
Test Generation for Intelligent Networks
Using Model Checking

André Engels
�
, Loe Feijs

��� �
, Sjouke Mauw

�
�

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, the Netherlands�

Philips Research Laboratories Eindhoven
Prof. Holstlaan 4, 5656 AA Eindhoven, the Netherlands�

engels,feijs,sjouke � @win.tue.nl

Abstract. We study the use of model checking techniques for the generation of
test sequences. Given a formal model of the system to be tested, one can formu-
late test purposes. A model checker then derives test sequences that fulfill these
test purposes. The method is demonstrated by applying it to a specification of an
Intelligent Network with two features.

1 Introduction

We will discuss testing, and more specifically the testing of telecommunication systems.
Testing is necessary in several phases of a development process. In the first place there is
the testing during the specification phase. Central questions in this respect are whether
the specification follows the requirements, and whether any logical errors are present in
the specification. In telecommunication systems a probable cause for those logical errors
is feature interaction [22], that is, the effect that different features (variations on the basic
protocol) have on one another. This could for example happen if one feature changes a
variable another feature uses or changes as well.

Secondly, it is also necessary to test whether the implementation conforms to the
specification. Feature interaction is again an important subject, for example through the
sharing of (necessarily finite) resources. It is this second testing phase that will be inves-
tigated in this paper

One problem in testing is the creation of a suitable test-set, a set of test traces to be
checked. Manual generation of test traces is a lot of work, so it is natural to look for com-
puter support. In relatively small cases this is perfectly feasible: there are techniques and
tools that, given a formal specification, generate a complete set of test traces. See for ex-
ample [24]. Assuming that the implementation has as many states as the specification, a
positive result of the test can be considered a correctness proof. In many practical cases
there is a so-called state space explosion, that causes the number and/or the length of the
traces to be (much) larger than can be dealt with. In this case one has to choose which
traces are and which are not to be tested. This selection of interesting traces requires
much insight in the problem at hand, so cannot be automated. Still, support in this pro-
cess will be useful.

Our aim is not to create yet more new tools, but to find and link existing tools that suit
this purpose. At present this also means we do not go beyond prototyping. In particular

we will try to use tools from Model Checking to generate traces. Model Checking pro-
vides us with serious tools with a good theoretical foundation and the possibility to work
with large examples (so we can more easily cope with the problems of the state space ex-
plosion). Another important advantage is that tools to translate the output of SPIN (the
Modelchecker we used) [13] into useful formats, either exist or are easily created. In
short, this article will be about the usage of existing tools for the purpose of trace gen-
eration for implementation checking of systems. We will use this for systems that are
far beyond full state space checking, that is, where a full state space check can not be
reached or even approximated.

As an example to apply our methods to we have chosen Intelligent Networks [15].
This is an important application in which conformance testing, as well as other tests,
are a necessity. Because of the regular addition of features these tests also have to be re-
peated during the lifespan of the network. Moreover, these features can have unexpected
interactions, so every time a test has to be done of the system as a whole. The addition
of features often causes an exponential growth of the state space, so a state space ex-
plosion will be almost a certainty. We used a model of a telephone service, with two
features: Originating Call Screening (OCS) and Hotline. We have successfully applied
our method, and the developed prototype, to this simplified example.

The structure of this paper is as follows. In Sect. 2 we discuss the context of our work
by relating it to other approaches. The proposed methodology is explained in Sect. 3. In
Sect. 4 we discuss the case study on Intelligent Networks.

2 Related Work

One important approach to testing is finite state machine exploration. This is particularly
useful for testing the conformance of (local) protocol implementations, where the finite
state machine (FSM) models are already frequently used as a specification technique,
and where the state space of the implementations is reasonably small. Several strategies
to generate efficient test sequences which guarantee a complete test coverage (under cer-
tain fault assumptions) are known, such as UIO (unique input-output)sequences, see e.g.
[7], [25], [29] and [31]. Certain tool sets (such as the Dutch PTT’s Conformance Kit) al-
low for test-guidance, that is, a labeling mechanism to express that certain transitionsde-
serve special attention (this is a step towards explicit ‘test-purposes’), see e.g. [18] for
an application. The advantage of finite state machine exploration is the complete cov-
erage obtained (if feasible). This means that the tester does not need to formulate test-
purposes and does not have to worry about assigning priorities to test-purposes. But for
larger systems such as entire service layers, the approach becomes more and more dif-
ficult and the tests will have to be based on explicit test-purposes (as prescribed in the
ISO 9646 framework, see [17]).

