
Design and Analysis ofDynamic Leader Election Protocolsin Broadcast NetworksJacob BrunekreefProgramming Research GroupUniversity of AmsterdamKruislaan 403, 1098 SJ Amsterdam, The Netherlandsjacob@fwi.uva.nlJoost-Pieter KatoenDept. of Computing ScienceUniversity of TwenteP.O. Box 217, 7500 AE Enschede, The Netherlandskatoen@cs.utwente.nlRon KoymansPhilips Research LaboratoriesP.O. Box 80.000, 5600 JA Eindhoven, The Netherlandskoymans@prl.philips.nlSjouke MauwDept. of Mathematics and Computing ScienceEindhoven University of TechnologyP.O. Box 513, 5600 MB Eindhoven, The Netherlandssjouke@win.tue.nlSeptember 8, 1993

AbstractThe well-known problem of leader election in distributed systems is considered in a dynamiccontext where processes may participate and crash spontaneously. Processes communicateby means of bu�ered broadcasting as opposed to usual point-to-point communication. In thispaper we design a leader election protocol in such a dynamic system. As the problem athand is considerably complex we adopt a step-wise re�nement design method starting froma simple leader election protocol. In a �rst re�nement a symmetric solution is obtained andeventually a fault-tolerant protocol is constructed. This gives rise to three protocols. Theworst case message complexity of all protocols is analyzed.A formal approach to the veri�cation of the leader election protocols is adopted. The require-ments are speci�ed in a property-oriented way and the protocols are denoted by means ofextended �nite state machines. It is proven using linear-time temporal logic that the proto-cols satisfy their requirements. Furthermore, the protocols are speci�ed in more detail in theprocess algebra formalism ACP.Keywords & Phrases: communication protocols, �nite-state machines, leader election, pro-tocol speci�cation and veri�cation, temporal logic, process algebra.1980 Mathematics Subject Classi�cation (1985 revision): 68Q20, 68Q25, 68Q60.CR Categories (1991 version): D.1.3, D.2.4, F.2.2.

Contents1 Introduction 32 Relation to Other Work 53 Design and Complexity Analysis of LE Protocols 73.1 Introduction : 73.1.1 Communication : 73.1.2 Protocol Description Language : 73.1.3 Introduction to Temporal Logic : 83.2 A First Stepping Stone : 93.2.1 Requirements in Temporal Logic : 93.2.2 A First Protocol : 103.3 A Symmetric LE Protocol : 123.4 A Fault-Tolerant LE Protocol : 133.4.1 Requirements Revisited : 143.4.2 Design of a Fault-Tolerant Protocol : : : : : : : : : : : : : : : : : : : 153.5 Complexity Analysis of the Protocols : 173.5.1 Introduction : 173.5.2 Complexity of Protocol 1 : 173.5.3 Complexity of Protocol 2 : 193.5.4 Complexity of Protocol 3 : 204 Veri�cation by Temporal Logic 234.1 Introduction : 234.2 Veri�cation of Protocol 1 : 244.3 Veri�cation of Protocol 2 : 294.3.1 Timeout Semantics : 294.3.2 Timeout Properties : 304.3.3 Proof of Requirements : 314.4 Veri�cation of Protocol 3 : 374.4.1 Timeout Properties : 374.4.2 Proof of requirements : 385 ACP Speci�cations 445.1 Introduction to ACP : 441

5.2 Protocol 1 : 465.3 Intermezzo: timeout semantics and ACP { part 1 : : : : : : : : : : : : : : : : 475.4 Protocol 2 : 495.5 Protocol 3 : 505.6 Action atomicity and complexity results : 526 Veri�cation and Validation in ACP 546.1 Introduction : 546.2 ACP axioms : 546.3 Protocol 1 : 566.4 Intermezzo: timeout semantics and ACP { part 2 : : : : : : : : : : : : : : : : 616.5 Protocol 2 : 626.6 Protocol 3 : 657 Conclusions 69

2

1 IntroductionIn current distributed systems several functions (or services) are o�ered by some dedicatedprocess(es) in the system. One might think of address assignment and registration, queryco-ordination in a distributed database system, clock distribution, token regeneration aftertoken loss, and so forth. Usually many processes in the system are capable to o�er such afunctionality. However, at any time only one process is allowed to actually o�er the function.Therefore, one process |called the \leader"| must be elected to support that function.Sometimes it su�ces to elect an arbitrary process, but for other functions it is important toelect the process which is best according to some suitable criteria to perform that function.In this paper we consider a distributed leader election (LE) protocol which elects the mostfavourable process (relative to some criteria explained later) as leader. Each process has a�xed unique identity and a total ordering exists on these identities, known to all processes.We assume a �nite number of processes. The leader is de�ned as the process with thelargest identity among all participating processes. Realistic distributed systems are subjectto failures. The problem of leader election thus becomes of practical interest when failures areanticipated. In this paper, processes behave dynamically|they may participate at arbitrarymoments and stop participating spontaneously without noti�cation to any other process.Crashed processes may recover at any time. Thus, a leader has to be elected from a set ofprocesses whose elements may change continuously. Processes communicate with each otherby exchanging messages via a broadcast network. This network is considered to be fullyreliable. A broadcast message is received by all processes except the sending process itself.Communication is asynchronous and order-preserving.Leader election is a special case of distributed consensus problems. Several impossibilityresults have been obtained for such problems. For instance, in [DDS87] a number of orthogonalcharacteristics are identi�ed by which the existence of a solution for the distributed consensusproblem is determined. According to this classi�cation our problem is solvable since weconsider order-preserving message delivery, broadcast communication and atomic send andreceive.Due to the complexity of the design of a fault-tolerant LE protocol a step-wise re�nementapproach is adopted. That is, we develop a fault-tolerant protocol in three steps, each stepresulting in a LE protocol. We start with rather strong |and unrealistic| assumptions aboutprocess and system behaviour. In each subsequent step these assumptions are weakened anda protocol is constructed starting from the protocol derived in the previous step. The stepsof our design are as follows. In our initial design processes are considered to be perfect and aleader is assumed to be present initially. A process may participate spontaneously, but onceit does it remains to do so and does not crash. In the second step, the assumption of an initialleader is dropped. This leads to a fully symmetric protocol which uses an (abstract) timeoutmechanism to detect the absence of a leader. Finally, in the last step of our design processesmay crash without giving any noti�cation to other processes.As e�ciency plays an important role in the design of leader election protocols a complexityanalysis is given for each protocol presented in this paper. We focus our analysis on theworst case message complexity which indicates the maximum number of messages needed toelect a leader. For N participating processes the message complexity of our initial protocolis O(N2), which can be improved to O(N) by adopting a tricky way of message bu�ering.3

Using this bu�er mechanism the last two protocols have a message complexity of O(N) andO(N2), respectively, when no crashing processes are considered.Existing designs are mainly focussed on reducing message and time complexity, scarcely pay-ing attention to protocol veri�cation, let alone providing a formal approach to veri�cation.However, for the design of complex communication protocols formal methods are indispens-able. The starting-point of our designs is a requirements speci�cation in linear-time temporallogic. Temporal logic is an appropriate and expressive language for specifying propertiesand behaviours of reactive systems, like communication protocols, in an abstract way. As aprotocol speci�cation language we adopt extended �nite state machines. The combinationof temporal logic and state-transition diagrams enables a formal veri�cation of the designedprotocols. Such a veri�cation is carried out for all presented protocols.The protocols are also speci�ed in the process algebra formalism ACP (Algebra of Commu-nicating Processes). Both the separate components (protocol processes, bu�ers, the com-munication medium) and the parallel composition of these components are speci�ed, givinga complete formal speci�cation of the whole distributed behaviour of the protocols. Someaspects of a formal veri�cation of the protocols within the process algebra framework arediscussed, but a complete veri�cation of the protocols in ACP lies beyond the scope of thispaper. A validation of the protocols is achieved by simulation runs of the speci�cations inthe executable formalism PSF (Process Speci�cation Formalism), which is close to ACP.The paper is further organized as follows. In section 2 the relation to existing work is pre-sented. The requirements speci�cation, design and complexity analysis of all three protocolsis presented in section 3. Furthermore, an introduction to the protocol description languageand to linear-time temporal logic is given in this section. In section 4 it is veri�ed using tem-poral logic that all protocols from section 3 satisfy the requirements. An introduction to ACPand a speci�cation of the protocols in ACP is given in section 5. Veri�cation and validation inACP of the protocols is discussed in section 6. Finally, in section 7 some concluding remarksare given and future work is addressed. In the rest of this paper, we use the term protocol asa synonym for similar terms as distributed program, distributed algorithm, and so forth.

4

2 Relation to Other WorkLeader Election algorithmsThe problem of leader election was originally coined by [LeL77] in the late seventies and vari-ous LE protocols have been developed since then. A broad range of solutions exists varying innetwork topology (ring [LeL77, CR79, Pet82], mesh, complete network [KMZ84, AG91, Sin91],and so on), communication mechanism (asynchronous, synchronous), available topology in-formation at processes [LMW86, AvLSZ89], and so forth. A possible straightforward solutionto a broadcast network is to superimpose a topology |like a ring| on it and to adopt awell-known solution for this topology. However, existing solutions are aimed at distributedsystems that are assumed to behave perfectly|no failures are anticipated and a �xed numberof participating processes is assumed. Moreover, the speci�c characteristics of broadcastingare not exploited.Realistic distributed systems are subject to failures. A few LE protocols are known thattolerate either communication link failures (see e.g. [AA88, SG87]) or process failures [GZ86,IKWZ90, MNHT89, DIM93]. In [GZ86] the LE problem with a similar failure model and usingbroadcast communication is considered, however, no ordering between processes is considered.[IKWZ90] and [MNHT89] only consider process crashes prior to the start of the protocol, butno crashes during protocol execution are taken into account. We consider processes to be ableto crash at any moment of time. In [DIM93] a LE protocol is constructed which toleratestransient process failures. This protocol belongs to the category of self-stabilizing protocols[Dij74]. This protocol, however, assumes a complete network topology and does not requireidentities to be distinct.Complexity ResultsLE protocols vary in complexity. Early protocols for a ring network (as given in [CR79,LeL77]) have a worst case message complexity of O(N2) and a worst case time complexity ofO(N), N being the number of participants in the election. Later on these results have beenimproved (see e.g. [Pet82, vLT87]) to protocols with a message complexity of O(N logN) anda time complexity of O(logN). For a complete network LE protocols have been designed witha worst case message complexity of O(N logN) and a worst case time complexity of O(N),see [AG91, Att87, KKM85, LMW86]. In [Sin91] a number of LE protocols for asynchronouscomplete networks is given with a message complexity of O(Nk) and a time complexity ofO(N=k), with k a constant, logN�k�N .Speci�cation and Veri�cation in Temporal LogicExisting LE protocols are mainly focussed on reducing message and time complexity, scarcelypaying attention to problem speci�cation and protocol veri�cation. To our knowledge noformal speci�cation of the (dynamic) LE problem is published elsewhere. In order to correctlydesign (and verify!) communication protocols such a formal speci�cation is indispensable.The speci�cation and veri�cation techniques we use are well-known for almost a decade:protocol speci�cation and veri�cation using a combination of temporal logic [MP92] and state-transition diagrams has been applied for a number of other protocols (see e.g.[Lam83, HO83,SPE84]). However, the dynamic character of processes combined with a timeout mechanismso as to detect the absence of a leader makes the speci�cation and veri�cation more complexthan traditionally considered communication protocols.5

Speci�cation and Validation in Process AlgebraMany simple existing communication protocols have been speci�ed and veri�ed in ACP, see[Bae90] for examples. Such veri�cations imply many algebraic computations on process ex-pressions, showing that the speci�ed protocol has the required (external) behaviour. However,more complex protocols (like the leader election protocols in this paper) are too large formanual algebraic veri�cation. These protocols can be validated by simulation runs of theirbehaviour. To this extent a protocol is translated to the executable formalism PSF[MV90],which is strongly related to ACP. See [MV93] for examples of protocol speci�cation usingPSF.

6

3 Design and Complexity Analysis of LE Protocols3.1 Introduction3.1.1 CommunicationProcesses communicate with each other by exchanging messages via a broadcast networklike Ethernet [MB76]. A broadcast message sent by some process p is received instanta-neously by all processes except p itself. In contrast with a multi-process rendez-vous inwhich several processes synchronize on a common communication, broadcasting is consid-ered to be asynchronous. Broadcast messages are bu�ered by processes (so-called bu�eredbroadcast [Geh84]). This bu�ering is order preserving. In this paper the only form of commu-nication we consider between processes is broadcasting. Therefore, we often omit the pre�xbroadcast in terms like message, communication, and so on.It is assumed that the communication network is perfect, that is, no duplication, loss orgarbling of messages takes place. In this way we abstract from the design of a reliablebroadcast facility on a faulty network and simply assume the existence of such a protocol(see e.g. [SGS84]). In order to avoid interference of transmissions of di�erent processes it isassumed that at most one message may be transmitted via the network at any moment oftime.The ability of broadcasting communication is often treated as a special feature of the commu-nication network. As a result, existing notations for concurrent (and distributed) processes|like CSP [Hoa85], Estelle [BD87], and so on| do not provide a primitive by which a processcan explicitly broadcast a message. Here we consider broadcasting as part of our descriptionlanguage (see also [Geh84]).3.1.2 Protocol Description LanguageWe denote our protocol by a Finite State Machine (FSM) diagram [vB78], also called statetransition diagram. Transitions consist of an (optional) guard and zero or more actions.Depending on the guard a transition is either enabled or disabled. In a state the process selectsnon-deterministically between all enabled transitions, it performs the actions associated withthe selected transition (in arbitrary order) and goes to the next state. When there are noenabled transitions the process remains in the same state. Evaluation of a guard, taking astate transition and executing its associated actions constitute a single atomic event.A message consists of a message type and one or more parameters. m(p1; : : : ; pn) denotes amessage of type m with parameters p1 through pn. The sending of this message is denoted by!!m(p1; : : : ; pn). At execution of the send statement by process p, say, the message is bu�eredinstantaneously at each process except p. Since broadcasting is asynchronous, execution of!!m(: : :) is never delayed due to unreadiness of a receiving process. (Notice that this meansthat a process must always be able to bu�er a message received via the network.) Execution of??m(: : :) by a process delays that process until a message of typem is delivered. Messages sentby !!m(: : :) can be received only by ??m(: : :), so corresponding input and output actions musta�ect the same message type and the same number of parameters (and the same parametertypes). Communications can be viewed as (possibly delayed) distributed assignments, that is,7

for processes p and q, variables xi and expressions Ei (0<i�n) execution of !!m(E1; : : : ; En)in p and ??m(x1; : : : ; xn) in q establishes the multiple assignment x1; : : : ; xn := E1; : : : ; En (inq).Guards are boolean expressions. We allow receive actions to appear in guards. This part ofa guard is true only when execution of the receive action causes no delay, that is, when thecorresponding message is at the head of the process' bu�er. An absent guard denotes a guardthat is always true.When in a certain state a message type is received for which no corresponding transition ispresent this is considered to be an error. This situation is called unspeci�ed reception andleads to a deadlock of the system.A process consists of a bu�er process taking care of bu�ering messages received via thecommunication network, and a `main' process. The bu�er processes are left implicit|theyoperate according to the �rst-in �rst-out principle, and are at any moment of time ready toaccept an input of the network and to o�er an earlier received message to the main process.A main process is denoted by a FSM and the co-operation of these processes is considered tobe the parallel composition of these FSMs. The reader should bear in mind that all processesin our system are equivalent (apart from their identity). Thus the system is the parallelcomposition of a number of equivalent FSMs. The individual FSMs co-operate by exchangingmessages in the way described above. The parallel composition is based on a fair interleavingsemantics where each process gets its turn in�nitely often. Furthermore, a transition has tobe taken eventually when it is continuously enabled (`weak fairness' [MP92]).3.1.3 Introduction to Temporal LogicFor our formulation of the requirements of our protocol and the subsequent veri�cation thatour protocol meets these requirements we use a �rst-order temporal logic based on the tempo-ral operators U and S (see also [MP92]). An extensive introduction to the use of temporallogic for communication protocols can be found in [Got92].A temporal formula is constructed from predicates, boolean operators (such as : and ^) andtemporal operators like 2 (pronounce `always'), 3 (`eventually'), U (`until'), W (`unless'),� (`next'), (`always in the past'), (`some time in the past'), S (`since') and J (`just').Let ' and be arbitrary temporal formulas. We consider the future (and the past) in astrict sense, that is, the current moment is excluded. Informally speaking, 2' means that 'will be true at every moment in the future. 3' means that ' will be true at some momentin the future, and ' U means that will become true eventually and that ' will be truecontinuously until that moment. 'W means that either ' holds inde�nitely or ' U holds (weak until). �' means that ' holds at the next moment in time (our time domain isdiscrete since we use sequences, see below). The temporal operators which refer to the pastare informally de�ned as follows. ' means that ' has been true at every moment in thepast, ' means that ' has been true at some moment in the past, and �nally, ' S meansthat has been true at some moment in the past and that ' has been true continuouslysince that moment. J ' means that ' has just become true. At each moment of time thepredicate true holds. Predicate false equivales : true.The formal semantics of our form of temporal logic is de�ned by interpreting temporal for-8

mulas in a model. We consider a (possibly in�nite) sequence s of states (s0; s1; : : : ; sn; : : :)starting from the initial state s0. A model is a sequence s together with a valuation functionV assigning a subset of states to each predicate (giving the states in which the predicate istrue). Given a model (s; V), the meaning of temporal formulas is de�ned by a satisfactionrelation (denoted by j=) between the model and the current state (represented by its numberin s), and a temporal formula. This satisfaction relation holds if and only if the formulais true in that state in that model. For s=(s0; s1; : : : ; sn; : : :) and '; arbitrary temporalformulas, j= is de�ned as follows:s; V; n j= P i� sn 2 V (P) for each predicate Ps; V; n j= :' i� s; V; n 6j= 's; V; n j= '^ i� s; V; n j= ' and s; V; n j= s; V; n j= ' U i� there exists m > n such that s; V;m j= ands; V; i j= ' for all i with n < i < ms; V; n j= ' S i� there exists m with 0 � m < n such that s; V;m j= ands; V; i j= ' for all i with m < i < n .In our requirements (section 3.2.1 below) and our veri�cation (section 4), all formulas shouldbe interpreted to hold for all states (i.e. 8n : n�0). The semantics of the remaining temporaloperators can now be de�ned for arbitrary ' and as follows:3' � true U '2' � :3 :'�' � false U ''W � 2' _ ' U ' � true S '' � : :'J ' � ' ^ :' S :' .Predicate I characterizes the initial state (i.e., n=0) and is equivalent to : (true S true).As usual the unary operators bind stronger than the binary ones. The temporal operatorsS , U , and W bind equally strong and take precedence over ^ , _ , and) .) bindsweaker than ^ and _ , and ^ and _ bind equally strong.3.2 A First Stepping StoneIn this section we design a leader election protocol assuming that a leader process is presentinitially and processes do not crash. We start by de�ning the precise requirements of theproblem.3.2.1 Requirements in Temporal LogicThe formulation of the requirements is as abstract as possible, that is, without reference toa possible protocol. In particular we refrain from mentioning certain states of the protocol.We only use a predicate leader(i) which represents the fact that the process with identity iis the current leader. This identity i is part of a countable set Id totally ordered by <. Weuse i; j; k to denote elements of Id. 9

