
Automatic Conformance Testing

of Internet Applications

H.M.A. van Beek and S. Mauw

Department of Mathematics and Computer Science
Technische Unversiteit Eindhoven

P.O. Box 513, NL–5600 MB Eindhoven, The Netherlands
{harm,sjouke}@win.tue.nl

Abstract. We adapt and extend the theories used in the general frame-
work of automated software testing in such a way that they become
suitable for black-box conformance testing of thin client Internet ap-
plications. That is, we automatically test whether a running Internet
application conforms to its formal specification. The actual implemen-
tation of the application is not taken into account, only its externally
observable behaviour. In this paper, we show how to formally model this
behaviour and how such formal specifications can serve as a basis for the
automatic conformance testing of Internet applications.

1 Introduction

Since activity on the Internet is growing very fast, systems that are based on
communication via the Internet appear more and more. To give an example,
in the United States only, 45 billion dollar of products has been sold via the
Internet in 2002 [1]. This is an increase of 38% compared to the on-line sales in
2001. Apart from the number of so-called Internet applications, the complexity
of these applications increases too. This increasing complexity leads to a growing
amount of errors in Internet applications, of which examples can be found at The
Risks Digest [2], amongst others. This increasing number of errors asks for better
testing of the applications and, preferably, this testing should be automated.
Research has been done in the field of automated testing of applications that

are not based on Internet communication [3]. In this paper, we adapt and extend
the theories used in the general framework of automated software testing in such
a way that they become suitable for the testing of Internet applications.
We focus on black-box conformance testing of thin client Internet applica-

tions. That is, given a running application and a (formal) specification, our goal
is to automatically test whether the implementation of the application conforms
to the specification. Black box testing means that the actual implementation
of the application is not taken into account but only its externally observable
behaviour: We test what the application does, not how it is done. Interaction
with the application takes place using the interface that is available to normal
users of the application. In this case, the interface is based on communication
via the Internet using the HTTP protocol [4].

214 H.M.A. van Beek and S. Mauw

As a start, in Section 2 the distinction between Web based and Window
based applications is drawn. Next, in Section 3 we introduce how we plan to
automatically test Internet applications. In Section 4, we describe the formalism
we make use of for this automatically testing. To show the usefulness of the
framework, we give a practical example in Section 5. We discuss related work in
Section 6 and draw some final conclusions in Section 7.

2 Web based versus Window based Applications

In general, Web based applications, or Internet applications, behave like window
based applications. They both communicate via a user interface with one or
more clients. However, there are some major differences.
The Internet applications we focus on, are based on client-server communica-

tion via the Internet. The application runs on a server which is connected to the
Internet. Via this connection, clients who are also connected to the Internet can
interact with the application using prescribed protocols. Clients send requests
over the Internet to the server on which the application runs. The server receives
the requests and returns calculated responses.
In Figure 1 a schematic overview of the communication with Internet appli-

cations and window based applications is given. Clients interacting with window
based applications are using a (graphical) user interface which is directly con-
nected to the application. When interacting with Internet applications, the client
sends an HTTP request [4] via the Internet, i.e. via some third parties, to the
server. The server receives the request which subsequently is sent to the appli-
cation. After receiving the request, the application calculates a response which
is sent back to the requesting client. As can be seen in Figure 1, when testing
an Internet application we have to take into account five entities, viz. clients,
communication protocols, third parties, web servers and the application itself.

Clients The clients we focus on are so-called thin clients. This means that they
have reduced or no possibility to do calculations. They make use of a cen-
tralised resource to operate. In the context of Internet applications, thin
clients are usually web browsers. In general, more than one client can simul-
taneously access an Internet application. Unlike stand-alone applications,
clients can fail, i.e. they can “disappear”: a browser can simply be closed
without notifying the application.

Dependency on third parties Since interaction takes place via the Internet,
communication depends on third parties. First of all, packages transmitted
go via routers which control the Internet traffic. It is not known which route
on the world wide web is taken to get from the client to the server and back.
Apart from transmitting the requests and responses, there are more depen-
dencies, like DNS servers for translating domain names into IP addresses,
trusted third parties for verifying certificates and e-mail servers for both the
sending and receiving of e-mail messages.
Stand-alone applications usually do not depend on any of these parties.

Automatic Conformance Testing of Internet Applications 215

Web based interaction Window based interaction

Clients
Third
Parties

Server
Appli-
cation

HTTP request

HTTP response

Client
Appli-
cation

GUI

GUI

Fig. 1. Internet interaction versus stand-alone interaction.

Communication via the Internet Most of the communication with Inter-
net applications we focus on is based on the HyperText Transfer Protocol
(HTTP) [4]. This protocol is request-response based. A web server is wait-
ing for requests from clients. As soon as a request comes in, the request is
processed by an application running on the server. It produces a response
which is sent back. Since the communication takes place via the Internet,
delay times are unknown and communication can fail. Therefore, messages
can overtake other messages.

Web servers A web server is a piece of hardware connected to the Internet. In
contrast to stand-alone machines running a stand-alone application, a client
might try to access a web server which is down or overtaxed, causing the
interaction to fail.

Internet applications The Internet application itself is running on a web
server. The applications we focus on, are based on request-response interac-
tion with multiple clients. Since more than one client can interact with the
application simultaneously, there might be a notion of who is communicating
with the application. By keeping track of the interacting parties, requests
and corresponding responses can be grouped into so-called sessions.

Main differences between Internet based and window based applications are
the failing of clients and web servers, the failing of communication and overtaking
of messages between clients and the application and the dependency on third
parties. Furthermore, Internet applications are request-response based where
window based applications interact with the clients using a (graphical) user
interface. Finally, most Internet applications focus on parallel communication
with more than one client. Since multiple clients can share a common state
space, testing Internet applications is basically different from testing window
based applications. Window based applications are mostly based on single user
interaction. More differences between Web based and Window based systems
can be found in e.g. [5].