In [12], test purposes (for conformance testing) are expressed in an informal style,
e.g. “send initiate-request to IUT and await abort-request from IUT”, or “check the cor-
rect execution of process (data transfer)”. These test purposes are analyzed by means
of a knowledge-based approach and then test-specifications and verdicts are automati-
cally derived from a specification, which is assumed to be given as a finite behavior tree.
In [10] test purposes (for service testing) are expressed as walks through a finite state-

machine. The state machine is a very abstract model of one of the processes involved
(typically the B-party in an asymmetric session protocol). These test purposes are simu-
lated in an interactive way, using a formal specification in PSF and the resulting trace is
converted into a test in TTCN (Tree and Tabular Combined Notation) [26] in a partially
automated way.

In the TOPIC V2 test approach of [23], also described in [9], test purposes for con-
formance testing are expressed as Message Sequence Charts (MSCs) [16]. These test
purposes are converted into an observer automaton, which is co-simulated with the SDL
protocol [6] model, which leads to a constrained graph from which the TTCN test tree
is eventually derived in an automatic way.

A very similar approach is the TGV approach of [11], also described in [9], where
the behavioral part of a test purpose is expressed as an automaton. The automaton is a
directed acyclic graph with a set of distinguished accepting states, but in practice it may
be derived from an MSC itself. From the test automaton and a given SDL model a test-
graph is generated, using a technique called on-the-fly verification (which means that it
is not necessary to have the entire graph in memory). The resulting test case in TTCN is
obtained by adding timer management and by taking the asynchronous nature of some
of the points of control and observation (PCOs) into account.

In [30] an intelligent network (IN) service creation environment is described where
on-line verification of properties is built-in to the environment. Constraints and con-
sistency conditions of the intended service are checked via model checking. The main
difference with our own work is the fact that [30] embeds the verification into the de-
sign process, essentially working in a white-box fashion, whereas we address the test-
ing problem as a black-box problem (but of course it is uneconomic to build a complete
model of the network from scratch, so in practice our approach will have to re-use mod-
els taken from the service creation process as well).

It is clear that MSCs play a key role in almost all approaches to protocol testing,
either as test-purposes, or otherwise as intermediate representations of test traces. An-
other test-philosophy was proposed at TACAS ’96 by Holzmann and his co-workers:
in [14], [2] tools for analyzing MSCs are presented which are primarily considered as
‘early fault detection’ tools. Sets of MSCs are tested for internal consistency themselves,
which means that a testing takes place even before the state-machine models or imple-
mentations have been built.

3 Methodology

In this section we will give an overview of our methodology (see Fig. 1). The start-
ing point will be the specification of the system under study. We have taken an SDL
([6], [28]) specification as our input. The first step is to translate this specification (man-
ually) into a form understood by the model checker. Since we used the model checker
SPIN [13], we translated this SDL-specification into Promela, the modeling language of
SPIN. The structure of a Promela model (several parallel processes, which can commu-
nicate both through shared variables and through channels), also fits neatly with SDL-
descriptions. The Promela-code was created from the SDL-specification by hand, but a
few macros were used to bring the Promela code closer to the SDL-code.

SPIN

(SDL)
specification

stimulator model
(Promela)

testing
purpose

never
claim

MSC

(InterWorking)
IW TTCN

Fig. 1. general method

During this translation, and even during the creation of the specification itself, it is
a good thing to already start looking at the testing goals. Sometimes auxiliary variables
are necessary to count the number of times a certain step in the process has been taken
or is being taken (as the value of such a variable might be part of the testing goal). Also
the degree of simplification might differ, depending on what is to be tested.

In this model we also incorporate a so-called stimulation process. This is an added
process, that regulates the external inputs and/or the independent actions of the system to
be tested. It sends messages to the other processes, either through a specialized channel
or through the change of some variable, that normally work as a trigger for performing
some activity. For example, in our test case, a model of a telephony service, the stimu-
lation process regulates which calls are to be attempted.

Next, we have to develop a test purpose. This consists of the desired characteristics
of the test traces to be developed. Of course, these characteristics have to be chosen such,
that the test traces to be found have a high chance of catching implementation errors, that
is, they should describe a situation where the system is likely to behave differently from
the specification in the case of errors. Because of this, it is important to guess which kind
of errors are most likely to occur, or most important to be found.

