
MSC and data: dynami variablesA.G. Engels, L.M.G. Feijs, S. MauwDepartment of Mathematis and Computing Siene,Eindhoven University of Tehnology,P.O. Box 513, NL{5600 MB Eindhoven, The Netherlands.engels�win.tue.nl, feijs�win.tue.nl, sjouke�win.tue.nlThe extension of the MSC language with more advaned data onepts is one of theurrent topis of disussion in the MSC standardization ommunity. A reent paper atthe SAM98 workshop by two of the urrent authors [2℄ treated the extension of MSC withstati variables. Feasibility of an approah to parameterize the MSC language with a datalanguage was shown.We have extended this researh by studying the ombination of MSC with a datalanguage ontaining dynami variables. Rather than giving a preise proposal of theway in whih an atual data language must be added to the MSC language, we disussoptions and problems. Choies have to be made, for example with respet to sope,use of variables, and the way of assigning variables. For some partiular ombination ofthe options mentioned above, we give a formal operational semantis of the ombinedMSC/Data language. It is argued that the interfae between the data language de�nitionand the MSC language de�nition should be expliit.List of Keywords: Extension of existing language, Formal semanti models, MSC,Data, Variables.1. INTRODUCTIONQuite high on the list of possible extensions for the language MSC [4℄ (Message SequeneCharts) is data. Currently, the language has hardly any data onept. At best, dataan be expressed as a parameter of a message whih is simply onsidered as a syntatialextension of the message name. Operations an be de�ned informally by means of ations.Again, this is onsidered as a purely syntatial onept.There is learly a need for a more extensive treatment of data. This is in line with thetrend that MSC is beoming a language that is more and more useful for the ompletedesription of system behaviour, rather than for displaying single traes. But also whenusing MSC for the visualization of traes, atual data values may be observed.Sine MSC is losely related to SDL [3℄, some things an be learned from the way inwhih SDL deals with data. The �rst formal data language integrated with SDL was basedon algebrai spei�ations. These are known for having a very simple syntax and a learsemantial foundation. In pratie, however, the funtional style of an algebrai spei�-ation showed to be too diÆult for people used to an imperative language. Therefore,an alternative data language, ASN.1 [5℄, was adopted. This enfored the development of

a seond reommendation, whih exists next to the �rst one. Currently, the developmentof SDL2000 involves a redesign of the SDL data language.This situation has several drawbaks. Both reommendations have a large overlap, andthus there is a maintenane problem. Furthermore it requires a new semantis de�nition.In whih sense is the semantis dependent on the atual data language? And �nally it isnot lear what will happen if a new paradigm (suh as Java) gets into the piture. Willa third reommendation be developed?We learly do not want these problems to our when extending MSC with data. There-fore, we have initiated researh on the extension of MSC with data. In a previous paper [2℄we have disussed several issues related to the extension of MSC with a data languageontaining stati variables. We have argued in favour of developing an expliit interfaebetween the MSC behavioural part and the MSC data part. This would overome someof the drawbaks mentioned above. Furthermore, we have designed suh an interfae,appropriate for two lasses of languages, namely, algebrai spei�ations and onstraintsyntax languages suh as ASN.1 [5℄. In Setion 2 we will summarize the results of thisresearh.In this paper, we study the extension of MSC with a language ontaining dynamivariables. These are variables whose value may hange during \exeution" of an MSC.This situation is learly more ompliated than the ase of stati variables. We mentionsome questions that arise: Whih MSC onstruts an be used for hanging the value of avariable? What should be the sope of a variable? How often may a variable have a valuebe assigned to it? How to determine in whih state an expression should be evaluated?How to handle referenes to unde�ned variables?We will disuss all these questions, formulate possible answers and disuss their respe-tive merits. As in [2℄ we aim at de�ning an interfae between the MSC language andsome data language with dynami variables. However, we expet that a uniform interfaeannot be de�ned. That is an interfae whih is suited regardless of the answers to theabove mentioned questions. Nevertheless, we have studied suh an interfae for one par-tiular ombination of answers and we have roughly de�ned the operational semantis ofthis partiular MSC/Data language.This paper is strutured as follows. In Setion 2 we summarize the �ndings of [2℄.Setion 3 ontains the desription of a simple example showing the ombination of BasiMessage Sequene Charts with a basi data language. In Setion 4 we disuss somequestions onerning the extension of MSC with dynami variables. The operationalsemantis of a ombined MSC/Data language is skethed in Setion 5. We will end withsome onluding remarks.AknowledgmentsWe thank Jan Friso Groote, Frans Meijs, Jao van de Pol, MihelReniers and all members of the MSC standardization group for their fruitful disussionson this topi.2. STATIC DATAIn this setion we summarize the �ndings of [2℄, whih addresses the question howthe MSC language ould be extended with a data type formalism. It is argued that itmay be better not to hoose a partiular data type formalism for standardization as a