3 Testing Internet applications

Now that we have a notion of what Internet applications look like, we informally
show how implementations of these applications can be tested.

216 H.M.A. van Beek and S. Mauw

Tester

Specifi-
cation

Primer Driver Adapter

pass/fail/inconclusive

System under test

Third
Parties

Server
Appli-
cation

HTTP request

HTTP response

Fig. 2. Automatic testing of Internet applications.

We focus on black-box testing, restricting ourselves to dynamic testing. This
means that the testing consists of really executing the implemented system. We
do this by simulating real-life interaction with the applications, i.e. by simulating
the clients that interact with the application. The simulated clients interact in
a similar way as real-life clients would do. In this way, the application cannot
distinguish between a real-life client and a simulated one. See Figure 2 for a
schematic overview of the test environment.
We make use of a tester which generates requests and receives responses. This

is called test execution. By observing the responses, the tester can determine
whether they are expected responses in the specification. If so, the implementa-
tion passes the test, if not, it fails.
The tester itself consists of four components, based on [6]:

Specification The specification is the formal description of how the application
under test is expected to behave.

Primer The primer determines the requests to send by inspecting the speci-
fication and the current state the test is in. So the primer interacts with
the specification and keeps track of the test’s state. Furthermore, the primer
checks whether responses received by the tester are expected responses in
the specification at the state the test is in.

Driver The driver is the central unit, controlling the execution of the tests. This
component determines what actions to execute. Furthermore, the verdict
whether the application passes the test is also computed by the driver.

Adapter The adapter is used for encoding abstract representations of requests
into HTTP requests and for decoding HTTP responses into abstract repre-
sentations of these responses.

While executing a test, the driver determines if a request is sent or a response
is checked. If the choice is made to send a request, the driver asks the primer
for a correct request, based on the specification. The request is encoded using
the adapter and sent to the application under test. If the driver determines to
check a response, a response is decoded by the adapter. Next, the primer is
asked whether the response is expected in the specification. Depending on the
results, a verdict can be given on the conformance of the implementation to its
specification.

Automatic Conformance Testing of Internet Applications 217

As mentioned in Section 2, clients, web servers, their mutual communication
and third parties can fail. In such a case, no verdict can be given on the correct-
ness of the implementation of the Internet application. However, depending on
the failure, it might be possible to determine the failing entity.

4 Conformance Testing of Internet Applications

As a basis for conformance testing of Internet applications, we take the formal
framework as introduced in [7–9]. Given a specification, the goal is to check, by
means of testing, whether an implemented system satisfies its specification. To
be able to formally test applications, there is a need for implementations and
formal specifications. Then, conformance can be expressed as a relation on these
two sets.
Implementations under test are real objects which are treated as black boxes

exhibiting behaviour and interacting with their environment. They are not amen-
able to formal reasoning, which makes it harder to formally specify the confor-
mance relation. Therefore, we make the assumption that any implementation can
be modelled by a formal object. This assumption is referred to as the test hy-
pothesis [10] and allows us to handle implementations as formal objects. We can
express conformance by a formal relation between a model of an implementation
and a specification, a so-called implementation relation.
An implementation is tested by performing experiments on it and observing

its reactions to these experiments. The specification of such an experiment is
called a test case, a set of test cases a test suite. Applying a test to an imple-
mentation is called test execution and results in a verdict. If the implementation
passes or fails the test case, the verdict will be pass or fail, respectively. If no
verdict can be given, the verdict will be inconclusive.
In the remainder of this section, we will instantiate the ingredients of the

framework as sketched above. We give a formalism for both modelling imple-
mentations of Internet applications and for giving formal specifications used for
test generation. Furthermore, we give an implementation relation. By doing this,
we are able to test whether a (model of an) implementation conforms to its spec-
ification. Apart from that, we give an algorithm for generating test suites from
specifications of Internet applications.

4.1 Modelling Internet Applications

To be able to formally test Internet applications, we need to formally model
their behaviour. Since we focus on conformance testing, we are mainly inter-
ested in the communication between the application and its users. We do not
focus on the representation of data. Furthermore, we focus on black-box testing,
which means that the internal state of applications is not known in the model.
Finally, we focus on thin client Internet applications that communicate using
the HyperText Transfer Protocol (HTTP) [4]. As a result, the applications show
a request/response behaviour.

218 H.M.A. van Beek and S. Mauw

These observations lead to modelling Internet applications using labelled
transition systems. Each transition in the model represents a communication
action between the application and a client. The precise model is dictated by
the interacting behaviour of the HTTP protocol.

In general, an HTTP interaction is initiated by a client, sending a request
for some information to an application. A request can be extended with pa-
rameters. These parameters can be used by the application. After calculating a
response, it is sent back to the requesting client. Normally, successive requests
are not grouped. However, the grouping can be done by adding parameters to
the requests and responses. In such a way, alternating sequences of requests and
responses are turned into sessions.

Note that we test the interaction behaviour of Internet applications com-
municating via HTTP. We do not model the client-side tools to interact with
Internet applications, i.e., we do not model the behaviour of the application
when using browser buttons like stop, back, forward and refresh. Main reason
for not including this behaviour is that different client implementations cause
distinct interaction behaviour.

Furthermore, we do not add (failure of) components in the system under test
other than the application to the specification. This means that failure of any
of these components leads to tests in which the result will be inconclusive. If all
components in the system under test operate without failure, verdicts will be
pass or fail.

The tester should behave like a set of thin clients. The only requests sent
to the application are the initial request which models the typing in of a URL
in the browser’s address bar and requests that result from clicking on links or
submitting forms which are contained in preceding responses.

