
Task Allocation in a Multi-Server System

Sem Borst∗, Onno Boxma, Jan Friso Groote†, Sjouke Mauw

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

and

Department of Mathematics and Computer Science, Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

August 28, 2012

Abstract

We consider a slotted queueing system with C servers (processors) that can handle tasks (jobs).

Tasks arrive in batches of random size at the start of every slot. Any task can be executed by

any server in one slot with success probability α. If a task execution fails, then the task must be

handled in some later time slot until it has been completed successfully. Tasks may be processed

by several servers simultaneously. In that case, the task is completed successfully if the task

execution is successful on at least one of the servers.

We examine the impact of various allocation strategies on the mean number of tasks in the

system and the mean response time of tasks. It is proven that both these performance measures

are minimized by the strategy which always distributes the tasks over the servers as evenly as

possible. Subsequently, we determine the distribution of the number of tasks in the system for a

broad class of task allocation strategies, which includes the above optimal strategy as a special

case. Some numerical experiments are performed to illustrate the performance characteristics of

the various strategies.

Key Words & Phrases: Task allocation, Multi-server queues, Response times.

1 Introduction

We study assigning tasks to processors or servers in the setting of distributed heterogeneous
computing. The basic observation underlying this branch of computing is the fact that most
computers are often idle. Due to the increased connectivity of such computers it is now
possible to aggregate these otherwise wasted CPU cycles and form a massively parallel com-
puting resource [7]. Participating computers run a client application which on a regular basis
receives new tasks from a central server and submits results of completed tasks.

The last few years, several initiatives were taken to use the idle time of computers linked to
the Internet for solving specific compute-intensive problems. Most notably, the SETI@home

∗Also with Bell Laboratories, Lucent Technologies, P.O. Box 636, Murray Hill, NJ 07974-0636, USA
†Corresponding author: Jan Friso Groote, Eindhoven University of Technology, Department of Computer

Science, P.O. Box 513, 5600 MB Eindhoven, The Netherlands, tel: +31-40-2473549/4416/5003, fax: +31-40-
2468508, e-mail: jfg@win.tue.nl. Thanks go to Wil Kortsmit for his assistance with Mathematica.

1

project [10] is dedicated to the search for signs of extraterrestrial civilizations. Radio signals
from outer space form a huge amount of (uniform) data which must be analyzed for the
occurrence of special patterns. The tasks performed by the participating computers are
uniform: after initialization the clients only receive new chunks of data to be searched through.
Current capacity of SETI@home is about 15.7 Teraflops, which is much more than the largest
supercomputer currently available. From a more abstract point of view, the Internet and its
connected computers form a giant software and hardware infrastructure, which, in analogy
to the power grid, is termed the grid (see [5]).

The task allocation strategies used by the central servers of these high-throughput com-
puting projects are only described in very general terms. For SETI@home, it is stated that
“Priority goes to those units that have not previously been sent or those that were sent but
for which no results were received.”

The purpose of our research is to analyze algorithms for task allocation in such a setting.
Rather than analyzing or reengineering the strategies currently being used for initiatives such
as SETI@home, we study algorithms in an idealized setting. As may be expected, the problem
of assigning an incoming stream of tasks to a fluctuating set of error-prone computers is not
amenable to analysis in full generality. Therefore, we make some simplifications in modeling
the system.

We assume a central application which receives a “stochastically distributed” stream of
tasks that must be assigned to a collection of servers. We consider independent tasks, which
means that execution of one task does not influence execution of another task. The number
of servers, C, is assumed to be constant. Processors are error prone and the availability
of computing power can vary per server and over time. Therefore, it cannot be predicted
when a particular task will be completed, nor will a server report failures. It is, therefore,
necessary for the central server to use time-outs or a similar mechanism to guarantee that
every task will eventually be processed successfully. We model this behavior in a simplified
way by assuming that the system operates in a slotted fashion. By this we mean that tasks
are assigned to servers in the beginning of each time slot. It is possible to assign the same
task to different servers. Therefore, we assume that tasks are idempotent, i.e. each task can
be executed multiple times without negatively impacting the final result. At the end of each
time slot every server is assumed to have completed its task. If this is not the case, the server
is said to have failed on the task, and the task must be processed in some later time slot. This
can be done by one or more different servers, until the task has been completed successfully.
We model this failure behavior by assuming that any task can be executed by any server in
one slot with success probability α.

In the present paper, we investigate the impact of various task allocation strategies on
performance measures such as the mean response time of tasks. Tasks may be processed
by several servers simultaneously. In that case, a task is completed successfully if the task
execution is successful on at least one of the servers. In Section 2, we show that the allocation
rule which distributes the servers over the tasks as evenly as possible maximizes the number
of successful task completions. In addition, it will be proven that the strategy S∗, which
follows this rule in each slot, minimizes the number of tasks in the system jointly across time
(in distribution), and thus the mean response time among all admissible strategies.

In Section 3, we determine the distribution of the number of tasks for the class of strate-
gies S which assign the C servers to C different tasks whenever there are at least C tasks in
the system. Observe that the class S includes the optimal strategy S∗ as an important special
case. For comparison purposes, we also briefly consider the ‘lazy’ strategy S0 which executes

2

no tasks at all when there are fewer than C tasks, and strategy S1 which assigns exactly one
server to each task in that situation. The distributional analysis yields expressions for the
mean number of tasks in the system, and thus via Little’s theorem [9] for the mean response
time. In Section 4, we specialize the distributional analysis to the optimal strategy S∗.