In our requirements we use quanti�cation over Id. We stress that this quanti�cation shouldbe interpreted in a restricted way in the sense that not all identi�cations are involved inthis quanti�cation (the whole set Id) but only those identi�cations corresponding to theprocesses actually participating at that moment (so, always a �nite subset of Id). We couldhave made this explicit by introducing an auxiliary predicate participating and replacingevery universal quanti�cation (8 i :: : : :) by (8 i : participating(i) : : : :) and replacing everyexistential quanti�cation (9 i :: : : :) by (9 i : participating(i) : : : :). For ease of notation wehave left this intended form of quanti�cation implicit.The requirements for the protocol are as follows. The most basic requirement states thatthere must always be at most one leader (since a change of leadership may take some timethere can be temporarily no leader at all).P1 : (9 i :: leader(i)) (8 j : i 6= j : : leader(j))) .If we just take the above requirement we can easily devise a protocol by just not electing aleader at all. We should also state that there will be `enough' leaders in due time. Becausewe are working in a framework using a qualitative notion of time this should be formulatedby the liveness requirement below that there will be in�nitely often a leader (this does notimply that there will be in�nitely many leaders).P2 : 3 (9 i :: leader(i)) .The last two requirements make sense of the order < on Id. The idea is that processes witha higher identity have priority in being elected as leader over processes with a lower identity.P3 states that a leader in the presence of a process with a higher identity will capitulateeventually (we do not state anything about the possible future leadership of this `better'process)1.P3 : (8 i :: leader(i) ^ (9 j : i < j : : leader(j))) 3 : leader(i)) .The last requirement states that the next leader will be an improvement over the previousone (i.e., will have a higher identity).P4 : (8 i; j :: leader(i) ^ � : leader(i)^ (8k :: : leader(k)) U leader(j)) i < j) ,where we refer to the last moment of leadership of process i (�rst two conjuncts in premise)and the moment of succession of process j (third conjunct).The last two requirements impose constraints on the capitulation of a leader process and theordering of its successor. Note that P4 implies that a process that capitulates once, will notbecome a leader any more.3.2.2 A First ProtocolIn this section we construct a LE protocol starting from requirements P1 through P4. To keepthe design manageable it is assumed that a leader is present initially and all other processesare `asleep'.1Note that the assumption that j is no leader is superuous in light of P1. We have added this assumptionbecause we think the formulation of P3 is more clear in this way.10

Each process has a �xed unique identity. Initially processes only have their own identity attheir disposal (my id) and have no knowledge of other processes' identities. The processesthat do not yet take part in the election decide |non-deterministically| whether to join theelection or not. Thus, a subset of all processes actually takes part in the election.Initially a process does not know the identity of the leader, and, consequently it can notdecide whether it becomes a leader or not. Once the identity of the leader is known there aretwo possible outcomes: the process should become (the new) leader or not. From the abovewe conclude that a process may be in one of the following possible states: candidate, when itdoes not yet know whether it will become a leader or not, leader when it actually is a leader,and failed when it is defeated. A process starts in the start state.Once a process joins the election, that is, when it becomes a candidate, it transmits itsidentity my id by means of an I(my id) (Identify) message. On receipt of an identity aleader compares this identity with its own identity. In case the received id is larger than itsown id the leader moves to the failed state (there is a `better' process), and gives the candidatethe right of succession by transmitting the candidate's id with an R-message (Response). Inthe other case, the leader remains leader and transmits its own id using R(my id). Theactions of a candidate on receipt of an identity follow quite straightforward|when it receivesan R-message with its own id it becomes a leader, when it receives an R-message with a largerid it becomes failed, and otherwise it remains a candidate.There is however a little aw in the above informally described protocol: when two (or more)processes are in the candidate state and one of them causes the leader to capitulate (i.e., tobecome failed) the rest of the candidates may not receive a response of the leader, remainingcandidate forever. This problem is resolved by letting a candidate (re-)transmit its own idon receipt of an R(id) message with id<my id. We thus obtain the following protocol (seeFigure 1).Some notational remarks are in order. States are represented by rounded boxes and transitionsare denoted by arrows. The operator & should be read as \such that". Transition labelsconsist of an optional guard and an optional set of actions separated by a horizontal straightline. The initial state is indicated by having a grey color.Notice that we deliberately have chosen to permit the leader process only to deal with suc-cession inquiries. This is accomplished by distinguishing between messages originated by theleader and those originated by candidates. When both the leader and candidates transmittheir identities by the same message type one should realize that candidates may force othercandidates to become failed which may cause violation of P2. This can be seen as follows.Consider the following scenario of three processes, p, q, and r, one of which is a leader, r,say. Assume p and q do not take part in the election yet. Let p>q>r. Suppose q joins theelection by transmitting its identity. Since p is still in the start state it ignores q's id. Beforer reacts on the receipt of q's id, p joins the election and transmits its id. This will force qto become failed. As r capitulates (due to q's id received earlier) and as q will not becomeits successor (due to p's id) no process is able to grant p the right of succession, and, conse-quently, no leader process will ever be elected. The problem is that a candidate may not onlybe forced to become failed by the leader process, but also by other candidates. Therefore, wedistinguish between id's originating from candidates and those submitted by leader processes.Candidates become either failed or leader only on receipt of messages from leaders and theyignore others. In the above example q will thus not become failed on receipt of p's id.11

Start

Candidate

Failed Leader

??I(id) & id < my_id

!!R(my_id)

??I(id) & id > my_id

!!R(id)

??R(id) & id > my_id

??I(id)______

!!I(my_id)

??R(id) & id < my_id

Start??R(id)_______

??I(id)______

??I(id)______

??R(my_id)__________

!!I(my_id)

??R(id)_______ _________________

Figure 1: Finite state machine diagram of Protocol 1.3.3 A Symmetric LE ProtocolWe now drop the unnatural assumption of a leader being present initially. In this section wedesign a LE protocol starting from the previous protocol in case no leader may be presentinitially. As in the previous section processes are considered to be perfect and the protocolhas to be consistent with respect to requirements P1 through P4.Let us �rst remark that in the current setting Protocol 1 does not su�ce as it does not satisfyP2|no leader will ever be present in case a leader is absent initially. The problem now isthat a candidate must be able to detect the absence of a leader.A straightforward approach to detect the absence of a leader is to equip each process witha timer process and to detect the absence of a leader by means of a timeout mechanism. Atimer is started by the start-timer action. A timeout is modeled as an ordinary action andmay be used as (part of) a guard. In contrast to ordinary guards, timeout actions can beused to detect the establishment of a global condition in a protocol. They are abstract in thesense that they do not describe how the occurrence of this global condition can be detectedusing a kind of clock mechanism. A similar treatment of timeout actions is recently given in[Gou93].The idea now is that a process starts its timer when it becomes a candidate. When receivinga response of the leader on its initial I(my id) message the timer plays no role and the processprogresses as in the �rst protocol. In absence of a response of a leader, the candidate goesto the leader state at the occurrence of a timeout. Thus, a timeout guard must be disabledin case a leader is present. This leader process might be the leader at the start of the timer,but might also be a `fresh' one. Therefore, a timeout guard is de�ned to be true (the timerexpires) only when a process has received and processed all responses to its message sentat starting the timer. This timeout mechanism is usually called non-premature. A precise12

characterization of the timeout mechanism is given in section 4. We thus obtain the protocolas depicted in Figure 2(a).Recall that the reason for introducing two di�erent messages types to exchange identitiesin Protocol 1 was to avoid the violation of P2. We observe that |due to the timeoutmechanism| this problem does no longer occur. Therefore, there is no objection againstreplacing the response messages by I-messages. This results in the protocol as depicted inFigure 2(b). As a consequence, candidates can now be forced to become failed by receivingmessages from other candidates. In Protocol 1 a candidate only reacts to messages sent bythe leader.
timeout_______

Start

Candidate

Failed Leader

??I(id) & id < my_id

!!R(my_id)

??I(id) & id > my_id

!!R(id)

??R(id) & id > my_id

??I(id)______

??R(id) & id < my_id

Start??R(id)_______

??I(id)______

??I(id)______

??R(my_id)__________

!!I(my_id)

??R(id)_______ _________________

timeout_______

Start

Candidate

Failed Leader

??I(id) & id < my_id

!!I(my_id)

??I(id) & id > my_id

!!I(id)

??I(id) & id > my_id

??I(id)______

!!I(my_id) ; start_timer

??I(id) & id < my_id

Start

??I(my_id)__________

!!I(my_id)

??I(id)_______ _________________

!!I(my_id) ; start_timer

!!I(my_id) ; start_timer

(a) (b)Figure 2: Finite state machine diagrams of two derivates of Protocol 1.Some signi�cant simpli�cations to the latter protocol can be made. Observe that there aretwo possible transitions from the candidate state to the leader state, one of which may takeplace when no leader is present (labelled with a timeout guard). The other transition isenabled on receipt of an I(my id) message which is only sent when a leader capitulates. It isnot hard to see that the protocol's correctness is not a�ected by the removal of this messagetransmission. So, in that case a leader moves without any noti�cation to the failed state onreceipt of a larger id than its id. This implies that one of the transitions to the leader statewill never be enabled and, hence, may safely be eliminated. Thus we obtain the protocoldepicted in Figure 3, referred to as \Protocol 2".3.4 A Fault-Tolerant LE ProtocolIn this section we drop the assumption of perfect processes and revise our earlier designsby considering processes that cease participation without notifying other processes. Afterhalting a process does not behave maliciously. This kind of failures is known as crash faults(see e.g. [Fis91]). Crashed processes may recover and (re-)join at any time. It is assumedthat recovered processes restart in the start state. This should not be confused with \self-stabilizing" systems [Dij74, Sch93] where processes may recover in any state. The number of13

timeout_______

Start

Candidate

Failed Leader

??I(id) & id < my_id

!!I(my_id)

??I(id) & id > my_id

??I(id) & id > my_id

??I(id)______

!!I(my_id) ; start_timer

??I(id) & id < my_id

Start

!!I(my_id)

??I(id)_______ _________________

!!I(my_id) ; start_timer

Figure 3: Finite state machine diagram of Protocol 2.times a process can crash or recover during an election is unlimited. A process cannot crashduring the execution of an atomic event.Recall the requirements as speci�ed in section 3.2.1. Since the assumptions about processbehaviour are now strongly modi�ed it needs to be checked whether the initial requirementsare still realistic. For instance, it is rather unrealistic to require P2 bearing in mind that allprocesses may crash eventually. We, therefore, �rst reformulate the requirements.3.4.1 Requirements RevisitedIt is still essential that at any moment of time there is at most one leader:Q1 : (9 i :: leader(i)) (8 j : i 6= j : : leader(j))) .In order to distinguish between our initial requirements P1 through P4 and the new ones welabel new requirements with Q. Again, all quanti�cations implicitly range over the processesactually participating at that moment|including crashed processes.As stated above, it is unrealistic to demand P2 since potentially all processes may fail. Wetherefore only claim P2 in case there exists a process at some time which will de�nitely notcrash from then on and for which all better processes have (and remain) crashed. Predicatedead(i) indicates the fact that process i has crashed. Formally,Q2 : 3 (9 i :: 2 (:dead(i) ^ (8 j : i < j : dead(j))))) 23 (9 i :: leader(i)) .Quite evidently, a crashed process can not act as a leader process (and vice versa).Q3 : (8 i :: : (leader(i) ^ dead(i))) .14

The next requirement addresses the question in what circumstances a leader capitulates.Well, a leader should be the process with the highest identity among all living participatingprocesses. This implies that a leader should capitulate as soon as there is some other (living)process which is an improvement. However, when this better process crashes the above claimis too strong. We, therefore, require the following weakened variant of P3:Q4 : (8 i; j :: leader(i) ^ : dead(j) ^ i < j) 3 : leader(i) _ 3 dead(j)) .When a leader capitulates this may be caused by either the crash of this process or the factthat there was a better (living) process. Formally,Q5 : (8 i :: J : leader(i)) dead(i) _ (9 j : i < j : : dead(j))) .Both Q4 and Q5 refer to the capitulation of a leader. It remains to require something aboutthe succession of leaders. Previously we required that leaders must be succeeded by betterones. This claim is still valid. However, it needs a more careful formulation, since, it isinvalid in case, for instance, a leader capitulates by crashing. It, therefore, seems reasonableto requireQ6 : (8 i; j :: leader(i) ^ � : leader(i)^ ((8 k :: : leader(k)) ^ : dead(i)) U leader(j)) i � j) .Informally formulated: given some leader process, i say, its immediate successor, process j, isnot less quali�ed than i provided that i does not crash in between the leaderships of i and j.Q6 thus claims nothing about the relation between a leader and its successor when the leadercrashes in the meanwhile. Furthermore, crashes of other processes do not have any inuence.Notice that a leader may be succeeded by itself as it may capitulate due to the presence of abetter candidate that crashes before becoming a leader.We may consider Q2 and Q4 as weakened variants of P2 and P3 respectively. This weakeningis needed since we now allow crashes. The relationship between Q6 and P4 is more subtle.When processes may not crash Q6 boils down to the corresponding(8 i :: leader(i)) 2 (8 j :: leader(j)) i � j)) .This requirement, however, in the context of the previous protocols allows a leader to capit-ulate (in presence of a better candidate, cf. P3), become a leader again, capitulate (there isstill a better candidate), and so on, in a repetitive way. In case processes do not crash thisis |in our opinion| not desirable as no real progress is made: when a leader capitulatesdue to the presence of a better candidate one expects that at some time a new (and better)leader emerges. Therefore, P4 was introduced. For Protocol 3 this situation is di�erent aseach process, including candidates, may crash spontaneously. Thus a leader may capitulatebecause a better candidate is noticed, but before this candidate becomes a leader it crashes.Then it must be allowed that the capitulated leader becomes a leader again. This leads us toQ6.3.4.2 Design of a Fault-Tolerant ProtocolWe take the previous protocol as a starting point for our design of a fault-tolerant LE protocol.The crucial point now is that in absence of a leader after it crashes, a failed process might bea valid successor. 15

So as to involve failed processes in the election we consider two cases. First, to avoid acandidate to become a leader in case a leader crashed and a better failed process is present,failed processes become a candidate on receipt of an I-message with a smaller id than theirown id|thus joining the competition about the leadership and thus avoiding violation of Q4.Other I-messages are still ignored when being failed. It should be observed that this does notsu�ce in case a leader crashes, at least one failed process is present (that will never crash),and no candidate will ever appear. In this scenario no leader will ever be elected, althoughthere is some process that will never crash. This violates Q2. Therefore, we should have amechanism via which failed processes will rejoin the election in absence of a leader. Severaltechniques can be applied to accomplish this2. Here we abstract from a speci�c technique andmodel this by adding a transition labelled with an absent guard from failed to the candidatestate, such that a failed process may (re-)join the election spontaneously by identifying itselfand starting its timer3.
Start

Candidate

Failed Leader

??I(id) & id < my_id

!!I(my_id)

??I(id) & id > my_id

??I(id) & id > my_id

??I(id)

!!I(my_id) ;
start_timer

timeout

??I(id)
& id < my_id

!!I(my_id);

StartDead ______

??I(id) _______

??I(id) & id < my_id

!!I(my_id)

??I(id) & id > my_id_________________

start_timer

StartStartStart

start_timer
!!I(my_id) ;

Figure 4: Finite state machine diagram of Protocol 3.We model the fact that processes may crash at arbitrary times by a possible transition fromeach possible state to a new state, named dead state. We denote these transitions by dottedarrows. The di�erence between transitions represented by dotted, respectively solid, arrowsshould be interpreted as follows. In case of a dotted arrow the transition is always possible2For instance, a leader may transmit on a regular basis \I am here" messages and in absence of suchmessages a timeout could expire in a failed process, thus forcing it to become starting (or candidate). Anotherpossibility would be to let a failed process regularly check whether a leader is present (see e.g. [GZ86]).3It should be noted that we now have two transitions with equivalent actions, one of which has a true guardfrom the failed state to the candidate state. These transitions can not be combined into a single transition witha true guard as it would then be no longer guaranteed that this transition is made on receipt of an I-messagewith an identity larger than that of the recipient: a process may then perform the transition whenever it likes.16

(and hence can be non-deterministically chosen), but not necessary (that is, it can be ignoredinde�nitely). On the other hand, a solid arrow represents a necessary transition, that is, atransition that eventually has to be taken whenever it is continuously enabled. Representingcrash transitions by solid arrows would imply that all processes crash eventually which israther unnatural. The dotted arrows and solid arrows are similar to the modal relations�!3 , respectively �!2 of modal transition systems (see e.g. [LT88]).Similarly, the fact that processes may recover spontaneously after crashing is modeled by a(dotted) transition from the dead to the start state. This yields the protocol depicted inFigure 4, called \Protocol 3". For the sake of brevity, transition labels are omitted whenboth its associated guard and set of actions are absent.3.5 Complexity Analysis of the Protocols3.5.1 IntroductionMuch work has been devoted in literature on designing e�cient LE protocols. In general, thefollowing complexity measures are considered: message complexity (the number of messagesneeded to elect a leader), time complexity (the number of time units needed to elect a leader)and bit complexity (the number of bits in a message). The bit complexity of all presentedprotocols is O(logN), where N is the total number of processes. For Protocol 1 we remarkthat the time complexity is equal to the message complexity.In this section we analyze the worst case message complexity of our protocols. In our protocolsall messages are broadcasted, so each message is received by all processes (except the sender).In a dynamic broadcast protocol, with processes starting up during protocol execution, eachprocess at least has to send one (initial) message to the other processes so as to present itself,so the message complexity is at least O(N). Due to the dynamic character of the protocoleach message needs an answer. If each process answers each message that has been receivedso far by sending a new message, we may expect a worst case message complexity exponentialto N .3.5.2 Complexity of Protocol 1The following theorem holds for the message complexity of Protocol 1, where MCq1(N; i)represents the number of messages sent by N processes participating in the election, processi being the initial leader. For reasons of simplicity an identity is represented by a positivenatural number.Theorem 3.1 MCq1(N; i) = 12N2 + 12N � 12i2 + 32i� 2.Proof: Each process that becomes a candidate sends an initial I-message. For all processesk with k<i this message will be answered by a message R(m) with m>k, which will bringprocess k to the failed state. From this state no messages are sent, so these i�1 processeseach contribute 1 message to MCq1 (N; i). In the worst case scenario process i sends i�1R-messages in reaction on these I-messages.In the worst case scenario all processes k with k>i send their initial I-message, with I(i+1)�rst, and become candidate before the initial leader replies with its (�nal) message R(i+1).17

