By putting all these pieces together we get a
Java application, viz. a Java servlet. This servlet can be
compiled to Java byte-code by using a regular Java com-
piler. The file containing Java byte-code can be interpreted
by a Web server.

3.2 Technical Aspects

In this section we will discuss some aspects of our specifi-
cation which are non-trivial to implement. Since we cannot
have multiple executions of one single servlet simultaneously
we have to implement some kind of instance management
and session management. The problem is that we want to be
able to start several instances of some DiCons application.
These instances must run independently and have disjoint
state spaces. Within an instance of an application, several
users may start parallel or overlapping sessions. Such ses-
sions share the same data space.

3.2.1 Instance management

The servlet API does not implement instance management
in the way we need it. It implements sessions using client-
side cookies. Since one instance might concern more than
one client, cookies cannot solve our instance management.

We introduce a new class ServletInstance in which all data
concerning one instance can be stored. Furthermore, we add
a variable containing the collection of available instances to
our servlet. Each instance gets its own unique identifier. If
one accesses the servlet without referring to an instance, a
new instance is created. During a session, all Web forms are
extended with a hidden variable containing the correspond-
ing instance identifier. Submitting a Web form now results
in including this identifier in the posted data. One can also
call a servlet using a rewritten URL. This URL is extended
with a query string containing an instance identifier. Call-
ing the servlet like this results in continuing an instance if
this is possible. If this instance does not exist the instance

identifier is ignored and a new instance with a new, unique
identifier is create. This identifier is composed of a letter
followed by eight randomly chosen digits.

Each time a servlet is called it checks whether an instance
identifier is passed. If so, it tries to load that instance’s
data and continue the instance’s execution. Otherwise, a
new instance is created.

3.2.2 Session management

Session management support is built into the servlet API by
using cookies. However, these techniques do not answer our
needs. By using cookies we do not have the ability to run
multiple simultaneous sessions using one and the same Web
browser. Though this is not such a big shortcoming, one
can turn off cookie usage in most of the Web browsers. This
cookie problem can quite easily be solved by implementing
sessions in the same way as we implemented instances.

We introduce a new class ServletSession. Sessions specified
in the session part of the application are implemented as
subclasses of this class. Sessions all have a session identifier
which is unique for the instance it takes part in. This iden-
tifier is composed of a letter S followed by eight randomly
chosen digits.

Again, we extend Web forms with a hidden variable contain-
ing the session identifier. Since sessions are started with a
reactive pull and continued with session-oriented pulls it is
not needed to use rewritten URLs within one session: pulls
always return a Web form. Each instance contains a variable
in which the collection of its active sessions is stored.

A result of this way of implementing sessions is that parallel
sessions within one instance are automatically implemented.
However, we do have to take care that parallel sessions do
not interfere while accessing instance dependent data. This
is prevented by synchronizing data access.

Each time a servlet is called it checks whether a session iden-
tifier is passed. If so, it checks whether the session occurs in
the corresponding instance and continues the session if that
is possible. If the session cannot be found or if no session
identifier is passed, a new session is started.

4. EXAMPLE: THE GIFT SELECTION

In this section we give an example of a way to distribute
gifts over invitees for a marriage. We specify an Internet
application via which this distribution takes place. We do
not give a full specification. Instead, we give parts of the
specification which will be sufficient to get an idea of the way
in which the different part of the application are specified.

First of all, we have to specify which roles are applicable
to the problem. An initiator must specify which gifts can
be given away and who are invited for the marriage. The
invitees must be able to select a gift they want to donate
to the bridal couple. This means that we have two roles:
Initiator and Invitee.

role
Initiator;
Invitee;

end role

Next, we specify which variables and functions we make use
of. We need a variable to refer to the initiator and one to
refer to the invitees. Furthermore, the gifts (of type String)
are stored in a variable. We make use of a deadline before
which the invitees have to select the gift they want to give.

var initiator: Initiator;
var invitees: set of Invitee;
var gifts: set of String;
var deadline: Deadline;

Functions are also specified in the data part. The bodies
of the functions are specified in the Java language. We can
use the variables specified before. Variables which represent
a set are implemented as objects of the Java Vector class.
Therefore, we can make use of the methods of this class in
the bodies of the functions. Some examples of functions we
have specified are given below.