In their most simple form these testing purposes consist of a property or a set of prop-
erties for the final state of the trace, but they could also be more complicated, for exam-
ple a series of states (distinguished by their properties) that have to be traversed, or an
added restriction on the states before the final one. The only consideration is that it must
be possible to write the testing purposes down in (temporal) logic.

These two additions (stimulation process and testing purpose) give two ways of con-
trolling the test trace developed. The stimulation process describes the search space for
traces, while the testing purpose regulates which kind of traces are actually generated.
Of course these two will be connected: On the one hand one can cause the stimulation
process to make only those actions happen which bring the testing purpose closer, thus

making the number of possibilities checked smaller, or one can disallow the most triv-
ial ways of reaching the testing purpose, thus finding other, possibly more interesting,
traces. Finally, one can re-use the same testing purpose by using it together with different
stimulators.

We now take a model checker (in our example SPIN), and take the negation of the
testing purpose as a so-called never-claim. In normal usage of model checkers the never-
claim is an asserted logical invariant of the model, and should therefore never become
false (hence the name never-claim). The model checker then runs the model, checking
whether the never-claim ever becomes false, and presenting a trace that makes the never-
claim false if this is the case. Here we take the negation of the testing purpose, which will
cause the trace found to be one in which the negation of the testing purpose is false, and
hence the testing purpose itself is reached. In general there will be more than one test
trace possible that fulfills the testing purpose. In that case the model checker will make
an essentially nondeterministic choice (although some model checkers might allow one
to find all traces, or one particular (such as the shortest)).

From an output of SPIN (which contains all the information about the trace that is
found) we create Interworkings (IW) [21], a (TUE and Philips) local variant of syn-
chronous MSC-like diagrams. The reason we do this, is that a tool is available [10] for
translating such an IW into TTCN, which of course is our final goal. The SPIN-output
also contains some MSCs, which can be used for a quick scan of the trace found, and
thus can give help for human control of the test generation process.

A scheme of the method can be found in Fig. 1. The part left of the dashed line is
mainly manual work, the part on the right is done by tools.

4 Case Study: Testing Intelligent Networks

In this section we use our method in an example from the field of Intelligent Networks
(IN). We have modeled a telephony service with two features, OCS (Originating Call
Screening) and HOT (Hotline). Using our methods, we will derive a single test trace.

4.1 Intelligent Networks

Because of the ever-growing amount of possibilitiesof telephone services, a new paradigm
for telephony and connected telecommunication has been developed: Intelligent Net-
works. The following citation from [30] characterizes the IN-concept:

Intelligent Network (IN) services are customized telephone services, like e.g.,
1) ‘Free-Phone’, where the receiver of the call can be billed if some conditions
are met, 2) ‘Universal Private Telephone’, enabling groups of customers to de-
fine their own private net within the public net, or 3) ‘Partner Lines’, where a
number of menus leads to the satisfaction of all desires. The realization of these
services is quite complex and error prone.
The current trend in advanced IN services clearly evolves towards decoupling
Service Processing Systems from the switch network (see e.g. [8]). The reasons

for this tendency lie in the growing need for decentralization of the service pro-
cessing, in the demand for quick customization of the offered services, and in
the requirement of rapid availability of the modified or reconfigured services.
Service Creation Environments for the creation of IN-services are usually based
on classical ‘Clipboard-Architecture’ environments, where services are graph-
ically constructed, compiled, and successively tested. Two extreme approaches
characterize the state of the art: The first approach guarantees consistency, but
the creation process is strongly limited in its flexibility to compose Service In-
dependent BuildingBlocks (SIBs) to new services. The second approach allows
flexible compositions of services, but there is little or no feedback on the cor-
rectness of the service under creation during the development: the validation
is almost entirely located after the design is completed. Thus the resulting test
phase is lengthy and costly.

For more information on IN we refer to e.g. [1], [4], [8] or [15].
In [32] the need for service testing in the context of IN is explained and a framework

for testing telecommunication services is presented, where it is stressed that next to the
service itself, the underlying platform and the already existing services should be tested
as well.