Thus process i+1 becomes the new leader. But R(i+1) also evokes an I-message from allcandidate processes with an id greater than i+1. If these messages are sent with I(i+2) �rst,the whole story repeats itself, until �nally process N becomes leader. In each \round" thenumber of participants is reduced by one and the number of reactions on an R-message ismaximal. So the scenario described above indeed is the worst case.Process k (i<k�N) receives k�1 R-messages before it becomes leader. The ids of the �rstk�2 R-messages are smaller than k, so k�2 times an I(k)-message is sent from the candidatestate. The id of the last R-message is equal to k, which makes k the new leader. All processes,except the �nal leader, will send an R-message when they capitulate. Together with the initialI-message this leads to a total number of k transmitted messages for processes i<k<N andN�1 transmitted messages for process N .The total number of messages for all processes now becomesMCq1(N; i) = (Pi�1k=1 1) + i+ (PNk=i+1 k)� 1 = 12N2 + 12N � 12i2 + 32i� 2 2One can easily infer that the worst case message complexity is reached for i=1 or i=2 and isequal to 12N2+ 12N�1. Contrary, if process N is the initial leader we getMCq1 (N;N) = 2N�2.So, in that case the message complexity reduces to O(N). Figure 5 illustrates the worst casebehaviour of Protocol 1 for N = 4; i = 1. Each I-message and R-message is subscripted witheither an i (initial message) or a number k, indicating that this message is a reaction on thek-th message transmitted so far. We suppose that a local bu�er is empty at the moment theinitial message is sent.6Componentid
- Messages sent

4321 1 5 10 15I(2)i I(3)i I(4)i R(2)1 I(3)4 I(4)4 R(3)5 I(4)7 R(4)8
Figure 5: Worst case behaviour of Protocol 1 with queueing.The message complexity of O(N2) can be improved signi�cantly by the idea of `smart' bu�er-ing. According to this principle messages are bu�ered depending on their parameter: at eachmoment of time a process bu�er only contains the I-message with the largest id received uponthen, but not processed until so far. In this way a bu�er contains at most one I-message at atime. Adopting this tricky bu�ering mechanism to Protocol 1, reduces the message complexityto O(N), independent of the initial leader:Theorem 3.2 MCs1(N) = 2N � 2.Proof: Bu�ering of several initial I-messages now leads to a single R-message to the processwith the highest id, which makes this process the new leader and forces the other processesto the failed state. Worst case protocol behaviour is now observed if each initial message isseparately answered by an R-message. It does not matter which process is the initial leader or18

in which order the processes send their initial I-message. So, in the worst case 2(N�1)=2N�2messages are needed. 2Figure 6 shows this worst case behaviour, with the component with the highest id as theinitial leader.6Componentid
- Messages sent

4321 1 5 10 15I(1)i R(4)1 I(2)i R(4)3 I(3)i R(4)5
Figure 6: Worst case behaviour of Protocol 1 with smart bu�ering.3.5.3 Complexity of Protocol 2Compared to Protocol 1 we may expect a worse message complexity, because in the candidatestate each reception of an I-message with a lower id evokes the transmission of a new I-message. In Protocol 1 only the reception of an R-message evoked a new message in thecandidate state.We assume that all processes are in the start state. The worst case message complexity ofthis protocol is observed when all processes send their initial I-message within a short timeinterval. To put it in a more quantitative way: all participating processes send their initialI-message within a time interval that is smaller than the timeout interval of a timer in thecandidate state. We will also suppose that a process starts with an empty local bu�er, localhistory begins at the moment the initial I-message is sent.Figure 7 shows the worst case behaviour of Protocol 2 for N=4.6Componentid

- Messages sent
4321 1 5 10 15

I(4)i I(3)i I(2)i I(1)i I(2)4 I(3)3 I(3)4 I(3)5 I(4)2 I(4)3 I(4)4 I(4)5 I(4)6 I(4)7 I(4)8
Figure 7: Worst case behaviour of Protocol 2 with simple bu�ering.With simple bu�ering (queueing of all incoming messages) we obtain a complexity exponentialto N , whereas for smart bu�ering this reduces to O(N). This is stated in the following19

theorems.Theorem 3.3 MCq2(N) = 2N � 1.Proof: By induction on N . If N=1 only one initial message is sent, so MCq2 (1) = 1. Nowsuppose MCq2(N � 1) = 2N�1 � 1. In the worst case scenario initial I-messages are sent inorder of decreasing ids. After the transmission of its initial message process N will �rst bu�erthe other N�1 initial messages and all replies from processes 2 : : : N�1 before it replies bysending an I-message to each of them separately. So we get MCq2(N) = 2MCq2(N�1)+1 =2(2N�1�1)+1 = 2N�1. 2Theorem 3.4 MCs2(N) = 2N � 1.Proof: Each process transmits an initial I-message. In the worst case all processes exceptthe future leader will have to be brought to the failed state by a separate I-message from aprocess with a higher id. So N +N � 1 = 2N � 1 messages are needed. 2Figure 8 shows a worst case behaviour of Protocol 2 with smart bu�ering for 4 components.6Componentid
- Messages sent

4321 1 5 10 15
I(4)i I(3)i I(2)i I(1)i I(2)4 I(3)5 I(4)6

Figure 8: Worst case behaviour of Protocol 2 with smart bu�ering.3.5.4 Complexity of Protocol 3First we consider an election without crashing processes. With `simple' bu�ering, the worstcase message complexity of Protocol 3 is the same as for Protocol 2. With smart bu�eringthe message complexity increases to O(N2). This is stated in the following theorems.Theorem 3.5 MCq3(N) = 2N � 1.Proof: See Protocol 2. Compared to Protocol 2, there are more situations in which the worstcase behaviour occurs. A process that wakes up from the failed state may evoke messagesfrom processes with a higher id. 2Theorem 3.6 MCs3(N) = 12N2 + 12N .Proof: An initial I-message from a process with a lower id causes a transition from the failedstate to the candidate state for a process with a higher id. This transition is accompanied20

by the transmission of an I-message. If a leader with a higher id is already present, an extramessage is needed to put the process back to the failed state again. This leads to a worstcase message complexity of PNi=1 i = 12N2 + 12N . 2Figure 9 shows an example of the worst case behaviour of Protocol 3 with 4 componentsinitially in the start state.6Componentid
- Messages sent

4321 1 5 10 15
I(4)i I(3)i I(4)2 I(2)i I(3)4 I(4)5 I(1)i I(2)7 I(3)8 I(4)9

Figure 9: Worst case behaviour of Protocol 3 with smart bu�ering.Finally we analyze the complexity in case K processes crash (0�K<N). Many complexscenarios are possible, dependent on what moment during an election a process crashes. Forsimplicity, we assume that crashed processes do not recover and failed processes only returnspontaneously to the candidate state when a leader is actually absent. The worst case scenariooccurs when K processes crash after the initial election has been completed (i.e., process Nis leader and all other processes are failed).Protocol bu�er MC1 queue 12N(N + 1) � 11 smart 2N � 22 queue 2N � 12 smart 2N � 13 queue 2N � 13 smart 12N(N + 1)Table 1: Overview of worst case message complexities of all protocols.The worst case message complexity involving the crash of K out of N participating processesis given byTheorem 3.7 MCc3(N;K) = 16K3 � 12NK2 + (12N2 � 16)K.Proof: The worst case scenario is as follows: the leader (process N) crashes, and failedprocesses become candidate in decreasing order of ids. This leads to a new election withN�1 processes. From Theorem 3.6 we know that this requires PN�1i=1 i messages. If thisscenario is repeated for the subsequent crashes of processes N�1; N�2; : : : ; N�K+1, we get21

MCc3(N;K) = PKk=1(PN�ki=1 i). Elimination of the sum constructs leads to the result statedabove. 2The results of this section are summarized in Table 1.

22

4 Veri�cation by Temporal Logic4.1 IntroductionIn the previous section we informally motivated our design decisions. In this section weformally prove that the protocols designed in section 3 satisfy their requirements. That is, weprove that Protocols 1 and 2 satisfy requirements P1 through P4 and Protocol 3 satis�es Q1through Q6. We, furthermore, prove that for all three protocols unspeci�ed receptions cannotoccur. We stress that we do not intend to give a completely formalized proof. Such a proofis well possible, but however, requires a formalization of the assumptions, a transformationof the protocols to our proof formalism (temporal logic), and so on, which would make theproofs too much involved. We, therefore, con�ne ourselves to presenting only the main ideasof the proof.In the rest of this section we use the following notations and conventions. The fact of beinga leader, that is leader(i), is identi�ed with the fact that process i is in the leader state. Todistinguish between the conceptual state of being a leader and the internal protocol states, Liis used to denote that i is in the leader state of the protocol. Similarly, predicates Si, Ci, Di,and Fi denote that process i is in the start, candidate, dead or failed state, respectively. Thelocal bu�er of process i is symbolized by Qi. Assertion sendi(m(p1; : : : ; pn)) is true (in somestate of the state sequence) only when process i executes !!m(p1; : : : ; pn) at leaving that state.Similarly, assertion rcvi(m(p1; : : : ; pn)) is true if and only if guard ??m(p1; : : : ; pn) evaluatesto true and the corresponding transition is taken.We �rst formally de�ne some relevant assumptions about the broadcast mechanism. Let m,m1, and m2 be unique messages, that is, both their originator and moment of origination areunique. (It has been shown in [Koy89] that messages need to be uniquely identi�able so asto specify communication mechanisms in temporal logic by axioms like those below.)Assumption 4.1(8 i :: sendi(m)) (8 j : i 6= j : 3rcvj(m))) .Assumption 4.2(8 i :: rcvi(m)) (9 j : i 6= j : sendj(m))) .Assumption 4.3(8 i; j :: sendi(m1) ^ 3 sendj(m2)) (8 k : k 6= i^k 6= j : 3 (rcvk(m1) ^ 3rcvk(m2)))) .Assumption 4.1 states that messages are not lost by the communication network, 4.2 phrasesthat messages are not spontaneously generated by the network, and 4.3 expresses that thenetwork is order-preserving. Observe that it immediately follows from 4.2 that a process doesnot receive its own transmitted messages. That is, for all messages mProperty 4.4(8 i :: rcvi(m)) : sendi(m)) . 23

4.2 Veri�cation of Protocol 1We now start with the proof of the correctness of Protocol 1. We deal with the requirementsone by one. As P4, stating that successive leaders are `better', is the crux to the proofs of P2and P3, we present the proof of P4 after the proof of P1. The �rst proof obligation is:P1 : (9 i :: Li) (8 j : i 6= j : :Lj)) .De�ne predicate Q as follows:Q � Nl +Nr � 1 ,where Nl is de�ned by (# i :: Li) and Nr equals (# i :: R(i) 2 Qi). # denotes `number of'.By de�nition, 0�Nr and 0�Nl. It immediately follows Q) P1.Initially we have assumedAssumption 4.5I) (Nl = 1 ^ (8 i :: Qi = empty)) ,which implies that Q holds initially. The rest of the proof concentrates on establishingLemma 4.6Q) 2Q .From this lemma we may then conclude P1.Proof: Assume Q holds. By de�nition Q can only be falsi�ed when either Nl or Nr (orboth) increases. We consider an increase of either Nl or Nr by one. Later on we show thatconsidering these cases su�ces.Consider an increase of Nr by 1. So there is one process, j say, that bu�ers an R(j) message.We infer from the protocol description that only a leader process can transmit R-messages:Property 4.7(8 i; j :: sendi(R(j))) Li) .According to our de�nition of broadcasting a sender does not receive its own messages. So,for process j to bu�er R(j), there must be another process, i say, which has transmitted thismessage, and consequently (according to 4.7) Li holds at transmitting it. A leader i onlytransmits R(j) (j 6=i) when it capitulates:Property 4.8(8 i; j : i 6= j : sendi(R(j))) 2Fi) .Consequently, a leader transmits only once such a message. From the above, we may nowconclude that whenever Nr is increased by one, Nl must be decreased by one.24

Now consider an increase of Nl by one. By a similar reasoning as above we prove that thismust be accompanied by a decrease of Nr by one. First, it can be inferred from the protocoldescription that process i can only become a leader after receipt of message R(i). This canbe formalized as followsProperty 4.9(8 i :: :Li ^ 2 :rcvi(R(i))) 2 :Li) .Furthermore it is quite evident that process i can only perform rcvi(m), for some messagetype m, by extracting m from Qi,Property 4.10(8 i :: rcvi(m)) m 62 Qi) .Considering R-messages the above implies that Nl can only be increased by one after adecrease of Nr by one.Since an increase of Nl (Nr) by one is coupled by a decrease of Nr (Nl) by one it follows|given that 0 � Nl; Nr � 1| that considering the above two cases su�ces.(End of proof P1.)P4 : (8 i; j :: Li ^ � :Li ^ (8k :: :Lk) U Lj) i < j) .Proof: When a leader never capitulates P4 holds trivially. Consider the case that at sometime a leader will capitulate. Assume Li ^ � :Li ^ (8 k :: :Lk) U Lj . According to 4.9 jmay only become a leader after receipt of R(j). Moreover, R-messages are only transmittedby leader processes (see 4.7). The idea now is to show that process i must have transmittedR(j), and i6=j. From the protocol description i<j may then be concluded, due toProperty 4.11(8 i; j : i 6= j : sendi(R(j))) i < j) .The proof of P4 is as follows. It can easily be veri�ed that i6=j since we have from the protocoldescriptionProperty 4.12(8 i :: Li ^ � :Li) � Fi) ,Property 4.13(8 i :: Fi) 2Fi) ,from which it immediately follows 25

Lemma 4.14(8 i :: Li ^ � :Li) 2 :Li) .Furthermore, from the invariance of Q (see proof P1) we haveLi) :Lj ^ (8 k :: R(k) 62 Qk) .So, either process i or some successor of imust have transmittedR(j). Since j is the immediatesuccessor of i, i must have sent R(j), and thus (see 4.11) i<j.(End of Proof P4.)P2 : 3 (9 i :: Li) .Proof: Since initially there is one leader process P2 holds trivially when a leader nevercapitulates. Therefore consider the case when at some time a leader capitulates. From theprotocol it immediately follows that a leader i transmits R(j) at capitulation (see 4.8). Weprove that once R(j) is transmitted j will become a leader sooner or later. Formally:Lemma 4.15(8 j :: R(j) 2 Qj) 3Lj) .We have from the protocolProperty 4.16(8 j :: Cj ^ rcvj(R(j))) � Lj) .Informally, a candidate j becomes a leader once it receives an R(j) message. By provingLemma 4.17(8 j :: R(j) 2 Qj) 3 (Cj ^ rcvj(R(j)))) ,we may |using 4.16 ^ 4.17) 4.15| conclude 4.15. Since transmitted messages are alwaysreceived and processed at some time (see 4.1) we concentrate on proving that Cj holds onprocessing R(j). We have that a leader i only transmits R(j) after receipt of an I(j) messagewith i<j. Or,Property 4.18(8 i; j :: 2 : (rcvi(I(j)) ^ i < j)) 2 : sendi(R(j))) .Besides, only candidate and start processes may transmit I-messages.Property 4.19(8 j :: sendj(I(j))) Cj _ Sj) . 26

After sending I(j) a start process j becomes a candidate immediately,Property 4.20(8 j :: Sj ^ sendi(I(i))) � Cj) .A stronger variant of lemma 4.17 is now proven. A process j that receives R(j) at some timeremains candidate from sending I(j) until receipt of R(j). Formally,Lemma 4.21(8 j :: sendj(I(j)) ^ 3rcvj(R(j))) Cj U rcvj(R(j))) .From the protocol we have that a candidate j only leaves the candidate state after receivingR(i) with j�i.Property 4.22(8 j :: Cj ^ 2 : (9 i : j � i : rcvj(R(i)))) 2Cj) .We now proveLemma 4.23(8 j :: 3rcvj(R(j))) : (9 k : j � k : rcvj(R(k))) U rcvj(R(j))) .By contradiction. Assume that process j receives R(k) (j�k) before receiving R(j). This isimpossible due to the following lemma.Lemma 4.24(8 i; j; k :: rcvj(R(i)) ^ 3rcvj(R(k))) (j = i) i < k ^ j 6= i) i � k)) .It immediately follows that 4.24 implies 4.23. Informally, process j receives at most onceR(j), and moreover, for any process the parameters of received R-messages form an ascendingsequence. Lemma 4.24 can be proven as follows. It is already stated before that only leaderstransmit R-messages (see 4.7). A leader i transmits zero or more times R(i) followed by(at most) one time R(j) (i<j). So, a single leader generates an ascending sequence of R-messages. From P1 it follows that there is at most one leader at a time. We know fromP4 that subsequent leaders are increasing|leaders become `better'. We may now concludelemma 4.24 since processes do not receive their own transmitted messages (property 4.4).(End of Proof P2.)P3 : (8 i :: Li ^ (9 j : i < j : :Lj)) 3 :Li) .Proof: The remaining requirement to be proven is P3. The idea is to reformulate P3 in termsof internal states of the protocol, using :Lj � Sj _ Cj _ Fj. Since failed processes remainfailed inde�nitely once they become failed (see property 4.13), and since failed processes are`less' than leaders 27

Lemma 4.25(8 i; j :: Li ^ Fj) i > j) ,we do not have to consider failed processes. Of course it remains to prove lemma 4.25. Thereare only two possible transitions by which a process can become failedProperty 4.26(8 j :: �J Fj) (Lj ^ (9 k : j < k : rcvj(I(k))) _(Cj ^ (9k : j < k : rcvj(R(k)))) .Property 4.26 follows directly from the protocol description. Now consider each transition inisolation. In case Lj ^ � Fj lemma 4.25 follows directly from the fact that, according to P4,subsequent leaders will be better. In the other case j becomes failed on receipt of R(k), k>j.From this reception we know that R(k) is transmitted some time ago (see 4.2). From lemma4.15 we infer that k has (or will) become a leader. In case it has been or still is a leader 4.25follows immediately from P4. From the invariance of Q (see proof of P1) and lemma 4.15 wededuce thatLemma 4.27(8k :: R(k) 2 Qk) : (9 i :: Li) U Lk) .In case k is not yet a leader this lemma implies that it will be the next leader, from which|again using P4| lemma 4.25 can be inferred. This concludes the proof of lemma 4.25.We now continue the proof of P3. According to the fair semantics of transitions each processin the start state will become a candidate eventually. Or,Property 4.28(8 i :: Si) 3Ci) .Therefore, it is su�cient to consider the following variant of P3:Lemma 4.29(8 i :: Li ^ (9 j : i < j : Cj)) 3 :Li) .The proof of lemma 4.29 is as follows. We haveProperty 4.30(8 i :: Si) :Ci U sendi(I(i))) .That is, a process transmits an I(i) message before becoming a candidate. The crucialproperty now isLemma 4.31(8 i :: Li ^ (9 j : i < j : Cj)) 3 (9 k : i < k : rcvi(I(k)))) ,28

and since a leader process i capitulates as soon as it receives I(k) (i<k) (see properties 4.8and 4.18) we may conclude from lemmata 4.29 and 4.31 that P3 holds.It remains, of course, to establish lemma 4.31. Assume Li ^ (9 j : i<j : Cj). For i the initialleader the lemma follows quite straightforward. Let i not be the initial leader. Then i hasbecome a leader on receipt of R(i) (see property 4.9). Since messages are broadcasted and jhas not itself transmitted R(i), due toProperty 4.32(8 i :: Li) 2 :Ci) ,j must have received R(i) (cf. assumption 4.1). Now we have two possibilities, either Sj orCj holds on receipt of R(i). In both cases j transmits I(j) eventually: in case of Sj to reachCj and in case of Cj as a reaction on the receipt of R(i). In both cases process i will processI(j) after it has processed R(i), so after i has become a leader.(End of Proof P3.)We have showed that the Protocol 1 satis�es P1 through P4, and, consequently, conformsto our requirements. Recall that unspeci�ed receptions lead to abnormal termination of theprotocol. So, our remaining proof obligation is to prove that unspeci�ed receptions can notoccur. For Protocol 1 this boils down to proving that a leader can not receive R-messages.This can easily be veri�ed using that only leader processes transmit R-messages (property4.7), that at most a single leader exists (P1), and the fact that processes do not receive theirown messages (property 4.4). This completes the proof of Protocol 1.4.3 Veri�cation of Protocol 2The purpose of this section is to prove that Protocol 2 satis�es requirements P1 through P4,and that no unspeci�ed receptions can occur. We take a similar approach as in the previoussection. As P4 is the crux of the proofs of both P2 and P3 (as in Protocol 1), its proof ispresented just after the proof of P1.4.3.1 Timeout SemanticsWe �rst introduce some additional notations. For some protocol state guard timeouti forprocess i evaluates to true whenever i's timeout occurs and the corresponding transition istaken. The semantics of the timeout mechanism were informally de�ned in section 3.3. Inorder to facilitate a formal proof we formalize this semantics. This formalization is essentialso as to prove the invariance of P1 through P4.We characterize in general terms, that is without reference to the protocol, a `non-premature'timeout in a broadcast network. A timer is started at the transmission of message m, say.This message has to be received (and processed) by all its recipients before the timer mayexpire. Formally, 29