Since we focus on HTTP based Internet applications, and thus on sessions of
alternating request-response communication with applications, we make use of
so-calledmulti request-response transition systems (MRRTSs) for both modelling
implementations of Internet applications and giving formal specifications used
for test generation. An MRRTS is a labelled transition system having extra
structure. In the remainder of this section we explain MRRTSs in more detail
and show how they relate to labelled transition systems and request-response
transition systems (RRTSs).

Labelled Transition Systems The formalism of labelled transition systems
is widely used for describing the behaviour of processes. We will provide the
relevant definitions.

Definition 1. A labelled transition system is a 4-tuple 〈S,L,→, s0〉 where

– S is a countable, non-empty set of states;

– L is a countable set of labels;

– →⊆ S × L× S is the transition relation;

– s0 ∈ S is the initial state.

Automatic Conformance Testing of Internet Applications 219

Definition 2. Let si (i ∈ N) be states and ai (i ∈ N) be labels. A (finite)
composition of transitions

s1
a1−→ s2

a2−→ . . . sn
an−−→ sn+1

is then called a computation. The sequence of actions of a computation, a1 · a2 ·
. . . · an, is called a trace. The empty trace is denoted by ε. If L is a set of labels,
the set of all finite traces over L is denoted by L∗.

Definition 3. Let p = 〈S,L,→, s0〉, s, s
′ ∈ S, S′ ⊆ S, ai ∈ L and σ ∈ L∗.

Then,

s
a1·...·an−−−−−→ s′ =def ∃s1, . . . , sn−1 s

a1−→ s1
a2−→ . . . sn−1

an−−→ s′

s
a1·...·an−−−−−→ =def ∃s

′ s
a1·...an−−−−−→ s′

init(s) =def {a ∈ L | s
a
−→}

traces(s) =def {σ ∈ L∗ | s
σ
−→}

traces(S′) =def

⋃

s′ ∈ S′ traces(s′)

s after σ =def {s
′ ∈ S | s

σ
−→ s′}

S′ after σ =def

⋃

s′ ∈ S′ s′ after σ

A labelled transition system p = 〈S,L,→, s0〉 will be identified by its initial state
s0. So, e.g., we can write traces(p) instead of traces(s0) and p after σ instead of
s0 after σ.
We aim at modelling the behaviour of the HTTP protocol using labelled

transition systems. Therefore, we need to add restrictions on the traces in the
labelled transition system used for modelling this behaviour. One of these restric-
tions is that traces in the LTSs should answer the alternating request/response
behaviour.

Definition 4. Let A,B be sets of labels. Then alt(A,B) is the (infinite) set of
traces having alternating structure with respect to elements in A and B, starting
with an element in A. Formally, alt(A,B) is the smallest set such that

ε ∈ alt(A,B) ∧ ∀σ ∈ alt(B,A)∀a ∈ A aσ ∈ alt(A,B) .

As mentioned before, interactions with an Internet application can be grouped
into sessions. To be able to specify the behaviour within each session, we make
use of a projection function. This function will be used for determining all in-
teractions contained within one session.

Definition 5. Let σ be a trace and A be a set of labels. Then σ |A , the projection
of σ to A, is defined by

ε |A =def ε

(a · σ) |A =def

{

a · (σ |A) if a ∈ A

σ |A if a 6∈ A .

Definition 6. A partitioning S of a set A is a collection of mutually disjoint
subsets of A such that their union exactly equals A:

⋃

S = A ∧ ∀B,C ∈ S B 6= C ⇒ B ∩ C = ∅

220 H.M.A. van Beek and S. Mauw

Request-Response Transition Systems We give a formal definition of a
request-response transition system, denoted by RRTS. RRTSs can be compared
to input-output transitions systems (IOTSs) [11]. As in IOTSs, we differentiate
between two sets of labels, called request labels and response labels, respectively.
RRTSs are based on pure request/response alternation.

Definition 7. Let L be a countable set of labels and {L?, L!} be a partitioning
of L. Then, a request-response transition system 〈S,L?, L!,→, s0〉 is a labelled
transition system 〈S,L,→, s0〉 such that

∀σ ∈ traces(s0) σ ∈ alt(L?, L!) .

Elements in L? are called request labels, elements in L! response labels.

RRTSs resemble the notion of Mealy machines, however, it turns out to be
technically adhered to start from the notion of RRTSs.

Multi Request-Response Transition Systems IOTSs can be used as a
basis for multi input-output transition systems (MIOTSs) [12]. Similarly, in a
multi request-response transition system (MRRTS), multiple request-response
transition systems are combined into one. All subsystems behave like an RRTS,
however interleaving between the subsystems is possible.

Definition 8. Let L be a countable set of labels. Let L ⊆ P(L) × P(L) be a
countable set of tuples such that {A,B | (A,B) ∈ L} is a partitioning of L. Then,
a multi request-response transition system 〈S,L,→, s0〉 is a labelled transition
system 〈S,L,→, s0〉 such that

∀(A,B) ∈ L ∀σ ∈ traces(s0) σ |A∪B ∈ alt(A,B) .

The set of all possible request labels, L?, is defined by

L? =def

⋃

(A,B)∈L

A .

The set of all possible response labels, L!, is defined by

L! =def

⋃

(A,B)∈L

B .

Note that an RRTS 〈S,L?, L!,→, s0〉 can be interpreted as MRRTS 〈S, {(L?, L!)},
→, s0〉, i.e., each MRRTS having singleton L is an RRTS.
We introduce some extra functions on the sets of tuples as introduced in

Definition 8.

Definition 9. Let L ⊆ P(L)×P(L) be a countable set of tuples, where each tuple
contains a set of request labels and a set of response labels. We define functions
for determining corresponding requests or responses given either a request label
or response label. For x ∈ L, we define functions req, resp : L→ P(L), such that

(req(x), resp(x)) ∈ L and x ∈ req(x) ∪ resp(x) .