The motivation for considering the class S is that the performance of all these strategies is
within a fixed margin from that of the optimal strategy S∗. In particular, the performance
will be proven to be asymptotically optimal in a heavy-traffic regime. Besides, the strategies
in S may avoid duplication of tasks. Note that duplication of tasks increases the utilization
of the servers and thus processing cost without improving the long-term throughput.

Section 5 shows how the various strategies perform if we split a large number of servers
into a number of smaller pools. In Section 6, we present the results from some numerical
experiments which we conducted to gain further insight into the (absolute and relative)
performance of the strategies S0, S1 and S∗.

Scheduling problems have been studied extensively in many different settings. Our ap-
proach differs in several respects from related work. From a queueing angle our model may
be viewed as a multi-server queue with geometrically distributed service times (see [9]), how-
ever with the unusual element that tasks can be run in parallel.

Most approaches from the area of distributed computing systems consider just a finite set
of tasks, rather than a stream of incoming tasks. An example is the DO-ALL problem [4],
which consists of performing t tasks reliably in a message-passing synchronous system of
p fault-prone processors. Research on the DO-ALL problem concentrates on finding efficient
algorithms which can deal with different classes of server failures and restarts (see e.g. [3]).
Our problem setting can be considered the natural extension of the DO-ALL problem to an
unbounded number of incoming tasks.

Whereas in the DO-ALL problem setting execution of a task is assumed to take exactly one
unit of time, several other approaches start from a stochastic distribution of task processing
times. Bruno et al. [2] show that if the task processing times are independent, identically
distributed random variables with some specific common distribution function, then the as-
signment that attempts to place an equal number of tasks on each machine achieves the
stochastically smallest makespan among all assignments. This result is based on the assump-
tion of a fixed number of tasks, error-free processes, and tasks must be assigned to exactly
one machine.

Other approaches relax our requirement that tasks be independent. Hsu et al. [8] consider
e.g. a fixed set of tasks with precedence constraints that form a directed acyclic graph.
Another extension is based on the assumption of extra structure within tasks or processors,
such as the cost of a task and the load of a processor (see e.g. [6] for an advanced dynamic
scheduling algorithm and an extensive overview). Both approaches are restricted to a finite
number of tasks and do not consider server faults.

2 Derivation of the optimal strategy S∗

In this section we identify the allocation rule which maximizes the number of successful task
completions in a particular slot. As it turns out, the optimal rule distributes the servers over
the tasks as evenly as possible. In addition, it will be proven that the strategy S∗, which
follows this rule in each slot, minimizes the number of tasks in the system jointly across time
(in distribution), and thus the mean response time among all admissible strategies.

3

In fact, we establish a somewhat more general result which shows that a ‘more balanced’
allocation yields a larger number of successful tasks. In particular, it follows that the ‘most
balanced’ allocation maximizes the number of successful tasks, and therefore no duplication
is optimal in that respect when there are at least C tasks present.

The desirability of a well-balanced allocation may be heuristically motivated as follows.
Assigning additional servers to a task increases the probability that the task will be completed
successfully. However, for every extra server that is assigned to the same task, the marginal
increase in the success probability decreases. Formally speaking, the success probability for a
task is a concave increasing function of the number of servers that are being assigned. Thus,
the marginal return of assigning additional servers is diminishing. As a result, it is optimal
to distribute the servers over the tasks as evenly as possible. In order to measure the degree
of ‘balancedness’, it is useful to adopt the following partial ordering [11].

Definition 2.1
Let c and d be two M -dimensional vectors. Let (c[1], . . . , c[M]) and (d[1], . . . , d[M]) be the

components of c and d, respectively, arranged in non-increasing order. Define Cm :=
m∑
l=1

c[l]

and Dm :=
m∑
l=1

d[l] as the m-th ordered partial sum of the vectors c and d, respectively. Then

c is said to be majorized by d, denoted as c ≺ d, if Cm ≤ Dm for all m = 1, . . . ,M − 1, and
CM = DM .

Thus, c ≺ d may be interpreted as saying that the vector c is ‘more balanced’ than d, the
average value of the components being equal.

Because of the randomness involved in the execution of tasks, one can only hope to max-
imize the number of successful task completions in a stochastic sense. In order to formalize
that notion, we use the following definition of stochastic majorization [12].

Definition 2.2
Let X and Y be two non-negative integer-valued random variables. Then X is said to

stochastically majorize Y , denoted as X ≥st Y (or also as Y ≤st X), if P(X ≥ n) ≥ P(Y ≥ n)
for all n = 1, 2,

The following three facts follow directly from the above definition.

Fact 2.3
If X ≥st Y , then E[Xk] ≥ E[Y k] for all k ≥ 1.

Fact 2.4
Let X and Y be two random variables with X ≥st Y , both independent of a third random

variable Z. Then X + Z ≥st Y + Z.

Fact 2.5
Let X, Y , and Z be three random variables with X ≥st Y and Y ≥st Z. Then X ≥st Z.