Assumption 4.33(8 i :: sendi(mp)) :timeoutpi W (8 j : i 6= j : rcvj(mp))) ,where mp is a unique message. (It has been shown in [Koy89] that messages need to beuniquely identi�able in order to specify communication mechanisms in temporal logic byaxioms like 4.33. In this veri�cation we accomplish this by numbering of the messages bythe sender. From the context the dependence on the identi�cation of the sender is explicit,so for simplicity this dependence is omitted.) Strictly speaking, the timeout assertion isassociated to mp, and as mp is unique, the occurrence of the timeout is considered to beunique. When necessary this dependence on mp is explicitly indicated by referring to thenumber p of m. In the sequel we use p, q as numbers of messages. As, in general, it is notguaranteed that each process is capable of processing a message of type m in some state, weuse the W operator in stead of the U operator. In absence of unspeci�ed receptions |asin the presented protocols| we could equally well use the U operator.Now, however, a timeout may be enabled without forcing the originator of mp to receive andprocess all replies to mp. Let rmp;j be a reply to mp transmitted by process j. We thenadditionally requireAssumption 4.34(8 i :: timeoutpi) (8 j : i 6= j : rmp;j 62 Qi)) ,where it should be mentioned that processing a message and sending a reply to this messageis considered to constitute an atomic event4. For the protocol at hand we should substituteIp(i) and Iq(j) (i<j) for mp and rmp;j , respectively in 4.33 and 4.34.The formal semantics of a non-premature timeout in broadcasting networks is now de�nedby axioms 4.33 and 4.34. Summarizing, according to 4.33 all processes (except the sender)receive m, process this message and, if appropriate, send a reply. These replies are forced tobe received and processed by the originator of m as phrased by 4.34.4.3.2 Timeout PropertiesIn the previous section we characterized the non-premature timeout in a rather general con-text. For the protocol at hand we have some properties which hold for the timeout mechanism.These properties are directly derived from the protocol speci�cations. As they are frequentlyused in the veri�cation we treat them separately.The �rst property states that a timeout can only occur for candidate processes (and not inother states)Property 4.35(8 i :: timeouti) Ci) .4This implies that a process must reply immediately on processing of a message and is not allowed to waitarbitrarily long with replying. It can easily be veri�ed that the presented protocols conform to this principle.30

Another property which is used (implicitly) during the veri�cation is that a process is onlya candidate once. That is, once a process has left the candidate state it will never become acandidate anymore. This is formulated byProperty 4.36(8 i :: :Ci ^ Ci) 2 :Ci) .Furthermore, once a process is in the candidate state and given that it performs a timeouteventually it remains a candidate until this timeout happens,Property 4.37(8 i :: Ci ^ 3timeouti) Ci U timeouti) .Using that a candidate i becomes failed on receipt of I(j), i<j,Property 4.38(8 i :: Ci ^ (9 j : i < j : rcvi(I(j)))) � Fi) ,we concludeLemma 4.39(8 i :: Ci ^ 3timeouti) : (9 j : i < j : rcvi(I(j))) U timeouti) .Lemma 4.39 phrases that no I(j) message is received by process i (i<j) after entering thecandidate state until its timeout occurs (provided its timeout occurs at some time)|otherwiseprocess i would be forced to the failed state (see 4.38).One can now infer from 4.33, 4.34, and 4.39 that process j can prevent the occurrence of thetimeout of another process, i say, by transmitting I(j) with i<j, as reply to the receipt ofI(i).4.3.3 Proof of RequirementsWe now start with proving the requirements one by one. The �rst proof obligation is:P1 : (9 i :: Li) (8 j : i 6= j : :Lj)) .Proof: From the protocol we immediately deduce that a process can only become a leaderafter performing a timeout.Property 4.40(8 i :: 2 :timeouti) 2 :Li) .Furthermore, we infer that on occurrence of a timeout a process becomes a leader immediately31

Property 4.41(8 i :: timeouti) � Li) ,and, after just becoming a leader the process has performed a timeout:Property 4.42(8 i :: �J Li) timeouti) ,The above three equations give the relation between performing a timeout and becoming aleader.The idea behind the proof is now as follows. We consider two di�erent cases. In case noleader is present we must prove that it is not possible that two (or more) processes performa timeout simultaneously, and consequently, become a leader at the same time. This followsdirectly from the interleaving semantics of our protocol description language which preventsprocesses to perform transitions, and thus timeouts, simultaneously. The second case we haveto consider is the case in which we have a (set of) leader(s) and a new leader appears. Thenthe proof obligation is to establish that this may not give rise to more than one leader. Inthe rest of the proof we focus our attention on the latter case.From the above relation between a timeout and becoming a candidate it immediately followsthat it su�ces to proveLemma 4.43(9 i :: timeouti) (8 j : i 6= j : :Lj)) ,According to property 4.35 a timeout can only occur when a process is in the candidate state.Initially, all processes are in the start state. A process only becomes a candidate after sendingan I-message.Property 4.44(8 i :: 2 : sendi(I(i))) 2 :Ci) .In our protocol timeoutpi is associated to the (initial) transmission of message Ip(i). Fromassumption 4.33 we infer that each process receives Ip(i). The idea is to refer to the state ofthe recipient, process j say, at the moment of processing this message and to deduce that,for each possible state, this process j can not be a leader at the occurrence of timeouti.Formally, we have:Lemma 4.45(8 i; j :: rcvj(Ip(i)) ^ 3timeoutpi) 2 (timeoutpi) :Lj)) .We now prove lemma 4.45 for each possible state of the recipient of Ip(i), process j, giventhat i becomes a leader once (i.e. 3timeoutpi). Implicitly we use that process i is still acandidate when j receives I(i). 32

Property 4.46(8 i :: (9 j :: rcvj(Ip(i))) ^ 3timeoutpi) Ci) .First, consider the case that j is failed. Once a process is failed it remains failed, and, hencewill never become a leader. Thus,Property 4.47(8 j :: Fj) 2Fj) .Consequently,Lemma 4.48(8 i; j :: Fj ^ rcvj(Ip(i)) ^ 3timeoutpi) 2 (timeoutpi) Fj)) ,which concludes the proof for failed processes.Secondly, consider j to be either a leader or a candidate. Abbreviate Cj _ Lj by CLj . Fromthe protocol speci�cation we directly inferProperty 4.49(8 i; j :: CLj ^ rcvj(I(i))) (j < i) � Fj) ^ (j > i) sendj(I(j)))) .Property 4.49 suggests a case analysis between j<i and j>i. Consider j>i and 3timeoutpi .According to 4.49 j replies by sending I(j). According to 4.34 process i is forced to processthis message since I(j) is a reply to Ip(i). But, as j>i this contradicts with 4.39. Hence, theinteresting case is j<i. Stated otherwise,Lemma 4.50(8 i; j :: CLj ^ rcvj(Ip(i)) ^ 3timeoutpi) j < i) .From 4.50, 4.49, and 4.47 we now deduceLemma 4.51(8 i; j :: CLj ^ rcvj(Ip(i)) ^ 3timeoutpi) 2 (timeoutpi) Fj)) ,which concludes the proof for candidate and leader processes.Finally, consider the case that j is in the start state at the moment of receipt of I(i). Fromthe protocol description it immediately follows that start processes ignore all messagesProperty 4.52(8 i :: Si ^ rcvi(m1)) : sendi(m2) ^ � Si) .Distinguish between two cases. In the �rst case we assume that j remains in the start stateuntil i's timeout occurs. This immediately implies that j is not a leader at the moment i'stimeout occurs, and consequently we have 33

Lemma 4.53(8 i; j :: Sj ^ rcvj(Ip(i)) ^ Sj U timeoutpi) 2 (timeoutpi) Sj)) .In the second case we consider that j has left the start state after processing I(i) and beforei performs its timeout, that is : (Sj U timeoutpi). According toProperty 4.54(8 j :: Sj ^ � :Sj) � Cj) ,j has become a candidate and due to 4.44 must have sent I(j) in order to do so. Accordingto the broadcasting communication i will receive this message. As I(j) is not a reply onI(i), process i is not forced to process this message before performing its own timeout. Thissuggests the following case analysis. First, consider the case that i processes I(j) beforeperforming its timeout. According to 4.39 this implies that, given that i will perform itstimeout once, i>j. Due to 4.49 i replies by transmitting I(i), and as j is forced to wait forthis reply before becoming a leader it will not be able to perform its timeout (due to 4.39).In the other case i processes I(j) after performing its timeout. But then, by de�nition j cannot be a leader too at the moment i performs its timeout as it is forced, according to 4.34 towait for the reply of i. So, we concludeLemma 4.55(8 i; j :: Sj ^ rcvj(Ip(i)) ^ : (Sj U timeoutpi)) 2 (timeoutpi) :Lj)) .Lemmata 4.53 and 4.55 directly implyLemma 4.56(8 i; j :: Sj ^ rcvj(Ip(i)) ^ 3timeoutpi) 2 (timeoutpi) :Lj)) .From lemmata 4.48, 4.51, and 4.56 we deduce (4.45). This completes the proof of P1.(End of Proof P1.)P4 : (8 i; j :: Li ^ : � Li ^ (8k :: :Lk) U Lj) i < j) .Proof: Assume Li ^ : � Li ^ (8k :: :Lk) U Lj , so j is the immediate successor of i. Wehave that i6=j in an equivalent way as in the proof of P4 for Protocol 1 (see previous section).We now prove that for a leader i it is always the case that leaders in the future will be atleast as good as i (note that i may remain a leader for a while).Lemma 4.57(8 i; j :: Li) 2 (Lj) i � j)) . 34

From lemma 4.57 and i6=j we immediately deduce P4. The proof of 4.57 is as follows.Assume Li. In case i never capitulates 4.57 holds trivially. Therefore, consider the case thati capitulates once. Let j be i's successor and assume i>j. From 4.34, 4.39, and 4.49 we inferthat a process can not become a leader in presence of a better leader or candidate that hasreceived its original I-message:Lemma 4.58(8 j :: J Cj ^ (9k : j < k : 3 (rcvk(I(j)) ^ CLk))) :3Lj) .The idea of the proof is to show that i can not be succeeded by a smaller process, j say (i>j),as there is always a better candidate or leader process than j that receives I(j)|and thusprevents j of becoming a leader.In order for i, i>j, to become a leader i has transmitted I(i). So, i has left the start statebefore j becomes a candidate. From the following statement which is proven belowLemma 4.59(8 j :: (9 k : j < k : sendk(I(k)))) 2 (9k : j < k : CLk)) ,we infer that there is still a better process than j, k say, for which CLk holds. This processreceives I(j) and will prevent j of becoming a leader (according to 4.58). This contradictswith j being a successor of i and completes the proof.It remains to prove lemma 4.59. From the protocol description we infer that after the sendingof an I-message the sending process is in either the candidate or leader state. Formally,Property 4.60(8k :: sendk(I(k))) � CLk) .Moreover, we have that candidates and leaders leave their (combined) state if and only if theyreceive an I-message with an identity larger than their own identity.Property 4.61(8k :: CLk) (2 : (9m : k < m : rcvk(I(m))) , 2CLk)) .From property 4.60 we infer that at the next moment process k, k>j, transmits I(k), there isa better candidate or leader than j. Furthermore, from 4.61 we infer that as candidates andleaders can only be forced to a state di�erent from leader and candidate by better congeners(as they only leave their state on receipt of I(m) with m>k, and as I-messages are only sentby processes that are either candidate or leader) 4.59 holds. This completes the proof of P4.(End of Proof P4.)P2 : 3 (9 i :: Li) .Proof: The proof of this requirement is rather straightforward. As continuously enabledtransitions can not be ignored inde�nitely (weak fairness assumption) each process in thestart state becomes a candidate eventually: 35

Property 4.62(8 i :: Si) 3Ci) .Moreover, according to 4.44 a process sends an I-message so as to become a candidate.Consequently, each process sends an I-message sooner or later. Now consider the processwith the maximum identity, process maxid, say. Due to the �niteness of the set Id thisprocess exists. (We like to stress that the �niteness of Id is crucial for the correctness ofProtocol 2, whilst for the correctness of Protocol 1 this is irrelevant.) Once, this processtransmits its I-message and becomes a candidate. As there is no `better' process that canreply it follows from assumptions 4.33 and 4.34 that process maxid can perform its timeoutand becomes a leader. Thus, we have that process maxid becomes a leader sooner or later.Furthermore, since leaders can only be succeeded by better processes (see P4), we haveProperty 4.63(Lmaxid) 2Lmaxid) .Thus we concludeLemma 4.643Lmaxid ,which directly implies P2.(End of Proof P2.)P3 : (8 i :: Li ^ (9 j : i < j : :Lj)) 3 :Li) .Proof: The idea is to prove P3 along similar lines as in the previous section by �rst refor-mulating P3 using :Lj � Sj _ Cj _ Fj. Once a process becomes failed it remains failedforever (4.47). A process only becomes failed after receipt of an I-message with a largeridentity. This follows from (the stronger):Property 4.65(8 i :: 2 : (9 j : i < j : rcvi(I(j))) , 2 :Fi) .From lemma 4.59 and property 4.65 we conclude:Property 4.66(8 i :: Fi) (9 j : i < j : CLj)) ,or, using P1:Property 4.67(8 i; j : i < j : Li ^ Fj) (9 k : j < k : Ck)) .36

Note that it is no longer guaranteed that failed processes are always smaller than the leaderprocess (like in the previous protocol). This is due to the fact that in Protocol 1 only theleader process may force candidates to become failed, whereas in Protocol 2 also candidatesmay force other candidates to become failed.From 4.62 we deduce that each process becomes a candidate at some time. Therefore, wemay re�ne P3 (as for Protocol 1) intoLemma 4.68(8 i :: Li ^ (9 j : i < j : Cj)) 3 :Li) .It remains to establish lemma 4.68. This follows rather straightforward. Assume Li ^Cj ^i<j. According to 4.44 j has transmitted I(j) so as to become a candidate. This message isreceived by i when either Li or Fi holds (otherwise i would not have become a leader). In caseLi, 3 :Li follows directly from property 4.49. For Fi we already have :Li. This completesthe proof of P3.(End of Proof P3.)Likewise for Protocol 1, it remains to verify that no unspeci�ed receptions can occur. As thereis only one message type involved, and as corresponding transitions exist for this messagetype (for all possible parameters) in all states, and as processes do not receive their owntransmitted messages it is evident that no unspeci�ed receptions are possible. This completesthe correctness proof of Protocol 2.4.4 Veri�cation of Protocol 3The purpose of this section is to prove that Protocol 3 satis�es requirements Q1 through Q6,and that no unspeci�ed receptions can occur. We take a similar approach as in the previoussections.Like for the previous protocol the timeout mechanism plays a crucial role in establishingthe correctness of Protocol 3 with respect to requirements Q1 through Q6. We take as astarting-point the semantics of the timeout mechanism as de�ned in the previous section (cf.assumptions 4.33 and 4.34).4.4.1 Timeout PropertiesIn Protocol 2 a process is only a candidate once (according to (4.36)) and as a timeout canappear at most once the association between, for instance, Ci and timeouti in a statementlike Ci ^3timeouti is unique: the timeout that eventually will occur is the timeout usedby i to leave the candidate state referred to by statement Ci. Due to the intrinsic recursivebehaviour of Protocol 3 such is no longer true. When stating, for instance, Ci ^3timeoutpithere is no formal relation between the �rst and second conjunct: process imay be a candidatefor a while, leave this state and become a candidate again and then leaving this state ontimeoutpi . Stating Ci referring to the �rst period in the candidate state has no relation at all37

with timeoutpi . In order to establish such a relation the idea is to refer to the I(i) messageon which i has become a candidate|and which must have number p such that it correspondswith the next timeout of i to occur5. Note that it is possible to refer to the I(i) message onwhich i has become a candidate in the temporal logic formalism we use. However, we alsowant to refer to the receipt of this message by some other process. This is not possible intemporal logic, but is rather straightforward when introducing explicit labelling of I-messages.We repeat the timeout properties and reformulate some of them when necessary.Property 4.69(8 i :: timeouti) Ci) .Once a process enters the candidate state by transmission of Ip(i) and the correspondingtimeout occurs eventually (i.e. 3timeoutpi) it does not leave the candidate state until thistimeout occurs. Note that this also implies that the process does not crash in between thetransmission and the corresponding timeout.Property 4.70(8 i :: sendi(Ip(i)) ^ � Ci ^ 3timeoutpi) Ci U timeoutpi) .As in Protocol 2, a candidate i becomes failed on receipt of I(j) with i<j,Property 4.71(8 i :: Ci ^ (9 j : i < j : rcvi(I(j)))) � Fi) ,From properties 4.70 and 4.71 we inferProperty 4.72(8 i :: sendi(Ip(i)) ^ � Ci ^ 3timeoutpi) : (9 j : i < j : rcvi(I(j))) U timeoutpi) .4.4.2 Proof of requirementsWe now start with proving the requirements one by one. The �rst proof obligation is:Q1 : (9 i :: Li) (8 j : i 6= j : :Lj)) .Proof: Following an analogous reasoning as for the proof of P1 for Protocol 2 we deducethat the interesting case to prove is5We remark that another possibility would be to equip the Ci predicates with a number as the timeoutpipredicates and let the relationship with the Ip(i)-message on which i has become a candidate implicit. For thesake of clarity we prefer to give the explicit relation. 38