Automatic Conformance Testing of Internet Applications 221

4.2 Relating Multi Request-Response Transition Systems

An implementation conforms to a specification if an implementation relation
exists between the model of the implementation and its specification. We model
both the implementation and the specification as multi request-response transi-
tion systems, so conformance can be defined by a relation on MRRTSs.
While testing Internet applications, we examine the responses sent by the

application and check whether they are expected responses by looking at the
specification. So we focus on testing whether the implementation does what it
is expected to do, not what it is not allowed to do.
Given a specification, we make use of function exp to determine the set of

expected responses in a state in the specification.

Definition 10. Let p be a multi request-response transition system 〈S,L,→, s0〉.
For each state s ∈ S and for each set of states S ′ ⊆ S, the set of expected
responses in s and S′ is defined as

exp(s) =def init(s) ∩ L!

exp(S′) =def

⋃

s′ ∈ S′ exp(s′) .

If a model of an implementation i conforms to a specification s, the possible
responses in all reachable states in i should be contained in the set of possible
responses in the corresponding states in s. Corresponding states are determined
by executing corresponding traces in both i and s.

Definition 11. Let MRRTS i be the model of an implementation and MRRTS s
be a specification. Then i conforms to s with respect to request-response be-
haviour, i rrconf s, if and only if all responses of i are expected responses
in s:

i rrconf s =def ∀σ ∈ traces(s) exp(i after σ) ⊆ exp(s after σ) .

Relation rrconf on MRRTSs is analogous to relation conf on LTSs as formalised
in [13].

4.3 Test Derivation

An implementation is tested by performing experiments on it and observing its
reactions to these experiments. The specification of such an experiment is called
a test case. Applying a test to an implementation is called test execution. By
now we have all elements for deriving such test cases.
Since the specification is modelled by an MRRTS, a test case consists of

request and response actions as well. However, we have some more restrictions
on test cases. First of all, test cases should have finite behaviour to guarantee
that tests terminate. Apart from that, unnecessary nondeterminism should be
avoided, i.e., within one test case the choice between multiple requests or between
requests and responses should be left out.

222 H.M.A. van Beek and S. Mauw

In this way, a test case is a labelled transitions system where each state is ei-
ther a terminating state, a state in which a request is sent to the implementation
under test, or a state in which a response is received from the implementation.
The terminating states are labelled with a verdict which is a pass or fail.

Definition 12. A test case t is an LTS 〈S,L? ∪ L!,→, s0〉 such that

– t is deterministic and has finite behaviour;
– S contains terminal states pass and fail with init(pass) = init(fail) = ∅;
– for all s ∈ S \ {pass, fail}, init(s) = {a} for a ∈ L? or init(s) = L!.

We denote this subset of LTSs by TESTS. A set of test cases T ⊆ TESTS is
called a test suite.

We do not include the possibility for reaching inconclusive states in test cases.
Such verdicts are given if a component in the system under test, other than the
application, fails. The tester (as described in Section 3) is able to identify errors
caused by the application and lead to a fail state. Other errors result in an
inconclusive verdict.
As mentioned, we call a set of test cases a test suite. Such a test suite is used

for determining whether an implementation conforms to a specification. A test
suite T is said to be sound if and only if all implementations that conform to the
specification pass all test cases in T . If all implementations that do not conform
to the specification fail a test case in T , T is called exhaustive. Test suite that
are both sound and exhaustive are said to be complete [9].

Definition 13. LetMRRTS i be an implementation and T be a test suite. Then,
implementation i passes test suite T if no traces in i lead to a fail state:

i passes T =def ¬∃t ∈ T ∃σ ∈ traces(i) σ · fail ∈ traces(t)

We use the notation σ · fail to represent trace σ leading to a fail state, i.e.,
σ · fail ∈ traces(t) =def t

σ
−→ fail.

Definition 14. Let s be a specification and T be a test suite. Then for relation
rrconf :

T is sound =def ∀i i rrconf s =⇒ i passes T

T is exhaustive =def ∀i i rrconf s ⇐= i passes T

T is complete =def ∀i i rrconf s⇐⇒ i passes T

In practice, however, such a complete test suite will often be infinitely large, and
therefore not suitable. So, we have to restrict ourselves to test suites for detecting
non-conformance instead of test suites for giving a verdict on the conformance
of the implementation. Such test suites are called sound.
To test conformance with respect to request-response behaviour, we have to

check for all possible traces in the specification that the responses generated
by the implementation are expected responses in the specification. This can be
done by having the implementation execute traces from the specification. The

Automatic Conformance Testing of Internet Applications 223

responses of the implementation are observed and compared with the responses
expected in the specification. Expected responses pass the test, unexpected re-
sponses fail the test. The algorithm given is based on the algorithm for generating
test suites as defined in [14].

Algorithm 1. Let s be MRRTS 〈S,L,→, s0〉. Let C be a non-empty set con-
taining all possible states of the specification in which the implementation can be
at the current stage of the test. Initially C = {s0}. We then define the collection
of nondeterministic recursive algorithms gentestn (n ∈ N) for deriving test cases
as follows:

gentestn : P(S)→ TESTS

gentestn(C) =def [return pass
8 n > 0 ∧ a ∈ L? ∧ C after a 6= ∅ →

return a · gentestn−1(C after a)
8 n > 0 →

return
∑

{b · fail | b ∈ L! \ exp(C)}
+
∑

{b · gentestn−1(C after b) | b ∈ exp(C)}
]

The · infix notation is used for sequential composition. So, e.g., a · b relates

to transitions s
a
−→ s′

b
−→ s′′. As mentioned, notation a · pass and a · fail is

used for representing transitions s
a
−→ pass and s

a
−→ fail, respectively. We use

Σ-notation to indicate that it is not known which of the responses is returned

by the implementation. So, e.g. a + b relates to transitions s
a
−→ s′ and s

b
−→ s′′.