function process_selection(gifts: set of String,
gift: String): String
= java
if (!gift.equals("") &&
(gifts.index0f (gift)>-1)) {

gifts.removeElement (gift) ;
return "yes";

} else
return "no";

end java;

function gifts_left(gifts: set of String): Boolean
= java
return !gifts.isEmpty();
end java;

Next, we specify the Web pages/forms and e-mails we use
to interact with the users. We declare the kind of each
interaction and the role a user must have to interact. A
Web page/form is specified by its title and body, an e-mail
by its sender, receiver, subject and contents. We use plain
text and references to input/output parameters. A Web
form which we use to ask the initiator to insert a deadline
is given below. In the interaction, a regular expression is
added to check the syntax of the text which is typed out in
the input field. If the text does not answer the syntax, a
message is shown and the text must be altered until it does
satisty the syntax.

session of Initiator — set_deadline(

in deadline: Deadline) =

{ title:
text: ” Gift selection”;

body:
text: "Insert deadline (dd-mm-yyyy hh:mm:ss):”;
input: deadline
check ”/~\d\d-\d\d-\d\d\d\d
\d\d:\d\d:\d\d$/”

else "Incorrect date format.”;

A specification of an e-mail is given below. The e-mail is
sent to each invitee. He is asked to visit the application’s
URL, log in and select a gift. A “\n” specifies a line break.

mail to Invitee < invitation_email(
out initiator: Initiator, out deadline: Deadline,
out invitee: Invitee, out gifts: set of String) =

{ from:
output: initiator.email;
to:
output: invitee.email;
subject:
text: ”Invitation for gift selection.”;
contents:
text: "Hello ”;

output: invitee.name;

text: ” \n\nYou are invited to select a gift.
\n\nVisit the following url:\n\n";

output: URL;

text: ”\n\nThe gifts are:\n";

output: gifts;

text: ”\n\nDeadline before which you have to
select your gifts:\n”;

output: deadline;

text: ”\n\nUse the following name and password
to log in:\nName:”;

output: invitee.name;

text: 7\nPassword: 7;

output: invitee.password,

text: 7\n\ngreetings, ”;

output: initiator.name;

After specifying all interactions, we have to specify the dif-
ferent sessions. Each session has a name. A session is speci-
fied by a sequence of (inter)actions. We have to specify two
sessions.

First of all, we specify the initialization session. In this ses-
sion the initiator is asked to insert all relevant data which
is needed for the gift selection, i.e. his name and e-mail ad-
dress, the set of gifts, the set of invitees and the deadline
before which the sessions with the invitees must take place.

initialization =
{ start session of initiator — set_initiator(initiator);
while incorrect_deadline(deadline) do
session of initiator — set_deadline(deadline);
od;
s = yes();
while equals_yes(s) do
session of initiator —
add_invitee(invitees, invitee, s);
process_invitee(invitees, invitee);
od;
s = yes();
while equals_yes(s) do
session of initiator — add_gift(gifts, gift, s);
process_gift (gifts, gift);
od;
for all j € invitees do
mail to j «
invitation_email(initiator, deadline, j, gifts);
od;
end session of initiator « thank_you_initiator();

}

Furthermore, we specify the selection session. In such a
session an invitee is asked to select a gift. First, the invitee
has to log in using his name and password (this is indicated
by the attribute authenticate from). After selecting a gift, a
check is done. If the gift is still available it is removed from
the set of available gifts and attributed to the invitee. If it
has been attributed to another invitee a new gift must be
selected.

selection =
{ start session of invitee —
authenticate from invitees;

session of invitee — select_gift(gifts, gift);

s = process_selection(gifts, gift);

while equals_no(s) do
session of invitee — again_select_gift(gifts, gift);
s = process_selection(gifts, gift);

od;

end session of invitee « thank_you_invitee(gift);

};

Finally, we have to specify in which order the sessions must
take place. The application starts with the initialization
session. After that, selection sessions can take place as long
as the deadline has not been reached and gifts are available
for distribution.

application

session initialization;
until deadline do
while gifts_left(gifts) do
session selection;
od;
od;

end application

This example has been implemented and can be executed
as a Java Servlet. The while construction which is used in
the final part of the specification is implemented as a parallel
composition. This means that a number of selection sessions
can be executed in parallel. Since it is possible to select a
gift which, in the meantime, has been selected by another
invitee in a parallel session, we have added the check to the
selection session.