4.2 A Simple Model

We will model an Intelligent Network with two special services (which we call ’fea-
tures’), namely OCS (OriginatingCall Screening) and a simplified version of HOT (Hot-
line). In OriginatingCall Screening phone calls can be blocked by the receiver depending
on the originator of the call. In Hotline the dialing of often used numbers is made easier
by causing another (smaller) number to result in the same connection. In our model the
Hotline will be established on dialing any number that is not a service number. Adding
a feature can be done without much problems (although it will increase the size of the
space state, and thus might cause the generation time for the test trace to increase slightly).

In our model we will decouple the SSP (Service Switching Point), which connects
the user with the services, and the SCP (Service Control Point), which physically con-
tains the services. This decoupling is suggested within the literature (see above), because
the implementation and maintenance of the system is easier if the (stable) basic functions
are decoupled from the (dynamically added) features. For the model there would be only
little change if we had not implemented this decoupling, but for the test trace generation
this might very well be important, since an overload of the connection between SSP and
SCP might be a cause of errors.

In Fig. 2 we see the architecture of an Intelligent Network as it is represented by
our model. The SSP is responsible for the connections between the telephones, and the
connections between the telephones and the SCP. It can be modeled in for example SDL.

Through a special channel, ss7, the SSP is connected to the SCP. The SCP checks
which, if any, features have to be used in a given call. In our model the SDP, which does
the maintenance of the features, that is, keeping track of which features are enabled for
whom and how they are configured, and the SCP have been combined into one process.
The SCP is normally modeled by Service Independent Building Blocks (SIBs) [30].

SSP
service switching point

SCP
service control point

OCS HOT

INAP messages

SS7

SDP
service data point

switching
logic modelled
in SDL notation

service modelled as
composition of SIBs

digits
on hook
off hook

dial tone
busy tone

ringing tone
ringing current

bls bls

Fig. 2. IN architecture

In Fig. 3 we see an SDL-model of the SSP as we have modeled it. This model is
based on [27]. Identifier A here stands for the person attempting to make the call, B for
the person being called. The SSP is idle until there is an off-hook message (A off hook),
after which a dial tone is sent to phone A, and then the SSP is in the await digits-state.
This one can end in two ways, namely by A putting the phone on hook, and by A dialing
a number. In the first case the (attempted) call ends, and the SSP becomes idle again.
In the second case, the SSP checks whether the line called is busy, if it is it generates
a busy tone and waits for an on hook, otherwise the second phone starts ringing and a
conversation is attempted. The rest of the figure reads likewise.

This scheme is simplified from the form we used in our model in a few ways: Firstly,
there can be more than one attempt for making a talk. Because of this, many copies of
this scheme are running at the same time, one for each call attempted. Secondly, not all
actions (the sending of tones and talk across the telephone lines) are shown. In the third
place, this only specifies the behavior in absence of any special features. The presence
of features influences the effect in the following ways:

– Hotline changes the line with which a connection is attempted
– OCS makes ’called line busy?’ true even when the line is not busy
– After the digits are dialed, it is first checked whether they are the digits for adding

A
on hook

idle B

B
on hook

A
off hook

await digits

dial tone

timing

A
on hook

called
line busy

?

A
on hook

idle

busy tone

path set-up

digits

no

yes

A
on hook

ringing

off hook
B

conversation

on hook
B

timing

time
out

parked

A
on hook

on hook
A

Fig. 3. SDL-model of the SSP

or removing a feature. If so, the feature is enabled/disabled/changed, and the phone
waits for an on hook

We translated this SDL-model into PROMELA-code. We will not be giving the com-
plete (5-page) PROMELA-code of our model here, but only a few representative parts.
First we give a part of the SSP-code:

STATE(ringing)
:: signal[A]?on_hook -> atomic {

line[A] = silent;
line[B] = silent;
busy[A] = false;
busy[B] = false;
NEXTSTATE(idle)

}
:: intern[B]?off_hook -> atomic {

line[A] = blabla(B);
line[B] = blabla(A);
BCP_account[A]++;
NEXTSTATE(conversation)

}
ENDSTATE

In Fig. 3 this state (’ringing’) can be found a bit above the middle (below the ac-
tion ’path set-up’). Take special notice of the variable BCP account[A]. It is incremented
each time A has made a successful attempt to engage in a talk. It has no function in the
model, but we include it in order to be able to have ’A has made � talks’ as (part of) our
testing goal.