Depending on whether the response is expected, the algorithm might either
continue or terminate in a fail state.
Although a choice for the first option can be made in each step, we added a

parameter to the algorithm, n ∈ N, to force termination. As mentioned, we want
all test cases to be finite, since otherwise no verdict might take place.
The set of derivable test cases from gentestn(C) is denoted by gentestn(C).

So gentestn(C) is the set of all possible test cases of at most n transitions start-
ing in states C of the specification. Although our goal is to generate sound
test suites, we will prove that in the limit, as n reaches infinity, test suite
⋃

n>0 gentest
n({s0}) is complete for specification 〈S,L,→, s0〉. To prove this,

we make use of some lemmas.

Lemma 1. Let s be a specification 〈S,L,→, s0〉 and σ0, σ1 ∈ L∗, σ1 6= ε. Then

σ0σ1 ∈ traces(gentest
n({s0})) ⇐⇒ σ1 ∈ traces(gentest

n−|σ0|(s0 after σ0))

where |σ| is the length of trace σ.

Sketch of proof. This lemma can be proved by using induction on the structure
of σ0.

224 H.M.A. van Beek and S. Mauw

Lemma 2. Let s be a specification 〈S,L,→, s0〉, σ0 ∈ L∗ and n > 0. Then

σ · fail ∈ traces(gentestn({s0})) =⇒ ∃σ′ ∈ L∗∃b ∈ L! σ = σ′b .

Proof. This can be easily seen by looking at the definition of the gentest algo-
rithm: State fail can only be reached after execution of a b ∈ L!.

ut

Theorem 1. Let s be a specification 〈S,L,→, s0〉.
Then test suite

⋃

n>0 gentest
n({s0}) is complete.

Proof. Let s be 〈S,L,→, s0〉 and T be
⋃

n>0 gentest
n({s0}). Then,

T is complete
≡ { definition of complete test suites }
∀i i rrconf s ⇔ i passes T

≡ { definition of rrconf and passes }
∀i ∀σ ∈ traces(s) exp(i after σ) ⊆ exp(s after σ)

⇐⇒
¬∃t ∈ T ∃σ ∈ traces(i) σ · fail ∈ traces(t)

We prove this by proving exhaustiveness (⇐) and soundness (⇒) separately.

– Exhaustiveness.

∀i ∀σ ∈ traces(s) exp(i after σ) ⊆ exp(s after σ)
⇐=
¬∃t ∈ T ∃σ ∈ traces(i) σ · fail ∈ traces(t)

We prove exhaustiveness by contradiction:
Let σ ∈ traces(s) and b ∈ exp(i after σ) such that b 6∈ exp(s after σ). Then,
we prove that ∃t ∈ T ∃σ′ ∈ traces(i) σ′ · fail ∈ traces(t).

∃t ∈ T ∃σ′ ∈ traces(i) σ′ · fail ∈ traces(t)
⇐ { b ∈ exp(i after σ)⇒ σb ∈ traces(i), Let σ′ = σ · b }
∃t ∈ T σ · b · fail ∈ traces(t)

⇐ { Definition of T }

∃n > 0 σ · b · fail ∈ traces(gentestn({s0}))
≡ { Lemma 1 }

∃n > 0 b · fail ∈ traces(gentestn−|σ|({s0 after σ}))

⇐

{

gentest (third option), let n > |σ|,
b 6∈ exp(s0 after σ)⇒ b ∈ L! \ exp(s0 after σ)

}

true

– Soundness.

∀i ∀σ ∈ traces(s) exp(i after σ) ⊆ exp(s after σ)
=⇒
¬∃t ∈ T ∃σ ∈ traces(i) σ · fail ∈ traces(t)

Automatic Conformance Testing of Internet Applications 225

Soundness is also proved by contradiction:
Let t ∈ T and σ ∈ traces(i) such that σ · fail ∈ traces(t). Then, by def-
inition of T , ∃n > 0 σ · fail ∈ traces(gentestn({s0})). Let m > 0 such
that σ · fail ∈ traces(gentestm({s0})). We prove that ∃σ

′ ∈ traces(s)∃b ∈
exp(i after σ′) b 6∈ exp(s after σ′).
Let σ′′ ∈ traces(s) and b′′ ∈ exp(i after σ′′). Then, we prove that b′′ 6∈
exp(s after σ′′). Since σ · fail ∈ traces(gentestm({s0})), using Lemma 2,
∃σ′ ∈ traces(s)∃b ∈ L! σ = σ′ · b. Let σ = σ′′ · b′′. Then,

σ · fail ∈ traces(gentestm({s0}))
≡ { σ = σ′′ · b′′ }

σ′′ · b′′ · fail ∈ traces(gentestm({s0}))
≡ { Lemma 1 }

b′′ · fail ∈ traces(gentestm−|σ′′|(s0 after σ′′))
⇒ { Definition of algorithm gentest (third option) }
b′′ ∈ L! \ exp(s0 after σ

′′)
⇒ { Set theory }
b′′ 6∈ exp(s0 after σ

′′)

ut

Algorithm 1 can easily be optimised. As can be seen by looking at the algo-
rithm, each choice for inspecting a response of the implementation leads to |L!|
new branches in the generated test case. However, many of these branches will
never take place as a result of the alternating request-response behaviour of the
implementation: the implementation can only send responses on requests sent by
the tester. It can be proved that by adding only this restricted set of responses
to the test cases, such optimised generated test suites are still complete.

5 Example: Internet Vote

We show how the theory introduced in former sections can be used for testing
real-life Internet applications. As an example, we take a voting protocol. All
members of a group of voters are asked whether they are for or against a propo-
sition. They are able to visit a web site where they can either vote or have a
look at the current score. They can vote at most once and they can check the
score as often as they want to.
We start by giving an MRRTS that formally specifies the application. Let V

be the set of voters and P = {for, against}. Then,

– L, the set of tuples of transition labels is defined as

L = { ({vote(v, p)?s | p ∈ P}, {ok!s,¬ok!s}) | v ∈ V, s ∈ N }
∪ { ({score?s}, {score(f, a)!s}) | f, a, s ∈ N } .