Let us now consider a particular slot with M tasks present. Let cm be the number of

servers assigned to the m-th task, with
M∑
m=1

cm ≤ C. Let S(c) be a 0–1 random variable

4

indicating whether or not a particular task is completed successfully (0 for failure, 1 for
success) when allocated to c servers, c = 0, 1, . . . , C. Note that P(S(c) = 0) = (1 − α)c and
P(S(c) = 1) = 1−P(S(c) = 0).

The number of successful task completions may then be formally expressed as

T (c1, . . . , cM) =
M∑
m=1

S(cm).

Since the random variables S(cm) in the sum are all mutually independent, the distribution
of T (c1, . . . , cM) is completely determined by the marginal distribution of the S(cm) as speci-
fied above. Thus, the problem may be phrased as maximizing the quantity T (c1, . . . , cM) (in

the sense of Definition 2.2), subject to the capacity constraint
M∑
m=1

cm ≤ C. Note that opti-

mality requires that the latter constraint is satisfied with equality, since assigning additional
servers increases the number of successful task completions (strictly, unless α = 1).

Denote by C := {c ∈ NM :
M∑
m=1

cm = C} the set of non-dominated feasible allocation vec-

tors. Define the ‘most balanced’ allocation vector c∗ with c∗ ≺ d for all d ∈ C (which is unique
up to a permutation) by c∗1, . . . , c

∗
m1

= m2 + 1 and c∗m1+1, . . . , c
∗
M = m2, with m1 := CmodM

and m2 := CdivM .

The next theorem states the main result of this section saying that the ‘more balanced’ the
allocation is, the larger the number of successful tasks (in the sense of Definition 2.2).

Theorem 2.6
If c ≺ d, then T (c) ≥st T (d). In particular, T (c∗) ≥st T (d) for all d ∈ C, with c∗ the ‘most

balanced’ allocation vector defined above.

In order to prove the above theorem, we first consider the case of M = 2 tasks. As it turns
out, this case already reveals the main proof ingredients for the case of M ≥ 2 tasks.

Lemma 2.7
If c1 ≤ c2 − 2, then T (c1 + 1, c2 − 1) ≥st T (c1, c2).

Proof
Note that T (c1, c2) ≤ 2 for all values of c1, c2. Therefore, it suffices to prove that if

c1 ≤ c2−2, then (i) P(T (c1 +1, c2−1) = 0) ≤ P(T (c1, c2) = 0), and (ii) P(T (c1 +1, c2−1) =
2) ≥ P(T (c1, c2) = 2).

These two inequalities may be verified through a simple calculation. (As an alternative, a
probabilistic coupling argument may be used.)

(i) P(T (c1, c2) = 0) = (1− α)C for all c1, c2 with c1 + c2 = C.

(ii) P(T (c1, c2) = 2) = 1− (1− α)c1 − (1− α)c2 + (1− α)C .

Thus, it needs to be shown that if c1 ≤ c2 − 2, then

(1− α)c1+1 + (1− α)c2−1 ≤ (1− α)c1 + (1− α)c2 ,

which follows directly from the convexity of the function (1− α)c in c.

5

It follows inductively that, if C is even, then the optimal allocation is c1 = c2 = C/2, while
if C is odd, then c1 = (C+1)/2, c2 = (C−1)/2. This is exactly the most balanced allocation
vector c∗ defined above.

2

We now turn to the case of M ≥ 2 tasks.

Lemma 2.8
If ci ≤ cj − 2, then T (c1, . . . , ci + 1, . . . , cj − 1, . . . , cM) ≥st T (c1, . . . , ci, . . . , cj , . . . , cM).

Proof
Using Fact 2.4 and Lemma 2.7,

T (c1, . . . , ci + 1, . . . , cj − 1, . . . , cM) =
∑
m6=i,j

S(cm) + S(ci + 1) + S(cj − 1) =

∑
m 6=i,j

S(cm) + T (ci + 1, cj − 1) ≥st

∑
m6=i,j

S(cm) + T (ci, cj) =

∑
m 6=i,j

S(cm) + S(ci) + S(cj) = T (c1, . . . , ci, . . . , cj , . . . , cM).

Again, it follows inductively that the optimal allocation is the most balanced allocation
vector c∗ defined above. In case M ≥ C, we have c∗1, . . . , c

∗
C = 1 and c∗C+1, . . . , c

∗
M = 0,

i.e., no duplication is optimal. We define S as the class of strategies which satisfy the latter
optimality property and assign the C servers to C different tasks whenever there are at least
C tasks in the system.

2

In order to complete the proof of Theorem 2.6, it remains to prove the more general result
that a ‘more balanced’ allocation produces a larger number of successful tasks, and in partic-
ular that the ‘most balanced’ allocation maximizes the number of successful tasks. The latter
statements follows directly from the above lemma, using Fact 2.5 combined with Muirhead’s
lemma [11], which shows that if c ≺ d, then c can be derived from d by successive applications
of a finite number of ‘transfers’ as considered in the above lemma.

We now proceed to prove that the strategy S∗, which selects the most balanced allocation
in each slot, minimizes the number of tasks in the system jointly across time, and thus the
mean response time among all admissible strategies.