The model of the SCP is shown below (OCS is a 5 times 5 boolean array, HOT is an
integer array of length 5):

do
:: ss7?feature(A,B) -> if

:: B/100 == 66 -> HOT[A] = (B - 6600)
:: B/100 == 88 -> OCS[B - 8800,A] = true
:: B/100 == 89 -> OCS[B - 8900,A] = false
fi

:: ss7?check(A,B) -> s = OCS[A,B];
ss7!checked(!s,_);
if
:: (s == 1) -> IN_account[B]++
:: else -> skip
fi

:: ss7?lookup(A,B) -> if
:: (HOT[A] == A) -> ss7!lookuped(A,B)
:: (HOT[A] != A) -> ss7!lookuped(A,HOT[A])
fi

od

First, there are a few arrays: OCS[A,B] is true iff B is blocking messages from A,
HOT[A] is the Hotline A has (if it has A as its value, A does not have a Hotline). These
arrays are filled in the snipped part.

The SCP gets its orders from the SSP through the ss7-channel. The message ’fea-
ture(A,B)’ adds or removes a feature, the message ’check(A,B)’ asks whether A is al-
lowed to call B, and the message ’lookup(A,B)’ tells A has dialed the number B, and
asks with which phone a connection should actually be attempted.

Through this same channel the SCP sends the results back to the SSP. If the order
was a check, it sends ’checked(!s,)’, where s is true iff B is blocking messages from A,

while the second one (’ ’) is a dummy variable, which is only needed because the ss7 is
a 3-variable channel. If the order was a lookup, then ’lookuped(A,H)’ is sent, where H
is A’s hotline if any, and B otherwise, so in fact it is sending the number that will be the
real receiver of the message.

As before, there is an auxiliary variable: IN ACCOUNT[B], which counts the num-
ber of calls to B that have been blocked by B.

The stimulation process controls the amount of non-determinism in the system. An
example of a stimulation process can be found below:

proctype stimula()
{

call[2]!6603; /* 2 has Hotline to 3 */
call[4]!8801; /* 1 should not call 4 */
do
:: call[4]!8901 /* 1 may call 4 again */
:: call[1]!4
od

}

The action call[A]!B sends a message to phone A, telling it to attempt to make a call
in which it dials number B. So the stimulationprocess above first orders phone 2 to create
a Hotline to 3, then orders phone 4 to create an OCS towards 1, and then goes through a
cycle, every time either ordering phone 4 to stop its OCS towards 1, or ordering phone
1 to attempt a call to phone 4.

This is of course just one example of a stimulation process. We have worked with
several different processes in order to get different traces.

4.3 Generating a Test Sequence

As an example, we will generate an interesting trace. As a working hypothesis we as-
sumed that problems were likely to arise due to mistaken allocation of shared resources,
especially if some resource was used too extensively. This leads to testing goals like
’There are � SDP-accesses taking place’ However, because our main goal was the testing
of the feasibility of the general method, we have only used the simplest cases in practice,
such as:

– Phone A has made a successful call
– Phone A has made two successful calls
– Phone A and B have been connected in a successful call
– An SDP-access is taking place

In practice more complex situations have to be checked. This might cause a longer
computation time, because the minimal length of a trace that has the desired properties
is longer, and the testing purpose is more complicated. Neither seems to be really prob-
lematic, though.

As an example we take the testing goal ’Phone 1 has made a successful call’, with
the stimulation process as described above.

In SPIN the testing goal can be implemented as a “never-claim”.

#define ALWAYS(P) never { do :: P :: !(P) -> break od }
#define CLAIM(A) (BCP_account[A] < 1)
ALWAYS(INV(1))

SPIN will look for traces in which the process defined by the never-claim has ended.
In our definition of ALWAYS(P) this means that P has been false at some place of the
trace - in fact, at the last step of the trace. So if we make our claim ALWAYS(P), then
SPIN will be looking for a trace that ends with a situation in which P is NOT true. As we
want to have a trace in which phone 1 has made a (successful) call, this P must be ’Phone
1 has not made a call’, which, because of the addition of the variable BCP account[A]
into our model, simply translates into ’BCP account[1] 	 1’.

This model was run using SPIN (XSpin). It did find a trace to a state in which the
BCP-account of telephone 1 is at least 1. The main part of the SPIN-output consists of
listings of the following form. It is in fact a complete list of the actions taken by the
various processes, with some information added (the line of code where the action is
described, the value of variables that have changed, etcetera).

