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Abstract— This paper introduces an asynchronous optimistic certified
email protocol, with stateless recipients, that relies on key chains to
considerably reduce the storage requirements of the trusted third party.
The proposed protocol thereby outperforms the existing schemes that
achieve strong fairness. The paper also discusses the revocation of
compromised keys as well as practical considerations regarding the
implementation of the protocol.

I. INTRODUCTION

Alice wants to send an email to Bob. She wishes to receive an
evidence of receipt when Bob receives (and is able to read) the email.
Bob is willing to send back an evidence of receipt to Alice only if
he receives an evidence of origin along with Alice’s email. Certified
email (CEM) protocols are to provide such services.

CEM protocols are instances of fair exchange protocols. Similar
to fair exchange protocols, there are three general constructions
for CEM, based on the degree of the involvement of trusted third
parties (TTP). The first class, which chronologically precedes the
other classes, are CEM protocols with no TTPs, see for instance [1]
and [2]. These are based on gradual release of information and require
exchanging many messages to “approximate” fair exchange (CEM
protocols with no TTPs are theoretically impossible, see [3]). More-
over, they often assume that the participants have equal computational
powers. Protocols of the second class need the TTP’s intervention in
each exchange. Notable examples of these protocols are [4], [5], [6],
[7] and [8]. A drawback of these protocols is that the TTP easily
becomes a communication bottleneck or a single target of attacks.
The third class of CEM protocols, known as optimistic fair exchange
protocols, require the TTP’s intervention only if a failure (accidentally
or maliciously) occurs. Therefore, honest parties that are willing to
exchange their items (e.g. emails and receipts) can do so without
involving any TTP.

Optimistic fair exchange protocols basically consist of three sub-
protocols (see, e.g., [9]): exchange protocol, recovery protocol and
abort protocol. In the exchange protocol, that does not involve the
TTP, the agents first commit to exchange their items and then they
actually exchange them. An agent A can run the recovery protocol if
the opponent B has committed to exchange, but A has not received
B’s item, and vice versa. A participant typically aborts (cancels) an
exchange if she does not receive the opponent’s commitment to the
exchange. Optimistic protocols require the communication channels
to and from the TTP to be resilient, i.e. messages are delivered
within an arbitrary but finite amount of time. This guarantees that,
in case of a failure, protocol participants can eventually consult the
TTP. As examples of optimistic CEM protocols we refer to [9], [10],
[11] and [12]. CEM protocols have also been extended to deal with
multi-party exchanges, e.g. [13], [14] and [15], and certified mailing
lists [16].

Contributions In order to achieve strong fairness (see section II-
B), asynchronous optimistic fair exchange protocols require stateful
TTPs [17]. Therefore, the amount of information that has to be stored
by the TTP (virtually for an indefinite amount of time) is an issue in
these protocols. In this paper we introduce an asynchronous optimistic
CEM protocol, with stateless recipients, that aims at reducing the

TTP’s storage requirements using key chains [18], while guaranteeing
strong fairness. A key chain is a sequence of keys such that each key
is derived by applying a one-way function to the previous key. In
section II-D, we thoroughly describe how key chains are used in our
proposed CEM protocol.

We further optimize the protocol by using a practical aspect of
CEM exchanges: Once two participants have started exchanging
emails, usually several emails are exchanged between them. This
observation motivates our proposed CEM protocol which imposes an
initialization overhead, but is more efficient for exchanging several
emails. To the best of our knowledge, this has not been previously
studied

Structure of the paper In section II we start by describing the
assumptions underlying the proposed protocol and its design goals.
The protocol is presented in the rest of section II. In section III we
discuss the security of the proposed protocol and analyze how it
achieves the design goals. Section IV concerns practical issues and
implementation considerations of the protocol. Section V compares
our protocol with existing schemes and also points out some possible
future work. We conclude the paper in section VI.