Remark 2.9
At first sight, it may seem completely obvious that always following the rule which maximizes
the number of successful task completions also minimizes the number of tasks in the system.
Note that maximizing the number of successful tasks indeed minimizes the number of tasks
remaining at the end of the slot. However, minimizing the number of remaining tasks also
reduces the potential for successful task completions in the next slot. Hence, the subtlety
lies in proving that the total effect is still favorable, which indeed turns out to be the case as
formalized in Lemma 2.10 below. To illustrate that the latter fact is not entirely trivial, it is

6

worth considering the ‘lazy’ strategy S0 which executes no tasks at all when there are fewer
than C tasks in the system, and thus minimizes the number of successful task completions in
every given slot (among the strategies in S). Therefore, it may seem equally plausible that
strategy S0 maximizes the number of tasks in the system at any time (among the strategies
in S). Surprisingly however, this turns out not to be the case. For example, the number of
tasks in the system is larger for the somewhat perverse strategy which processes just a few
tasks when the number of tasks approaches the level C so as to avoid ever being forced into
full action.

Let Bn be the number of new tasks arriving in slot n. Let Xn and X∗n be the number of
tasks at the beginning of slot n under some arbitrary strategy S and the optimal strategy S∗,
respectively, just before the arrival of the new tasks.

Lemma 2.10
If X∗n ≤ Xn, then X∗n+1 ≤ Xn+1 (under appropriate coupling).

Proof
By definition, X∗n+1 = X∗n+Bn−T (c∗1, . . . , c

∗
X∗n+Bn

) andXn+1 = Xn+Bn−T (c1, . . . , cXn+Bn).

We may write T (c∗1, . . . , c
∗
X∗n+Bn

) =
X∗n+Bn∑
m=1

S(c∗m) and T (c1, . . . , cXn+Bn) =
Xn+Bn∑
m=1

S(cm) ≤
X∗n+Bn∑
m=1

S(cm) +Xn −X∗n since X∗n ≤ Xn and S(c) ≤ 1 for any c. According to Theorem 2.6,

X∗n+Bn∑
m=1

S(cm) ≤st

X∗n+Bn∑
m=1

S(c∗m), so there exists a coupling [12] such that X∗n+1 ≤ Xn+1.

2

Using a forward induction argument [13], the above lemma readily yields the next theorem,
demonstrating that strategy S∗ minimizes the number of tasks in the system jointly across
time among all admissible strategies.

Theorem 2.11
If X∗1 ≤st X1, then {X∗n}∞n=1 ≤st {Xn}∞n=1.

Inspection of the proof shows that the above optimality result extends to the situation
where the number of available servers varies over time according to some exogenous stochas-
tic process (possibly modeling additional random fluctuations in server availability). Using
Fact 2.3, we have the following corollary.

Corollary 2.12
If X∗1 ≤st X1, then E[(X∗n)k] ≤ E[(Xn)k] for all k ≥ 1, n = 1, 2,

Theorem 2.11 immediately implies that strategy S∗ also maximizes the number of successful
task completions jointly across time. With all departures occurring earlier, it follows that
strategy S∗ also minimizes the total flow time up to any given time as well as the mean
response time among all admissible strategies, as may also be concluded by taking k = 1 in
the above corollary and using equation (7) given in the next section.

There are two caveats. First of all, in heavy traffic the mean response times grow at the
same rate for all strategies in S, as will be demonstrated in Remark 3.4 in the next section.

7

Thus, in heavy traffic the mean response time for strategy S∗ cannot be significantly smaller
than for any other strategy in S. This is corroborated by Theorem 2.14 below which shows
that the difference between any two strategies in S is bounded by a constant term. Also,
in light traffic, the mean response times may differ substantially in a relative sense, but will
still be moderate in absolute terms for most (sensible) strategies as will be illustrated in
Remark 4.1.

Second, the optimality result in terms of the distribution of the number of tasks as stated
in Theorem 2.11 does in general not extend to the distribution or even higher moments
of the response time. In some situations however, the variance in the response time, or
the probability that the response time violates some deadline may be equally important
performance measures as the mean response time.

In order to minimize the variance or the violation probabilities, one should presumably
give some sort of priority to relatively old tasks or tasks that approach their deadline. To
some extent, one can realize prioritization while adhering to strategy S∗ by selecting older
tasks whenever there is a choice. To achieve a strong degree of priority however, one should
assign even more servers to the older tasks. On the other hand, if the goal is to minimize
a deadline violation probability, then once a task has exceeded its deadline, one should not
assign any servers to it anymore until the system has cleared all tasks whose deadline has
not yet expired. Thus, in order to optimize these sorts of performance measures, one would
occasionally have to deviate from the optimal balanced allocation rule that is followed by
strategy S∗. In deviating from the optimal allocation rule however, one would reduce the
number of successful task completions, and thus increase the number of tasks in the system,
at the risk of a total performance collapse. This suggests that there may be a rather delicate
balance between these two conflicting objectives.

We finally provide simple stochastic lower and upper bounds for all strategies in S that
coincide up to a constant term. LetD1, D2, . . . be a sequence of independent random variables,
binomially distributed with parameters C and α. Let X̃n be a random walk with step sizes
Bn −Dn, reflected at zero, i.e., X̃n+1 = max{X̃n +Bn −Dn, 0}, with B1, B2, . . . the random
batch sizes defined earlier.