1: proc - (:never:) line 319 "pan_in" (state 1) [((BCP_account[1]<1))]
2: proc 1 (:init:) line 323 "pan_in" (state 1) [(run phone(0))]
3: proc - (:never:) line 319 "pan_in" (state 1) [((BCP_account[1]<1))]
4: proc 2 (phone) line 93 "pan_in" (state 1) [self = self]

phone(2):friend = 0
phone(2):state = 0
phone(2):self = 0

5: proc - (:never:) line 319 "pan_in" (state 1) [((BCP_account[1]<1))]
6: proc 2 (phone) line 94 "pan_in" (state 2) [((self==0))]
etc.

1

TESTER 0 1 2 3 4

signal(off_hook)

 dial_tone

digits(8801)

 accept_tone

signal(off_hook)

 dial_tone

signal(off_hook)

digits(2)

 ringing_tone

 ringing_cu1

 bla_bla

 bla_bla

 ringing_cu1 = ringing_current

Fig. 4. Interworking of test run after inversion

XSpin enables us to inspect this trace as an MSC, which we will not display. We
used a series of Unix shellscripts and existing tools to transform the trace into an In-
terworking. To this Interworking we applied an ‘inversion’ [10], which transforms the

output lines of the various processes into input lines. This facilitates the use in a testing
environment, because we can now regard them as orders to do certain actions, instead of
the actions themselves. We decided to receive line-states as (observation) actions. This
resulted in the Interworking shown in Fig. 4.

Tools exist to translate this into TTCN. For the case at hand the TTCN looks as fol-
lows:

+---+
|Test Case FEATURE_INTERACTION_TEST 1 |
+---+
|Test Case Name : FIT 1 |
|Group : \1 |
|Purpose : 1st demo use SPIN FI TESTING |
|Default : |
|Comments : |
+---+
|Nr | Label | Behavior Descriptions | Constraints Ref | Verdict |

4!signal(off_hook)
[line 4 = dial_tone] (PASS)
4!digits(8801)
[line 4 = accept_tone] (PASS)
1!signal(off_hook)
[line 1 = dial_tone] (PASS)
2!signal(off_hook)
1!digits(2)
[line 1 = ringing_tone] (PASS)
[line 2 = ringing_current] (PASS)
[line 1 = bla_bla] (PASS)
[line 2 = bla_bla] PASS
[OTHERWISE] FAIL
[OTHERWISE] (FAIL)

[OTHERWISE] (FAIL)
[OTHERWISE] (FAIL)

[OTHERWISE] (FAIL)
[OTHERWISE] (FAIL)

[OTHERWISE] (FAIL) |
+---+

In general it is not the case that the TTCN generated from the trace in such a straight-
forward manner is directly correct as a test. The problem is the correct assignments of
verdicts to the alternatives, all of which are made FAIL initially. We discuss three ap-
proaches to deal with this problem.

The first approach is as follows: subdivide the trace into two parts, an initial part
which serves for setting-up the services and contextual connections, followed by a sec-
ond part, usually much shorter, which characterizes the intended behaviour of the sys-
tem. For example in the test case FIT1 given above, the two observation actions [line1 =
bla bla] and [line2 = bla bla] should be interpreted as a characterisation of the intended
behaviour (call established), so the alternatives of the second part could keep the as-
signed FAIL verdicts. The verdicts of the alternatives of the steps of the first part can
be turned into INCONCLUSIVE.

The second approach is a further refinement of this. The generated TTCN is only
considered as a draft of the correct test case, which is to be obtained by checking the
verdicts and adding more alternatives (some of which may also get PASS). This is the
approach of [10], where it is shown in detail how a simulator is used (during multiple

runs of the simulator) to find out in how far the crucial steps are deterministic, and if not,
what the interesting alternative behaviours are (in the step-by-step method of [10], these
are the steps 13, simulate alternatives and 14, complete the TTCN description).

The third approach to the problem of verdict assignment to alternatives is to adapt
the Modelchecker and make it produce trees or graphs rather than sequences. This is the
approach of the tool TGV [11].

So far we have only used temporal claims of a particularly simple kind, viz. invari-
ants (such as ALWAYS(INV(1))). So we ought to discuss whether temporal claims in
general are useful as well. In the classical usage of a Modelchecker, i.e. for verification
purposes, it will attempt to falsify claims like: “it is always true that when the sender
transmits a message, the receiver will eventually accept it”. For test generation purposes
however, the temporal claim could be used to say for example: “it is always true that
when A is in state trying-to-reach-B, the SSP (Service Switching Point) will eventually
connect A and B”. Of course this claim need not be true, e.g. because it is precisely the
purpose of certain services (like OCS) to prevent connections from A to B to happen.
Therefore, such a temporal claim, when falsified, results a trace leading to a state where
this ‘prevention’ service has been put into operation.