II. THE PROTOCOL

In section II-A we present the assumptions that our protocol is
based on, along with some notations. The design goals are described
in section II-B. The protocol is presented in two steps: First we give a
high level description of a naı̈ve design of the protocol in section II-
C. By first describing this, we show the ideas and point out some
problems. However, the naı̈ve design is not efficient and in section II-
D we explain an efficient version of the protocol in detail.

A. Notations and assumptions
Throughout the paper M denotes the content of the email being

exchanged. To denote that an agent A sends message m to agent B

we write A → B : m. The concatenation of the messages m1 and
m2 is denoted m1, m2.

1) Communication channels assumptions: We assume resilient
communication channels between each participant and the TTP. The
channels connecting non-trusted protocol participants are however
under the control of attackers. Therefore, no time bound on delivering
messages is assumed for these channels (e.g. messages can get lost).

2) Cryptographic notations and assumptions: We assume ideal
cryptographic apparatus à la Dolev and Yao [19]: A message m

encrypted with the symmetric key K is denoted {m}K , from which
m can only be extracted using K. We assume the existence of a
public key infrastructure. The notations pk (X) and sk(X) represent
the public and private keys of entity X , respectively. In asymmetric
encryption we have {{m}sk(X)}pk(X) = {{m}pk(X)}sk(X) = m.
Encrypting with a private key denotes signing and, for convenience,
for {m}sk(X) we write (m)X . We also assume access to one-way
collision-resistant hash functions.

3) TTP assumptions: We assume that the TTP T maintains a
persistent secure database, with entries of the form 〈X, Y, Z, W 〉,
where X and Y are participant identities, Z is a key and W contains
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a random number (see section II-D.1). Associated with each such
entry, T stores a linked list, initially of length zero. Each element
of such a linked lists is of the form (i, status (i)), where i ∈ N

and status (i) ∈ {0, 1}l ∪ {a}, for a finite l, and a special flag a

that denotes an aborted exchange. In status , T stores the status of
resolved exchanges, i.e. whether they have been recovered or aborted
(see sections II-D.3 and II-D.4).

4) Idempotency assumption: Exchanged items, i.e. emails and
evidences, are assumed idempotent. Therefore, to be able to receive
an email or receipt twice is not different from receiving it once
(meaning that it is not considered as an attack).

B. Design goals
One of the most fundamental requirements for CEM protocols

is non-repudiation. Non-repudiation guarantees that an agent cannot
deny having sent or received a message, if it has actually done so
in the course of the protocol. To achieve this, protocol participants
usually collect evidences, evidence of origin (EOO) and evidence of
receipt (EOR), which can later be presented to a judge.

The second requirement for CEM protocols is to satisfy the fair
exchange properties [9]. Here we aim at strong fairness as is defined
below (for definitions of different levels of fairness see [20]). Fair
exchange consists of three properties:

• Effectiveness states that if A and B engage in the protocol and
are willing to exchange emails for receipts, then the protocol
will reach a state where B has received the email content M
and EOO, and A has received EOR, and both A and B have
terminated, i.e. they have no further pending operations to
perform in that protocol round.

• Fairness states that when the protocol round terminates, if A

has received EOR, then B has received both M and EOO, and
if A has not received EOR, then B possesses neither M nor
EOO.

• Timeliness means that an honest participant can unilaterally, or
with the help of a TTP, terminate the protocol run. Moreover,
after termination, the degree of fairness does not decrease for
an honest participant, i.e. if he did not receive his evidence or
email content before terminating, then it cannot be that the other
participant gets her evidence or email content at some future
time.

Confidentiality is another requirement for CEM protocols which
states that the exchanged email content should not be revealed to
anyone (including the TTP), except to the intended receiver. Our
proposed protocol does not directly address confidentiality. However,
if confidentiality is desired, the exchanged email content M can be
substituted with the actual email content encrypted for the receiver
using his public-key or a shared secret key.

C. The naı̈ve protocol
In most existing non-repudiation and CEM protocols, the initiator

uses a separate key to encrypt the email to be exchanged, for each
single protocol round. If the exchange goes amiss, the parties can
resort to a TTP, that will store the key along with some other
information about the exchange, such as involved parties, a hash
value of the email content and an exchange label (e.g. see [21]).
This information is stored virtually for an indefinite amount of time
(see section V for more discussions).