The next lemma is a counterpart of Lemma 2.10.

Lemma 2.13
If X̃n ≤ Xn ≤ X̃n+C−1, then X̃n+1 ≤ Xn+1 ≤ X̃n+1+C−1 (under appropriate coupling).

Proof
By definition, X̃n+1 = max{X̃n +Bn −Dn, 0} and Xn+1 = Xn +Bn − T (c1, . . . , cXn+Bn).

Noting that T (c1, . . . , cXn+Bn) ≤ Xn+Bn, we may writeXn+1 = max{Xn+Bn−T (c1, . . . , cXn+Bn), 0}.
Further observe that T (c1, . . . , cXn+Bn) ≤st Dn and T (c1, . . . , cXn+Bn)

d
= Dn when Xn +

Bn ≥ C. We conclude that there exists a coupling [12] such that X̃n+1 ≤ Xn+1 and
Xn+1 ≤ X̃n+1 + C − 1 when Xn + Bn ≥ C. That completes the proof, since the inequality
Xn+1 ≤ X̃n+1 + C − 1 is trivially satisfied when Xn +Bn ≤ C − 1.

2

The above lemma directly results in the next theorem, demarcating the performance range
of the strategies in S.

8

Theorem 2.14
If X̃1 ≤st X1 ≤st X̃1 + C − 1, then {X̃n}∞n=1 ≤st {Xn}∞n=1 ≤st {X̃n + C − 1}∞n=1.

3 Steady-state distribution of the number of tasks

We now determine the steady-state distribution of the number of tasks for the class of strate-
gies S. As we proved in Theorem 2.14, the performance of all the strategies in S is within a
fixed constant from that of the optimal strategy S∗. As a further justification for considering
the class S, we will show the performance to be asymptotically optimal in a heavy-traffic
regime.

As before, let Bn be the number of new tasks arriving in slot n. We assume that B1, B2, . . .
and the generic random variable B are independent, identically distributed random vari-
ables with proper probability distribution P(B = k), k = 0, 1, 2, . . ., and with probability
generating function

E[rB] =
∞∑
k=0

P(B = k)rk, |r| ≤ 1.

Define Xn as the number of tasks present at the beginning of slot n, just before the arrival of
the Bn new tasks, n = 1, 2, Denote by An be the number of successful task completions
in slot n, n = 1, 2,

If Xn + Bn ≥ C, then C distinct tasks are executed in slot n, each one being successful
with probability α. In that case, An is binomially distributed with parameters C and α. If
Xn+Bn < C, then some of the servers may be left idle in slot n, or some of the tasks may be
processed by several servers simultaneously. In the previous section we proved that this last
decision is optimal in order to maximize the number of successful task completions in a given
slot as well as to minimize the number of tasks in the system over time. For now, we do not
make any specific assumptions regarding the allocation rule used in slot n when Xn+Bn < C;
we simply assume that the number of successful task completions An is a random variable
which only depends on Xn+Bn. Hence, the stochastic process {Xn, n = 1, 2, . . .} is a Markov
chain which evolves as follows:

Xn+1 = Xn +Bn −An, n = 1, 2, (1)

In this section we determine the steady-state distribution P(X = k) := limn→∞P(Xn = k)

and its generating function E[rX] =
∞∑
k=0

P(X = k)rk. It can be easily verified that a necessary

and sufficient condition for this steady-state distribution to exist is E[B] < αC, i.e., the mean
number of arriving tasks per slot is strictly less than the processing capacity. Throughout,
this stability condition is assumed to hold.

In the following lemma we give a relation from which E[rX] can be obtained. Let I(A)
denote the indicator function of the event A: I(A) = 1 if A is true, and I(A) = 0 otherwise.

Lemma 3.1
The generating function E[rX] of the steady-state distribution of the number of tasks at

slot beginnings satisfies the following relation, for |r| ≤ 1:

E[rX] =
rCE[rX+B−AI(X +B < C)]− (α+ (1− α)r)CE[rX+BI(X +B < C)]

rC − (α+ (1− α)r)CE[rB]
. (2)

9

Proof
It follows from the recurrence relation (1) that

E[rXn+1] = E[rXn+Bn−An]

= E[rXn+Bn−AnI(Xn +Bn ≥ C)] + E[rXn+Bn−AnI(Xn +Bn < C)]

= E[rXn+BnI(Xn +Bn ≥ C)](
α

r
+ 1− α)C + E[rXn+Bn−AnI(Xn +Bn < C)]. (3)

The last equality follows since An ∼ Bin(C,α) if Xn+Bn = j ≥ C. Observe that Xn and Bn
are independent, so that E[rXn+Bn] = E[rXn]E[rBn]. In the steady-state situation, (3) now
yields (2).

2

Formula (2) expresses E[rX] in terms of the two unknown functions E[rX+B−AI(X +B <
C)] and E[rX+BI(X+B < C)]. Let us concentrate on the first one, since the second one may
be viewed as a special case of the first one. Using the independence of Xn and Bn, hence
of X and B, we can write:

E[rX+B−AI(X +B < C)] =
C−1∑
k=0

P(X = k)
C−1∑
j=k

rjP(B = j − k)

j∑
i=0

r−iP(A = i|X +B = j).