Lemma 4.73(9 i :: timeouti) (8 j : i 6= j : :Lj)) .According to 4.69 a timeout can only occur when a process is in the candidate state. Aprocess only becomes a candidate after sending an I-message.Property 4.74(8 i :: Ci) sendi(I(i))) .Similarly to the proof of P1 in the previous section the crux of our proof isLemma 4.75(8 i; j :: rcvj(Ip(i)) ^ 3timeoutpi) 2 (timeoutpi) :Lj)) .We now prove lemma 4.75 for each possible state of the recipient of message Ip(i), process jsay, given that i becomes a leader once (i.e. 3timeoutpi).First consider process j to be either leader, failed, or candidate. For convenience let CLFjdenote Cj _ Lj _ Fj. From the protocol description we immediately infer:Property 4.76(8 i; j :: CLFj ^ rcvj(I(i))) (j < i) � Fj) ^ (j > i) sendj(I(j)))) .Using 4.34, 4.72, and 4.76 we obtainLemma 4.77(8 i; j :: CLFj ^ rcvj(Ip(i)) ^ 3timeoutpi) j < i) .In contrast with Protocol 2, we can not directly conclude 4.75 for candidate, leader, andfailed processes from lemma 4.77: in the previous protocol a failed process remains failedinde�nitely, whereas |due to its recursive behaviour| in Protocol 3 this is not the case.So, we have to prove that although process j did not reply on Ip(i) it can not be a leaderwhen timeoutpi holds. From 4.76 and 4.77 we infer that, given 3timeoutpi , we only haveto consider processes j for which j<i. According to 4.76 j becomes failed on receipt of Ip(i).It can only become a leader by transmitting Iq(j) on becoming a candidate. As process i isstill being a candidate, according to property 4.70, j is not able to become a leader before iis becoming a leader: j has to wait for i's reply (see timeout semantics) and as j<i process iwill reply on receipt of Iq(j) thus preventing j becoming a leader. So, we concludeLemma 4.78(8 i; j :: CLFj ^ rcvj(Ip(i)) ^ 3timeoutpi) 2 (timeoutpi) :Lj)) .39

In the above reasoning we only have considered perfect processes, i.e. processes that do notcrash. However, when considering the crash of process j (i>j) it can be deduced in a similarway that after recovering j can not become a leader before i is becoming a leader. Note thatdue to 4.70 i does not crash before becoming a leader. So, crashes of i do not have to betaken into account.Finally, consider process j to be either start or dead on the moment of processing Ip(i). LetSDj denote Sj _ Dj. From the protocol it immediately follows that start and dead processesignore all messages.Property 4.79(8 i :: Si ^ rcvi(m1)) � Si ^ : sendi(m2)) ,Property 4.80(8 i :: Di ^ rcvi(m1)) � Di ^ : sendi(m2)) ,so j ignores Ip(i). Now the same case analysis as in the proof of P1 of Protocol 2 for startprocesses can be made and by similar arguments it can be proven thatLemma 4.81(8 i; j :: SDj ^ rcvj(Ip(i)) ^ 3timeoutpi) 2 (timeoutpi) :Lj)) .For the sake of brevity we here omit this case analysis. Again, when considering the crash ofprocess j it can also be veri�ed rather easily that after recovering j can not become a leaderbefore i becomes a leader.From lemmata 4.78 and 4.81 we conclude 4.75. This completes the proof of Q1.(End of Proof Q1.)Q2 : 3 (9 i :: 2 (:Di ^ (8 j : i < j : Dj)))) 23 (9 i :: Li) .Proof: Consider the process with the maximum identity, i0 say, for which 32 (:Di0 ^(8 j : i0 < j : Dj)) holds. According to the premise of Q2 this process exists. The idea of theproof is to establish that process i0 will always become a leader sooner or later. That is, weproveLemma 4.823Li0 ,from which we directly deduce Q2. The proof is as follows. Consider process i0 at the momentthat all better processes than i0 are crashed for ever, that is, (8k : i0 < k : 2Dk). Remark that|although all better processes are crashed| process i0 may still have messages originatingfrom these processes in its bu�er, as processes may process bu�ered messages at their ownpace. Now refer to the moment at which i0 has processed all messages from these processes.That is, assume 40

Assumption 4.83I) 3 (8k : i0 < k : mk 62 Qi0 ^ 2Dk) ,where mk denotes a message originating from process k. Distinguish between two cases: i0 isalready a leader, or it is not. Consider the �rst case, so Li0 holds. From the protocol descrip-tion we immediately infer that leaders can only capitulate by either crashing or receiving anI(k)-message with k larger than their own identity. Formally,Property 4.84(8 i :: J :Li) Di _ (9 j : i < j : rcvi(I(j)))) .Given that i0 does not crash there is only one possibility to capitulate, namely by receivingI(k), k>i0. It is straightforward to observe that I(k)-messages are only transmitted by processk.Property 4.85(8 i; k :: sendi(I(k))) i = k) .Furthermore, crashed processes do not transmit messages. That is,Property 4.86(8k :: sendk(m)) :Dk) .Using 4.83 and the above reasoning it can easily be deduced that it is impossible for i0 toreceive a message I(k), k>i0, and consequently, it is impossible for i0 to capitulate. Thus, weconclude:Lemma 4.87(Li0 ^ (8 k : i0 < k : 2Dk ^ mk 62 Qi0)) 2Li0) .Secondly, we consider the case that i0 is not a leader. Recall that 4.83 holds. From theprotocol speci�cation we directly infer that processes that will never crash and are not leader(yet) will become a candidate once.Property 4.88(8 i :: 2 :Di ^ :Li) 3Ci) .Once, process i0 transmits its I-message and becomes a candidate. As there is no `better'process that can reply |they are all crashed for ever| it follows from assumptions 4.33 and4.34 that i0 can perform its timeout and becomes a leader. Using an analogous reasoning asfor the �rst case we conclude that i0 will be a leader inde�nitely. This concludes the proof ofQ2.(End of Proof Q2.) 41

Q3 : (8 i :: : (Li ^ Di)) .Proof: This follows directly from the de�nition of �nite state machines, where a process canonly be in one state `at a time'.(End of Proof Q3.)Q4 : (8 i; j :: Li ^ :Dj ^ i < j) 3 :Li _ 3Dj) .Proof: Assume Li ^ :Dj ^ i<j. Distinguish between two cases: 2 :Dj and 3Dj. Thelatter case corresponds to the second disjunct of the conclusion of Q4. Consider 2 :Dj .From (4.88) and Q1 we infer that 3Cj holds. According to a similar reasoning as for P3 ofthe previous protocol we observe that it is su�cient to prove:Lemma 4.89(8 i; j :: Li ^ Cj ^ 2 :Dj ^ i < j) 3 :Li) .It remains to establish lemma 4.89. Assume Li ^Cj ^2 :Dj ^ i<j. According to property4.74 j has transmitted I(j) so as to become a candidate. This message is processed by i afterit became a leader|otherwise the message would have prevented i of becoming a leader. Ifi has already capitulated 3 :Li follows directly. In case Li holds, i capitulates according to4.76. This completes the proof of Q4.(End of Proof Q4.)Q5 : (8 i :: J :Li) Di _ (9 j : i < j : :Dj)) .Proof: According to 4.84 there are only two possible ways in which a leader can capitulate.First, it may spontaneously crash. This corresponds to the �rst part of the conclusion ofQ5. Secondly, leader i capitulates on receipt of an I(j)-message with i<j. We prove thatthis corresponds to the second alternative of the conclusion of Q5. From the communicationaxioms we have that for all (unique) messages m:Assumption 4.90(8 i :: rcvi(m)) (9 j : i 6= j : sendj(m))) .Due to property 4.85 I(j)-messages can only be transmitted by process j. Furthermore,crashed processes can not transmit messages (due to property 4.86). Thus, we concludeLemma 4.91(8 i; j : i < j : rcvi(I(j))) (:Dj ^ sendj(I(j)))) .42

Using 4.84 this concludes the proof of Q5.(End of Proof Q5.)Q6 : (8 i :: Li ^ � :Li ^ ((8k :: :Lk) ^ :Di) U Lj) i � j) .Proof: Assume Li ^ � :Li ^ ((8k :: :Lk)^ :Di) U Lj . So, j is the immediate successorof leader i and i does not crash in between the leaderships of i and j. The proof is bycontradiction. Assume i>j. From the protocol description we immediately infer that:Property 4.92(8 i :: CLFi ^ 2 :Di) 2CLFi) .So, in case a leader capitulates and does not crash it is either a candidate, leader or failedprocess. From lemma 4.77 it follows that a process can not become a leader in presence of abetter candidate, leader or failed process. This implies that j (j<i) can not become a leaderwhen i is still in one of these states, which is, according to the premise :Di U Lj and theabove property the case. This completes the proof of Q6.(End of Proof Q6.)The remaining proof obligation is the absence of unspeci�ed receptions. As there is only onemessage type involved, and as corresponding transitions exist for this message type (for allpossible parameter values) in all states, and as processes do not receive their own transmit-ted messages, it is evident that no unspeci�ed receptions are possible. This completes thecorrectness proof of Protocol 3.

43

5 ACP Speci�cationsIn this section the three protocols of section 3 are speci�ed in ACP. We take the FiniteState Machine speci�cations as a starting-point. The ACP speci�cations are as close to thesespeci�cations as possible.We will give a speci�cation of all separate processes that play a role (protocol processes,bu�ers, timers, the transmission medium) and of the processes that are built from theseseparate processes. These are a component (the parallel composition of a protocol process, abu�er process and, if applied, a timer process) and the whole system (the parallel compositionof all components and the medium). Preceding the protocol speci�cations a short introductionto ACP is provided.5.1 Introduction to ACPACP, the Algebra of Communicating Processes, is an axiom based mathematical theory forconcurrency. ACP has been applied to a large domain of speci�cation problems, rangingfrom communication protocols, algorithms for systolic systems and electronic circuits up toarchitectures for Computer Integrated Manufacturing.This brief introduction is by no means intended to be complete, but merely gives an intuitivenotion of what we are dealing with. For a detailed treatment of ACP we refer to [BW90].ACP starts from a set of objects, called atomic actions, atoms or steps. Atomic actions arethe basic and indivisible elements of ACP. In this introduction they will be represented bythe symbols a through f . In ACP all atomic actions are elementary processes. Moreover, wehave� �, deadlock. Deadlock is the state in which there is no possibility to proceed.� � , silent step. � represents the process terminating after some time, without performingobservable actions.Atomic actions may be parameterised with data. There are no strict syntactical constraints:ad, ad and a(d) all three denote the atomic action a, parameterised with the data element d.Processes, in this introduction denoted by the symbols x; y; z, are generated from atomicactions and process terms by means of operators. Process names may also be parameterisedwith data. The most important operators are:� � , sequential composition or product.x � y is the process that executes x �rst and continues with y upon termination of x.� + , alternative composition or sum.x+ y is the process that �rst makes a choice between its summands x and y, and thenproceeds with the execution of the chosen summand. In the presence of an alternative,� is never chosen.The construct Pd2D x(d) is used for the generalised alternative composition x(d1) +x(d2) + : : : + x(dn), with d1; : : : ; dn the elements of D.44

� k , parallel composition or merge.x k y is the process that represents the merged execution of x and y.The construct kd2D x(d) is used for the generalised parallel composition x(d1) k x(d2) k: : : k x(dn), with d1; : : : ; dn the elements of D.� j , communication.As stated above, x k y represents the merged execution of x and y. This means thatthe �rst action of this composed process is a �rst action from x or from y or from both.In the last case the two actions from x and y are part of a communication between xand y, also called a synchronization of x and y. Such a communication has to be de�nedexplicitly by using the communication operator: a j b = c means that c is the actionthat is the result of the communication between the actions a and b.� @H , encapsulation.@H(x) is the process x without the possibility of performing actions from the set ofatomic actions H. Algebraically this is achieved by renaming all atomic actions fromH in x into �.� �I , abstraction.�I(x) is the process x without the possibility of observing actions from the set of atomicactions I. This is achieved by renaming all atomic actions from I in x into � .� � , priority.�(x) is the process in which the choice between alternative actions is made accordingto an ordering on the atomic actions, de�ned somewhere else. If, in an alternativecomposition, two atomic actions may be chosen on which an order relation is de�ned,only the action with the highest priority will be enabled.� / . , conditional process.The construct x / c . y denotes a conditional process expression. If the boolean ex-pression c evaluates to true the process expression reduces to x. If c evaluates to falsethe process expression reduces to y.Processes are speci�ed by equations likex = a � b+ c � (e+ f)y = (a � b) k (c � d)\In�nite" processes are speci�ed by one or more recursive equations. A simple and meaning-less example:x = a � y + b � zy = c � zz = d � x+ e � yPossible execution traces of this process are: a � c � d � b � e::: ; b � d � b � d::: ; a � c � e � c � d:::.The executable formal speci�cation language PSF [MV90] is based on ACP for its processpart. The de�nition of data in PSF is based on ASF [BHK89].
45

5.2 Protocol 1We start with the speci�cation of Protocol 1 from section 3.2.2. First the protocol processand a local bu�er process are speci�ed. We will use the following naming convention for theatomic actions involved in the communication between a protocol process, a bu�er processand the medium. The transmission of a message is denoted by send XY i. X represents thesource and Y represents the destination: P for protocol process, B for bu�er process orM formedium process. The superscript i denotes the component id. In the same way the receptionof a message is denoted by read XY i and the resulting communication action is denoted bycomm XY i. ID represents the set of component ids. We consider the size of ID to be �xedand �nite. M represents the set of messages: M = fI(i); R(i) j i 2 IDg.Speci�cation of the protocol process of component i:Starti = Pm2M read BP i(m) � Starti+ reset bu�eri � send PM i(I(i)) � CandidateiCandidatei = Pj 2 ID read BP i(I(j)) � Candidatei+ Pj 2 IDnfig read BP i(R(j))�(send PM i(I(i)) � Candidatei / j < i . Failedi)+ read BP i(R(i)) � LeaderiLeaderi = Pj 2 ID read BP i(I(j))�(send PM i(R(i)) � Leaderi / j < i . send PM i(R(j)) � Failedi)Failedi = Pm2M read BP i(m) � FailediThe local bu�er process is speci�ed as a queue of unbounded size. The process Bu�eri isparameterised with a message queue q. The queue operations enq (enqueue), serve and deq(dequeue) need no further explanation. The bu�er can be reset by the protocol process. Thisreset is used in order to prevent the processing of messages enqueued before the componententers the election.Bu�eri(q) = Pm2M read MBi(m) � Bu�eri(enq(m; q))+ send BP i(serve(q)) � Bu�eri(deq(q)) / q 6= empty queue . �+ read bu�er reseti � Bu�eri(empty queue)The following communications are de�ned between a protocol process and its local bu�erprocess:send BP i(m) j read BP i(m) = comm BP i(m)reset bu�eri j read bu�er reseti = bu�er is resetiA component process consists of the encapsulated merge of the protocol process and the bu�erprocess. One component, say l (l 2 ID), starts in the leader state:Componentl = @H1(Leaderl k Bu�erl(empty queue))The other components start in the start state (i 2 IDnflg):Componenti = @H1(Starti k Bu�eri(empty queue))De�nition of the encapsulation set: 46

H1 = fread BP i(m); send BP i(m); reset bu�eri; read bu�er reseti j i 2 ID;m 2MgThe medium process reads a message from a component and sends this message to all othercomponents, thus modelling a broadcast communication. The set ID contains all the com-ponent ids, the set IDS is a variable set of component ids.Medium = Pi2 ID;m2M read PM i(m) �Medium(IDnfig;m)Medium(IDS;m) = (ki2 IDS send MBi(m)) �MediumThe following communications are de�ned between a component and the medium process:send PM i(m) j read PM i(m) = comm PM i(m)send MBi(m) j read MBi(m) = comm MBi(m)The complete system consists of the encapsulated merge of all components and the medium:System1 = @H2((ki2 ID Componenti) k Medium)De�nition of the encapsulation set:H2 = fsend PM i(m); read PM i(m); send MBi(m); read MBi(m) j i 2 ID; m 2MgRemark: at this point we notice an important di�erence between the execution model of theFinite State Machines of section 3 and the ACP execution model. For a transition in an FSMspeci�cation the evaluation of a guard and the related action are considered to be atomic:the receiving of a message and the transmission of a reply on this message together form asingle atomic event. However, in ACP these are two separate actions. Due to the arbitraryinterleaving model, other actions may come in between these two actions. This di�erence hassome inuence on the complexity results of section 3. This is discussed in section 5.6.5.3 Intermezzo: timeout semantics and ACP { part 1Protocols 2 and 3 make use of a timer, which may generate a timeout. In this section we willdiscuss the modelling of a timeout in ACP, related to the protocols investigated here.For certain classes of protocols the correctness of the protocol does not depend on the momenta timeout is raised in relation to other actions in the protocol. For instance, Sliding WindowProtocols are robust with respect to premature timeouts. In an ACP speci�cation of theseprotocols a timeout is modelled by a non-deterministic choice between a timeout action andother enabled actions, see [Bru91]. Other protocols are not robust with respect to prematuretimeouts. A classical example is the simple PAR protocol, see [Vaa90]. (PAR stands forPositive Acknowledgement with Retransmission.) From section 3 it may be clear that theLeader Election protocols investigated in this document cannot deal with premature timeouts:a timeout may not be enabled before all responses to the initial message are generated andprocessed.We distinguish three possible approaches to avoid premature timeouts in ACP. The �rst twoapproaches are action oriented, the last approach is data oriented.1. A timeout action is not enabled as long as certain actions are enabled. This can bemodelled with the priority operator �. The timeout action gets a lower priority thanother actions, application of the priority operator prohibits the timeout as long as oneof the actions with a higher priority is enabled. This approach is used in [Vaa90].47

2. A timeout action is enabled after the execution of certain actions. These actions serve asa kind of synchronization for the timeout. Usually this is the only role of these actions,within the speci�ed protocol these actions do not have any other meaning. Thereforewe will call them sync actions. In [Vaa90] this approach is shortly mentioned for thePAR protocol, in [vW93] it is applied in a PSF speci�cation of the same protocol.3. In a data oriented approach a timeout action may be enabled if a certain boolean con-dition is evaluated to true. This condition is based on data parameters of the speci�edsystem. This requires a speci�cation where state information is put in the data param-eters of the process equation(s).In the remaining part of this section we will investigate the usefulness of the �rst two al-ternatives in the realm of the Protocols 2 and 3. In section 6 Protocol 2 and Protocol 3are captured in a single recursive equation with data parameters. There we will discuss theusefulness of the third alternative.Application of the priority operator (alternative 1) implies the de�nition of a set of orderingson actions in which a timeout of component i gets a lower priority than every action thatis related to the reply to the initial message from this component. A reply can be maderecognizable by labelling the initial I-message with its source and by attaching the same labelto all replies to this message.Two problems arise when this approach is followed. The �rst problem has to do with thebu�ering of incoming messages. When queueing is applied, a message in a queue is onlyrelated with the comm BP action if it is at the head of the queue, otherwise no enabledactions are related with this message. When smart bu�ering is applied the message in thebu�er may be replaced by a better one. By this replacement the label of a message is lost.This kind of bu�ering problems can be solved by a more complex labelling of the messages.We will not go into the details of such a solution. The second problem has to do with the factthat if the medium is in use (a message has been transmitted to the medium by a component,but has not been bu�ered by all other components), a comm PM action with a reply messageto a component i may temporarily be disabled although the timeout of a component i shouldstill be prohibited by this action.The second problem can only be solved in a rather crude way by placing more restrictionson a timeout action. The timeout of a component i is given a lower priority than everycomm MB action in order to prevent a temporary blockade of a comm PM action. Thetimeout is also given a lower priority than every comm BP action in order to guarantee thatevery component has had the possibility to react on a message. Finally, the timeout is givena lower priority than every comm PM action from a component with an id higher than iin order to ensure that every reply is received by component i before its timeout is enabled.This leads to the following ordering relations:timeouti < comm MBk(m),timeouti < comm BP k(m)timeouti < comm PM j(m), with m 2M; i; j; k 2 ID; j > i.Labelling of messages is not useful any more. The atomic action timeouti is the result ofa communication between the protocol process and the timer process of a component i, seebelow. 48