We aim at reducing the amount of information stored by the TTP
using key chains (c.f. [18]). A chain of keys is a sequence of keys
K0, . . . , Kn such that Ki := H(Ki−1), for i > 0, where H is a

publicly known one-way function. The key K0 is called the chain
seed.

The key chain is initiated by the initiator Alice who chooses a
seed K0 and shares it with the TTP. They moreover agree on the
maximum number n of exchanges that Alice can perform using
the chain. Afterward, Alice traverses the chain backwards and she
uses Kn−i (for i ≤ n) to encrypt the message in the ith exchange.
Provided that the hash function H is preimage resistant, i.e. given
H(x) it is hard to compute x, the key used in ith exchange remains
unknown to the receiver Bob unless he knows one of the Kj for
j ≤ i. However, since Alice traverses the chain backwards, the keys
seem to be fresh and independent.

The ith exchange starts with Alice sending an email to Bob,
encrypted using Kn−i, a key that Bob does not know (yet). Bob
commits to the exchange by acknowledging the reception of the
encrypted email. Afterward Alice sends Bob the key and, finally,
Bob also acknowledges the reception of the key. In this scenario the
TTP interferes only when a party does not receive the message he or
she expects. Intuitively, when a party can prove that the opponent has
committed to the exchange, then the TTP provides that party with
the encryption key along with some affidavits. When key chains are
used, in order to produce the key used in any resolved exchange,
the TTP only needs to store the seed. The storage required is thus
reduced considerably.

This protocol is trivially not purely optimistic because Alice needs
to set up a chain with the TTP. However, if the number n of exchanges
is large enough, then the gained reduction in required storage space of
the TTP will, in many practical applications, compensate the overhead
of the initial setup phase. But, one single problem prevents this idea
to be practical: It is costly to abort an exchange. This is because of
the following situation: Assume that exchange number i is aborted.
This means that Kn−i is not revealed to Bob, but he gets hold of
the encrypted email. This can happen for instance when Alice sends
the encrypted email to Bob, but afterward changes her mind and
aborts the exchange, for example because Bob is slow in replying.
Now if the protocol proceeds and the (i + 1)th session terminates
successfully, then Bob learns Kn−(i+1). Because of the way the
chain is constructed, Bob can easily find out Kn−i (by computing
H(Kn−(i+1))) and decrypt the email content of the aborted session
at will. Fairness is thus violated. Therefore, if an exchange is aborted,
Alice needs to abandon using the rest of the chain altogether and set
up a new key chain with the TTP. This can potentially impose a huge
efficiency penalty on the protocol. The next section describes a way
to circumvent this problem.

D. The main protocol

Here we describe our asynchronous optimistic fair CEM protocol.
This protocol uses keys in a key chain for encrypting emails that
are exchanged. Once this chain has been initialized, emails can be
encrypted and exchanged, each time with a new key. The protocol
also provides a way for the initiator to revoke an entire key chain.

Each exchange (or attempt to exchange) that uses the optimistic
protocol (and possibly also the recovery and abort protocols) is called
a protocol round. An initialization phase followed by a number of
protocol rounds is called a protocol session. After the initialization
phase, the initiator can send emails to the responder. Each protocol
session belongs to one unique initiator-responder pair. However, the
protocol naturally allows concurrent sessions. An agent can thus be
involved in different sessions with different opponents at the same
time.
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1) Initialization: First, the initiator A chooses a fresh random key
K0, the seed of the key chain. For i ≥ 0, let Ki+1 := H(Ki) and
K′

i := H ′(Ki), where H ′ is a publicly known secure hash function,
while H can be an ordinary hash function. Moreover, we require that
H and H ′ do not commute, i.e. for any x, H ′(x) does not reveal any
information about H ′(H(x)). The chain K ′

0, K
′

1, . . . of keys is used
for encrypting the emails which are to be exchanged. Clearly any K ′

i

can be calculated from K0 using H and H ′ (see figure 1). Agent
A subsequently sends the seed K0 and the identity of the potential
responder (of the session) B to the TTP T :

1. A → T : {A, B, K0, nc}pk(T ), (A, B, K0, nc)A

2. T → A : sid , nc, cert, (nc, cert)T
(1)

where the certificate cert := (A,B, sid)T and nc is a fresh nonce
chosen by A, and sid is a unique session identifier chosen by T .

