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Abstract

Carving is a common technique in digital forensics to

recover data from a memory dump of a device. In con-

trast to existing approaches, we investigate the carving

problem for sets of memory dumps. Such a set can, for

instance, be obtained by dumping the memory of a num-

ber of smart cards or by regularly dumping the memory

of a single smart card during its lifetime. The problem

that we define and investigate is to determine at which

location in the dumps certain attributes are stored. By

studying the commonalities and dissimilarities of these

dumps, one can significantly reduce the collection of

possible locations for such attributes. We develop algo-

rithms that support in this process, implement them in a

prototype, and apply this prototype to reverse engineer

the data structure of a public transportation card.

1 Introduction

In digital forensics, the process of recovering data from

a memory dump of a device is called carving. The main

objective of current file carving approaches is to recon-

struct (partially) deleted, damaged or fragmented files. A

typical example is the analysis of memory dumps from

cell phones [1]. Because a file can be permuted in many

possible ways, the process of reassembling files is very

labor intensive. Therefore, fully and semi-automatic file

carving tools have been developed that aid the human in-

spection process.

Traditional carving approaches aim to analyze a single

memory dump. In some cases, however, one may have

access to a series of similarly structured dumps. This

may result from observing a system that progresses in

time, while making memory dumps at regular time in-
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tervals, or from dumping the memory of a collection of

similar systems. An example is the analysis of the data

encoded on a public transportation card. It is possible to

collect dumps of several cards after each usage. This will

be the running example throughout this paper.

We will investigate the problem of carving sets of

dumps under two simplifying assumptions. The first as-

sumption is that we can observe certain relevant proper-

ties of the system at the moment of dumping its memory.

In this way, we can collect the values of a number of at-

tributes that characterize part of the state of the system,

and link that information to the memory dump. An ex-

ample of such an attribute is the number of rides left on a

public transportation card, which can be easily observed

from the display of the card reader when validating the

card. The carving problem for such attributed dump sets

is then described as the problem of finding at which lo-

cation in the memory dump the attributes are stored.

The second assumption is that the memory layout is

either static or semi-dynamic. A memory layout is static

if the attributes are stored at the same location in every

dump and the dumps have the same length. An attribute

is stored semi-dynamically if it is stored alternatingly in

a number of different locations. This will allow us to

develop algorithms to identify such possible locations in

dumps.

Carving dump sets allows one to reverse engineer the

memory layout of a system and understand or even ma-

nipulate the system’s functioning. Several applications

can be thought of. A first example is the analysis of the

data collected in systems using smartcards, such as the

transportation card mentioned above. One can e.g. ver-

ify privacy concerns by inspecting which travel informa-

tion is stored on the card. Another example is the analy-

sis of the data structures of an obfuscated piece of soft-

ware (e.g. malware) or of a piece of software of which

the specifications have been lost (e.g. legacy code).

The problem of carving attributed dump sets is differ-

ent from the traditional file carving problem. While tra-



ditional file carving tools can be used to obtain informa-

tion about each dump in a set, the dump set’s evolution

and known attributes provide additional information not

available in traditional file carving.

Our paper is concerned with the problem of extracting

this additional information. The main contributions of

this paper are: (1) to define the problem of carving dump

sets (Section 3); (2) to develop and analyze a method-

ology for carving dump sets based on two simple oper-

ations (Sections 3 and 5); (3) to develop a prototype

carving tool, called mCarve (Section 7); and (4) to apply

this tool to reverse engineer the data structure of the e-go

system (Section 8).

2 Related work

Closest to our work are file carving approaches that try

to recover files from raw data. These approaches try to

recover the data of a single dump whereas we focus on

recovering data (and data structures) of a set of dumps.

Garfinkel [7] describes several carving algorithms that

recover files by searching for headers of known file for-

mats. These algorithms reconstruct files based on their

raw data, rather than using the metadata that points to

the content. Cohen [2] formalizes file carving as a con-

struction of a mapping function between raw data bytes

and image bytes. Based on this formalization, he de-

rives a carving algorithm and applies it to PDF and ZIP

file carving. In recent work, Sencar and Memon [10]

describe an approach to identify and recover JPEG files

with missing fragments. Common to these file carving

approaches is that they are designed for one (or a small

set of) known file format(s).

More general, but perhaps less powerful are the ap-

proaches that analyze binary data by visual inspection.

Conti et al. [3] describe a tool that allows analysts to vi-

sually reverse engineer binary data and files. Their tool

supports simple techniques such as displaying bytes as

pixels, but also more complicated techniques that visu-

alize self-similarity in binary data. Helfman [8] first vi-

sualized self-similarity in binary data using dotplot pat-

terns. Using dotplot patterns he revealed redundancy in

various encodings of information.

Some information in a memory dump may be con-

structed using CRCs, cryptographic hashes, or encryp-

tion. Since the entropy of these pieces of data is higher

than of structured data, they can be detected using en-

tropy analysis. Several methods to efficiently find cryp-

tographic keys are described in [11]. Some of these tech-

niques are based on trial-and-error, while others identify

possible keys by measuring entropy. Testing whether a

given string is random has been studied extensively. See

e.g. [9] for an overview and implementation of the most

important algorithms.

3 Carving attributed dump sets

The concept that is central to our research is the concept

of a dump. A dump consists of raw binary data that is

captured from a system, for instance, from a computer’s

memory, a data carrier or a communication transcript.

An example of a dump is the contents of a public trans-

portation card’s memory.

We assume that the process of creating a dump can be

repeated, allowing us access to a number of dumps of the

same system. We call such a collection of dumps a dump

set. One can, e.g., consider dumps of a number of public

transportation cards, both before and after their use. We

assume that different dumps of the same system have the

same length. If we denote the bit strings of length n ∈ N
by Bn and bit strings of arbitrary, finite length by B∗,

then a set of dumps of length n is denoted by S ⊆ Bn.

The length n of bit string s ∈ Bn is denoted by |s| and
the number of elements in set S is denoted by |S|. In

this paper, the closed interval [i, j] will denote the set of
integers z such that i ≤ z ≤ j and the half-open interval

[i, j)will denote the set of integers z such that i ≤ z < j.

For i ∈ [0, |s|) we denote the i-th bit of s by si. For

I ⊆ [0, |s|), we denote the subsequence of s that consists
of all elements with index in I by s|I . The subsequence
operator extends to sets of dumps in the obvious way.

A dump contains information about the state of the

system, e.g., the number of rides left on a public trans-

portation card or the last time that it was used. We call

such state properties attributes. For each dump set we

consider a set A of attributes. The function type: A →
D assigns to every attribute a finite value domain, where

D denotes the set of all finite value domains. The value

of attribute a ∈ A expressed in dump s is denoted by

vala : S → type(a). For instance, the type of the at-

tribute rides-left can be [0, 15] and a particular dump s of

a card can have 5 rides left, so valrides-left(s) = 5. The

type of the attribute last-used is the set of all dates be-

tween 1/1/2000 and 1/1/2050, extended with the time of

day in hh:mm:ss format.

A dump contains the system’s attribute values in a bi-

nary representation. The mapping from an attribute do-

main to its binary representation is called an encoding.