The first part specifies the interactions where voter v sends a request to vote
for or against the proposition (p). The response is a confirmation (ok) or a

226 H.M.A. van Beek and S. Mauw

denial (¬ok), depending on whether the voter had voted before. The second
part specifies the requests for the score which are responded by the number
of votes for (f) and against (a) the proposition. All labels are extended with
an identifier (s) for uniquely identifying the sessions.

– The set of states S is defined as S = P(L?)×P(V)×P(V)×P(N×N×N).
For 〈R,F,A,C〉 ∈ S,
• R ⊆ L? is the set of requests on which no response has been sent yet;
• F ⊆ V is the set of voters who voted for the proposition;
• A ⊆ V is the set of voters who voted against the proposition;
• C ⊆ N × N × N is the score at the moment that a request for the score
is sent. We need to keep track of this score for determining the possible
results that can be responded: The scores returned should be at least
the scores at the time of the sending of the request.
For 〈s, f, a, 〉 ∈ C,
∗ s ∈ N is the session identifier;
∗ f ∈ N is the number of voters who voted for the proposition;
∗ a ∈ N is the number of voters who voted against the proposition.

– Let s ∈ N, v ∈ V and p ∈ P. Then, transition relation → is defined by the
following derivation rules.
If no session exists with identifier s, a session can be started by sending a
request to vote for or against the proposition or by sending a request for the
current score:

score?s 6∈ R, ¬∃w∈V ∃q∈P vote(w, q)?s ∈ R

〈R,F,A,C〉
vote(v,p)?s
−−−−−−−→ 〈R ∪ {vote(v, p)?s}, F,A,C〉

score?s 6∈ R, ¬∃w∈V ∃q∈P vote(w, q)?s ∈ R

〈R,F,A,C〉
score?s−−−−→ 〈R ∪ {score?s}, F,A,C ∪ {〈s, |F |, |A|〉}〉

If a request to vote for or against the proposition has been sent and the voter
has not voted before, the vote can be processed and confirmed:

vote(v, for)?s ∈ R, v 6∈ F ∪A

〈R,F,A,C〉
ok!s−−→ 〈R \ {vote(v, for)?s}, F ∪ {v}, A,C〉

vote(v, against)?s ∈ R, v 6∈ F ∪A

〈R,F,A,C〉
ok!s−−→ 〈R \ {vote(v, against)?s}, F,A ∪ {v}, C〉

If a request to vote has been sent and the voter has already voted before or
the voter is concurrently sending a request to vote in another session, the
vote can be rejected:

vote(v, p)?s ∈ R,

¬∃t∈N\{s}∃q∈P vote(v, q)?t ∈ R ∨ v ∈ F ∪A

〈R,F,A,C〉
¬ok!s−−−→ 〈R \ {vote(v, p)?s}, F,A,C〉

Automatic Conformance Testing of Internet Applications 227

If a request for the score has been sent, the scores can be sent to the re-
questing client. Since interactions can overtake each other, the result can be
any of the scores between the sending of the request and the receiving of the
response. So, the score must be at least the score at the moment of request-
ing the score and at most the number of processed votes plus the number
of correct votes, sent in between requesting for the score and receiving the
score:

score?s ∈ R, 〈s, f, a〉 ∈ C,

f ≤ f ′ ≤ |F |+ (#v∈V ∃t∈N vote(v, for)?t ∈ R ∧ v 6∈ F ∪A),
a ≤ a′ ≤ |A|+ (#v∈V ∃t∈N vote(v, against)?t ∈ R ∧ v 6∈ F ∪A)

〈R,F,A,C〉
score(f ′,a′)!s
−−−−−−−−→ 〈R \ {score?s}, F,A,C \ {〈s, f, a〉}〉

– Initial state s0 = 〈∅, ∅, ∅, ∅〉: no requests have been sent yet, no one has voted
for and no one has voted against the proposition.

Labelled transition systems suit nicely for giving a theoretical framework
for automatic conformance testing. However, as expected, using LTSs for giving
specifications of Internet applications is not convenient. To make this framework
useful in practice, we need a formalism for easier specifying these applications.
Therefore, we are currently developing DiCons [15, 16], which is a formal speci-
fication language dedicated to the domain of Internet applications. We will not
give the actual DiCons specification here since this goes beyond the scope of this
paper. However, to give an example, the Internet vote described above can be
specified in DiCons in five lines of code.
As a proof of concept, we implemented an on-the-fly version of Algorithm 1.

We used this algorithm to test eleven implementations of the Internet vote ap-
plication: one correct and ten incorrect implementations. We tested by executing
26.000 test cases per implementation. This took approximately half a day per
implementation. We tested using different lengths of test traces and different
numbers of voters. The test results are summarised in Table 1. The left column
describes the error in the implementation. In the second column, the percentage
of test cases that ended in a fail state is given.
As can be seen, in nine out of ten incorrect implementations, errors are

detected. In all test cases, only requests are sent that are part of the specification,
i.e., only requests for votes by known voters are sent. Because we did not specify
that unknown voters are forbidden to vote, errors in the implementation that
allow other persons to vote are not detected: the implementation conforms to
the specification.
The percentages in Table 1 strongly depend on the numbers of voters and

lengths of the test traces. Some errors can easily be detected by examining the
scores, e.g. incorrect initialisation. This error can be detected by traces of length
2: request for the score and inspect the corresponding response. Other errors,
however, depend on the number of voters. If the last vote is counted twice, all
voters have to vote first, after which the scores have to be inspected. This error
can only be detected by executing test traces with at least a length of two times
the number of voters plus two.