Application of sync actions for the synchronization of a timeout (alternative 2) can be basedon the observation that a timeout is permitted when every other component is in the startstate (has not yet entered the election), in the failed state (has already lost the election)or has made a transition from the start state to the candidate state after the transmissionof the initial message of the component that is waiting for its timeout (is not expected toprohibit the timeout). It is impossible to identify the last set of components without asubstantial expansion of the speci�cation. Therefore it is reasonable to focus on a littlebit stronger condition which requires that a timeout action is only enabled when all othercomponents are in the start state or in the failed state. This leads to the addition of an actionsend timeout enable in the start state and the failed state of a protocol process. A timerprocess collects these permissions by communicating read timeout enable actions. Only whenall permissions are given a timeout is enabled. This approach leads to two extra actions inthe protocol process and a little bit more complicated timer process.In the case of our Leader Election protocols there is no clear advantage of one alternativeabove the other, both have their (dis)advantages. In the speci�cation of Protocols 2 and 3we have chosen to model the timeout semantics cf. alternative 1: a timeout is enabled ifcertain other actions are disabled. We see this as more close to the dynamic character of theprotocols than alternative 2, where a timeout is only enabled if all other components are notactively participating in the election (any more).5.4 Protocol 2We continue with the speci�cation of Protocol 2 from section 3. We will give a new spec-i�cation of the protocol process itself and of the bu�er process. We now will use a \smartbu�er" in which only the message with the highest id is kept. A timer process, responsiblefor the generation of a timeout, is also speci�ed. In this protocol we have one message type,M = fI(i) j i 2 IDg. Speci�cation of the protocol process of component i (i 2 ID):Starti = Pj 2 ID read BP i(I(j)) � Starti+ reset bu�eri � send PM i(I(i)) � start timeri � CandidateiCandidatei = Pj 2 ID read BP i(I(j))�(send PM i(I(i)) � Candidatei / j < i . stop timeri � Failedi)+ read timeouti � LeaderiLeaderi = Pj 2 ID read BP i(I(j))�(send PM i(I(i)) � Leaderi / j < i . Failedi)Failedi = Pj 2 ID read BP i(I(j)) � FailediThe local smart bu�er process only stores the message with the highest id. The bu�er can bereset by the protocol process. The parameter b is used to keep the message with the highestid stored. The function max(m1;m2) takes two messages as input and produces the messagewith the highest id as output.Bu�eri = Pm2M read MBi(m) � Bu�eri(m)+ read bu�er reseti � Bu�eriBu�eri(b) = Pm2M read MBi(m) � Bu�eri(max(b;m))49

+ send BP i(b) � Bu�eri+ read bu�er reseti � Bu�eriThe local timer process is very simple: when a start signal is received the timer waits for a stopsignal. If this signal does not appear, a timeout is sent to the protocol process. The waitingfor a stop signal and the transmission of the timeout signal is speci�ed as an alternativecomposition of two process expressions. We will suppose that no start signal is given whilewaiting for a stop signal or a timeout. As described in the previous section, the timeoutsemantics will be modelled with the priority operator, see below.T imeri = read starti � T imer siT imer si = read stopi � T imeri + send timeouti � T imeriThe communications between a protocol process and its local timer are de�ned as follows:start timeri j read starti = timer startedistop timeri j read stopi = timer stoppedisend timeouti j read timeouti = timeoutiIn this protocol we assume that there is no leader at the beginning, so all components areinitially in the start state:Componenti = @H3(Starti k Bu�eri k T imeri)The encapsulation set is de�ned as follows:H3 = H1 [fstart timeri; read starti; stop timeri; read stopi; send timeouti;read timeouti j i 2 IDgwith H1 as de�ned in section 5.2.The medium process is the same as in the speci�cation of Protocol 1.The semantics of the timeout are modelled with the priority operator �. This leads to thefollowing speci�cation of the complete system:System2 = � � @H2((ki2 ID Componenti) k Medium)withH2 as de�ned in section 5.2. From section 5.3 we recall the order relations for the priorityoperator �:timeouti < comm MBk(m),timeouti < comm BP k(m),timeouti < comm PM j(m), with m 2M; i; j; k 2 ID; j > i.5.5 Protocol 3In this protocol components may crash. Such a crash has consequences not only for theprotocol process, but also for the local bu�er process and the timer process. Therefore allcomponent processes need to be reconsidered. In the speci�cation below we will use a simplemodel of a component crash:� Only the protocol process has the possibility to crash. The bu�er process and the timerprocess will simply continue (as far as possible) after a crash of the protocol process.50

� The \revival" of a component is modelled by the revival of the protocol process. At itsrevival this process resets the local timer. The local bu�er is reset in the start state,which is entered after the revival.� In the speci�cation of the protocol process a transition from a state to the Dead stateis modelled by the atomic action crash. The transition from the Dead state to the startstate is modelled by the atomic action revive. These actions do not communicate withany action from any other process.In ACP there is no distinction between must-actions and may-actions (the solid arrows andthe dashed arrows from the Finite State Machine Diagram of Protocol 3 in section 3). Theplus operator for alternative composition stands for a non-deterministic choice between thealternatives. So we are not able to model this speci�c property of a process crash in ACP.Speci�cation of the protocol process of component i:Starti = Pj 2 ID read BP i(I(j)) � Starti+ reset bu�eri � send PM i(I(i)) � start timeri � Candidatei+ crashi �DeadiCandidatei = Pj 2 ID read BP i(I(j))�(send PM i(I(i)) � Candidatei / j < i . stop timeri � Failedi)+ read timeouti � Leaderi+ crashi �DeadiLeaderi = Pj 2 ID read BP i(I(j)) � (send PM i(I(i)) � Leaderi / j < i . Failedi)+ crashi �DeadiFailedi = Pj 2 ID read BP i(I(j))�(send PM i(I(i)) � start timeri � Candidatei / j < i . Failedi)+ send PM i(I(i)) � start timeri � Candidatei+ crashi �DeadiDeadi = revivei � reset timeri � StartiAs in the previous protocol the local smart bu�er process only stores the message with thehighest identity. A crash of the protocol process is not observed by the bu�er. However,after the reception of a reset signal the bu�er goes to the initial state again. This is alreadyspeci�ed in the speci�cation of the bu�er process in the previous section. We will not repeatthis speci�cation here.In the timer process in each state the action read timer reset is added:T imeri = read starti � T imer si + read timer reseti � T imeriT imer si = read stopi � T imeri + send timeouti � T imeri + read timer reseti � T imeriDe�nition of the additional communication between the protocol process and the timer pro-cess:reset timeri j read timer reseti = timer is resetiIn this protocol we assume that there is no leader at the beginning, so all components areinitially in the start state: 51

Componenti = @H4(Starti k Bu�eri k T imeri)De�nition of the encapsulation set:H4 = H3 [freset timeri; read timer reseti j i 2 IDgwith H3 de�ned as before.The medium process is the same as in the speci�cation of Protocol 1 (and 2). The modellingof the timeout is the same as in the speci�cation of Protocol 2. So we get the followingde�nition of the Leader Election protocol:System3 = � � @H2((ki2 ID Componenti) k Medium)The set H2 has been de�ned before.5.6 Action atomicity and complexity resultsWe conclude this section with some remarks about the complexity results of section 3 and theexecution model of ACP. The complexity analysis in section 3 is based on the atomicity of theaction sequence event-plus-reaction, e.g. the reception of a message and the transmission of areply message. This kind of atomicity is common in Finite State Machine formalisms. How-ever, in ACP read actions and send actions are atomic actions themselves. The interleavingmodel of ACP allows other actions to be executed between a read action and the consecutivesend action. This means that, after reading a message from its bu�er, a component may haveto wait until some actions from other components have been executed before it transmits areply message. Compared to the FSM model the �ner interleaving execution model of ACPintroduces the possibility of a delayed reaction of a component process, which means that anextra message bu�er is introduced within a component. This has a certain inuence on thecomplexity results as derived in section 3.With simple bu�ering (queueing of incoming messages) there will be no di�erence: the extramessage bu�er can be regarded as an extension of the component bu�er queue. However,when we use a smart local bu�er we get di�erent results. In Protocol 1 we now get the sameworst case message complexity as in the case without smart bu�ering:Theorem 5.1 In the ACP interleaving model MCs1(N; i) =MCq1(N; i) = 12N2 + 12N � 1.Proof: if the reply on the I-message with the lowest id is temporarily bu�ered within theprotocol process, a message sequence like in Figure 5 is possible. After the reception of theI-message of component i+ 1 the actual leader i can delay its reaction (the transmission ofthe R-message) until all other I-messages have been sent. 2For Protocol 2 we get a worst case message complexity that is still O(N):Theorem 5.2 In the ACP interleaving model MCs2(1) = 1 and MCs2(N) = 4N � 5 forN > 1.Proof: The factor 4 comes from the fact that now every component may bu�er two messagesand so may generate two replies on initial messages from components with a lower id. A thirdreaction may be generated by another message from these components. Together with the52

initial message this makes 4. The constant �5 comes from the initial values for MCs2(N):MCs2(1) = 1, MCs2(2) = 3. These initial values can easily be derived. 2In Protocol 3 the worst case message complexity is the same as in the case without smartbu�ering:Theorem 5.3 In the ACP interleaving model MCs3(N) =MCq3 (N) = 2N � 1.Proof: The delayed reaction now implies that every component that is about to send amessage to the medium cannot be stopped by a message from a component with a higherid until this message is sent. This leads to a worst case behaviour in which every messageinvokes a message from all components with a higher id. As we have seen before this leadsto an exponential worst case message complexity. 2In complexity theory it is a well-known fact that the underlying machine model has a biginuence on the complexity of the algorithm [vEB90]. Finite State Machines and ACP bothsuppose an underlying parallel machine model. The results above show that the executionmodel of a speci�cation formalism sometimes also has a major inuence on the complexity ofa distributed algorithm.

53

6 Veri�cation and Validation in ACP6.1 IntroductionIn this section we will explore the power of ACP in the �eld of veri�cation and validation ofthe protocols that have been speci�ed in section 5. With veri�cation we refer to an algebraicproof of the correctness of a protocol with respect to a set of requirements. If, for whateverreason, we cannot produce such a proof we may try to validate a protocol, e.g. by simulation.For the veri�cation of the protocols we will put our speci�cations in the following \normalform":P (D) = a1 � P (D1) / c1 . �+ a2 � P (D2) / c2 . �+ : : :+ an � P (Dn) / cn . �D denotes a parameter list. Di ; 1 � i � n; denotes the same parameter list with substitutionsof data terms for some of the parameters. ci ; 1 � i � n; denotes a boolean condition, possiblycontaining variables from D. If a condition is invariantly true, a summand may be writtenas ai � P (Di).The advantage of this normal form lies in the simpli�cation of the calculations that have tobe performed in expanding the merge of several processes to a single equation, which can beused for veri�cation and validation purposes. In ACP calculations are performed accordingto axioms, see [BW90]. Before we turn to these calculations we will give a short introductionto the ACP axioms.6.2 ACP axiomsThe axioms of Table 2 form the axiom system for ACP. As before, x; y and z denote processterms, a and b denote atomic actions. We will use the ACP axioms �rst of all for the expansionof the merge of two or more processes. The axiom for the merge operator in Table 2 expandsthe merge of two process terms to the alternative composition of three terms. The processterm x y (x leftmerge y) denotes the merge of x and y with the �rst action from x. Theprocess term x j y denotes the communication (synchronisation) between the processes x andy.The merge axiom can be generalized to the expansion theorem for n � 3:x1 k : : : k xn =P1�i�n xi (k1�j�n; j 6=i xj) +P1�i<j�n (xijxj) (k1�k�n;k 6=i;j xk)From section 5 it is clear that in the speci�cation of the protocols conditional process ex-pressions are frequently used. In [BB92] several axioms are given for conditional processexpressions. From these axioms the following identities can be derived.Lemma 6.11. x / c . x = x2. x / c . y = x / c . � + y / :c . � 54

x+ y = y + x(x+ y) + z = x+ (y + z)x+ x = x(x+ y) � z = x � z + y � z(x � y) � z = x � (y � z)x+ � = x� � x = �x k y = x y + y x+ x j ya x = a � x(a � x) y = a � (x k y)(x+ y) z = (x z) + (y z)(a � x) j b = (a j b) � xa j (b � x) = (a j b) � x(a � x) j (b � y) = (a j b) � (x k y)(x+ y) j z = x j z + y j zx j (y + z) = x j y + x j za j b = (a; b) if de�neda j b = � otherwiseTable 2: ACP axioms.3. (x / c1 . �) / c2 . � = x / c1 ^ c2 . �Proof: elementary, see [Bru]. 2The axioms in Table 3, also from [BB92], are concerned with the merge and encapsulation ofconditional process expressions. In the speci�cation of the Protocols 2 and 3 in section 5 the(x / c . y) z = (x z) / c . (y z)(x / c . y)jz = (xjz) / c . (yjz)xj(y / c . z) = (xjy) / c . (xjz)@H(x / c . y) = @H(x) / c . @H(y)Table 3: Axioms for communication and conditions.priority operator � is used to model the desired timeout semantics. In [BW90] the axioms forthis operator are given. In this axiomatization an auxiliary operator is used: the binary unlessoperator, denoted by /. In order to avoid any confusion between this operator and the lefttriangle of a conditional process expression, in this paper we will denote the unless operatoras // . The axioms in Table 4 (from [BB92, BW90]) are concerned with the unless operatorand the priority operator and with the distributivity of these operators over a conditionalprocess expression. From lemma 6.1 and the axioms for the priority operator the followingidentity can be derived for the priority operator and the alternative composition of a �nitenumber of conditional process terms: 55

a // b = a if :(a < b)a // b = � if a < bx // y � z = x // yx // (y + z) = (x // y) // zx � y // z = (x // z) � y(x+ y) // z = x // z + y // z�(a) = a�(x � y) = �(x) � �(y)�(x+ y) = �(x) // y + �(y) // xx // (y / c . z) = (x // y) / c . (x // z)(x / c . y) // z = (x // z) / c . (y // z)�(x / c . y) = �(x) / c . �(y)Table 4: ACP� with conditions.Lemma 6.2�(P1�i�n(ai � xi / ci . �)) =P1�i�n(ai � �(xi) / ci ^ :(W1�j�n^aj>ai cj) . �)Proof: See [Bru] for a proof with n = 2. 2Lemma 6.2 states that for an alternative composition of conditional process terms the priorityoperator can be \translated" to extra conditions on process terms.It can be foreseen that, in applying the axioms and rules to the process terms of our protocols,we will meet an impassable problem. ACP has no formal semantics of data, so the evaluationof the boolean conditions in the conditional process expressions (which, in our case, are basedon the data parameters of the various processes) cannot be formalized. This means that aformal veri�cation in a strict sense is impossible. In the remainder of this section we will givethe expansion of the three protocols to a single recursive equation with conditions and we willdiscuss some requirements which should be met by these equations. We will shortly discussthe necessarily informal veri�cation of the protocols with respect to these requirements.6.3 Protocol 1We start with an adapted speci�cation of the processes involved in Protocol 1. By addingstates and conditions we will give a speci�cation of each basic process in the normal formas introduced in section 6.1. The merge of these processes will also be expanded to a singleequation in this normal form.First, we give a speci�cation of the protocol process in the desired normal form. The pro-cess P1i has two parameters: psi represents a state of the protocol process, ji represents acomponent-id. In this speci�cation we distinguish seven states:� S: the start state.� B: the bu�er is reset, no initial I-message has been sent yet.56

� C: the candidate state, the initial I-message has been sent.� T : an R-message is received by a candidate, but has not been processed yet.� L: the leader state.� R: an I-message is received by a leader, but has not been processed yet.� F : the failed state.Four states (S;C; L and F) are well-known from previous speci�cations. The three otherstates are added in order to get a speci�cation in the desired normal form.P1i(psi; ji) = Pmp2M read BP (mp) � P1i(psi; ji) / psi = S . �+ reset bu�eri � P1i(B; ji) / psi = S . �+ send PM i(I(i)) � P1i(C; ji) / psi = B . �+ Pj 2 ID read BP i(I(j)) � P1i(psi; ji) / psi = C . �+ Pj 2 IDnfig read BP i(R(j)) � P1i(T; j) / psi = C . �+ read BP i(R(i)) � P1i(L; ji) / psi = C . �+ send PM i(I(i)) � P1i(C; ji) / ji < i ^ psi = T . �+ P1i(F; ji) / ji > i ^ psi = T . �+ Pj 2 ID read BP i(I(j)) � P1i(R; j) / psi = L . �+ send PM i(R(i)) � P1i(L; ji) / ji < i ^ psi = R . �+ send PM i(R(ji)) � P1i(F; ji) / ji > i ^ psi = R . �+ Pmp2M read BP i(mp) � P1i(psi; ji) / psi = F . �The speci�cation of the local bu�er process is the same as in section 5. Only the name hasbeen shortened to B1i and its data parameter now is denoted by qi in order to give eachcomponent queue a unique name.B1i(qi) = Pm2M read MBi(m) � B1i(enq(m; qi))+ send BP i(serve(qi)) � B1i(deq(qi)) / qi 6= empty queue . �+ read bu�er reseti � B1i(empty queue)The medium process is also speci�ed in a single conditional equation. The merge of thesend MB actions (the broadcast to all components except the sender) is expanded to a sumover IDS, a subset of ID. The name of the process has been shortened to M .M(IDS;m) = Pi2 ID;mm 2M read PM i(mm) �M(IDnfig;mm) / IDS = ; . �+ Pi2 IDS send MBi(m) �M(IDSnfig;m) / IDS 6= ; . �On our way to a speci�cation of the whole system we �rst will derive a speci�cation of themerge of the local bu�er processes and the medium. The sequence of component queuesqi; i 2 ID; is denoted by the parameter Q.BM1(Q; IDS;m) = @H1((ki2 ID B1i(qi)) k M(IDS;m))57