We assume that for a given attribute a ∈ A the length of

an encoding is fixed, so an encoding of a is a function

from type(a) to Bn for some n ∈ N. This function is re-
quired to be injective. For the public transportation card,

a sample encoding of the rides-left attribute is the (5-bit)

binary representation and a possible encoding of the last-

used attribute is the number of seconds since 1/1/2000,

00:00 hrs modulo 232 expressed in binary format. The

set of all encodings ofD ∈ D is denoted by ED.

We start with the assumption that an attribute is always

stored at the same location in all dumps of the system. In



Section 5 we will extend this to semi-dynamic attributes.

With this assumption we can identify which bits of the

dump are related to a given attribute. This is captured in

the notion of an attribute mapping. Here we denote the

powerset of a set X by P(X).

Definition 1. Let S ⊆ Bn be a dump set with dumps

of length n. An attribute mapping for S is a function

f : A → P([0, n)), such that

∀a∈A ∃e∈Etype(a) ∀s∈S : s|f(a) = e(vala(s)).

An attribute mapping is non-overlapping if

∀a1, a2∈A : a1 6= a2 =⇒ f(a1) ∩ f(a2) = ∅.

An attribute mapping is contiguous if

∀a∈A ∃i, j ≤ n : f(a) = [i, j).

Given a dump set S and all attribute values for each

dump in S, the carving problem for attributed dump sets

is the problem of finding an attribute mapping for S.

The existence of such a mapping does not imply that

the attributes are indeed encoded in the dump, but merely

that they could have been encoded at the indicated po-

sitions in the dumps. Conversely, if an attribute can-

not be mapped in S, it means that this attribute is not

present through a deterministic, injective encoding. Of

course, this does not rule out the possibility that a non-

deterministic encoding is used, such as a probabilistic

encryption, or that the attribute is stored dynamically,

i.e. not always at the same location. We consider the

search for high-entropy information and semi-dynamic

attributes later in this paper.

The notion of an attribute mapping is illustrated in Fig-

ure 1. This example consists of five dumps, s1, . . . s5, of

length n = 18. We look at the attribute rides-left (rl)

with the values as given in the figure and we consider

two possible encodings enc1 and enc2. The first encod-

ing is the standard binary encoding of natural numbers.

It can be found in the dumps at two different (contigu-

ous) positions: [5, 8] and [12, 15]. The second encoding,

which is not standard, occurs at positions [3, 6]. Each of

these three cases defines a contiguous attribute mapping

for rides-left. There might be more candidate encodings.

4 Commonalities and dissimilarities

Given the values of an attribute for the dumps in a dump

set S, we can use the commonalities and dissimilarities

of these dumps to derive restrictions on the possible at-

tribute mappings for S. Such restrictions are derived in

two steps. In the first step we look at dumps that have

the same attribute value. In this case, we can derive those

rl dump enc1 enc2

s1 4 010100100111010000 0100 1001

s2 4 001100100001010010 0100 1001

s3 5 101110101011010100 0101 1101

s4 6 001010110111011011 0110 0101

s5 6 111010110011011001 0110 0101

Figure 1: Example of a dump set with three possible at-

tribute mappings.

positions in the bit strings that cannot occur in the encod-

ing of the attribute. In the second step we look at dumps

of which the attribute values differ, allowing us to deter-

mine positions in the bit strings that should occur in the

encoding of the attribute.

For the first step, we start by observing that an attribute

a ∈ A induces a partition

bundles(a, S) =

{{s ∈ S | vala(s) = d} | d ∈ type(a)}

on a dump set S. An element of this partition is called a

bundle. Thus, a bundle is a set of dumps with the same

attribute value. For instance, Figure 1 shows three bun-

dles for attribute rides-left (rl), namely {s1, s2}, {s3},
and {s4, s5}.
The common set determines which bits in the dumps

of a dump set are equal if the attribute values are equal.

Definition 2. Let a ∈ A be an attribute and S ⊆ Bn

be a dump set. The common set of S with respect to a,

denoted by comm(a, S) ⊆ [0, n), is defined by

comm(a, S) =
⋂

b∈bundles(a,S)

{i ∈ [0, n) | ∀s, s′ ∈ b : si = s′i}.

An example is given in Figure 3. The elements from

the common set are marked with an asterisk.

Given that the encoding of an attribute value is deter-

ministic, this gives an upper bound on the bits used for

this attribute.

Lemma 1. Let A be an attribute set and let f be an at-

tribute mapping for dump set S ⊆ Bn, then

1. ∀a ∈ A : f(a) ⊆ comm(a, S),

2. if Ia ⊆ [0, n) is a family of sets for a ∈ A, such
that f(a) ⊆ Ia ⊆ comm(a, S), then the function

f ′ : A → P([0, n)), defined by f ′(a) 7→ Ia, is an

attribute mapping.



The first property states that every possible attribute

mapping is enclosed in the common set, so one can re-

strict the search for attribute mappings to the locations in

the common set. The second property expresses that ev-

ery extension of an attribute mapping is also an attribute

mapping, provided that it does not extend beyond the

common set.

Next we look at dumps with different attribute values.

Injectivity of the encoding function implies that the en-

coding of two different values must differ at least in one

bit. This is captured in the notion of a dissimilarity set.

This set consists of all intervals that, for each pair of

dumps with a different attribute value, contain at least

one location where the two dumps differ.

Definition 3. Let a ∈ A be an attribute and S ⊆ Bn be

a dump set. The dissimilarity set of S with respect to a,

denoted by diss(a, S) ⊆ P([0, n)), is defined by

diss(a, S) = {I ⊆ [0, n) |

∀s, s′ ∈ S : (vala(s) 6= vala(s
′) =⇒

∃i ∈ I : si 6= s′i)}

An example of the dissimilarity set is given in Fig-

ure 4. The next lemma expresses that every attribute

mapping is an element of the dissimilarity set. Conse-

quently, we can restrict the search for possible attribute

mappings to the elements of the dissimilarity set.

Lemma 2. Let A be an attribute set and let f be an

attribute mapping for dump set S ⊆ Bn, then ∀a ∈
A : f(a) ∈ diss(a, S).

An encoding of an attribute value a must at least con-

tain the indexes from one of the sets in diss(a, S). This
implies that we are mainly interested in the smallest sets

in diss(a, S), i.e. those sets of which no proper subset is

in diss(a, S). In order to make this precise, we introduce

some notation.

Let F be a set and let P ⊆ P(F ). We define the

superset closure of P , notation P , by P = {p ⊆ F |
∃p′ ∈ P : p′ ⊆ p}. A set P is superset closed if P = P .

We observe from its definition that diss(a, S) is superset
closed.

Given P ⊆ P(F ), we say that P is subset minimal

if for every p, p′ ∈ P , p′ ⊆ p =⇒ p′ = p. Thus, a

collection of sets is subset-minimal, if no set is a strict

subset of any other set in the collection.

Lemma 3. Let F be a finite set and let P ⊆ P(F ).
Then there exists a unique subset-minimal setQ such that

Q = P .

Given P as in Lemma 3, we denote the unique subset-

minimal set by smin(P ). Then, in order to determine

whether an encoding of an attribute contains at least the

indexes from one of the sets in diss(a, S), it suffices
to verify that it at least contains one of the sets from

smin(diss(a, S)).
By combining the results of the previous lemmas, we

get the following main result.

Theorem 1. Let A be an attribute set and let f be an

attribute mapping for dump set S ⊆ Bn, then

∀a ∈ A ∃I ∈ smin(diss(a, S)) :

I ⊆ f(a) ⊆ comm(a, S).