228 H.M.A. van Beek and S. Mauw

Table 1. Test results

implementation % failures verdict

1. correct implementation 0.00 pass

2. no synchr.: first calculate results, then remove voter 33.30 fail

3. no synchr.: first remove voter, then calculate results 32.12 fail

4. votes are incorrectly initialised 91.09 fail

5. votes for and against are mixed up 87.45 fail

6. votes by voter 0 are not counted 32.94 fail

7. voter 0 cannot vote 91.81 fail

8. unknown voter can vote 0.00 pass

9. voters can vote more than once 68.75 fail

10. voter 0 is allowed to vote twice 16.07 fail

11. last vote is counted twice 8.82 fail

6 Related Work

Automatic test derivation and execution based on a formal model has been
an active topic of research for more than a decade. This research led to the
development of a number of general purpose black box test engines. However, the
domain of Internet applications implies some extra structure on the interacting
behaviour of the implementation which enforces the adaptation of some of the
key definitions involved. Therefore, our work can be seen as an extension to
and adaptation of the formal testing framework as introduced in [7–9]. The
major difference stems from our choice to model an Internet application as a
multi request-response transition system. We expect that existing tools (such as
TorX [6]) can be easily adapted to this new setting. The reader may want to
consult [3] for an overview of other formal approaches and testing techniques.

Approaching the problem of testing Internet applications from another angle,
one encounters methodologies and tools based on capture/replay (see e.g. [17,
18]). In the case of capture/replay testing, test cases are produced manually and
recorded once, after which they can be applied to (various) implementations.
These tools prove very beneficial for instance for regression testing. However,
automatic generation of test cases has several advantages. In general it proves
to be a more flexible approach, yielding test suites that are better maintainable
and more complete and test suites can be generated quicker (and thus cheaper).
The main disadvantage of automatic black box testing is that it requires a formal
model of the implementation under test.

A methodology that comes very close to ours is developed by Ricca and
Tonella [19]. The starting point of their semi-automatic test strategy is a UML
specification of a web application. This specification is manually crafted, possibly
supported by re-engineering tools that help in modelling existing applications.
Phrased in our terms, Ricca and Tonella consider RRTSs as their input for-
mat (which they call path expressions). We perform black-box testing, whereas
they consider white-box testing. This implies that their approach considers im-

Automatic Conformance Testing of Internet Applications 229

plementation details (such as cookies), while we only look at the observable
behaviour. White-box testing implies a focus on test criteria, instead of a com-
plete testing algorithm. Finally, we mention the difference in user involvement.
In our approach the user has two tasks, viz. building an abstract specification
and instantiating the test adapter which relates abstract test events to concrete
HTTP-events. In their approach the user makes a UML model, produces tests
and interprets the output of the implementation. For all of this, appropriate tool
support is developed, but the process is not automatic. In this way derivation
and execution of a test suite consisting of a few dozens of tests takes a full day,
whereas our on-the-fly approach supports many thousands of test cases being
generated, executed and interpreted in less time.
Jia and Liu [20] propose a testing methodology which resembles Ricca and

Tonella’s in many respects, so the differences with our work are roughly the
same. Their focus is on the specification of test cases (by hand), while our ap-
proach consists of the generation of test cases from a specification of the intended
application’s behaviour. Their approach does not support on-the-fly test gener-
ation and execution. Like Ricca and Tonella, their model is equivalent to RRTSs
which makes it impossible to test parallel sessions (or users) that share data.
Wu and Offutt [21] introduce a model for describing the behaviour of Web

applications, which can be compared to the DiCons language. In contrast to the
model presented in this paper, their model supports the usage of special buttons
that are available in most Web browsers. The main difference with our model
is that they focus on stateless applications, i.e., responses only depend on the
preceding request. We model stateful applications which are based on parallelly
executed sessions.
Another functional testing methodology is presented by Niese, Margaria and

Steffen in [22]. Where we focus on modelling Internet applications only, they
model other subsystems in the system under test as well. In their approach,
test cases are not generated automatically, but designed by hand using dedi-
cated tools. Test execution takes place automatically via a set of cooperating
subsystem-specific test tools, controlled by a so-called test coordinator.
Our research focuses on conformance testing only. Many other properties are

important for the correct functioning of web applications, such as performance,
user interaction and link correctness [23]. Testing such properties is essentially
different from conformance testing. They focus on how well applications behave
instead of what they do. Plenty of tools are available for performance testing,
e.g., [24, 25].

7 Conclusion

The research reported on in this paper is conducted in the context of the DiCons
project (see [15, 16]). The goal of this project is the application of formal meth-
ods (especially process algebra) to the application of dependable Internet ap-
plications. One of the results of this project is the development of the DiCons
language, which is targeted to the specification of the interaction behaviour of

230 H.M.A. van Beek and S. Mauw

Internet applications. The DiCons compiler allows for the generation of stand-
alone Internet applications.
Due to the focus of DiCons on interaction, rather than on presentation, it

is likely that developers will prefer to use a less formal approach that supports
the need for a nice user interface. However, our current research shows that
development of a formal interaction model, like in DiCons, still has benefits.
Our research shows that there is a point in making a formal model, even if it is
not used to generate Internet applications, since a formal model can be used for
(automated) conformance testing of the application.
The input of the testing process described in this paper is a multi request-

response transition system which is a theoretically simple model, but which
is very hard to use in practice for the specification of real applications. Since
DiCons is targeted to specify Internet applications and since its operational
semantics is an MRRTS, we plan to connect the DiCons execution engine to our
prototype testing tool.
As the development of a formal model of an Internet application is quite an

investment, we expect that only in cases where it is vital that the application
shows the correct interaction behaviour automated formal testing will be ap-
plied. However, there will be a huge gain in reliability and maintainability of the
application (e.g. because of automated regression testing), compared with e.g.
capture and replay techniques.
Although we have only built a simple prototype, we can already conclude

that the proposed testing approach works in practice, since it quickly revealed
(planted) errors in erroneous implementations. Interestingly enough, playing
with the prototype made it clear that the response times in the HTTP-protocol
are much slower than in traditional window based applications, resulting in less
test runs per time unit. We cannot foresee if the unreliability of an Internet
connection will prevent us from executing lengthy test runs over the Internet.
An interesting point is that the actual HTTP-response of an Internet appli-

cation has to be matched against the expected abstract event from the specifica-
tion. In our current prototype tool we simply scan for the occurrence of certain
strings, but this does not seem to be a safe and generic approach. Future re-
search should answer the question of how to match actual HTTP-replies against
abstract events.