5 Conclusions

Model checking can be useful as a technique for generating test traces. This can be done
using existing tools, at least on prototype level. A reservation has to be made on the point
of the scaling-up of the tools, because we have only tested small examples. Also the time
and memory consumption of the method have not yet been investigated. If we want to
use this in practice we will probably need more specialized tools, and we must be able
to connect them to service-creation environments.

We found that our way of working (selecting a trace leading to an interesting state)
is a promising one. This way, a part of the hard work of the creation of test traces can be
automated. Traces can be selected to agree with given testing purposes without having
to step down too far in abstraction.

A restriction to the applicability of the method, at least in the current form, is that the
application to be tested should react deterministically to the test input. The reason for this
is that otherwise a trace in which an error has occured cannot be distinguished from one
in which the internal non-determinism has caused the system to react different from the
derived test trace, but still within the specification. If the system is not deterministic, the
method is still useful, but in that case more manual work is needed to complete the test
case.

Our method supports a part of the test traject, namely the derivation of a test trace
from a given test purpose. Formulating the test purpose, the stimulation process and the
model remains a task that has to be done by hand, and requires an amount of domain
specific knowledge.

Another way of workingmight be introducingdeliberate errors in the SPIN program,
which are supposed to model possible errors in the design, and creating a trace in which
the error occurs. We could call this ’negative testing’, because in this case we are con-
structing traces we want the real design NOT to be able to follow, while in the constructs

given until now, we wanted the design to follow the trace we gave it. An example of such
a negative test is a trace that leads to a connection between two subscribers while the
called party is refusing calls from the calling party by using the OCS feature.

However, we think that positive testing is more suitable to combination with the given
method, because for negative testing we need to make many more assumptions about the
kind of errors that might occur. In negative testing we need a rather specific idea about
WHAT errors can occur, in positive testing we only need to hypothesize on WHEN they
occur. When looking for specific errors, negative testing is the way to go, but if the pur-
pose is to make a general check of a system, positive testing is much more useful.

One objection to our method could be that in order to generate a trace satisfying the
property checked, the Modelchecker risks searching the entire state space, which may
be infeasible (the problem of the state space is often stated as an argument for the need
of testing in the first place). Although this is true in principle, the important observation
is that a Modelchecker such as SPIN has powerful techniques built into it (such as the
supertrace algorithm) to cope with the state space problem. In our opinion it is important
that (if testing cannot be made superfluous by other means, for any reason whatsoever),
the testers should use powerful and high-level tools as well; in particular this holds for
the intermediate situation where fully automated testing is infeasible and where fully
manual test generation is too costly.

Acknowledgments: The authors wish to thank Rob Gerth, Bart Knaack, Thierry Jeron
and the anonymous reviewers for the discussions and the help that contributed to the
work presented in this paper.

References

1. J. Aitken. Intelligent networks, seminar, logica uk ltd., london, april 26–27, 1995, 1995.
2. R. Alur, G. Holzmann, and D. Peled. An analyzer for message sequence charts. In Margaria

and Steffen [20], pages 35–48.
3. B. Baumgarten, H. Burkhardt, and A. Giessler, editors. Testing of communicating systems.

Chapman & Hall, 1996.
4. P. Bohacek and J.N.White. Service creation: The real key to intelligent network revenue. In

Proc. Workshop Intelligent Networks ’94, Heidelberg, May24–26 1994.
5. A. Cavali and S. Budkowski, editors. Proceedings of IWPTS ’95, 9 rue Charles Fourier

91011 Evry Cedex, 1995. Institut National Télécommunications.
6. CCITT. Recommendation z100, specification and description language (sdl). Recommenda-

tion AP IX-35-E, International Telegraph and Telephone Consultative Committee, Geneva,
1988.

7. W. Chun. Improvements on uio sequence generation and partial uio sequences. In Linn and
Üyar [19].

8. E. Crabill and J. Kukla. Service processing systems for at&t’s intelligent network. AT&T
Techn. Journal, 73(6):39–47, 1994.