part of MSC, but instead set up the reommendation in suh a way that the atual datalanguage an be onsidered as a parameter. This leads to the researh question of howto parameterize the MSC language with a data language. Starting from the idea thatMSC is parameterized over some grammar with some semantial information, the latterresearh question is investigated in [2℄ by noting those properties of the data formalismthat are required in order to formally de�ne syntax, well-formedness and semantis of anMSC with data. As demonstrated in [2℄ it is indeed possible to de�ne suh an interfaebetween MSC and data. As usual, the interfae is a two-way ontrat; it desribes boththe required assumptions onerning MSC behaviour and the sets and funtions to beprovided by the data formalism.In [2℄ it is found that this interfae is suÆient for onneting quite distint dataformalisms to MSC. This is demonstrated by two ase studies. The �rst ase study is analgebrai data language. The seond ase study is a onstraint syntax language whihtakes ASN.1 as a starting point and is based on the proposal from Baker and Jervis [1℄.It is interesting to remark that [2℄ exploits a notion of variables too. In the setting ofthe present paper, they are a kind of stati variables: the semantis is taken to onsist ofall possible behaviours of giving values to the variables.3. EXAMPLE LANGUAGEIn this paper we will use a simpli�ed data language to explain the various features ofdynami data in MSC. Our language will onsist of:� The data types of Naturals and booleans� Variables x, y, z and x1; x2; : : : signifying naturals, and p, q, r and p1; p2; : : : signi-fying booleans� The operators +, �, ^, _, and =It also ontains variable delarations in the form var x: Natural or var p: Boolean,and assignments of the form x := e, with x a variable and e an expression. Variabledelarations are plaed in the MSC, near the MSC name. Assignments are made in loalations.As said, we will use this example to show various proposals and hoies. To get a �rstidea of how MSC with variables might look like, we show an example in Figure 1.Intuitively what happens here is that x gets the value 1, m(x), whih thus should bem(1) is sent and reeived, y gets the value 4, and k(5) is sent and reeived.For this simple example, lear and unambiguous semantis an be given. In moreomplex ases, with for example multiple assignments or restrited sopes, this may notbe the ase, and expliit hoies have to be made. This is what will be disussed in thenext setion.4. CHOICESWhen designing a ombined MSC/Data language, there are several hoies with respetto the preise interation of the two languages. We will �rst list the major issues anddisuss possible answers in the next setions.

k(y+1)

y:=x+3

x:=1

cba

msc
var

forward
x,y: Natural

m(x)

Figure 1. Example MSC with data1. The extent to whih the variables are behaving dynamially or statially.2. The plae where assignment of variables may take plae.3. The plaes where and the ways in whih a variable is used.4. The way unde�ned variables are handled.5. What sope variables have, both regarding their extension over one, some or allinstanes and regarding their extension in time.4.1. Stati vs. dynami nature of a variableWhen talking about the dynami nature of a variable, we are dealing with the libertywhih we have in manipulating the data { the more dynamially variables are handled,the easier data an be manipulated. We distinguish four gradations here:1. fully stati variables2. parameter variables3. single time assignable variables4. multiple times assignable variablesFully stati variables: In a fully stati environment, the values of variables are eitherompletely pre-determined, or not de�ned at all. In the latter ase the semantis istaken to onsist of all possible behaviours for any valuation of the various variables. Thisaddition is the situation desribed in [2℄ and hapter 2 of the present paper.Parameter variables: Parameter variables play a role within HMSC or MSC refereneexpressions, the idea being that one provides a value for one or more variables whilealling the referene MSC. It an be used espeially when the same behaviour needs tobe desribed for di�erent values for some of the ations, see for example Figure 2.