This theorem says that if an attribute is expressed in

a dump set, then its encoding position should contain at

least one of the minimal dissimilarity sets and may not

go beyond the common set.

A consequence of the theorem is that by calculat-

ing diss(a, S) and comm(a, S), we can limit the search

space when looking for the attribute mapping f(a) in the
dumps. We will now investigate how to further limit the

search space.

Let filter(A, c) = {a ∈ A | a ⊆ c} denote the filtra-

tion of a collection of sets in A with respect to a set c. It

is easy to see that the sets of interest for an attribute map-

ping in Theorem 1 are characterized by the following set

smin(filter(diss(a, S), comm(a, S))) (1)

Let R be a set of representatives of bundles(a, S), i.e.
∀b ∈ bundles(a, S) ∃!s ∈ R : s ∈ b. The following the-

orem states that the set

smin(diss(a,R|comm(a,S))) (2)

contains the same index sets as (1). Expression (2) sug-

gests, however, a smaller search space than (1), since the

diss function is computed only over a restricted set of

indexes and a subset of the dump set.

Theorem 2. Let a ∈ A be an attribute and S ⊆
Bn a dump set. Let R be a set of representatives

of bundles(a, S). Then smin(diss(a,R|comm(a,S))) =
smin(filter(diss(a, S), comm(a, S))).

To build up our intuition, we first formulate the lemma

that by expanding a dump set we might be able to locate

an attribute more precisely.

Lemma 4. Let S, S′ ⊆ Bn be dump sets and a ∈ A an

attribute. Then S′ ⊆ S =⇒ diss(a, S′) ⊇ diss(a, S).

The preceding lemma indicates in particular that a

dump set contains more information about an attribute

than its subset of representatives. If we filter the

diss(a, S) sets with respect to the comm(a, S) set, how-
ever, then the representatives are sufficient.



Lemma 5. Let S ⊆ Bn be a dump set and a ∈
A an attribute. Let R be a set of representatives of

bundles(a, S). Then filter(diss(a, S), comm(a, S)) =
filter(diss(a,R), comm(a, S)).

The filter with respect to the comm(a, S) set in the

preceding Lemma is indeed necessary. In general, the

set diss(a,R) does not coincide with diss(a, S).
Consider, for instance, the three two-bit dumps s1 =

01, s2 = 00, and s3 = 11. Suppose the dumps en-

code the attribute a with vala(s1) = vala(s2) = A and

vala(s3) = B. Then we have the following bundles and

dissimilarity sets.

bundles(a, {s1, s2, s3}) = {{s1, s2}, {s3}}
diss(a, {s1, s2, s3}) = {{0}, {0, 1}}

= {{0}}
diss(a, {s2, s3}) = {{0}, {1}, {0, 1}}

= {{0}, {1}}

Thus, in spite of the fact that s1 and s2 have a common

value for the attribute a, considering both in the dissimi-

larities set provides more information.

Finally, if we assume that the sizes of the attribute

value domains are known, we have an information-

theoretic lower bound on the number of bits that must

have been used for encoding the attribute. This is ex-

pressed in the following lemma, which can be used to

further limit the search space. The lemma follows from

the pigeonhole principle.

Lemma 6. Let A be an attribute set and let f be an

attribute mapping for dump set S ⊆ Bn, then ∀a ∈
A : |f(a)| ≥ log2(|type(a)|).

In Section 6, we will investigate algorithms for deter-

mining the sets smin(diss(a, S)) and comm(a, S).

5 Cyclic attribute mappings

In this section we extend our results to a class of dy-

namic mappings, which we call semi-dynamic or cyclic

mappings. Cyclic mappings can, for instance, be used to

store trip frames on a public transportation card. Such

a trip frame contains all information related to a single

ride. Trip frames are stored in one of a fixed number of

slots in the card’s memory. When validating the card for

a new ride, a new trip frame will be written to the next

available slot. If all slots have been filled, the next trip

frame will be written to the first slot again, etc. We will

show that cyclic mappings can be detected by the same

algorithms as static mappings at the cost of introducing

a number of derived attributes.

Because cyclic mappings consider the evolution of

a given object in time, we will first assume additional

structure on the dump set corresponding to the history

of an object. We assume that for each dump we can de-

termine to which object it belongs through the attribute

id (e.g. the unique identifier of a public transportation

card). For each object we further assume that its dumps

are ordered as expressed by an attribute seqnr .

Definition 4. Let S ⊆ Bn be a dump set and let id and

seqnr be attributes. We say that the pair (id , seqnr) is a
bundle-ordering if type(seqnr) = N and

∀b ∈ bundles(id , S) ∀s, s′ ∈ b :

s 6= s′ =⇒ valseqnr (s) 6= valseqnr (s
′).

Because the combination of a device identifier and a

sequence number uniquely determines a dump, we can

consider an attribute a as a function on type(id) × N.
Given i ∈ type(id) and n ∈ N we will thus write a(i, n)
for vala(s), where s ∈ S is the dump uniquely deter-

mined by valid (s) = i and valseqnr (s) = n.

Using this notation, we are now able to derive new at-

tributes from a given attribute a. In particular, we can

consider the history of a device. An example is the

attribute a -1, which determines the a-value of the di-

rect predecessor of a dump. This attribute is defined by

a -1(i, n) = a(i, n − 1). It is defined on a subset of S,

viz.

{s ∈ S | ∃s′ ∈ S : valid (s
′) = valid (s)∧

valseqnr (s
′) = valseqnr (s)− 1}.

This generalizes to a -r for r ∈ N. By extending the set of
attributes with such derived attributes, we can automati-

cally verify if a dump contains information on the history

(i.e. the previous states) of a device.

This technique is particularly useful when dealing

with cyclic attribute mappings. A cyclic mapping of

attribute a considers a number of locations to store the

value of a, e.g., [i1, j1), [i2, j2) and [i3, j3). In the first

dump of an ordered id -bundle the value of a is stored at

[i1, j1). In the second dump a is stored at [i2, j2), etc.
The location for the fourth value of a is again [i1, j1).

In order to locate a cyclic mapping for attribute a,

we will derive new attributes acycle(x/c), where c is the

length of the cycle and x is a sequence number (0 ≤ x <

c). Using notation ⌊r⌋ for the floor of rational number

r, we obtain the following extensional definition of these

new attributes:

acycle(x/c)(i, n) = a(i, c ·

⌊

n− x

c

⌋

+ x).

In Figure 2 we show the attributes derived from the rides-

left (rl) attribute, assuming a cyclic mapping of length



3. The dumps s1 to s5 are consecutive dumps of a sin-

gle card. In order to find the cycle length of a cycli-

cally mapped attribute, it suffices to search for attributes

acycle(0/c), where c ranges from 2 to the expected max-

imum cycle length. In the figure we denote rlcycle(x/c)
by rlx/c .

rl rl0/3 rl1/3 rl2/3 seqnrmod(3)

s1 8 8 - - 1
s2 7 8 7 - 2
s3 6 8 7 6 3
s4 5 5 7 6 1
s5 4 5 4 6 2
s5 3 5 4 3 3

Figure 2: Derived attributes with cycle length 3.