5. RELATED WORK

We introduced a specification language for a specific class of
Internet applications, viz. applications for distributed con-
sensus. There are many different languages to specify In-
ternet applications, but as far as we know, none of them is
specifically designed to develop such applications. We will
discuss some of them and show in what way they agree with
or differ from DiCons.

Closest to our work is the development of the Web-language
Mawl, [1, 19]. This is also a language that supports inter-
action between an application and a single user, and adds
a state concept to HTML. Mawl provides the control flow
of a single session, but does not provide control flow across
several sessions (the only thing that persists across sessions
are the values of global variables). This is a distinguish-
ing feature of DiCons: interactions involving several users
are supported. On the other hand, Mawl does allow sev-
eral sessions with a single user to exist in parallel, using an
atomicity concept to execute sequences of actions as a single
action. Mawl does not use Java servlets.

Groupware is a technology designed to facilitate the work
of groups. This technology may be used to communicate,
cooperate, coordinate, solve problems, compete, or negoti-
ate. Groupware can be divided into two main classes: asyn-
chronous and synchronous groupware. Synchronous group-
ware concerns an exchange of information, which is trans-
mitted and presented to the users instantaneously by using
computers. An example of synchronous groupware is chat-
ting via the Internet. On the other hand, asynchronous
groupware is based on sending messages which do not have
to be read and replied to immediately. Examples of asyn-
chronous groupware that can be specified in DiCons are
work-flow systems to route documents through an office and
group calendars for scheduling projects. More information
on groupware can be found in [27].

Visual Oblig [3] is an environment for designing, program-
ming and running distributed, multi-user GUI applications.
Its interface builder outputs code in an interpreted language
called Oblig [5]. Unlike DiCons applications, Obliq applica-
tions do not have to run on one single server: an application
can be distributed over several so-called sites. After set-
ting up a connection, sites can communicate directly. In
this way, an application can be partitioned over different
servers. Another difference with respect to DiCons is that a
client has to install a special interpreter to view Visual Obliq
applications whereas DiCons makes use of standard client-
side techniques like HTML pages which can be viewed using
a Web browser. In [4], embedding distributed application
in a hypermedia setting is discussed and in particular how
applications generated in the Visual Obliq programming en-
vironment are integrated with the World Wide Web. Here,

a Web browser is used to refer to a Visual Obliq application,
but it must still be viewed using an interpreter.

Collaborative Objects Coordination Architecture (COCA)[21]
is a generic framework for developing collaborative systems.
In COCA, participants are divided into different roles, hav-
ing different rights like in DiCons. Li and Muntz [20] used
this tool to build an ounline auction. A COCA Virtual Ma-
chine runs at each client site to control the interactions be-
tween the different clients. On the other hand, any client
connected to the Internet can communicate with a DiCons
application without having to reconfigure his machine.

The Describing Collaborative Work Programming Language
(DCWPL) [7] helps programmers to develop customizable
groupware applications. DCWPL does not concern the com-
putational part of an application. As in DiCons, this part
is specified in a computational language like Java, Pascal
or CT*. A DCWPL application also runs on an interpreter,
here called control engine. DCWPL is based on synchronous
groupware in contrast to DiCons in which the asynchronous
aspect is more important.

Further, there are languages that allow to program brows-
ing behaviour. These, for instance, allow to program the
behaviour of a user who wants to download a file from one
of several mirror sites. For so-called Service Combinators
see [6, 18]. A further development is the so-called ShopBot,
see [8].

Our implementation is based on existing Internet program-
ming techniques, viz. Java servlets and HTML. In Udell’s
book on groupware [27] an Internet vote is implemented us-
ing a Java servlet. Also in [24] an election servlet is pre-
sented. Furthermore, there are commercial voting servlets
put on the market. One of them can be found at [9]. To set
up an Internet auction one can use commercial software like
rAuction, which can be found at [26].