transmit(42)

transmit(1)

ba

s(p)

mscmsc transmit(p:Natural)transmission

Figure 2. Example MSC with parameter variablesIntuitively, this means that the referene MSC transmit is alled twie, but the �rst timewith p equal to 1, and the seond time with p equal to 42. Thus, �rst the message s(1)is sent and reeived, then s(42). Parametri data is semantially less ompliated thanthe next two options of assignable variables. On the other hand, it is also less powerful.Of ourse, it would also be possible to inlude both options, resulting in an even greaterpower of expression.Single time assignable variables: Here a variable an be assigned at any plae inthe MSC, but one it is assigned, it annot get a new value, at least not within its urrentsope. So eah time a variable is aessed, it will still have the same value. A problemhere is what we should do with attempts to aess a variable before it is given a value. Wewill go further into this question below. An example of an MSC with single time assignedvariables an be found in Figure 1.Multiple times assignable variables: This hoie o�ers most expressiveness tothe user. No restritions apply; the variables an have their value hanged at any time(provided they have been delared), and as often as is wanted. On the other hand, it isalso the most omplex one, thus possibly ausing problems to those theorizing about thelanguage and the tool makers. One problem is, that one sometimes would like to use anold value of a variable in the interpretation of an expression. See for example Figure 3(assuming global variables). Intuitively it is lear that the sending of the message m(x)uses the last assignment to x, and thus its urrent value. But what about its reeipt? Ifthat too would use the urrent value of x, we ould have the trae x := 1; s(m(1)); x :=2; r(m(2)) (here s and r are used to denote the sending and reeption of a message).But this would mean that the reeived message is unequal to the sent message. It wouldbe more natural to let the �nal reeipt be m(1). This would imply that it refers to thevalue of x at some time in the past (namely, when the message was sent). Although itis not impossible to formulate a semantis that desribes this, it is umbersome, and theresulting semantis might beome non-transparent.Note that this same problem an also arise with single time assignable variables, ifwe allow aess to the variable before it is used { what is important, is that there is anassignment between the two usages of the variable.

x:=1 x:=2

msc race
var x: Natural

m(x)

ba

Figure 3. MSC with assignable variables and messageAn even more ompliated situation ours when we onsider multi-instane events.These are events that work on more than one instane but do not represent a point intime where all instanes involved synhronize. One might think of onditions in thisregard. There are proposals to use onditions as guards. This reates a problem when thetruth value of a ondition hanges between the di�erent times it is heked by the variousinstanes. This problem will be desribed more extensively below, when we disuss theuse of data in onditions.4.2. Plae of assignmentWhen having dynami variables, one needs a onstrut to assign them a value. In theexamples up to now, we have used loal ation for this purpose. Of ourse a new onstrutould be introdued to do so, but it seems both possible and preferable to use an existingonstrut for this, so that the language is not extended more than is neessary.If we have stati variables, no assignment takes plae at all. Instead, all variablesare quanti�ed universally, that is, they an have any valid value, and a behaviour thatorresponds to any value is a valid behaviour of the MSC. This is desribed in more detailin [2℄.With parametri variables, we do have assignments, but they are neessarily part ofthe all itself, so again we have no options to hoose from.Thus, the only plae where this question really omes up is with the (single or multipletimes) assignable variables.Apart from loal ations, we ould also use message inputs for assigning values to avariable. The idea is that a message whih has reeived a value when sent, and has onlya variable as its value when reeived, in that way sets the variable. This is shown inFigure 4. The variable x in the referene MSC is set by the fat that the atual value ofthe message m(x) reeived from the environment is m(3). One problem with this way ofworking ould be that it may not be lear when a message reeipt is a variable assignmentand when it is not. For example, m(3) ould be uni�ed with m(x), but an m(3 + y) beuni�ed with m(4), or even m(x + 4)?Of ourse, some other MSC onstruts ould be used as an assignment, but we will not