We conclude our observations on cyclic mappings by

considering pointers to such attributes. An example is the

use of a pointer (at a static location), pointing at the block

in memory where the information on the most recent trip

is stored. Clearly, if the trip information is stored al-

ternatingly at different locations, the pointer will have a

similar cyclic behaviour. We can search for such cyclic

pointers by introducing attributes seqnrmod(c), which

consider the sequence number of the dump modulo cy-

cle length c. Figure 2 contains an example for c = 3.

6 Algorithms

In the following we concern ourselves with the two basic

carving algorithms, comm and diss.

6.1 Commonalities

The algorithm computing the comm function identifies

all positions in which given bitstrings have the same

value. We implement it using the function fc : P(B∗) ×
P(N) → P(N) which we define recursively as follows,

using the symbol ·∪ for the disjoint union of sets.

fc(∅, I) = I

fc({s}, I) = I

fc(S ·∪{s, s′}, I) = fc(S ∪ {s}, {i ∈ I | si = s′i})

Obviously, for dumps of length n,

comm(a, S) =
⋂

b∈bundles(a,S)

fc(b, [0, n)).

The bit complexity of this step is O(n · |S|).
The function comm is illustrated in Figure 3. For

each of the three bundles we have calculated the fc set

as the set of all positions where all dumps from the bun-

dle agree on the bit (indicated by the asterisk symbols).

Finally, the comm set cm is the intersection of these fc
sets.

rl dump

s1 4 010100100111010000

s2 4 001100100001010010

*..******..*****.* fc
s3 5 101110101011010100

****************** fc
s4 6 001010110111011011

s5 6 111010110011011001

..*******.******.* fc

...******..*****.* cm

Figure 3: Calculation of the comm set.

6.2 Dissimilarities

Given a set of bundles, the algorithm for the diss func-
tion identifies intervals in which any two bitstrings from

different bundles differ in at least one position.

We implement the diss function in the case where the

attribute mapping is assumed to be contiguous using the

dissimilarity interval function iv(a, S)(i). It denotes the
shortest interval that a contiguous encoding of attribute

a must have if it is to start at position i. Such an interval

does not exist if there are dumps in S which do not differ

at any position in [i, n).

Definition 5. Let a ∈ A be an attribute and S ⊆ Bn be

a dump set. The dissimilarity interval function iv(a, S) :
[0, n) → P([0, n)) ∪ {⊥} of S with respect to attribute

a is defined by

iv(a, S)(i) = [i, min{k ∈ [i, n) |

∀d, d′ ∈ S : vala(d) 6= vala(d
′) =⇒

∃j : (i ≤ j ≤ k ∧ dj 6= d′j)}
]

if the minimum exists and ⊥ else.

The following lemma expresses that the dissimilarity

set for contiguous attribute maps can be obtained from

the dissimilarity interval function. To state the lemma,

we first need to define subset minimality and superset

closure for sets of intervals.

Let In = {[i, j] ⊆ N | i, j < n} be the set of intervals
in [0, n). We define the interval-superset closure of a set

P ⊆ In by {p ∈ In | ∃p′ ∈ P : p′ ⊆ p}. It is easy

to see that the interval-superset closure of P is equal to

P ∩ In. A set P is said to be interval-superset closed if

P ⊆ In and P = P ∩ In. We say that P is interval-

subset minimal if P ⊆ In, and for every p, p′ ∈ P , p′ ⊆
p =⇒ p′ = p. It is also easy to see that for every

set of intervals P ⊆ In, there is a unique interval-subset
minimal set Q ⊆ In such that Q ∩ In = P ∩ In. The
proof is analogous to the proof of Lemma 3.



Lemma 7. Let S ⊆ Bn be a dump set and a ∈ A an

attribute. Let the set T be defined by

T = {iv(a, S)(i) ∈ In | i ∈ [0, n) ∧

iv(a, S)(i + 1) 6⊆ iv(a, S)(i)}

then T is the interval-subset-minimal set that satisfies

T ∩ In = diss(a, S) ∩ In.

To compute iv(a, S)(i) for i ∈ [0, n), we assume for

simplicity of exposition that no two dumps in S have the

same value for attribute a, that is, we are restricting our-

selves to a set of representativesR of bundles(a, S).
A naive algorithm for iv(a,R)(i) is to first compare

two dumps from R then to iterate over all remaining

dumps in R comparing each new dump to the first two

dumps and all dumps that have already been iterated

over. In each comparison of two dumps, the first po-

sition after position i in which the two dumps differ

is sought for. The maximal such position is returned.

More precisely, let fiv : P(B∗) × N → N ∪ {−∞,∞}
be defined recursively as follows. Note that we adopt

the conventions min(∅) = ∞, max(∞, k) = ∞, and

max(−∞, k) = k for all k ∈ N ∪ {−∞,∞}.

fiv(∅, i) = −∞
fiv({s}, i) = −∞

fiv({s, s′}, i) = min{k ∈ N | k ≥ i, sk 6= s′k}
fiv(R ·∪{s}) = max(fiv(R, i),

max
s′∈R

{fiv({s, s′}, i)})

Then for any set R of representatives from

bundles(a, S), we have iv(a,R)(i) = [i, fiv(R, i)]
if fiv(R, i) ∈ N and iv(a,R)(i) = ⊥ else. The

number of comparisons of two dumps, i.e. the num-

ber of calls to fiv({s, s′}, i), is easily seen to be

quadratic in |R|. We can improve the number of

comparisons to O(|R| log |R|) by sorting the set of

dumps first. We will write s <i s′ if and only if

∃j ∈ [i, n) : sj < s′j ∧ ∀i ≤ k < j : sk = s′k. We will

write s ≤i s
′ if s <i s

′ or ∀j ∈ [i, n) : sj = s′j .

A more efficient algorithm A to compute iv(a,R)(i)
runs as follows.

1. Sort the dump set R in ascending order with respect

to ≤i. Let s(1) ≤i s(2) ≤i . . . ≤i s(|R|) be the

sorted list of these dumps.

2. For j from 1 to |R| − 1, compare s(j) with s(j+1).

For the comparison, start with the i-th bit and move

towards the n − 1-st bit. Let kj be the index of the

first bit in which s(j) differs from s(j+1). If no such

bit exists, output⊥ and stop.

3. Output the interval [i,maxj∈[1,|R|](kj)].

Theorem 3. Let S ⊆ Bn be a dump set and a ∈ A
an attribute. Let R be a set of representatives of the

sets in bundles(a, S). Then the set T with T ∩ In =
diss(a,R) ∩ In is computed by A in time O(n2 |R| +
n |R| log |R|).

The calculation of the diss set is explained in Figure 4.
We start by taking a representative of each of the bundles.

Then, starting from the left, we calculate for each posi-

tion how far to the right we must go in order to find a

distinguishing bit for each pair of dumps. For position 0
the first two bits already make a distinction between the

three dumps, which gives the interval [0, 1] (indicated by
the first line with asterisk symbols). For position 1 we

need three bits, because s3 and s4 coincide at positions 1
and 2. This gives the interval [2, 4], etc. Those sets be-
longing to the subset-minimal diss set are marked with

“minimal”.

rl dump

s1 4 010100100111010000

s3 5 101110101011010100

s4 6 001010110111011011

**................ minimal
.***..............
..**.............. minimal
...**............. minimal
....****.......... minimal
.....****.........
......***.........
.......**......... minimal
etc.

Figure 4: Calculation of the diss set.