Other useful Internet programming techniques are Active
Server Pages (ASP) [15] and Java Server Pages (JSP) [13].
We can extend these techniques with customized tags for dis-
tributed consensus. However, these techniques are library-
based and therefore not as suitable for formal verification as
our language-based DiCons technique.

6. CONCLUSIONS

We designed a language that supports the development of
Internet applications at the right level of abstraction. Al-
though we have done several experiments with the language,
we plan to gain more experience, by using the language for
larger applications. This will probably show options for re-
fining and extending DiCons. Sample specifications of a vot-
ing system, an auction system and a Meeting Scheduler al-
ready indicated some useful extensions. We mention: atomic
regions (to support mutual exclusion, as in Mawl [1, 19]),
database coupling (for processing information available at
the system, as in Strudel [10]), and style sheets (to give the
Web forms a more professional appearance).

Since the communications with the users of the system are
under dynamic control, based on the system state, DiCons
supports personalized and adaptive interactions.

Our choice to base DiCons and its support tools on exist-
ing and readily available Internet technology, makes it very
easy to use. Nevertheless, the language and tools can be
easily extended to support more advanced communication
schemes.

One of the motivations for designing DiCons was that it
would allow for the development of formally verified Inter-
net applications. Therefore we prefer a language-based ap-
proach to a library-based approach. Up to now, we have not
gained experience with formal verification of DiCons pro-
grams. Current research is focussed on finalizing the formal
semantics for the behavioral part of DiCons and to experi-
ence with formal validation based on this semantics.

We implemented a compiler to compile DiCons specifica-
tions into Java Servlets. Except for generating a Servlet,
the compiler checks a specification on its syntax and static
semantics.

More information on DiCons, its compiler and some working
examples can be found in [2] or at http://pc82.eesi.tue.nl/.

7. REFERENCES
[1] D. L. Atkins, T. Ball, G. Bruns, and K. Cox. Mawl: A
domain-specific language for form-based services.
IEEE Transactions on Software Engineering,
25(3):334 346, May/June 1999. Special Section:
Domain-Specific Languages (DSL).

[2] H. v. Beek. Internet protocols for distributed
consensus the DiCons language. Master’s thesis,
Eindhoven University of Technology, Aug. 2000.

[3] K. Bharat and M. H. Brown. Building distributed,
multi-user applications by direct manipulation. In
Proceedings of the ACM Symposium on User Interface
Software and Technology, Groupware and 3D Tools,
pages 71-81, 1994.

[4] K. Bharat and L. Cardelli. Distributed applications in
a multimedia setting. In Proceedings of the First
International Workshop on Hypermedia Design, pages
185 192, Montpellier, France, 1995.

[6] L. Cardelli. Obliq A language with distributed scope.
SRC Research Report 122, Digital Equipment, June
1994.

[6] L. Cardelli and R. Davies. Service combinators for
web computing. IEEE Transactions on Software
Engineering, 25(3):309-316, May/June 1999.

[7] M. Cortes and P. Mishra. DCWPL: A programming
language for describing collaborative work. In
Proceedings of ACM CSCW’96 Conference on
Computer-Supported Cooperative Work, Language
Support for Groupware, pages 21-29, 1996.

[8] R. B. Doorenbos, O. Etzioni, and D. S. Weld. A
scalable comparison-shopping agent for the world-wide
web. In W. L. Johnson and B. Hayes-Roth, editors,
Proceedings of the First International Conference on
Autonomous Agents (Agents’97), pages 39 48, Marina
del Rey, CA, USA, 1997. ACM Press.

[9] Virtua — fastvote support, 1997-1999.
http://www.virtua.com/fastvote/, Virtua
Communications Corporation.

[10] M. Ferndndez, D. Suciu, and I. Tatarinov. Declarative
specification of data-intensive Web sites. ACM
SIGPLAN Notices, 35(1):135-148, 2000.

[11] J. Friedl and A. Oram. Mastering Regular
Ezpressions: Powerful Techniques for Perl and Other
Tools (O’Reilly Nutshell). O’Reilly & Associates, Inc.,
first edition, Jan. 1997.