K0 K1 Ki

H H H

H
′

H
′

K
′

0
K

′

1
K

′

i

H
′

. . . . . .

Fig. 1. Double key chain

T stores entries of the form 〈initiator , responder , key , sid〉,
where key is the seed chosen by A. The key chain rooted at key

can be used for sending CEMs from initiator to responder . When
T receives the first message, T checks the signature, and if it is
valid then T looks for the entry 〈A, B, K0, ∗〉 in its database. If
〈A, B, K0, ∗〉 is not already present in its database, then T chooses a
fresh session identifier sid and adds 〈A, B, K0, sid〉 to the database.
The TTP then sends back a confirmation of that it approves this
session. If 〈A,B, K0, ∗〉 already exists in the database, T ignores
the request (and sends an error message to A).

2) Exchange protocol: Each protocol round has an order number i,
which initially is 0, and after each round the initiator A increments
it. The ith protocol round is as follows

1. A → B : A, B, T, i, sid , h(K ′

i), {M}K′

i
,EOOM , cert

2. B → A : EORM

3. A → B : K′

i

4. B → A : EORK′

(2)
where

• EOOM := (B, T, h(K′

i), h({M}K′

i
), i, sid)A

• EORM := (EOOM )B

• EORK′ := (K′

i, h({M}K′

i
))B

Here h is a secure hash function, possibly equal to H ′. In the
first message, A sends the encrypted email content {M}K′

i
, the

hash value of the encryption key h(K ′

i) and the session certificate
(A, B, sid)T . The responder B checks the correctness of the message
and commits itself to receive the email by sending message 2, if he
trusts T . Then A sends the key K ′

i . Agent B checks that this key
matches the hash value of the key that he received in message 1.
Finally, if the key is correct, B sends a confirmation of having
received the key. The number i is only used implicitly by B when it
resolves the protocol round.

3) Recovery protocol: The initiator A may run the recovery
protocol after having received message 2 in the exchange protocol,
by presenting EORM to the TTP. This shows that A has actually sent
EOOM to B, ensuring that B is also able to receive a recovery token
for that exchange. Agent A typically runs the recovery protocol to

complete the EOR (as defined in section II-D.5 below), if it does not
receive message 4 in the exchange protocol. The responder B may
run the recovery protocol after receiving message 1 in the exchange
protocol, in order to get the encryption key. The recovery protocol
initiated by P ∈ {A, B} starts with the following message:

1r. P → T : fr, A, B, h(K′

i), h({M}K′

i
), i, sid ,EORM

(3)
where fr is a flag used to identify the recovery request. On receiving
this message, T performs the following tests:

• T checks if the signatures in the message are genuine and if its
own identity is given as the designated TTP.

• T checks whether there is an entry in its database matching
〈A, B, ∗, sid〉.

• If the previous tests succeed, then the result of the query is a
unique entry 〈A, B, K0, sid〉 (see Initialization phase, section II-
D.1). Subsequently T uses the retrieved K0 to check whether
h(H ′(Hi(K0))) matches h(K ′

i) in the message.
If the results of all these tests are affirmative, then T checks whether
round i has already been resolved or not. For each key chain
(corresponding to one single entry 〈A, B, K0, sid〉 in T ’s database)
and each exchange i ≥ 0 that is resolved at T , T stores whether
that exchange has been recovered or aborted in a status variable
status(i) (c.f. section II-A.3). If status(i) has not been initialized
in T ’s database, it sets status(i) := h({M}K′

i
).1 Then T proceeds

as if status(i) had already been set for the exchange, as is described
below.