If we combine the comm set from Figure 3 and the

diss set from Figure 4, under the assumption that the

number of rides is encoded with 4 bits, we obtain the

four remaining possibilities from Figure 5. This result

includes the three possible attribute mappings from Fig-

ure 1.

rl dump

s1 4 010100100111010000

s2 4 001100100001010010

s3 5 101110101011010100

s4 6 001010110111011011

s5 6 111010110011011001

...****...........

....****..........

.....****.........

............****..

Figure 5: The resulting attribute mappings.



7 The mCarve tool

We have implemented the algorithms of Section 6 in a

prototype called mCarve [12]. The prototype allows the

forensic analyst to input a collection of dumps and a col-

lection of attributes. Each of the dumps can be accompa-

nied by its attribute values. The prototype was written in

Python and consists of approximately 1200 lines of code

(excluding graphical user interface).

After entering the dumps and attributes the user can

run the commonalities algorithm for an attribute. The

output of the algorithm is the set of indexes I for which

all dumpswith the same attribute value are the same. The

set I is used as a coloring mask to display any dump d

selected by the user: if i ∈ I , then di is colored blue,

otherwise red. The dissimilarities algorithm computes a

subset-minimal set of dissimilarity intervals. Since these

intervals may be overlapping, the prototype enumerates

them rather than showing them as one coloring mask.

This allows the user to step through the intervals. The

prototype displays the interval iv by applying a yellow

coloring mask to all bits di for i ∈ iv. A combined pro-

cedure consolidates the results from the commonalities

and dissimilarities algorithms.

The prototype further allows users to specify two types

of special attributes: a constant attribute and a hash at-

tribute. The former has a constant value for all dumps

and can be used to determine which bits never change.

The latter has a different value for all pairwise differ-

ent dumps and can be used to detect encrypted attributes.

The tool allows one to derive new attributes from other

attributes. These derived attributes can be used to find

cyclic attribute mappings. The tool further allows one to

apply an encoding to a selected interval in each dump. A

number of standard encodings, such as ASCII and base

10, are implemented. Aside from displaying the out-

put onscreen, the user can choose to export the results

to JPEG or to LATEX (see Figure 7 for an example).

7.1 Performance

We illustrate the performance of our prototype by run-

ning our prototype on a generated test suite. The test

suite consists of dumps of sizes 8KB, 16KB, 32KB,

64KB, 128KB, and 256KB. For each file size, 5 dump

sets were generated. Each dump embeds one attribute at

a random position and is encoded in at most 64 bits. The

remaining bits are randomly generated.

The running time of the commonalities procedure is

linear in the number of dumps and the dissimilarities pro-

cedure is quadratic in the number of bundles. Therefore,

the execution time of the combined procedure is mainly

dependent on the number of bundles in the dump set.

Convergence tests show that, in general, fewer than 10

bundles are needed to find an attribute in a dump set.

This allows us to restrict our performance tests to dump

sets of 10 bundles.
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Figure 6: Performance

The tests were run on a Linux machine (kernel 2.6.31-

22) with Intel Core 2 6400 @ 2.13 GHz processor run-

ning Python 2.6.4. Figure 6 shows on the horizontal axis

the number of bundles included in the dump set. On the

vertical axis it shows for each of the file sizes the time in

seconds (averaged over the 5 dump sets) needed to per-

form the combined procedure. The test shows that our

prototype is best suited for dumps of size smaller than

32KB, but it can deal reasonably well with size up to

256KB. Initial experiments have shown that performance

of the tool can be significantly improved by implement-

ing the core procedures in a lower-level language.

7.2 Convergence

Another interesting measure for the mCarve tool is the

rate of convergence of the carved intervals. We will mea-

sure it by computing the number of dumps that are nec-

essary in order to find an attribute in a dump set. For sim-

plicity, we assume that the dumps as well as the attribute

values are given by a uniformly random distribution.

Let q denote the bit length of the attribute’s encoding

in the dump, letN denote the number of dumps and let x

be the number of bundles. We first compute the probabil-

ity of false positives, i.e. the probability of an accidental

occurrence of values matching an attribute. The proba-

bility that the bit string formed by a particular interval of

q bits in all N dumps matches a particular given string

of bits is 2−qN . There are

(

2q

x

)

· x! possible encodings

of x different values. The probability that the q bits in all

N dumps match one of these representations is therefore

2−qN

(

2q

x

)

· x!.

Thus if l denotes the length of the bit strings represent-

ing dumps, then the probability pnfp of no false positives



is given by

pnfp ≥

(

1−
2−qN · 2q!

(2q − x)!

)l−q+1

.

The inequality is due to the fact that the product on the

right does not concern independent trials. We are inter-

ested in those values of x andN for which the probability

pnfp is large enough that the discovery of an attribute is

not coincidental.

Using the inequality

(

n

k

)

≤
nk

k!
we obtain

(

1−
2−qN · 2q!

(2q − x)!

)l−q+1

≥
(

1− 2q(x−N)
)l−q+1

.

Fixing the number of bundles x and a false positive

probability ǫ, we obtain the following inequality for the

number of dumpsN :

(

1− 2−(N−x)q
)l−q+1

> 1− ǫ.

Thus

N >
−1

q
log2

(

1− (1 − ǫ)
1

l−q+1

)

+ x.

This formula can be used in two ways. If we know the

length q of the encoding, we fix a number of bundles x

and a false positive probability ǫ and compute the num-

ber of dumps N needed for convergence. If we do not

know the length of q, we set it to log2(x) and perform

the same computation. For instance, for dumps of length

l = 1024, false positive probability of ǫ = 0.05, number

of bundles x = 4, and length q = log2(x) = 2 we get

N > 11.14. This means that to have convergence with

probability 0.95 we need to analyze 12 dumps compris-

ing 4 different attribute values.

8 Case study: The E-go system

We illustrate our methodology by reverse engineering

part of the memory structure of the Luxembourg public

transportation card.

8.1 The E-go system

The fare collection system for public transportation in

Luxembourg, called e-go, is based on radio frequency

identification (RFID) technology. The RFID system con-

sists of credit-card shaped RFID tags that communicate

wirelessly with RFID readers. Readers communicate

with a central back-end system to synchronize their data.

Travelers can buy e-go cards with, for instance, a book

of 10 tickets loaded on it. Upon entering a bus, the user

swipes his e-go card across a reader and a ticket is re-

moved from the card.

Since most RFID readers of the e-go system are de-

ployed in buses the e-go is an off-line RFID system [5].

Readers do not maintain a permanent connection with

the back-end system, but synchronize their data only in-

frequently. Since readers may have data that is out-of-

date and tags may communicate with multiple readers,

the e-go system has to store information on the card.

The RFID tags used for the e-go system are, in fact,

MIFARE classic 1k tags. These tags have 16 sectors that

each contain 64 bytes of data, totaling 1 kilobyte of mem-

ory. Sector keys are needed to access the data of each

sector. Garcia et al. [4, 6] recently showed that these

keys can be efficiently obtained with off-the-shelf hard-

ware. Therefore, it is easy to create a memory dump of

an e-go card.

8.2 Data collection

Over a period of 2 months, we collected 68 dumps for

7 different e-go cards of different types. Four cards are

of type 10-rides/2nd-class, two of type 1-ride/2nd-class

and one of type 1-ride/1st-class. According to informa-

tion published by the transportation companies, a card

can contain up to 6 products of the same type. We con-

sidered two classes of events that change the state of a

card: (1) charging the card with a new product (including

the purchase of a new, charged card), and (2) validating

a ride by swiping the card. After each event we dumped

the memory of the card as a binary file. This gave a se-

quence of consecutive events for each card.