De�nition of the encapsulation set:H1 = fsend MBi(m); read MBi(m) j i 2 ID;m 2 Mg.The expansion of this process leads to the following equation. In this equation the substitutionof a new value X for the old value qi in the sequence Q is denoted by Q[X=qi].Lemma 6.3BM1(Q; IDS;m) =Pi2 ID;mm 2M read PM i(mm) �BM1(Q; IDnfig;mm) / IDS = ; . �+ Pi2 IDS comm MBi(m) �BM1(Q[enq(m; qi)=qi]; IDSnfig;m) / IDS 6= ; . �+ Pi2 ID send BP i(serve(qi)) �BM1(Q[deq(qi)=qi]; IDS;m) / qi 6= empty queue . �+ Pi2 ID read bu�er reseti �BM1(Q[empty queue=qi]; IDS;m)Proof: First we look at the merge of the local bu�er processes. We name this process B1(Q):B1(Q) = ki2 ID B1i(qi) .As these processes do not communicate with each other, by applying the expansion theoremand the axioms of section 6.2, this merge expands to the alternative composition of threesums over the set ID:B1(Q) = Pi2 ID(Pm2M read MBi(m) � B1(Q[enq(m; qi)=qi]))+ Pi2 ID send BP i(serve(qi)) �B1(Q[deq(qi)=qi]) / qi 6= empty queue . �+ Pi2 ID read bu�er reseti �B1(Q[empty queue=qi])The process BM1(Q; IDS;m) is equal to the encapsulated merge of the processes B1(Q) andM(IDS;m):BM1(Q; IDS;m) = @H1(B1(Q) k M(IDS;m))By applying the axioms and lemma's of section 6.2 and the de�nition of the encapsulationoperator we get a result that is equal to the process expression as stated in lemma 6.3. Wewill not show the straightforward calculations leading to this result. 2Next we will derive a linear speci�cation of the encapsulated merge of the process BM1and the protocol processes of all components. The process S1 is parameterised with PS (asequence of individual protocol process states psi), J (a sequence of component-ids ji), Q,IDS and m.S1(PS; J;Q; IDS;m) = @H2((ki2 ID P1i(psi; ji)) k BM1(Q; IDS;m))De�nition of the encapsulation set H2:H2 = fread BP i(m); send PM i(m); read PM i(m); send BP i(m); reset bu�eri;read bu�er reseti j i 2 ID ; m 2 MgThe expansion of this process leads to the following equation:Lemma 6.4S1(PS; J;Q; IDS;m) =Pi2 ID(Pmp2M comm BP i(mp) � S1(PS; J;Q[deq(qi)=qi]; IDS;m)/ serve(qi) = mp ^ psi = S . �+ bu�er is reset � S1(PS[B=psi]; J;Q[empty queue=qi]; IDS;m) / psi = S . �)58

+ Pi2 ID(comm PM i(I(i)) � S1(PS[C=psi]; J;Q; IDnfig; I(i)) / IDS = ; ^ psi = B . �)+ Pi2 ID(Pj 2 ID comm BP i(I(j)) � S1(PS; J;Q[deq(qi)=qi]; IDS;m)/ serve(qi) = I(j) ^ psi = C . �+Pj 2 IDnfig comm BP i(R(j)) � S1(PS[T=psi]; J [j=ji]; Q[deq(qi)=qi]; IDS;m)/ serve(qi) = R(j) ^ psi = C . �+ comm BP i(R(i)) � S1(PS[L=psi]; J;Q[deq(qi)=qi]; IDS;m)/ serve(qi) = R(i) ^ psi = C . �)+ Pi2 ID(comm PM i(I(i)) � S1(PS[C=psi]; J;Q; IDnfig; I(i))/ IDS = ; ^ ji < i ^ psi = T . �+ S1(PS[F=psi]; J;Q; IDS;m) / ji > i ^ psi = T . �)+ Pi2 ID(Pj 2 ID comm BP i(I(j)) � S1(PS[R=psi]; J [j=ji]; Q[deq(qi)=qi]; IDS;m)/ serve(qi) = I(j) ^ psi = L . �)+ Pi2 ID(comm PM i(R(i)) � S1(PS[L=psi]; J;Q; IDnfig; R(i))/ IDS = ; ^ ji < i ^ psi = R . �+ comm PM i(R(ji)) � S1(PS[F=psi]; J;Q; IDnfig; R(ji))/ IDS = ; ^ ji > i ^ psi = R . �)+ Pi2 ID(Pmp2M comm BP i(mp) � S1(PS; J;Q[deq(qi)=qi]; IDS;m)/ serve(qi) = mp ^ psi = F . �+ Pi2 IDS(comm MBi(m) � S1(PS; J;Q[enq(m; qi)=qi]; IDSnfig;m) / IDS 6= ; . �)Proof: We start with the expansion of the merge of the protocol processes P1i(psi; ji). Wename this process P1(PS; J):P1(PS; J) =ki2 ID P1i(psi; ji)These processes have no communicating actions, so the merge expands to the alternativecomposition of a number of sums over the set ID:P1(PS; J) = Pi2 ID(Pmp2M read BP i(mp) � P1(PS; J) / psi = S . �): : :+ Pi2 ID(Pmp2M read BP i(mp) � P1(PS; J) / psi = F . �)Next we consider the encapsulated merge of P1(PS; J) and BM1(Q; IDS;m):S1(PS; J;Q; IDS;m) = @H2(P1(PS; J) k BM1(Q; IDS;m))As in the proof of lemma 6.3, the axioms of section 6.2 and the de�nition of the encapsulationoperator lead to the result as stated in lemma 6.4. For the sake of brevity the vast amountof calculations that goes with this transformation is not shown. 2We now will turn to the veri�cation/validation of Protocol 1. As stated in section 6.2, itis not possible to give a formal veri�cation of the ACP speci�cation of our protocols. Thefollowing is a rather short and necessarily informal discussion of how a veri�cation shouldlook like, apart from the restrictions.In section 3 four requirements have been given for Protocol 1, stated in temporal logic. Herewe recall these requirements in natural language:P1: \There is always at most one leader".P2: \There will be in�nitely often a leader".59

P3: \If a component i is the leader and a component j is participating with j > i, then iwill capitulate sooner or later".P4: \If j is the successor of i as a leader, then j > i".In ACP there has been gained a lot of experience in verifying concurrent processes in termsof required process behaviour (required actions). Examples of such veri�cations can be foundin [Bae90]. The requirements P1{P4, as stated above, are primarily state oriented. P1 andP2 are concerned with the state of the system at this moment and in the future. P3 and P4are concerned with transitions from one state to another. In the ACP speci�cations in thissection state information is kept in the data parameters of the process equation. This leadsto requirements that are primarily based on statements about these data parameters. Due tothe lack of a formal data semantics, this is where the strictly formal ACP road ends and aninformal path of natural language reasoning, based on intuitions, begins. We will walk thispath for a short distance.We capture requirement P1 in the following condition R1:R1: There exists at most one leader. Stated in terms of the data parameters of the processS1: the number of leaders in PS is less than or equal to 1.Requirement P2 is captured as follows. In the speci�cation of the protocol process P1i weadd a summand to the leader state:P1i(: : :) = : : :+ : : :+ is leaderi � P1i(: : :) / psi = L . � + : : :The atomic action is leaderi does not communicate with any other action from any otherprocess. By giving this action a lower priority than any other action in the system weare certain that it only will be chosen if no other action is possible (any more). If theaction is leaderi is chosen, this means that i is the \�nal" leader that has won the election.According to P4 (see below) we then have that \there will be in�nitely often a leader" (P2).If the �nal leader is the component with the highest id, together with P1 this also impliesP3: all eventual leaders with an id < max(ID) apparently have capitulated. Stated moreformally:R2: �I � �(S1(initial state)) = RS1 with RS1 = � � is leadermax(ID) � RS1The priority operator now is used in relation with the is leaderi actions. The abstraction setI contains all actions, except the action is leaderi. max(ID) stands for the highest id in theset of participating components.Requirement P4 can be captured by adding a queue SQ of subsequent leader ids to the dataparameters of S1 and by requiring that SQ forms a strict increasing row with respect to theordering on the ids:R3: The queue SQ of subsequent leaders is strictly increasing with respect to the orderingon the ids.The \veri�cation" of R1 and R3 should imply the addition of R1 and R3 as extra conditions toevery action in S1. For every action it has to be proved that these conditions are invariantly60

true from the beginning. The \veri�cation" of R2 can be performed by calculating the requiredprocess equality. We will not try to give an informal proof of R1 { R3. Instead, we will pointout two possible ways back to a more formal approach:� turn to a formalism which has a formal semantics of data as well as processes, e.g. theformalism �CRL ([GP91]). This way out has not been investigated, it is left for futureresearch.� turn to the executable formal speci�cation language PSF ([MV90]). PSF has a formalsemantics of both data (based on ASF [BHK89]) and processes (based on ACP). A PSFspeci�cation can be simulated on a computer. In this way we get a validation of theprotocol, rather than a veri�cation. This has been carried out for two speci�cationsof Protocol 1 with a few components. One speci�cation was based on the equation forSystem1 in section 5, the other was based on the equation for S1 from this section. Anumber of simulation runs with both speci�cations all showed the desired behaviour ofthe protocol.6.4 Intermezzo: timeout semantics and ACP { part 2In section 5.3 three alternatives were stated for the modelling of a non-premature timeout.In this section we will look at the third alternative, the data oriented approach.Once we have a speci�cation of a protocol in the normal form as given in section 6.1, we canmodel the timeout semantics by the condition under which the timeout action is enabled: inthe summand : : :+timeouti �P (D) / c . �+: : : we can formulate the condition c according tothe timeout semantics. We distinguish three possible alternatives in formulating this timeoutcondition.1. We can base this timeout condition on the conditions that enable the actions that havea higher priority than the timeout. The timeout condition becomes true i� all theseconditions evaluate to false. This is the counterpart of modelling the timeout with thepriority operator �, as discussed in section 5.3. Lemma 6.2 makes a formal translationfrom priorities on actions to conditions on actions possible.2. The condition on which a timeout is enabled can be based on conditions which arerelated with speci�c states of certain constituent processes. Only if these processes arein the desired state(s) the timeout condition becomes true. In a certain sense this is thecounterpart of the modelling of the timeout with sync actions, as discussed in section5.3.3. We can base the condition directly on the desired timeout semantics. This means thatwe try to �nd the most accurate translation of the timeout semantics as stated intemporal logic into conditions on the data parameters under which the timeout may beenabled.Although alternative 3 probably gives the most accurate implementation of the desired time-out semantics, in this section we will work out alternative 1. The reason is twofold. First, inusing alternative 3 the speci�cation gets very complicated because of the required labelling of61

messages: the problems mentioned in section 5.3 can be solved only if messages are labelledwith a set of ids. The operations required on this set will make the speci�cation too compli-cated. The second reason is that, by choosing alternative 1, we maintain the same approachas with the speci�cations given in section 5.6.5 Protocol 2We will follow the same line as with Protocol 1: �rst we will give a single equation for theconstituent processes of the protocol, then we will derive an equation for the encapsulatedmerge of these processes.The speci�cation of the protocol process P2i looks very much like the adapted speci�cationof the process P1i in the previous section. By adding states and conditions we get a singleequation with several summands. The process P2i has two parameters: psi represents a stateof the protocol process, ji represents a component-id. In this speci�cation we distinguisheight states:� S: the start state.� B: the bu�er is reset, no initial I-message has been sent.� I : the initial I-message has been sent, the timer has not been started yet.� C: the candidate state, the timer has been started.� T : an I-message is received by a candidate, but has not been processed yet.� L: the leader state.� R: an I-message is received by a leader, but has not been processed yet.� F : the failed state.Compared to the states of Protocol 1, only the state I is new.P2i(psi; ji) = Pj2ID read BP i(I(j)) � P2i(psi; ji) / psi = S . �+ reset bu�eri � P2i(B; ji) / psi = S . �+ send PM i(I(i)) � P2i(I; ji) / psi = B . �+ start timeri � P2i(C; ji) / psi = I . �+ Pj 2 ID read BP i(I(j)) � P2i(T; j) / psi = C . �+ read timeouti � P2i(L; ji) / psi = C . �+ send PM i(I(i)) � P2i(C; ji) / ji < i ^ psi = T . �+ stop timeri � P2i(F; ji) / ji > i ^ psi = T . �+ Pj 2 ID read BP i(I(j)) � P2i(R; j) / psi = L . �+ send PM i(I(i)) � P2i(L; ji) / ji < i ^ psi = R . �+ P2i(F; ji) / ji > i ^ psi = R . �+ Pj2ID read BP i(I(j)) � P2i(psi; ji) / psi = F . �62

We transform the speci�cation of the smart bu�er process of section 5 into a single equationof the desired normal form by adding a default \empty message". If the bu�er contains thismessage it is considered to be empty. This implies that max(m; empty message) = m for allincoming messages. We do not consider this empty message to be an element of the messageset M . The name of the bu�er process has been shortened to B2i, the name of the storedmessage is now mi.B2i(mi) = Pm2M read MBi(m) �B2i(max(mi;m))+ send BP i(mi) �B2i(empty message) / mi 6= empty message . �+ read bu�er reseti �B2i(empty message)From the speci�cation of process P2i it is clear that a local timer will only be started inthe I-state, after which it will cause a timeout in the C-state or it will be stopped in theT -state. It will never be started again. Therefore we will not give a re-speci�cation of thetimer process, we will leave the timer state implicit in the speci�cation of the forthcomingsystem. The medium process is the same as in section 6.3.The route to a linear speci�cation of the complete system is the same as in section 6.3. Wewill not give all intermediate results, but we will state the �nal result at once in the followinglemma. The process S2 is parameterised with PS (a sequence of individual protocol processstates psi), J (a sequence of component-ids ji), MS (a sequence of messages mi, kept in thelocal bu�ers; mi can also be the empty message), IDS (a variable set of ids) and a singlemessage m.S2(P; J;MS; IDS;m) =� � @H3(ki2 ID (P2i(psi; ji) k B2i(mi) k T imeri) k M(IDS;m))with H3 as de�ned in section 5. The expansion of this process equation leads to the followingequation. The condition for the enabling of the timeout, TO CONDi, is derived afterwards.Lemma 6.5S2(PS; J;MS; IDS;m) =Pi2 ID(Pj 2 ID comm BP i(I(j)) � S2(PS; J;MS[empty message=mi]; IDS;m)/mi = I(j) ^ psi = S . �+ bu�er is reset � S2(PS[B=psi]; J;MS[empty message=mi]; IDS;m) / psi = S . �)+ Pi2 ID(comm PM i(I(i)) � S2(PS[I=psi]; J;MS; IDnfig; I(i)) / IDS = ; ^ psi = B . �)+ Pi2 ID(timer startedi � S2(PS[C=psi]; J;MS; IDS;m) / psi = I . �)+ Pi2 ID(Pj 2 ID comm BP i(I(j)) � S2(PS[T=psi]; J [j=ji];MS[empty message=mi]; IDS;m)/mi = I(j) ^ psi = C . �+ timeouti � S2(PS[L=psi]; J;MS; IDS;m) / TO CONDi ^ psi = C . �)+ Pi2 ID(comm PM i(I(i)) � S2(PS[C=psi]; J;MS; IDnfig; I(i))/ IDS = ; ^ ji < i ^ psi = T . �+ timer stoppedi � S2(PS[F=psi]; J;MS; IDS;m) / ji > i ^ psi = T . �)+ Pi2 ID(Pj 2 ID comm BP i(I(j)) � S2(PS[R=psi]; J [j=ji];MS[empty message=mi]; IDS;m)/mi = I(j) ^ psi = L . �)+ Pi2 ID(comm PM i(I(i)) � S2(PS[L=psi]; J;MS; IDnfig; I(i))/ IDS = ; ^ ji < i ^ psi = R . �+ S2(PS[F=psi]; J;MS; IDS;m) / ji > i ^ psi = R . �)63

+ Pi2 ID(Pj 2 ID comm BP i(I(j)) � S2(PS; J;MS[empty message=mi]; IDS;m)/mi = I(j) ^ psi = F . �)+ Pi2 IDS(comm MBi(m) � S2(PS; J;MS[max(mi;m)=mi]; IDSnfig;m)/ IDS 6= ; . �)Proof: by lengthy but straightforward calculations, based on the axioms and lemmas ofsection 6.2. 2In section 5 the timeout semantics was modelled by the de�nition of a priority relation betweencertain actions. In lemma 6.2 the relation between the ordering between actions and conditionsin a process expression was stated. From this lemma and the action orderings as given insection 5.3 we derive the following lemma concerning the condition for the enabling of thetimeout.Lemma 6.6TO CONDi = (IDS = ;)^Vk2ID(:(mk 6= empty message ^ (psk = S _ psk = C _ psk = L _ psk = F))) ^Vj2ID;j�i(:(psj = B _ (jj < j ^ (psj = T _ psj = R))))Proof: We split the proof in three parts, for each of the three order relations we will derivea condition.1: timeouti < comm MBk(m) with m 2M; i; k 2 ID.In the equation of S2 there is only one condition under which a comm MBk(m) action isenabled: IDS 6= ;. According to lemma 6.2 this leads to the following condition for theenabling of a timeout:C i1 = :(IDS 6= ;) = (IDS = ;)So the �rst ordering leads to the condition that the medium must be empty before a timeoutis enabled.2: timeouti < comm BP k(m) with m 2M; i; k 2 ID.In the equation of S2 there are four conditions under which a comm BP action is enabled.In each condition it is required that the bu�er holds a certain message which is not equalto the empty message. So the second ordering leads to four conditions for the enabling of atimeout:C i2a = Vk2ID(: (mk 6= empty message ^ psk = S))C i2b = Vk2ID(: (mk 6= empty message ^ psk = C))C i2c = Vk2ID(: (mk 6= empty message ^ psk = L))C i2d = Vk2ID(: (mk 6= empty message ^ psk = F))C i2 = C i2a ^ C i2b ^ C i2c ^ C i2d == Vk2ID(: (mk 6= empty message ^ (psk = S _ psk = C _ psk = L _ psk = F)))3: timeouti < comm PM j(m) with m 2M; i; j 2 ID; j � i.In the equation of S2 there are three conditions under which a comm PM i(m) action isenabled. According to lemma 6.2 this leads to three conditions for the enabling of a timeout:C i3a = Vj2ID;j�i(:(IDS = ; ^ psj = B)) 64

C i3b = Vj2ID;j�i(:(IDS = ; ^ jj < j ^ psj = T))C i3c = Vj2ID;j�i(:(IDS = ; ^ jj < j ^ psj = R))C i3 = C i3a ^ C i3b ^ C i3c == :(IDS = ;) _ Vj2ID;j�i(:(psj = B _ (jj < j ^ (psj = T _ psj = R))))Finally we get TO CONDi = C i1 ^ C i2 ^ C i3 which, after some boolean calculations, leadsto the result as stated. 2The requirements for the veri�cation are the same as for Protocol 1. As with Protocol 1we halt our investigations of the veri�cation of the protocol at this point. With respect tothe validation of the protocol we refer to a number of successful simulation runs of a PSFspeci�cation of S2. The PSF formalism does not provide the priority operator, so System2from section 5 could not be speci�ed and simulated in PSF.6.6 Protocol 3The required speci�cation of Protocol 3 will be derived in a few big steps. First we give aspeci�cation of the protocol process, then we will give a speci�cation of the whole system.From section 3 it will be clear that the requirements need special attention. We will discussa revision of the requirements R1{R3 at the end of this section.The speci�cation of the protocol process P3i has the same parameters as P2i: psi (protocolstate) and ji (a component-id). In the speci�cation we distinguish eleven states:� S: the start state.� B: the bu�er is reset, no initial I-message has been sent.� I : the initial I-message has been sent, the timer has not been started yet.� C: the candidate state, the timer has been started.� T : an I-message is received by a candidate, but has not been processed yet.� L: the leader state.� R: an I-message is received by a leader, but has not been processed yet.� F : the failed state.� X: an I-message is received by a failed process, but has not been processed yet.� D: the dead state.� A: the component becomes alive again (the revive action has been executed), the timerhas not been reset yet.Compared to the states of Protocol 2 the last three states are new. In the speci�cation belowthe transition to the dead state is not added to the process term for each separate state S : : :X.Instead, a single summand with the action crashi is added with the condition :(psi = D).65