Hence, the two above-mentioned unknown functions can both be expressed as weighted sums
of C unknown probabilities P(X = 0), . . . ,P(X = C − 1). Once the allocation rule is
specified for Xn + Bn < C, the probabilities P(A = i|X + B = j) are known, and hence
all the weight factors of the probabilities P(X = k) are known. We now show how the
C unknown probabilities P(X = 0), . . . ,P(X = C−1) may be determined via an application
of Rouché’s theorem (see [1]).

Lemma 3.2
The function rC − (α + (1 − α)r)CE[rB] has exactly C zeros r1, . . . , rC with |ri| ≤ 1,

i = 1, . . . , C.

Now observe that for |r| ≤ 1 the probability generating function E[rX] is a convergent
power series, and hence an analytic function. So for |r| ≤ 1, whenever the denominator of (2)
equals 0, the numerator must also equal 0. For each of the zeros r1, . . . , rC−1, rC = 1, this
gives one linear equation in the C unknown probabilities P(X = 0), . . . ,P(X = C − 1). In
the case of rC = 1, that equation is degenerate. The normalizing condition E[rX] = 1 for
r = 1 provides the required extra equation. Via an application of l’Hôpital’s rule to (2) it
reads:

αCP(X +B < C)−E[AI(X +B < C)] = αC −E[B]. (4)

From these equations, one can (in general only numerically) find the probabilities P(X = k)
for k = 0, . . . , C − 1. Therefore, these probabilities P(X = k) can and will be treated as
known constants in the remainder of this paper. In particular, the mean number of tasks at
the beginning of a slot, E[X], can be expressed in terms of these probabilities. Differentiating
E[rX] w.r.t. r, and substituting r = 1, yields E[X]. Write the right hand side of (2) as
N(r)/D(r). It is then easily seen, using l’Hôpital’s rule and N(1) = D(1) (this is exactly
(4)), that

E[X] =
D(1)N ′′(1)−D′′(1)N(1)

2D(1)D′(1)
=
N ′′(1)−D′′(1)

2D′(1)
.

10

It thus follows that

E[X] =
1

2(αC −E[B])
{2(1− α)CE[B] + E[B(B − 1)]

− (2α− α2)C(C − 1)P(X +B ≥ C) + 2αCE[(X +B)I(X +B < C)]

− 2CE[AI(X +B < C)] + E[A2I(X +B < C)]

− E[A(2X + 2B − 1)I(X +B < C)]}. (5)

Remark 3.3
From a performance perspective, a crucial characteristic is the response time W , i.e., the
amount of time that a task spends in the system before it is successfully completed. The
mean response time immediately follows from equation (5) via Little’s formula [9]:

E[X] + E[B] = E[B]E[W], (6)

or

E[W] = 1 +
E[X]

E[B]
. (7)

Remark 3.4
From equation (5), one immediately obtains a simple expression for E[X] in a heavy-traffic
regime, i.e., when αC − E[B] ↓ 0. Let us fix the integer number of servers, C, and assume
that E[B]/α → C. In that case, P(X + B < C) ↓ 0 for any strategy in S. Hence, after an
elementary calculation,

limE[B]/α→C(αC −E[B])E[X] =
1

2
[Var[B] + α(1− α)C]. (8)

Note that the heavy-traffic approximation (8) holds for any strategy in S, regardless of its
actions when less than C tasks are present.

4 Steady-state distribution for strategy S∗

In the previous section, we derived the distribution of the number of tasks in the system
for the class of strategies S. The corresponding probability generating function in (2) still
contained the term E[rX+B−AI(X + B < C)], which may be determined explicitly once the
allocation rule is specified for X+B < C. In this section, we focus on the optimal strategy S∗,
which is included as a special case in the class S and always allocates all servers, distributing
them over the tasks as evenly as possible. In [1] we also consider the ‘lazy’ strategy S0 which
executes no tasks at all when X + B < C, and strategy S1 which assigns exactly one server
to each task when X +B < C. In both these cases, it is fairly easy to evaluate Formula (2).
Numerical results for S∗, S0 and S1 are presented in Section 6. Although duplication of tasks
increases the number of successful task completions in a particular slot, it cannot improve
the long-term throughput, which is obviously bounded by the mean number of arriving tasks
per slot E[B]. Viewed that way, duplication of tasks increases the server utilization without
improving the long-term throughput. The server utilization is evidently minimized by the
class of ‘economic’ strategies that never duplicate tasks. A little thought shows that strat-
egy S1 minimizes the number of tasks in the system among all ‘economic’ strategies.

11

Strategy S∗

Strategy S∗ always allocates all servers, distributing them over the tasks as evenly as possible.
The term E[rX+B−AI(X +B < C)] in (2) may thus be determined as follows. Let m1(j) :=
Cmodj and m2(j) := Cdivj. Under strategy S∗, if there are X + B = j < C tasks present,
then there are j−m1(j) tasks allocated tom2(j) servers, andm1(j) tasks allocated tom2(j)+1
servers. The former ones are completed with success probability β(j) := 1− (1− α)m2(j)+1,
and the latter ones with success probability γ(j) := 1−(1−α)m2(j). Similar to the calculation
in (3), we have

E[r−A|X +B = j] = (
β(j)

r
+ 1− β(j))m1(j)(

γ(j)

r
+ 1− γ(j))j−m1(j), (9)

so that

E[rX+B−AI(X +B < C)] =

C−1∑
j=0

P(X +B = j)(
β(j)

r
+ 1− β(j))m1(j)(

γ(j)

r
+ 1− γ(j))j−m1(j).