Because the e-go system is an off-line system, we ex-

pected to find several attributes encoded on the card. For

each event we therefore collected some contextual in-

formation, which we attributed to the dump following

the event. For charge events we collected the following

attributes: card id (the decimal number printed on the

card); charged product; date, time and location of charg-

ing; card charger id (as printed on the coupon). For val-

idation events we collected: card id; date and time of

swiping; expiration time of the ride; card reader id (be-

cause the card readers have no visible identification we

collected the license plate number of the bus and the lo-

cation of the reader within the bus); rides left; bus num-

ber; bus stop.

These are the attributes that one would expect to find

on the card and that are easy to observe. Most of these

attributes can be obtained by reading the sales slips or

the display of the reader. Since cards are purchased

anonymously, no personal identifying information, such

as name, address, or date-of-birth can be stored on the

card.

In addition to our basic set of dumps, we had access
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Figure 7: E-go memory layout (applying common to a unique attribute).

to 47 dumps from earlier experiments which were less

structured and less documented. We used these dumps to

validate the results of the experiments with our main set

of dumps.

It is important to note that our analysis is entirely pas-

sive: no data on the card needs to be modified and no

data needs to be written to the card.

8.3 Data analysis

Using our tools, we verified the presence of three classes

of attributes: (1) external attributes (i.e., the observable

attributes mentioned above); (2) internal attributes (re-

lated to the organization of the data within the card’s

memory, such as a pointer to the active sector); and (3)

attributes with high entropy (such as CRCs and crypto-

graphic checksums). We also searched for cyclic ver-

sions of these attributes.

Memory layout. The first step in our analysis is to de-

termine the general memory layout of an e-go card. For

this purpose we apply the commonalities algorithm to

the constant attribute, i.e., an attribute that has a con-

stant value for every dump. The result of this operation is

shown in Figure 7. The card’s memory is displayed in 64

lines of 128 bits, giving a total of 8192 bits (1kB). Bits

that have a constant value in all dumps are colored dif-

ferently from bits that vary in value. The recurring struc-

tures immediately suggest a partitioning of the memory

into 16 sectors of 4 lines each. There seem to be four dif-

ferent types of sectors. The structure of the first sector is

unique. We call this sector the shell sector. Lines 2 and

3 of the shell sector are identical. Next there are seven

sectors with a similar appearance (three of these look a

bit less dense than the others because they are used less

frequently in our dump set). We call these sectors the

product sectors. The next five sectors are similar. We call

them transaction sectors. Finally, there are three empty

sectors, which we will ignore for the rest of our analysis.

They are probably reserved for future extensions of the

e-go system.

Further inspection shows that the last line of each sec-

tor is constant (over all dumps). This is the 16 byte sector

key. Because the last lines of each of the sectors (except

the empty sectors) are equal, we can conclude that the

same key is used for all sectors.1

External attributes. The second step in our analysis is

to carve the external attributes. This step only revealed

the card ID. We can conclude that the other external at-

tributes are either not represented on the card or not at

a static location. Figure 8 shows for each sector type

which attributes were discovered with our tool. The card

ID, which is located in the shell sector in Figure 8, is de-

tected as follows. The output of our tool on the card ID

attribute consists of a number of intervals between bits 0

to 37 plus the interval 35 to 108. Clearly, the last interval

is too large to contain the card ID, so we can consider that

interval a false positive. We conclude that bits 0 to 37 are

1In order to not reveal sensitive data, we display keys that are dif-

ferent from those used in the e-go system.
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Figure 8: Attributes located in the three sector types.

related to the card ID. Indeed, the MIFARE standard de-

scribes that identification numbers are hard-coded in the

first 32 bits (4 bytes). If we reverse these 4 bytes and in-

terpret them as a decimal number, we obtain the number

printed on the card. The fact that bits 32 to 37 relate to

the card ID is also consistent with the MIFARE standard

because bits 32 to 39 contain the checksum of the card

ID.

Internal attributes. The tool can be used to step

through a sequence of dumps and observe the changes

between consecutive dumps. In this way, one can step

through the “history” of a particular card and observe re-

curring patterns. This process indicates a periodicity in

the updates of the transaction sectors of the e-go card.

Successive validation events write to successive transac-

tion sectors, thereby cycling back from the fifth transac-

tion sector to the first. One would expect a similar pe-

riodicity in the product sectors, but that is not the case.

Writing to the product sectors occurs in an alternating

way between two selected sectors. Based on the hypoth-

esis that there is a notion of a “current” sector, we carve

for pointers with cycle lengths 2 to 7. By making a selec-

tion of those sequences of dumps that showed the cyclic

behaviour, we can locate a pointer to the currently active

transaction sector (see tsec-ptr in the shell sector of Fig-

ure 8). This 3-bit pointer has a cycle of length 5 from 000
to 100. In a similar way one obtains a pointer with cycle

2, located at bit 169. Inspection of dumps reveals that

this concerns a 3-bit pointer to the next active product

sector (next-psec-ptr, bits 168-170). Two other pointers

with cycle 2 are only revealed when carving well cho-

sen subsets of the collection of dumps. In the figure they

are labelled with psec-ptr-A and psec-ptr-B. When step-

ping through the dumps, it becomes clear that after each

validation event the values of next-psec-ptr and one of

psec-ptr-A or psec-ptr-B are swapped. When charging

the card, psec-ptr-A and psec-ptr-B change roles.

Cyclic external attributes. After having been able to

locate only a single static external attribute, we continue

by searching for dynamically stored external attributes.

By using cycle length 5, we can find two locations in

each of the transaction sectors related to the date of the

most recent validation In Figure 8 these locations are la-

belled with “date” and “date 2”. By stepping through a

sequence of dumps swiped on consecutive days, it be-

comes clear that the date field is a counter. It counts the

number of days since 1/1/1997. In our dump set the two

dates are always identical. In a similar way we can find

two fields related to the time of the most recent validation

event. They count the number of minutes since midnight.

The first and second time are different, but, surprisingly,

their difference is not constant, which would have indi-

cated a relation to the expiration time. The last attribute

that can be located in the transaction sector is the reader

ID. As explained, we use the license plate of the bus and

the location of the reader within the bus to identify each

card reader. By combining these two attributes we obtain

a new attribute that relates to the reader ID. Surprisingly,



this new attribute does not occur in the dumps, but the

license plate attribute does. This means that all readers

in a given bus have the same id. When interpreting the

reader as a decimal number, one typically obtains num-

bers in the range from 1 to 150 for readers in a bus and

from 10150 to 10200 for readers in a train station. This

is consistent with carving for the attribute “bus-or-train”,

which points at the higher bits of the reader id.

These attributes were found by reducing cyclic at-

tributes to static attributes as described in Section 5. With

this approach an attribute of cycle 5 will change its value

only every 5 dumps. As a consequence, this attribute has

a rather slow convergence rate. Convergence can be im-

proved, however, by focusing on the active transaction

sector. In order to do this we created a new set of dumps,

each of which only contained the active transaction sec-

tor of the old dump. Carving for the static external at-

tributes in this new set of dumps results in the same find-

ings, but the attributes can be located with significantly

fewer dumps.