If status(i) has already been initialized in the database, T sets
v := ⊥ if status(i) = a, and sets v := K ′

i in case status(i) =
h({M}K′

i
). Then T sends the following message and terminates

this resolve.

2r. T → P : v, (A,B, h({M}K′

i
), v, i, sid)T (4)

The message (A, B, h({M}K′

i
),⊥, i, sid)T , where ⊥ is a special

flag that denotes an aborted exchange, serves as an abort token. When
P receives this message, it can safely quit the protocol. The message
K′

i, (A,B, h({M}K′

i
), K′

i, i, sid)T serves as a recovery token for
P (see evidences in section II-D.5).

If ¬(status(i) = h({M}K′

i
)) or any of the tests mentioned above

fails, then T ignores the recovery request and sends back the error
message

2r. T → P : fe, (fe, fr, h(EORM ))T (5)

where fe is an error flag. This indicates a misbehavior, and based on
this message, P can quit the protocol.

4) Abort protocol: The initiator A may abort an exchange at any
stage, provided that the exchange has not been recovered already.
Typically A aborts if it does not receive message 2 in the exchange
protocol. On the other hand, the responder B can never explicitly
request the TTP to abort an exchange that has been initiated by A.
To abort an exchange, A sends the following message to T

1a. A → T : fa, A, B, h({M}K′

i
), i, sid , abrt (6)

where abrt := (fa, B, T, h({M}K′

i
), i, sid)A and fa is a flag

identifying the abort request.
On receiving this message, T checks A’s signature on abrt

and its own identity in the message, and it queries its database
with 〈A,B, ∗, sid〉 only if they match. The result is a unique

1Note that if the hash function h produces hash values of l bits length, i.e.
h : {0, 1}∗ → {0, 1}l, then we have status(i) ∈ {a} ∪ {0, 1}l.
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〈A, B, K0, sid〉 (see Initialization phase). Then T checks whether
session i has already been resolved, by checking whether status(i)
has been initialized in its database or not. If not, T sends back the
following message:

2a. T → A : (A, B, h({M}K′

i
),⊥, i, sid)T (7)

This message serves as an abort token and when A receives it, A can
safely quit the protocol. The TTP T then sets status(i) := a and
terminates this resolve. Similarly, if status (i) has already been set
in T ’s database as status(i) = a, then T sends the above message
and terminates the resolve.

If status(i) has already been set in T ’s database indicating a
recovery, i.e. ¬(status(i) = a), then T tests whether status(i) =
h({M}K′

i
). If the test succeeds, T sends the following message and

terminates this resolve:

2a. T → A : (A,B, h({M}K′

i
), K′

i, i, sid)T (8)

This message constitutes a recovery token for A, for this exchange.
If ¬(status (i) = h({M}K′

i
)) or if 〈A, B, ∗, sid〉 does not exist

in T ’s database, or if any of the tests mentioned above fails, then T

ignores the abort request and sends back an error message:

2a. T → A : fe, (fe, abrt)T (9)

Note that an abort token does not necessarily mean that an
exchange has not finished successfully, since A can abort an already
completed exchange. An abort token merely indicates that T will
never issue a recovery token (hence releasing the key) for that
particular protocol round, uniquely identified with sid and i.

5) Evidences and dispute resolution: In case of a dispute, the
parties can present evidences to an external judge. We note that each
protocol round (of each protocol session) has an associated unique
EOO and EOR.

The evidence of receipt EOR, desired by A, consists of

A, B, T, M, i, sid , K
′

i, cert,EORM ,EORK′ ,

if it is obtained by running the exchange protocol. If A uses the
recovery or abort protocols, then the last element EORK′ is replaced
by the recovery token (A, B, h({M}K′

i
), K′

i, i, sid)T .
The evidence of origin EOO, desired by B, consists of

A, B, T, M, i, sid , K
′

i, EOOM

An external judge settles a dispute by simply checking whether
the EOR or EOO presented by the disputing parties are genuine.
We emphasize that abort tokens have no weight in these evidences.
Therefore, having an abort token does not override or repudiate
having a recovery token or any other evidence. The purpose of the
abort protocol is solely to guarantee timeliness for the initiator.