Substitution in (2) gives E[rX], expressed in the probabilities P(X+B = j), j = 0, . . . , C−1,
which in their turn can be expressed in the probabilities P(X = k), k = 0, . . . , C − 1. In a
similar fashion, E[X] may be evaluated using (5) and (9). We specify the last three (and most
difficult) terms, using (9) each time to obtain moments under the condition that X +B = j:

E[AI(X +B < C)] =
C−1∑
j=0

P(X +B = j)[m1(j)β(j) + (j −m1(j))γ(j)],

E[A2I(X +B < C)] =
C−1∑
j=0

P(X +B = j)([m1(j)β(j) + (j −m1(j))γ(j)]2

+ m1(j)β(j)(1− β(j)) + (j −m1(j))γ(j)(1− γ(j))),

E[A(2X + 2B − 1)I(X +B < C)] =

C−1∑
j=0

P(X +B = j)(2j − 1)[m1(j)β(j) + (j −m1(j))γ(j)].

Remark 4.1
In Remark 3.4 we obtained a simple heavy-traffic result for the mean number of tasks at slot
beginnings, E[X]; and this result was seen to be valid for any strategy in S. Let us now
consider the light-traffic situation. We let C → ∞ so that E[B]/αC ↓ 0. From equation (5)
one can derive an expression for E[X] in this light-traffic scenario. In light traffic, X + B
will usually be less than C. Hence, the probabilities P(X = j) for j = 0, . . . , C − 1 now
play a crucial role, which makes it hard to derive an explicit expression for E[X] along these
lines. However, intuitive arguments readily yield expressions for E[X] for S∗, and also for
the strategies S0 and S1. Under the lazy strategy S0, the number of tasks in the system will
vary between C and (1− α)C according to a saw-tooth pattern. Hence

E[X] ≈ 2− α
2

C. (10)

12

For strategy S1 in light traffic, E[X] should approach the mean batch size times the mean
number of slots required by a server to handle a task:

E[X] ↓ (1− α)E[B]

α
. (11)

Hence, from (7) we find E[W] ↓ 1−α
α ; indeed, under strategy S1 the response time approaches

the service time, which has a geometric distribution with parameter α. Finally, for strat-
egy S∗, all tasks will be successfully handled in their first slot by at least one server:

E[X] ↓ 0. (12)

Note that, as might be expected, the (relative) performance of the three strategies drastically
differs in light-traffic conditions, in contrast to the heavy-traffic regime where in fact all
strategies in S asymptotically coincide.

5 Scaling properties

As mentioned earlier, the number of servers, C, may potentially be quite large. It is therefore
interesting to understand the scaling properties of the system when the offered traffic and the
processing capacity grow large. Specifically, let us compare a system with KC servers and

batch sizes BK
n =

K∑
k=1

Bk,n with K independent systems, each with C servers, and batch sizes

Bk,n in the k-th system, all distributed as the generic batch size B. Let the other quantities
be indexed similarly. For example, XK is the number of tasks in the aggregated system,
and Xk is the number of tasks in the k-th isolated system. Intuitively, one would expect the
performance of the aggregated system to be better due to scaling efficiencies. Using similar
stochastic coupling techniques as in the proofs of Lemmas 2.10 and 2.13, it may be shown that

the above intuition is indeed correct, in the sense that XK,S ≤st

K∑
k=1

XS
k for any strategy S

such that

K∑
k=1

T (cSk1, . . . , c
S
kxk

) ≤st T (cK,S1 , . . . , cK,Sσ(x)) (13)

for all (x1, . . . , xK) ∈ NK , with σ(x) :=
K∑
k=1

xk. It is easily verified that the above condition

is satisfied for strategies S1 and S∗, but not for the ‘lazy’ strategy S0.
It is further interesting to examine the scaling properties in heavy-traffic or light-traffic

conditions. In heavy traffic, noting that Var[BK] = KVar[B], we obtain from (8),

lim
E[B]/α↑C

(αC −E[B])E[XK] =
1

2
[Var[B] + α(1− α)C],

for any K and for all strategies in S, so that

lim
E[B]/α↑C

E[XK]

E[X]
= 1,

and hence using (7),

lim
E[B]/α↑C

E[WK]

E[W]
=

1

K
.