Using this approach we can easily locate three more

attributes in the product sectors: the card type, the num-

ber of rides left on the card and the expiration time of

the current product. A second field related to the number

of rides left was also located (rides left 2 in the figure),

which equals 12 minus rides left for 10-rides cards and 3

minus rides left for 1-ride cards.

Finding high entropy attributes. While using the

tool, one quickly observes that the diss function returns

intervals of varying widths sliding through the index set

of the dumps. Heuristically, one expects the width of

these sliding windows to be shorter over intervals cor-

responding to high-entropy attributes than over indexes

corresponding to low entropy attributes. Furthermore,

the step size or distance between two such windows is

expected to be smaller for high-entropy intervals.

The observation of short-step narrow sliding windows

led to the conjecture that the cards contain cryptographic

data.

To confirm the existence of high-entropy attributes, the

MD5 hash of the dumps was computed and added as an

attribute. The hash serves as a quick indicator for equal-

ity or inequality of two dumps and is a more robust ap-

proach to labeling distinct dumps with different attribute

values than simply enumerating all dumps in a set. Carv-

ing for this artificial MD5 attribute amounts to looking

for attribute values which change whenever the contents

of the dump change. The tool thus revealed an 80-bit

string in the shell sector. The same method applied to

dumps of the product and transaction sectors revealed

16-bit strings which only change when the data in the

corresponding sector changes.

Whereas an 80-bit string was expected to be a cryp-

tographic hash, the 16-bit strings were suspected to be

checksums such as CRCs. By trying out a list of com-

monly used CRCs to the data in the product and transac-

tion sectors, the CRC-16-ANSI with polynomial x16 +
x15 + x2 + 1 was found to produce the observed values.
This step led to the suspicion that a CRC might also

be part of the 80 bit string in the shell sector, which was

indeed found to be the case. The remaining 64 bits are

expected to be a cryptographic hash protecting the in-

tegrity of the card’s data.

Evaluation. Our tool performed quite well in this case

study. We located the attributes as displayed in Figure 8

and have been able to infer the encoding scheme for most

of them. On the other hand, we have not been able to lo-

cate all collected attributes. We did not find the date,

time and location of charging, the card charger id, the

bus number and the bus stop. Our experiments prove that

they are not stored in a static or cyclic way on the card.

We may assume that if the date and time of charging and

the card charger id were represented in the card’s mem-

ory, they would have been encoded in the same way as

the other dates, times and ids. A search of these encoded

values in the binary dumps did not give a hit. There-

fore, we conjecture that these attributes are not stored on

the card, not even at a dynamically determined location.

Given that a validated ride allows for unrestricted travel

through the whole country for two hours, there is also no

need to store the bus number and bus stop on the card.

As a consequence of carving for internal attributes we

have not only located four pointers, but we have also re-

verse engineered part of the dynamics of updating e-go

cards. The transaction sectors are written to cyclically.

They contain data related to the history of the card. The

current state of each of the products on the card is stored

in the product sectors. Every product is assigned to one

sector, except the currently active product. This product

is updated alternatingly in two sectors. This redundancy

is probably built in to keep a consistent product state even

if a transaction does not finish successfully.

More safeguards against update errors are found in the

frequent checksums that we have been able to locate. A

protection against intentional modification of the stored

data is the cryptographic seal in the shell sector.

Even though we found the majority of observed at-

tributes, there are still locations in the card’s memory

that we have not been able to assign a meaning to. Of

course, the current dump set provides no information on

the meaning of the constant (blue) bits in Figure 8. The

variant (red) bits either have to do with the internal orga-

nization of the card or with attributes that we did not or

could not observe.

With respect to convergence, we see that the dumps in

this case study behave slightly worse than the dumps in



the idealized set from Section 7.2. Finding an attribute

requires roughly 12 dumps (or 5 bundles).

Occasionally, we incorrectly entered an attribute

value. The algorithms that we developed are not robust

against such mistakes, since a single modification in the

input can drastically change the output. In practice, how-

ever, such mistakes were quickly identified by regularly

performing experiments on a subset of the dump set, such

as all dumps belonging to a given card.

A very useful feature of our methodology is that in the

search for an attribute we do not presuppose a particular

encoding of that attribute. This allowed us to search for

the combination of license plate number and reader loca-

tion in order to find the reader ID. Similarly, we found a

rides left counter counting down and one that counts up

while searching for one attribute.

9 Conclusion and future work

We have defined the carving problem for attributed dump

sets as the problem of recovering the attribute mapping

and encoding of attributes in a dump. We have pro-

posed algorithms for recovering the attribute mapping

and proven their correctness. The first algorithm com-

putes the commonalities to determine the positions in a

dump that cannot be contained in the mapping. The sec-

ond algorithm computes subset-minimal dissimilarities

to give a lower-bound on the bits that need to be con-

tained in the attribute mapping. By combining these two

algorithms, a set of possible mappings is derived.

In order to validate our approach we have imple-

mented a prototype, called mCarve, with commonality

and dissimilarity algorithms. A case study performed on

data from the electronic fare collection system in Luxem-

bourg showed that mCarve is valuable in analyzing real-

world systems. Using mCarve, we have located more

than a dozen attributes on the e-go card as well as their

encoding. We have also partly reverse engineered the dy-

namics of updating e-go cards.

There are several research directions that remain to be

explored. To be able to understand the attribute values,

the encoding has to be recovered as well. In our case

study, we have recovered the encoding of attributes man-

ually, while automatic approaches should in some cases

be feasible. Heuristic approaches seem most viable, pos-

sibly approaches based on file carving techniques. Sec-

ondly, the robustness of our algorithms can be improved.

Currently, a small error in the data, due to, for instance, a

transmission error or a mistake in inputting the attribute

value will make the results unreliable. Although these

mistakes can be found by hand, an automatic way would

be preferable.

We would like to apply mCarve to other case stud-

ies. An interesting application would be the memory of

a cell phone. Our performance results show that we have

to optimize the implementation of our algorithms to an-

alyze cell phone dumps. Another use of mCarve will

be to analyze proprietary communication protocols. By

recording the data and applying our algorithms, we could

reconstruct their specification.
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A Proofs

Proof of Lemma 1. We show the first property by con-

tradiction. Assume that there exists an attribute a such

that f(a) * comm(a, S). Then there exists an index

i ∈ f(a) such that i 6∈ common(a, S). It follows from
the definition of comm that there is a bundle that con-

tains bit strings s and s′ such that si 6= s′i. However,

since f is an attribute mapping, index i ∈ f(a), and
vala(s) = vala(s

′), we have that si = s′i. Thus, f(a)
must be a subset of comm(a, S).
The second property follows from the fact that if we

extend an encoding, it remains an encoding. We know



that e(vals(a)) = s|f(a) is an encoding for attribute

mapping f . By definition of attribute mapping, the map

e′(vals(a)) = s|f ′(a) is an encoding as long as for all

j ∈ f ′(a) we have sj = s′j if vala(s) = vala(s
′) and

e′ is injective. The former follows from the assumption

that j ∈ comm(a, S). The latter follows from the fact

that extending the range of the encoding maintains the

injectivity of it. Hence, f ′(a) 7→ Ia is an attribute map-

ping.

Proof of Lemma 2. Let a ∈ A and let s, s′ ∈ S, such that

vala(s) 6= vala(s
′). From the definition of an attribute

mapping and injectivity of encoding functions, we derive

that s|f(a) 6= s′|f(a). Therefore, we can find i ∈ f(a),
such that si 6= s′i, and thus f(a) satisfies the definition

of diss(a, S).