6) Revoking compromised key chains: In practice it may happen
that Alice’s computer is compromised and the key chain seed is
revealed to an attacker. In such situations, Alice might like to revoke
the key chain she has set up with the TTP.2 Therefore, the protocol
allows Alice to ask the TTP, at any moment, to mark her key chain
as obsolete:

A → T : fo, cert, (fo, cert)A (10)

Here fo is a flag that denotes a request to mark the chain identified
by cert as obsolete. Upon receiving this message, T checks A’s

2We assume that the attacker cannot get access to Alice’s private key.
Methods for revoking keys in PKIs have been extensively studied, e.g.
see [22].

signature and if cert is a genuine certificate from T to A, and (only
if this is the case) marks the entry 〈A, B, ∗, sid〉 (which is unique) as
obsolete. Marking an entry as obsolete means that T will not recover
or abort protocol rounds connected to that entry any more. But it will
behave as normal if it is queried about a protocol round for which a
status value has already been set. This behavior ensures that Alice
cannot cheat Bob by first resolving an exchange and then marking the
chain as obsolete (purporting that Bob would not be able to recover
exchanges that use an obsolete chain).

We remark that revoking a key chain does not protect contents
of emails that belong to previously aborted protocol rounds: If Bob
compromises the key chain that Alice has used to send CEMs to
him, then he can read the contents of emails from previous protocol
rounds which were aborted.

E. Discussions
1) Comparing the main protocol with the naı̈ve protocol: Dif-

ferently than in the protocol sketch in section II-C, in the main
protocol (in section II-D) it is not needed to specify the maximum
number n of exchanges. In the protocol sketch, n was used to specify
the start point of the chain traversal as Alice needed to traverse the
chain backwards. In the main protocol the whole chain is obscured
using H ′. So it is not needed to put any order on the key chain
traversal. Hence, it is not needed to specify n.

2) Stateful vs. stateless recipients: Note that the receivers are
stateless, i.e. they do not need to keep track of the protocol rounds
or sessions that they have been involved in. However, they might
want to store the evidences that they collect during the exchanges.
It is nonetheless possible to require that the receivers store cert, i.e.
(A,B, sid)T , the first time they receive it (if they intend to continue
accepting CEMs from the sender A). This certificate can subsequently
be omitted from future protocol rounds between the sender and that
particular receiver, hence reducing the communication costs.

III. SECURITY ANALYSIS

In this section we justify the main protocol by informally showing
that it achieves the design goals described in section II-B. A formal
treatment of the security of the protocol is left for future work. We
note that the structure of the protocol is similar to existing schemes,
such as [12] and [21], except for the use of key chains. We thus focus
the security analysis more on issues that are specific to the use of key
chains in the protocol. For convenience, in the following discussions
A and B denote the initiator and the responder parties, respectively.

• Non-repudiation: If A receives EOR (see section II-D.5), it can
show that B has received both {M}K′ and K′, and B is
therefore able to extract M. Moreover, B cannot deny that it is
able to obtain M because of its signatures in EOR. Similarly,
if B receives EOO, it can show that A has indeed sent K ′ and
{M}K′ , because of its signatures in EOOM . Note that it is
only A (or the TTP on behalf of A) who is able to generate K ′.