References

1. Regan, K.: U.S.: E-Commerce Topped $45B in 2002. E-Commerce Times (2003)
2. ACM Committee on Computers and Public Policy, P.G. Neumann, moderator: The

Risk Digest, Forum On Risks To The Public In Computers And Related Systems.
http://catless.ncl.ac.uk/Risks/ (1985–2003)

3. Brinksma, E., Tretmans, J.: Testing Transition Systems: An Annotated Bibliogra-
phy. In Cassez, F., Jard, C., Rozoy, B., Ryan, M., eds.: Summer School MOVEP’2k
– Modelling and Verification of Parallel Processes, Nantes (2000) 44–50

4. Fielding, R., Gettys, J., Mogul, J.C., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext transfer protocol – HTTP/1.1. RFC 2616, The Internet Society,
Network Working Group (1999)

Automatic Conformance Testing of Internet Applications 231

5. Rice, J., Farquhar, A., Piernot, P., Gruber, T.: Using the web instead of a window
system. In: Human Factors in Computing Systems, CHI’96 Conference Proceed-
ings, Vancouver, B.C, Canada (1996) 103–110

6. Belinfante, A., Feenstra, J., de Vries, R., Tretmans, J., Goga, N., Feijs, L., Mauw,
S., Heerink, L.: Formal test automation: A simple experiment. In: 12th Int. Work-
shop on Testing of Communicating Systems, Kluwer Academic Publishers (1999)

7. Brinksma, E., Alderden, R., Langerak, J., van de Lagemaat, R., Tretmans, J.: A
formal approach to conformance testing. In: Second International Workshop on
Protocol Test Systems, North-Holland (1990) 349–363

8. Tretmans, J.: A formal approach to conformance testing. In Rafiq, O., ed.: Interna-
tional Workshop on Protocol Test Systems VI. Volume C-19 of IFIP Transactions.,
North-Holland (1994) 257–276

9. ISO/IEC JTC1/SC21 WG7, ITU-T SG 10/Q.8: Proposed ITU-T Z.500 and com-
mittee draft on “formal methods in conformance testing”. CD 13245-1, ISO –
ITU-T, Geneva (1996)

10. Bernot, G.: Testing against formal specifications: A theoretical view. In Abram-
sky, S., Maibaum, T.S.E., eds.: TAPSOFT ’91: Proceedings of the International
Joint Conference on Theory and Practice of Software Development. Volume 494 of
Lecture Notes in Computer Science., Springer-Verlag (1991) 99–119

11. Tretmans, J.: Testing labelled transition systems with inputs and outputs. In
Cavalli, A., Budkowski, S., eds.: Participants Proceedings of the Int. Workshop on
Protocol Test Systems VIII – COST 247 Session, Evry, France (1995) 461–476

12. Heerink, L.: Ins and outs in refusal testing. PhD thesis, University of Twente, The
Netherlands (1998)

13. Brinksma, E., Scollo, G., Steenbergen, C.: LOTOS specifications, their implemen-
tations and their tests. Protocol Specification, Testing and Verification VI, IFIP
1987 (1987) 349–360

14. Tretmans, J.: Test Generation with Inputs, Outputs and Repetitive Quiescence.
Software—Concepts and Tools 17 (1996) 103–120

15. van Beek, H.: Internet protocols for distributed consensus – the DiCons language.
Master’s thesis, Technische Universiteit Eindhoven (2000)

16. Baeten, J., van Beek, H., Mauw, S.: Specifying internet applications with DiCons.
In: Proc. 16th ACM Symposium on Applied Computing, Las Vegas, USA (2001)

17. CollabNet, Inc.: MaxQ. http://maxq.tigris.org/ (1999–2003)
18. The Original Software Group Ltd.: TestWEB. http://www.testweb.com/ (2003)
19. Ricca, F., Tonella, P.: Analysis and testing of web applications. In: Proceedings of

the 23rd International Conference on Software Engeneering (ICSE-01), Toronto,
Ontario, Canada, IEEE Computer Society (2001) 25–34

20. Jia, X., Liu, H.: Rigorous and automatic testing of web applications. In: Proceed-
ings of the 6th IASTED International Conference on Software Engineering and
Applications (SEA 2002), Cambridge, MA, USA (2002) 280–285

21. Wu, Y., Offutt, J.: Modeling and testing web-based applications. ISE Technical
ISE-TR-02-08, GMU (2002)

22. Niese, O., Margaria, T., Steffen, B.: Automated functional testing of web-based
applications. In: Proceedings of the 5th Int. Conference On Software and Internet
Quality Week Europe (QWE2002), Brussels, Belgium (2002)

23. Benedikt, M., Freire, J., Godefroid, P.: VeriWeb: Automatically testing dynamic
web sites. In: Proceedings of the 11th international world wide web conference
(WWW2002), Honolulu, Hawaii, USA (2002)

24. Dieselpoint, Inc.: dieseltest. http://www.dieseltest.com/ (2001)
25. Fulmer, J.: Siege. http://www.joedog.org/siege/ (2002)