Proof of Lemma 3. We define Q = {p ∈ P | ∀p′ ∈
P : p′ ⊆ p =⇒ p′ = p} and prove that this is the

required set. From the definition of Q it follows directly

that Q is subset minimal.

The inclusion Q ⊆ P follows directly from Q ⊆ P .

For the converse, P ⊆ Q, we use the fact that strict

set inclusion on P(F ) is well-founded for finite F . Let

p ∈ P , then there exists p′ ∈ P , such that p′ ⊆ p. We

consider two cases: p′ ∈ Q and p′ 6∈ Q. If p′ ∈ Q,

then from p′ ⊆ p it follows that p ∈ Q, as required.

In the second case, p′ 6∈ Q, we use the definition of

Q to find p′′ ∈ P such that p′′ ( p′. Again, we can

consider two cases: p′′ ∈ Q and p′′ 6∈ Q. In the first

case, p′′ ∈ Q we have p′′ ( p′ ⊆ p, so p ∈ Q, as

required. In the second case we can repeat this con-

struction to find p′′′ ( p′′ ( p′ ⊆ p. Given well-

foundedness, it will be impossible to create an infinite

sequence in this way. Therefore, there is a point where

the loop will be broken by finding p(k) ∈ Q, such that

p(k) ( p(k−1) ( . . . ( p′ ⊆ p, which implies that

p ∈ Q.

Finally, we prove uniqueness. Assume that X and Y

are two subset-minimal sets with X 6= Y andX = P =
Y . Without loss of generality, we may assume that there

exists x ∈ X , such that x 6∈ Y . We derive a contradiction

and concludeX = Y as follows. If x ∈ X , then x ∈ Y .

From x 6∈ Y , we find y ∈ Y , such that y ( x. From

y ∈ Y , it follows that y ∈ X , so there exists x′ ∈ X

with x′ ⊆ y. Thus, we have x′ ⊆ y ( x for x′, x ∈ X ,

which contradicts the assumption of subset minimality of

X .

Proof of Lemma 4. By Lemma 3, let T be the unique

subset-minimal set for which T = diss(a, S). We show

that T ⊆ diss(a, S′).

Let I ∈ T . Then by definition, ∀s, s′ ∈
S : (vala(s) 6= vala(s

′) =⇒ ∃i ∈ I : si 6= s′i). But

since S′ ⊆ S, the statement holds in particular for any

two dumps in S′. Thus I ∈ diss(a, S′).

Proof of Lemma 5. The inclusion

filter(diss(a, S), comm(a, S)) ⊆
filter(diss(a,R), comm(a, S)) follows from Lemma 4.

For the reverse inclusion, let I ∈
filter(diss(a,R), comm(a, S)) be an index set in

the filtration of diss(a,R) with respect to the common

set of the attribute a of the dumps in S.

Suppose towards a contradiction that I 6∈
filter(diss(a, S), comm(a, S)). Then there must

be dumps s1, s2 ∈ S such that s1|I = s2|I , but

vala(s1) 6= vala(s2).

Consider representatives r1, r2 ∈ R of s1 and s2
such that vala(r1) = vala(s1) 6= vala(s2) = vala(r2).
Since I ⊆ comm(a, S), it follows that r1|I = s1|I ,
r2|I = s2|I , but vala(r1) 6= vala(r2). This contradicts
I ∈ diss(a,R).

Proof of Theorem 2. By Lemma 5, it suf-

fices to prove smin(diss(a,R|comm(a,S))) =
smin(filter(diss(a,R), comm(a, S))).

The inclusion smin(diss(a,R|comm(a,S))) ⊆
filter(diss(a,R), comm(a, S)) holds, since

diss(a,R|comm(a,S)) ⊆ diss(a,R) and

smin(diss(a,R|comm(a,S))) ⊆ comm(a, S).

The inclusion diss(a,R|comm(a,S)) ⊇
smin(filter(diss(a,R), comm(a, S))) holds as fol-

lows. Let I ∈ smin(filter(diss(a,R), comm(a, S))).
Then I ∈ diss(a,R) and I ⊆ comm(a, S), thus

I ∈ diss(a,R|comm(a,S)).

The Lemma now follows by uniqueness of subset

minimal sets (Lemma 3) and the facts that the dissim-

ilarity sets and filters of dissimilarity sets are superset

closed.

Proof of Lemma 7. T is interval-subset-minimal by def-

inition. It is obvious that T ⊆ diss(a, S) ∩ In. Since

diss(a, S)∩In is interval-superset closed, it follows that

T ∩In ⊆ diss(a, S)∩In. Furthermore, for all i ∈ [0, n),
if iv(a, S)(i) exists, then iv(a, S)(i) ∈ T ∩ In.
Suppose towards a contradiction that T ∩ In (

diss(a, S) ∩ In. Then there exists I ∈ diss(a, S) ∩ In
such that I 6∈ T ∩ In. Let I = [i0, i1] and con-

sider iv(a, S)(i0). By definition of iv(a, S), we have

iv(a, S)(i0) ⊆ I and we know that iv(a, S)(i0) ∈
T ∩ In. This contradicts I 6∈ T ∩ In.

Proof of Theorem 3. We first prove correctness of the al-

gorithm and then compute its time complexity.

Correctness. Let k = maxj∈[1,|R|](kj)]. By

Lemma 7, to prove correctness of the algorithm, we need

to show that for any two dumps s, s′ ∈ R there exists an



index ind ∈ [i, i + k] such that sind 6= s′ind. We show

this by iterating over the sorted list of dumps.

Dump s(1) differs from all other dumps within the

interval [i, k1] because it differs from s(2) within

this interval and the dump list is sorted. Assum-

ing that for all j < j0 dump s(j) differs from all

other dumps within the interval [i,max(k1, . . . , kj)]
we show that dump j0 differs from all other dumps

within the interval [i,max(k1, . . . , kj0)]. First s
(j0) dif-

fers from s(j) < s(j0) on [i,max(k1, . . . , kj0 )] since
[i,max(k1, . . . , kj)] ⊂ [i,max(k1, . . . , kj0)]. The

dumps s(j) > s(j0) differ from s(j0) within the inter-

val [i, kj0 ] because s
(j0) differs from s(j0+1) within this

interval and the dump list is sorted. Thus the algorithm

correctly computes iv(a,R)(i).
Complexity. The complexity of the algorithm is given

by the complexity to sort the dump set and the com-

plexity to compare adjacent dumps in the sorted list.

The bit-complexity for comparing the adjacent dumps

s(j), s(j+1) is kj . Thus, in the worst case, it is bounded

by n, the bit length of the dump. Thus iv(a,R)(i) can be
computed in time O((n − i)|R|+ (n− i)|R| log |R|) =
O((n− i)|R| log |R|).
If iv(a,R)(i) is computed for all i ∈ [0, n), the sort-

ing complexity for i > 0 can be lowered by taking ad-

vantage of the sorted list of dumps with respect to >i−1.

We merely need to perform a merge-sort for <i on two

sets given by the restrictions si−1 = 0 and si−1 = 1 and
ordered with respect to <i−1. This can be performed in

time O((n − i)|R|). By summing up the time it takes to

compute iv(a,R)(i) for i ∈ [0, n) we obtain the theo-

rem.