• Effectiveness: If A and B follow the exchange protocol, A

receives EOR iff B receives M and EOO.
• Fairness: As mentioned above (effectiveness), if the exchange

protocol terminates normally then A receives EOR iff B receives
M and EOO. However, if the exchange protocol is (mistakenly
or maliciously) interrupted, then A can only recover the protocol
round by presenting EORM to the TTP, hence proving that
B has indeed received EOOM in the interrupted exchange
protocol. In this case B can also recover and receive the
encryption key used in that round. If B recovers the exchange
after it has received EOOM but without sending EORM to A,
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then A can (and needs to) abort in order to receive a recovery
token for that exchange.
It may seem as if it could be a problem that A can reuse a
key K′

i that has been used in a previous (possibly recovered
or aborted) protocol round, to initiate a new round. But, as we
will show here, it is of A’s own interest to never reuse keys.
Since EORK′ contains h({M}K′ ), A needs either to send K ′

in the exchange protocol or to recover the exchange in order to
receive the EORK′ and complete the EOR. In the first case,
the exchange protocol terminates successfully, leaving A and
B in the same fair state. In the second case, there are three
possibilities: (1) The key Ki has been used in a protocol round
that terminated normally: In this case, the protocol executes
normally, i.e. as if i is a fresh (not reused) index. (2) The key
Ki has been used in a protocol round that was recovered: If
B is honest, B will also recover, and when they recover, both
A and B receive an error message (unless the email content is
actually exactly the same as what has already been recovered).
This leaves A and B in the same (fair) state. (3) The key Ki

has been used in a protocol round that was aborted: A receives
neither the recovery token nor the last message from B. Thus,
A cannot collect an EOR, neither can B collect EOO.
Potentially A could abort a completed exchange and then start a
new protocol round with the same email content and key. In the
new round, if A fails to continue the exchange protocol after
receiving EORM , B receives an abort token when it tries to
resolve, since the TTP has actually stored that round as aborted.
But, because of the idempotency assumption (see section II-
A.4), A does not gain anything more than what it had before
reusing the key and the email content. Moreover, the abort token
does not override the EOO that B has already collected. Thus
the level of fairness achieved by B is not decreased.
We finally remark that if A maliciously uses a key that has
been revealed to B earlier, then B can easily (by violating
the protocol) obtain an EOO without sending message 2 in the
exchange protocol.

• Timeliness: The agents A and B terminate a protocol round
either by completing the exchange protocol, or by executing the
recovery or abort protocol. Agent A can run the abort protocol
at any time. It can also run the recovery protocol after it has
received the second message in the exchange protocol. Agent B

can recover the protocol after it has received the first message in
the exchange protocol. Here we omit the details, but termination
is guaranteed by the fact that the channels to the TTP are
resilient. Note that termination of B depends on that it has the
identity of the designated TTP signed by A in the first message
of the exchange protocol (as it is in the main protocol). This is
because A would otherwise be able to cheat B by resolving at
a TTP which is not known (or trusted) to B, hence leaving B

in an unfair situation.
To show that the degree of fairness does not decrease for an
honest participant after termination, it is enough to show that,
if A (B) has terminated and not received EOR (M and EOO),
then B (A) will not receive M or EOO (EOR). But, if A (B)
has terminated and not received EOR (M and EOO), then we
infer that the protocol round was aborted, and after an abortion
B (A) cannot learn M or EOO (EOR).

IV. IMPLEMENTATION CONSIDERATIONS

Hash chains can in practice be constructed using SHA-1 hash
functions [23] as H ′. A choice for H can be MD5 [24], so that

H and H ′ do not commute. Other options for these would be to use
various HMAC constructions [25] or secure block cipher encryption
algorithms. In light of the recently discovered weaknesses of MD5
and the SHA family of hash functions (see e.g. [26]), it is important
to notice that collision resistance is not of paramount importance to
our protocol. There are two ways to counter collision attack. The first
is to add redundancy to M (before encryption) in the first message
of the exchange protocol. In this way a collision between the keys k

and k′ can be detected because the incorrect key yields an incorrect
message after decryption. The second approach is to require that the
TTP T determines the initial key K0 instead of the initiator A. This
solution will counter collision attacks, but will not help if the hash
function is flawed with respect to second-preimage resistance.

A problem with hash chains is that when the length of a chain
is increased, in practice the chance that a collision between that
chain and another one occurs increases. A standard solution (e.g.
see [27]) to this problem is to reduce the chance of collision
by using the corresponding indexes when computing hash values:
Ki := H(Ki−1, i). For an in-depth discussion on constructing and
implementing hash chains we refer the interested reader to [27].