13

Strategy S0 Strategy S1 Strategy S∗

E[B] C 0.55 0.75 0.95 0.99 0.55 0.75 0.95 0.99 0.55 0.75 0.95 0.99
1 2 0.56 1.00 5.00 25.00 0.10 0.67 4.74 24.75 0.01 0.33 4.26 24.25
2 4 1.64 2.26 6.34 26.35 0.20 1.11 5.41 25.46 0.02 0.54 4.73 24.77
4 8 3.82 4.84 9.09 29.12 0.40 2.05 6.89 27.02 0.04 1.01 5.91 26.07
8 16 8.18 10.09 14.71 34.78 0.80 4.01 10.06 30.37 0.08 2.00 8.60 29.05
16 32 16.91 20.69 26.12 46.29 1.60 8.00 16.72 37.40 0.16 4.00 14.46 35.54
32 64 34.36 42.00 49.22 69.57 3.20 16.00 30.49 51.98 0.32 8.00 26.79 49.31

1 4 2.47 3.26 9.32 39.33 1.21 2.28 8.55 38.60 0.20 0.94 7.13 37.17
2 8 5.50 6.47 12.62 42.64 2.40 4.15 10.89 41.01 0.34 1.48 8.50 38.74
4 16 11.62 12.97 19.31 49.36 4.80 8.05 15.88 46.15 0.61 2.59 11.94 42.73
8 32 23.96 26.13 32.84 62.94 9.60 16.01 26.30 56.90 1.17 4.81 19.79 51.89
16 64 48.68 52.64 60.14 90.33 19.20 32.00 47.76 79.07 2.31 9.28 36.73 71.78

Table 1: E[X] for E[B]/αC = 0.55, 0.75, 0.95, 0.99

Thus, in heavy traffic, the mean response time is reduced by a factor K when the system is
scaled up by a factor K.

In contrast, in light traffic, we find for all the three strategies S0, S1, and S∗ that

lim
C→∞

E[WK]

E[W]
= 1.

Thus, in light traffic, the mean response time does not significantly improve when the system
is scaled up. This may be understood by observing that in light traffic there are always
plenty of servers available, so that there is little to be gained from sharing servers across
independent isolated systems.

6 Numerical experiments

We have performed some numerical experiments to obtain further insight in the (absolute
and relative) performance of the various strategies for a range of parameter values. Table 1
displays E[X] for strategies S0, S1 and S∗ respectively, for various numbers of servers. We
took C/E[B] equal to 2 and 4. We varied the ratio E[B]/αC from 0.55 to 0.99 to see the
effects from light to heavy traffic. In the experiments we assumed that a constant number of
tasks arrived in each slot, i.e., Var[B] = 0. In case B is random, the value of E[X] is expected
to increase.

The results in the table neatly match the results mentioned throughout the paper. For
instance, heavy-traffic behavior corresponds to the rightmost column in the table. According
to Remark 3.4, E[X] becomes large and is independent of any particular strategy. For E[B]=
1, C = 4 and E[B]/αC = 0.99, Formula (8) would lead to the heavy-traffic approximation
E[X] ≈ 37.37 which clearly matches the values in the table.

For light traffic, Remark 4.1 causes us to expect substantial differences. For E[B]= 16,
C = 64 and E[B]/αC = 0.55, Remark 4.1 would predict E[X] ≈ 49.45 (according to Equa-
tion (10)), E[X] ≈ 19.20 (according to Equation (11)) and E[X] ≈ 0 (according to Equa-
tion (12)) for the respective strategies, which are quite close to the values in the table.

14

Further notice that the table is in accordance with Theorem 2.14 which implies that the
differences among E[X] for the different strategies never exceed C − 1.

Finally, observe that the table illustrates very well the scaling properties described in
Section 5, stating that for light traffic scaling up has little effect on E[W], whereas for heavy
traffic scaling up by a factor K reduces E[W] by the same factor.

Acknowledgment The authors are indebted to the associate editor for various useful sug-
gestions.

References

[1] S. C. Borst, O. J. Boxma, J. F. Groote, and S. Mauw. Task allocation in a multi-server
system. CWI Report PNA-R0122, 2001.

[2] J. Bruno, E. G. Coffman, and P. Downey. Scheduling independent tasks to minimize
the makespan on identical machines. Probability in the Engineering and Informational
Sciences, 9:447–456, 1995.

[3] B. S. Chlebus, R. De Prisco, and A. A. Shvartsman. Performing tasks on synchronous
restartable message-passing processors. Distributed Computing, 14:49–64, 2001.

[4] C. Dwork, J. Y. Halpern, and O. Waarts. Performing work efficiently in the presence of
faults. SIAM Journal on Computing, 27(5):1457–1491, 1998.

[5] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, San Fransisco, California, 1999.

[6] B. Hamidzadeh, L. Y. Kit, and D. J. Lilja. Dynamic task scheduling using online op-
timization. IEEE Transactions on Parallel and Distributed Systems, 11(11):1151–1163,
2000.

[7] B. Hayes. Collective wisdom. The American Scientist, 86(2):118–122, March/April 1998.

[8] T. Hsu, J. C. Lee, D. R. Lopez, and W. A. Royce. Task allocation on a network of
processors. IEEE Transactions on Computers, 49(12):1339–1353, 2000.

[9] L. Kleinrock. Queueing Systems, Volume 1: Theory. John Wiley & Sons, New York,
1975.

[10] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky. SETI@home:
Massively distributed computing for SETI. Computing in Science and Engineering,
3(1):78–83, 2001.

[11] A. W. Marshall, I. Olkin. Inequalities: Theory of Majorization and Its Applications.
Academic Press, New York, 1979.

[12] D. Stoyan. Comparison Methods for Queues and Other Stochastic Models. John Wiley
& Sons, Chichester, 1983.

[13] J. Walrand. An Introduction to Queueing Networks. Prentice Hall, 1988.

15