9. L. Doldi, V. Encontre, J. Fernandez, T. Jéron, S. L. Bricquir, N. Texier, and M. Phalippou.
Assessment of automatic generation methods of conformance test suites in an industrial con-
text. In Baumgarten et al. [3], pages 347–361.

10. L. Feijs and M. Jumelet. A rigorous and practical approach to service testing. In Baumgarten
et al. [3], pages 175–190.

11. J. Fernandez, C. Jard, T. Jéron, and G. Viho. Using on the fly verification techniques for
the generation of test suites. In A. Alur and I. Henzinger, editors, Conference on Computer-
Aided Verification (CAV ’96), New Brunswick, New Jersey, USA, number 1102 in Lecturen
Notes on Computer Science. Springer, July 1996.

12. A. Guerrouat and H. König. Automation of test case derivation in respect to test purposes.
In Baumgarten et al. [3], pages 207–222.

13. G. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall/AT&T, 1991.
14. G. Holzmann. Early fault detection tools. In Margaria and Steffen [20], pages 1–13.
15. ITU. Principles of Intelligent Network Architecture, CS1 Recommendations. ITU, 1993.
16. ITU-TS, Geneva. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC), 1994.
17. K. Knightson. OSI protocol conformance testing. McGraw-Hill, 1993.
18. E. Kwast. An exercise in test generation for telecommunication services. In J. Springintveld,

editor, Second Dutch Testing Conference (handout), volume 03-95-5003A. Katholieke Uni-
versiteit Nijmegen, 1996.

19. R. Linn, Jr. and M. U. Üyar, editors. Protocol specification, testing and verification XII. El-
sevier Science Publishers (North-Holland), 1992.

20. T. Margaria and B. Steffen, editors. Tools and Algorithms for the Construction and Analysis
of Systems, number 1055 in Lecturen Notes on Computer Science. Springer Verlag, 1996.

21. S. Mauw, M. van Wijk, and T. Winter. A formal semantics of synchronous Interworkings.
In O. Færgemand and A. Sarma, editors, Proceedings of the Sixth SDL Forum, Darmstadt.
Elsevier Science Publishers (North-Holland), 1993.

22. C. Middelburg. A simple language for expressing properties of telecommunication services
and features. publication 94-PU-356, PTT Research, 1994.

23. J. Montiel, R. Roth, and A. Donaldson. Methods for QoS verification and protocol confor-
mance testing in IBC results and further recommendations. topic R2088 TOPIC, Deliverable
15, DocR2088/DAT/TMS/DS/P/015/b1, RACE project, 1994.

24. R. Nahm. Conformance testing based on formal description techniques and message se-
quence charts. Technical report, Institut für Informatik, Universität Bern, 1995.

25. K. Naik. Fault-tolerant UIO sequences in finite state machines. In Cavali and Budkowski
[5], pages 207–220.

26. OSI. Conformance testing methodology and framework, Part 3: The Tree and Tabular Com-
bined Notation (TTCN). ISO/IEC DIS 9646-3, 1990.

27. F. Redmill and A. Valdar. SPC digital telephone exchanges, revised edition. Number 21 in
IEE Telecommunication series. Peter Peregrinus Ltd., 1994.

28. R. Saracco, J. Smith, and R. Reed. Telecommunicationssystems engineering using SDL. El-
sevier Science Publishers (North-Holland), 1995.

29. D. Sidhu and T. Leung. Formal methods in protocol testing, a detailed study. IEEE transac-
tion on Software Engineering, 15(4):413–426, 1989.

30. B. Steffen, T. Margaria, A. Classen, V. Braun, and M. Reitenspiess. An environement for
the creation of intelligent network services. In Intelligent Networks: IN/AIN Technologies,
Operations, Services, and Applications - A Comprehensive Report, pages 287–300. IEC - In-
ternational Engineering Consortium, 1996.

31. X. Sun, Y. Shen, F. Lombardi, and D. Sciuto. Protocol conformance testing by discriminat-
ing uio sequences. In B. Johnsson,J. Parrow, and B. Pehrson, editors, Protocol specification,
testing and verification XI. Elsevier Science Publishers (North-Holland), 1991.

32. G. Vermeer, M. Witteman, and J. Kroon. A framework for testing telecommunication ser-
vices. In Cavali and Budkowski [5], pages 129–140.

This article was processed using the LATEX macro package with LLNCS style