We propose to use the AES encryption standard [28] for im-
plementing symmetric key encryptions involved in the proposed
protocol. Using hash functions to construct keys means that the length
of the keys will be fixed, e.g. 160 bits if SHA-1 is used for H ′.
We note that currently AES with 128-bit keys is considered secure.
Therefore, the result of the hash function can be truncated to 128 bits
to fit into the AES standard.3

V. RELATED AND FUTURE WORK

Related work In this paper we use hash chains of keys for
repeated encryption in CEM protocols. The idea of using hash chains
in security protocols can be traced back to [18], where they are
used for repeated authentication. Hash chains have later on been
used in authentication protocols, e.g. [30], [31], and key management
systems, e.g. [32].

There is no general consensus in the literature on the requirements
of CEM protocols: For example, in [5] and [8], it is not considered
necessary for CEM protocols to provide EOO. In [33] it is argued
that timeliness for the receiver is not required in CEM protocols.
Conversely, in [11], timeliness for the sender is deemed unnecessary.
In this paper we aim at strong fairness, which guarantees timeliness
for both parties, and provides both EOO and EOR.

Below we study the efficiency and compare the TTP’s storage
requirements and the number of messages in the exchange proto-
col, between our proposed protocol and existing schemes. Existing
schemes often require the TTP to store the key used for each single
exchange along with the identities of the participants, the hash of the
exchanged message and typically also a unique exchange identifier,
e.g. see [21] for a review. In our protocol the TTP only needs
to store one seed for each chain and the status of recovered or
aborted rounds. When resolving, the TTP has to perform a few
hash function computations in our protocol. However, these are in
general very cheap. So, when exchanging multiple certified emails,
our protocol outperforms the existing asynchronous optimistic CEM
protocols (that provide strong fairness) in the amount of information
stored by the TTP. Note that the protocols of [11], [33] and [34],
which only need stateless TTPs, are not strongly fair, i.e. they do not
guarantee timeliness for either sender or receiver. Other protocols

3The Rijndael algorithm, on which the AES is based, in fact allows using
160-bit keys, while the AES standard only supports 128, 192 and 256 bit key
sizes [29].
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with stateless TTPs, such as [6], are not optimistic, or rely on
synchronous communication channels as in [35]. In fact, it has been
shown in [17] that asynchronous optimistic contract signing (a cousin
of CEM) with stateless TTPs cannot provide strong fairness.

Concerning the number of messages in the exchange protocol,
according to [17], four messages is the least to achieve strong fairness
for asynchronous optimistic contract signing protocols. Existing CEM
protocols with only three messages in the optimistic phase are not
strongly fair: The protocols of [11] do not guarantee timeliness of
the sender. The protocols of [36], [37] (fixing a flaw in [36]), [38]
(fixing a flaw in [36] and [37]), [15] and [39] (fixing a flaw in [15])
achieve fairness only under the rather unrealistic assumption that
the cheater party collaborates with the suffered party and attends
the court, in case of a dispute. In these protocols, since some of
the collected evidences can conceptually be revoked based on other
evidences (c.f. [40], [41]), only a weak notion of fairness is attainable.

Future work The design of the proposed CEM protocol certainly
calls for formal verifications to ensure that by reducing the storage
requirements of the TTP, no security flaws are introduced in the
system. Whether the proposed protocol can be generalized to a multi-
party setting is another question which needs further investigation.

VI. CONCLUSIONS

In this paper, we have introduced an asynchronous optimistic
CEM protocol with stateless recipients. The protocol relies on key
chains to reduce the storage requirements of the TTP, improving on
existing schemes that achieve strong fairness. We have analyzed the
protocol informally and showed that it guarantees non-repudiation,
effectiveness, (strong) fairness and timeliness. We have also given a
cryptographic justification to our usage of key chains, using standard
cryptographic techniques.
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