P3i(psi; ji) = Pj 2 ID read BP i(I(j)) � P3i(psi; ji) / psi = S . �+ reset bu�eri � P3i(B; ji) / psi = S . �+ send PM i(I(i)) � P3i(I; ji) / psi = B . �+ start timeri � P3i(C; ji) / psi = I . �+ Pj 2 ID read BP i(I(j)) � P3i(T; j) / psi = C . �+ read timeouti � P3i(L; ji) / psi = C . �+ send PM i(I(i)) � P3i(C; ji;) / ji < i ^ psi = T . �+ stop timeri � P3i(F; ji) / ji > i ^ psi = T . �+ Pj 2 ID read BP i(I(j)) � P3i(R; j) / psi = L . �+ send PM i(I(i)) � P3i(L; ji) / ji < i ^ psi = R . �+ P3i(F; ji) / ji > i ^ psi = R . �+ Pj 2 ID read BP i(I(j)) � P3i(X; j) / psi = F . �+ P3i(B; ji) / psi = F . �+ P3i(B; ji) / ji < i ^ psi = X . �+ P3i(F; ji) / ji > i ^ psi = X . �+ crashi � P3i(D; ji) / :(psi = D) . �+ revivei � P3i(A; ji) / psi = D . �+ reset timeri � P3i(S; ji) / psi = A . �The (smart) bu�er process and the medium process are the same as in the previous section.As with Protocol 2, we will not give a re-speci�cation of the simple timer process, althoughfor this protocol in each state a reset action has been added.The process S3 has the same data parameters as S2 in the previous section. So we getS3(PS; J;MS; IDS;m) =� � @H3(ki2 ID (P3i(psi; ji) k B2i(mi) k T imeri) k M(IDS;m))with H3 as de�ned before. The expansion of this equation leads to the following equation.The condition TO CONDi for the enabling of the timeout is the same as in the previousprotocol.Lemma 6.7S3(PS; J;MS; IDS;m) =Pi2 ID(Pj 2 ID comm BP i(I(j)) � S3(PS; J;MS[empty message=mi]; IDS;m)/mi = I(j) ^ psi = S . �+ bu�er is reset � S3(PS[B=psi]; J;MS[empty message=mi]; IDS;m) / psi = S . �)+ Pi2 ID(comm PM i(I(i)) � S3(PS[I=psi]; J;MS; IDnfig; I(i)) / IDS = ; ^ psi = B . �)+ Pi2 ID(timer startedi � S3(PS[C=psi]; J;MS; IDS;m) / psi = I . �)+ Pi2 ID(Pj 2 ID comm BP i(I(j)) � S3(PS[T=psi]; J [j=ji];MS[empty message=mi]; IDS;m)/mi = I(j) ^ psi = C . �+ timeouti � S3(PS[L=psi]; J;MS; IDS;m) / TO CONDi ^ psi = C . �)+ Pi2 ID(comm PM i(I(i)) � S3(PS[C=psi]; J;MS; IDnfig; I(i))66

/ IDS = ; ^ ji < i ^ psi = T . �+ timer stoppedi � S3(PS[F=psi]; J;MS; IDS;m) / ji > i ^ psi = T . �)+ Pi2 ID(Pj 2 ID comm BP i(I(j)) � S3(PS[R=psi]; J [j=ji];MS[empty message=mi]; IDS;m)/mi = I(j) ^ psi = L . �)+ Pi2 ID(comm PM i(I(i)) � S3(PS[L=psi]; J;MS; IDnfig; I(i))/ IDS = ; ^ ji < i ^ psi = R . �+ S3(PS[F=psi]; J;MS; IDS;m) / ji > i ^ psi = R . �)+ Pi2 ID(Pj 2 ID comm BP i(I(j)) � S3(PS[X=psi]; J [j=ji];MS[empty message=mi]; IDS;m)/mi = I(j) ^ psi = F . �+ S3(PS[B=psi]; J;MS; IDS;m) / psi = F . �)+ Pi2 ID(S3(PS[B=psi]; J;MS; IDS;m) / ji < i ^ psi = X . �+ S3(PS[F=psi]; J;MS; IDS;m) / ji > i ^ psi = X . �)+ Pi2 ID(crashi � S3(PS[D=psi]; J;MS; IDS;m) / :(psi = D) . �)+ Pi2 ID(revivei � S3(PS[A=psi]; J;MS; IDS;m) / psi = D . �)+ Pi2 ID(timer is reseti � S3(PS[S=psi]; J;MS; IDS;m) / psi = A . �)+ Pi2 IDS(comm MBi(m) � S3(PS; J;MS[max(mi;m)=mi]; IDSnfig;m)/ IDS 6= ; . �)Proof: by lengthy but straightforward calculations, based on the axioms and lemmas ofsection 6.2. 2The correctness requirements for this protocol were given in section 3, stated in temporallogic formulae. We recall these requirements in natural language:Q1: \There is always at most one leader".Q2: \If there is a component that never crashes and all better components are crashed forever, there will be in�nitely often a leader".Q3: \A component cannot be both leader and crashed".Q4: \If there is a better living component than the leader, eventually this component willcrash or the leader will abdicate".Q5: \The abdication of a leader is caused by a crash of the leader or the existence of a betterliving component in the past".Q6: \If a leader abdicates, but does not crash before a new leader emerges, then the identityof the new leader is equal to or higher than the identity of the old leader".In the following we will try to give a kind of translation of these requirements to ACPrequirements. Q1 is the same as P1 and can be captured by R1, as given with Protocol 1.Q3 is obvious: in the process parameter PS each element psi can only have one single value.So no component can be both leader and crashed. The requirements Q2, Q4, Q5 and Q6 allcontain statements about the behaviour of the system during (subsequent) moments of time.In ACP the only notion we have in this �eld is a notion of fairness, which guarantees that,under certain circumstances, an action will be chosen sooner or later. As already mentionedin section 5, in ACP no di�erence exists between may and must transitions. So, in ACP we67

can never model a component that never crashes (Q2). In an informal way Q5 is obvious:from the speci�cation of S3 it is immediately clear that a leader only abdicates after thereception of a message from a better component or on behalf of a crash. We consider Q4 andQ6 as too complex to handle in an ACP setting. Instead, we present a weakened variant ofR2: R20 which states that a leader can be observed in�nitely often, when abstracting from allother actions and when an is leaderi action has a lower priority than all actions concernedwith message passing.R20: �I � �(S3(initial state)) = RS3 with RS3 =Pi2 ID � � is leaderi �RS3As with the previous protocols we will not try to give any veri�cation of Protocol 3 withrespect to the requirements. The protocol has been validated by a number of successfulsimulation runs of a PSF speci�cation of S3.

68

7 ConclusionsIn this paper we have designed, speci�ed and veri�ed a series of dynamic leader electionprotocols in broadcast networks. From this extensive case study in protocol design andveri�cation we make the following remarks.We started our design by formally capturing the protocol requirements. Rather surprisingly,no such precise |and abstract| problem speci�cation for dynamic leader election currentlyexists in literature. When considering the protocol's correctness this is even more remarkableas a formal problem speci�cation is indispensable for a formal veri�cation.Linear-time temporal logic was used so as to express the requirements and to perform theveri�cation. The formalism turned out to be very convenient for specifying the requirementsin a rather abstract way. Due to the dynamic character of processes it is not straightforwardto give such a speci�cation in, for instance, a process algebraic formalism without aiming ata particular protocol.The protocols are constructed in a step-wise fashion starting from the formal requirementspeci�cation. The step-wise approach aids not only in the clarity and conciseness of the pro-tocols, but also |and more importantly| in reasoning about them (`separation of concerns').Due to our experience, we believe that this is a feasible approach for the design of complex,dynamic communication protocols.A possible (and interesting) extension to the Leader Election problem is to consider identitiesthat may change during operation opposed to �xed identities. We remark that the �nal,fault-tolerant protocol is also applicable in this context.The use of temporal logic for the speci�cation and veri�cation of communication protocolsis well-known for almost a decade (see e.g. [Lam82, HO83, SPE84]). This case study shows|once more| that this technique combined with the state transition approach is very conve-nient. In fact, we have shown that these techniques are also applicable when designing a newprotocol whereas most case studies focus on already existing protocols with commonly agreedrequirements. Furthermore, the dynamic character of processes makes the problem consid-erably more complex (e.g. the addition of timeouts and presence of two kinds of transitions)than traditionally veri�ed protocols.Ideally, detailed proofs of complex protocols are required in which each step of the proof isformalized and for which informal arguments are minimized. Such detailed proofs are wellpossible in our framework and require a formalization of the assumptions, translation of theprotocols into the proof formalism, and so on. The proofs in this paper constitute a usefulstepping-stone towards such a detailed proof. Obtaining a completely formalized proof isconsidered to be an interesting subject for further research.A speci�cation of the protocols in ACP contains a complete formal description, not only ofthe various processes but also of the complete distributed behaviour of the protocols. Tothis extent ACP has more expressive power than state transition diagrams. The protocols inthis paper are too large for manual algebraic veri�cation. Automated veri�cation in a relatedformalism as �CRL is left for future research. PSF simulation runs of the protocols appearedto be very helpful during the various stages of the protocol design.In general an algebraic veri�cation in ACP consists of a proof that two ACP speci�cationsde�ne the same process, seen from an appropriate level of abstraction. One speci�cation69

is considered as the requirement speci�cation, while the other serves as the protocol spec-i�cation. In some cases, as in our LE protocol, it is very hard to provide a requirementspeci�cation in ACP. This is due to the fact that such a speci�cation must contain a descrip-tion of all possible admitted behaviours. This is the main reason why we were not able togive a complete correctness proof in ACP. Instead, we calculated a normal form, which ingeneral is an important step in most ACP proofs. Further research should point out whetherthere is a way to obtain a requirement speci�cation for this kind of protocols in ACP, or thatthis problem is intrinsic to ACP.We think that a combination of the techniques used in this paper may show adequate to givea correctness proof which is completely formal. This would consist of a speci�cation of thecomplete system (including the communication media) in ACP, followed by a transformationto a normal form in ACP, on which a veri�cation of the requirements using temporal logic isbased. It should be studied how to link ACP and temporal logic formally.In the �rst instance the construction of the protocols was aimed at correctness with respectto the requirements and minimizing the number of transitions |rather than optimizing theire�ciency. As e�ciency, though, plays an important role in the �eld of leader election proto-cols we analyzed the protocols' worst case message complexity, that is, the maximum numberof messages needed to elect a leader. During this analysis the use of protocol simulationfacilities [MV90] was of considerable help. With the aid of these tools it turned out that theintroduction of an alternative bu�ering mechanism reduces the message complexity signi�-cantly.This case study shows the usefulness of manual veri�cation for a non-trivial protocol problemand is helpful in gaining experience of how such a veri�cation is best conducted. Applicationto other protocols must show how useful this information turns out to be. This is left forfurther study.Acknowledgements: The authors gratefully acknowledge Jan Bergstra (Univ. of Amsterdam &Univ. of Utrecht) for initiating and stimulating our fruitful cooperation. We are also grateful to JanFriso Groote (Univ. of Utrecht) for his assistance during the beginning of our work. Finally, HenkEertink (Univ. of Twente), Ruurd Kuiper (Univ. of Eindhoven), Yat Man Lau (Philips Research), andMarnix Vlot (Philips Research) are kindly acknowledged for commenting on parts of a draft versionof this paper.

70

References[AA88] H.H. Abu-Amara. Fault-tolerant distributed algorithm for election in complete networks.IEEE Transactions on Computers, 37(4):449{453, 1988.[AG91] Y. Afek and E. Gafni. Time and message bounds for election in synchronous and asyn-chronous complete networks. SIAM Journal on Computing, 20(2):376{394, 1991.[Att87] H. Attiya. Constructing e�cient election algorithms from e�cient traversal algorithms.In J. van Leeuwen, editor, Distributed Algorithms, LNCS 312, pages 337{344. Springer-Verlag, 1987.[AvLSZ89] H. Attiya, J. van Leeuwen, N. Santoro, and S. Zaks. E�cient elections in chordal ringnetworks. Algorithmica, 4(3):437{446, 1989.[Bae90] J.C.M. Baeten, editor. Applications of Process Algebra. Cambridge Tracts in TheoreticalComputer Science 17. Cambridge University Press, 1990.[BB92] J.C.M. Baeten and J.A. Bergstra. Process algebra with signals and conditions. In M. Broy,editor, Programming and Mathematical Methods, Proceedings Summer School Marktober-dorf 1991, pages 273{323. Springer, 1992.[BD87] S. Budkowski and P. Dembinski. An introduction to Estelle: A speci�cation language fordistributed systems. Computer Networks and ISDN Systems, 14:3{23, 1987.[BHK89] J.A. Bergstra, J. Heering, and P. Klint, editors. Algebraic speci�cation. ACM PressFrontier Series. Addison Wesley, 1989.[Bru] J.J. Brunekreef. Data oriented process speci�cation. (To appear in autumn 1993).[Bru91] J.J. Brunekreef. A formal speci�cation of three sliding window protocols. Technical ReportP9102b, Programming Research Group, University of Amsterdam, 1991.[BW90] J.C.M Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in TheoreticalComputer Science 18. Cambridge University Press, 1990.[CR79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-�nding incircular con�gurations of processors. Communications of the ACM, 22(5):281{283, 1979.[DDS87] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchronism needed for dis-tributed consensus. Journal of the ACM, 34(1):77{97, 1987.[Dij74] E.W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications ofthe ACM, 17:634{644, 1974.[DIM93] S. Dolev, A. Israeli, and S. Moran. Uniform dynamic self-stabilizing leader election part1: Complete graph protocols. (Preliminary version appeared in Proc. 6th Int. Workshopon Distributed Algorithms, (S. Toueg et. al., eds.), LNCS 579, 167{180, 1992), 1993.[Fis91] M.J. Fischer. A theoretician's view of fault tolerant distributed computing. In Fault-Tolerant Distributed Computing, LNCS 448, pages 1{9. Springer-Verlag, 1991.[Geh84] N.H. Gehani. Broadcasting sequential processes. IEEE Trans. on Software Engineering,10(4):343{351, 1984.[Got92] R. Gotzhein. Temporal logic and its applications{a tutorial. Computer Networks andISDN Systems, 24:203{218, 1992.[Gou93] M.G. Gouda. Protocol veri�cation made simple: a tutorial. Computer Networks and ISDNSystems, 25:969{980, 1993. 71

[GP91] J.F. Groote and A. Ponse. �CRL: A base for analyzing processes with data. In E. Bestand G. Rozenberg, editors, Proceedings of the 3rd Workshop on Concurrency and Compo-sitionality, pages 125{130. Universit�at Hildesheim, 1991.[GZ86] R. Gusella and S. Zatti. An election algorithm for a distributed clock synchronizationprogram. In Proc. 6th IEEE Int. Conf. on Distributed Computing Systems, pages 364{371, 1986.[HO83] B.T. Hailpern and S. Owicki. Modular veri�cation of computer communication protocols.IEEE Transactions on Computers, 31(1):56{68, 1983.[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.[IKWZ90] A. Itai, S. Kutten, Y. Wolfstahl, and S. Zaks. Optimal distributed t-resilient election incomplete networks. IEEE Transactions on Software Engineering, 16(4):415{420, 1990.[KKM85] E. Korach, S. Kutten, and S. Moran. A modular technique for the design of e�cientdistributed leader �nding algorithms. In Proc. 4th Annual ACM Symp. on Principles ofDistributed Computing, pages 163{174. ACM, 1985.[KMZ84] E. Korach, S. Moran, and S. Zaks. Tight lower and upper bounds for some distributedalgorithms for a complete network of processors. In Proc. 3rd Annual ACM Symp. onPrinciples of Distributed Computing, pages 199{207. ACM, 1984.[Koy89] R.L.C. Koymans. Specifying message passing systems requires extending temporal logic.In B. Banieqbal (et. al.), editor, Proc. Colloquium on Temporal Logic and Speci�cation,LNCS 398, pages 213{223. Springer-Verlag, 1989.[Lam82] L. Lamport. An assertional correctness proof of a distributed algorithm. Science ofComputer Programming, 2:175{206, 1982.[Lam83] L. Lamport. Specifying concurrent program modules. ACM Transactions on ProgrammingLanguages and Systems, 5(2):190{222, 1983.[LeL77] G. LeLann. Distributed systems|towards a formal approach. In B. Gilchrist, editor,Information Processing (vol. 77) (IFIP), pages 155{160. North-Holland, Amsterdam, 1977.[LMW86] M.C. Loui, T.A. Matsushita, and D.B. West. Election in a complete network with a senseof direction. Information Processing Letters, 22:185{187, 1986. (see also Inf. Proc. Letters,28:327, 1988).[LT88] K.G. Larsen and B. Thomsen. A modal process logic. In Proc. of 3rd Annual Symp. onLogic in Computer Science, pages 203{210. IEEE Computer Society Press, 1988.[MB76] R.M. Metcalfe and D.R. Boggs. Ethernet: Distributed packet switching for local computernetworks. Communications of the ACM, 19(7):395{404, 1976.[MNHT89] T. Masuzawa, N. Nishikawa, K. Hagihara, and N. Tokura. Optimal fault-tolerant dis-tributed algorithms for election in complete networks with a global sense of direction. InJ.-C. Bermond and M. Raynal, editors, Distributed Algorithms, LNCS 392, pages 171{182.Springer-Verlag, 1989.[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems|Speci�cation. Springer-Verlag, New York, 1992.[MV90] S. Mauw and G.J. Veltink. A process speci�cation formalism. Fundamenta Informaticae,VIII:85{139, 1990.[MV93] S. Mauw and G.J. Veltink, editors. Algebraic speci�cation of communication protocols.Cambridge Tracts in Theoretical Computer Science 36. Cambridge University Press, 1993.[Pet82] G.L. Peterson. An O(n logn) unidirectional algorithm for the circular extrema problem.ACM Trans. Progr. Lang. Syst., 4:758{762, 1982.72

[Sch93] M. Schneider. Self-stabilization. ACM Computing Surveys, 25(1):45{67, 1993.[SG87] L. Shrira and O. Goldreich. Electing a leader in a ring with link failures. Acta Informatica,24:79{91, 1987.[SGS84] F.B. Schneider, D. Gries, and R.D. Schlichting. Fault-tolerant broadcasts. Science ofComputer Programming, 4(1):1{16, 1984.[Sin91] G. Singh. E�cient distributed algorithms for leader election in complete networks. InProc. 11th IEEE Int. Conf. on Distributed Computing Systems, pages 472{479, 1991.[SPE84] D.E. Shasha, A. Pnueli, and W. Ewald. Temporal veri�cation of carrier-sense local areanetwork protocols. In Proc. ACM Symp. on Principles of Programming Languages, pages54{65, 1984.[Vaa90] F.W. Vaandrager. Two simple protocols. In Baeten [Bae90].[vB78] G. v. Bochmann. Finite state description of communication protocols. Computer Networks,2:361{372, 1978.[vEB90] P. van Emde Boas. Machine models and simulations. In J. van Leeuwen, editor, Handbookof Theoretical Computer Science (vol. 1). Elsevier Science Publishers, 1990.[vLT87] J. van Leeuwen and R.B. Tan. An improved upperbound for distributed election in bidi-rectional rings of processors. Distributed Computing, 2:149{160, 1987.[vW93] J.J. van Wamel. Simple protocols. In Mauw and Veltink [MV93].

73