[12] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification. Java Series. Addison-Wesley,
second edition, June 2000.

[13] M. Hall. Core Servlets and JavaServer Pages. Sun
Microsystems Press/Prentic Hall PTR, June 2000.

[14] N. Heinle and R. Koman. Designing with JavaScript.
O’Reilly & Associates, Inc., May 2000.

[15] A. Homer, D. Sussman, and B. Francis. Professional
Active Server Pages 3.0. Wrox Press Inc, Sept. 1999.

[16] J. Hunter and W. Crawford. Java Servlet
Programming. O’Reilly & Associates, Inc., 981
Chestnut Street, Newton, MA 02164, USA, 1998.

[17] ITU-TS. ITU-TS Recommendation Z.120: Message
Sequence Chart (MSC). ITU-TS, Geneva, 1997.

[18] T. Kistler and H. Marais. WebL — a programming
language for the Web. Computer Networks and ISDN
Systems, 30(1 7):259 270, Apr. 1998.

[19] D. Ladd and J. Ramming. Programming the web: An
application-oriented language for hypermedia service
programming. In Proc. 4th WWW Conf., WWW
Consortium, pages 567 586, 1995.

[20] D. Li and R. Muntz. Building online auctions from the
perspective of coca. Submitted to HICSS-33, Jan. 2000.

[21] D. Li and R. R. Muntz. COCA: Collaborative objects
coordination architecture. In Proceedings of ACM
CSCW’98 Conference on Computer-Supported
Cooperative Work, Infrastructures for Collaboration,
pages 179 188, 1998.

[22] S. Mauw, M. Reniers, and T. Willemse. Message
Sequence Charts in the software engineering process.
In Handbook of Software Engineering and Knowledge
Engineering, S.K. Chang, editor. World Scientific,
2001. To appear.

[23] Metamata home page: Javacc documentation.
http://www.metamata.com/JavaCC/docs/, Fremont,
California.

[24] L. O’Brien. Vox populi. Java Pro Magazine, June
1999.

[25] D. Raggett, A. L. Hors, and I. Jacobs. Html 4.01
specification. Technical report, W3C User Interface
Domain Recommendation, Dec. 1999.

[26] Siteoption home page. http://www.siteoption.com/,
SiteOption.com, Green Cove Springs, USA.

[27] J. Udell. Practical Internet Groupware. O’Reilly &
Associates, Inc., Oct. 1999.

[28] A. Williamson. Special Edition Using Java Servlet
API Que Corporation, Indianapolis, IN, USA, 1997.

8. BIOGRAPHY

Jos Baeten is full professor in computing science at Eind-
hoven University of Technology, The Netherlands. His spe-
cialisation area is formal methods, in particular concurrency
theory, formal specification languages and term rewrite sys-
tems. Especially, he is known for his work in process algebra.
He has a Ph.D. in mathematical logic from the University of
Minnesota in 1985, and since worked at Delft University of
Technology, the University of Amsterdam and the Centre for
Mathematics and Computer Science (CWI) in Amsterdam,
before moving to Eindhoven in 1991.

Harm van Beek is a Ph.D. student at the Formal Methods
Group of the Eindhoven University of Technology, where
he also received his master’s degree in computing science
(cum laude, 2000). He is working on the formal develop-
ment of Internet applications at the Eindhoven Embedded
Systems Institute (EESI) which is an initiative of the fac-
ulties of Mathematics & Computing Science and Electrical
Engineering of the Eindhoven University of Technology.

Sjouke Mauw is associate professor at the Eindhoven Uni-
versity of Technology and senior researcher at CWTI (Center
for Mathematics and Computer science) in Amsterdam. He
received his master’s degree in mathematics in 1985 from
the University of Amsterdam, where he also obtained his
Ph.D. degree in computer science (1991). He graduated on
the Ph.D. thesis “PSF - A process specification formalism”
which contains the design of a specification language based
on process algebra and abstract data types. His research
concerns the theory and application of formal methods for
specification and verification of concurrent systems. He was
associate rapporteur for study group 10/Q9 of the ITU (In-
ternational Telecommunication Union), where he supervised
the standardization of the semantics of Message Sequence
Charts.