super

k(x)

msc

ki j

m(3)
transmit

msc transmit
var x: Natural

m(x)

kj

Figure 4. Message input as an assigning ationgo into them here. Below when talking about data and onditions we will see one optionin whih onditions are used as assignments.4.3. Plae of referening a variableThe next question we will disuss is the plaes and ways that a variable an be used.Basially, any plae where now some string text appears in MSC whih is not furtherspei�ed, we ould replae it with an expression in the data language. And suh anexpression ould be, or ould inlude, a variable.This usage only requires evaluation of the expression. Suh unspei�ed texts exist inloal ations, messages, timers, and several other onstruts, even instane names.A more involved usage of expressions is in onditions. Currently, onditions do not haveany dynami meaning in the semantis of MSC. When data are added, they might be usedas guarding onditions. To do so, one would put a boolean expression in the ondition.The ondition ould then be passed only if the expression in it were true. For an exampleof this, see the left MSC in Figure 5. Instane a sends a message, ontaining the valueof x, to instane b. If x equals zero, then the seond alternative annot be hosen, so ithas to be the �rst, and instane b replies with message zero. If x does not equal zero, the�rst alternative annot be hosen, and the seond one will be, resulting in the messagenonzero.Unfortunately, we run into problems in ases like the one in the right MSC in Figure 5Here, instane a gives x the value 0, then sends k, and arrives at the hoie. It may nowselet the seond alternative, hange x to 1, and wait for m(2) to arrive. However, it ispossible that the right instane arrives at the hoie of the alt-expression after x has beenhanged to 1, and then annot pass the ondition, at least not to the lower of the twohoies where the left instane has gone. The question is: What should we do with suha ase?There are several options. We found at least the following, but this list is possibly notomplete:1. If we have only stati and parametri data, or only single time assignable variablesthat annot be used before their assignment, there is no problem.

msc switch
var x: Natural

ba

alt

x=1

x=0

k
x:=0

m(1)

m(2)
x:=1

a

msc choice (x: Natural)

ba

alt

x=0

m(x)

zero

nonzero

not(x=0)

Figure 5. Using onditions as guards2. Simply ignore this problem, and just go ahead with the semantis. This will ausethe right MSC in Figure 5 to deadlok in the situation above, as the right instanewill try to enter the seond alternative, but annot do so.3. `First one to pass the ondition deides'. That is, the �rst instane going throughthe ondition heks its truth value, and if it �nds the ondition to be true, then allinstanes an go through, no matter what the atual truth value at the time whenthey do so is.4. Make a ondition into a synhronization point. That is, all instanes have to passthe ondition at the same time. And thus, they have to evaluate the guardingexpression at the same time, resulting in the same outome.5. Let eah instane separately hoose between the alternatives. In our example thiswould mean that whereas the left instane hose the lower alternative, the right onemay still hoose the upper one. We would like to advise against this alternative,though. It goes straight against the urrent MSC semantis, in whih all instanesdo hoose the same alternative. Another objetion is that it solves the problem onlywhen the ondition guards a hoie, not in other ases.6. Make the assignments of variables in global onditions themselves, and let eahinstane remember its own opy of the variable, updating it when it goes throughthe ondition. Although this does solve the problem, the working of variables maywell di�er muh from people's intuitive ideas about them.

4.4. Handling of an unde�ned variableIn many ases it will be possible to refer to a variable while it does not have a value.It is not a priori lear how this should be managed. We will list several possible options:1. Forbid this, and use stati requirements to enfore this disallowane. This anbe done if one uses a simple data language, and does not use ompliated MSCstrutures (suh as guarded loops), but if one uses a data language that is strongenough to funtion as a omplete programming language, or if more ompliatedMSC funtionalities are inluded, this may beome diÆult, or even impossible.2. Detet the problem during dynami evaluation. In this ase we hek runtimewhether a variable is initialized. If not, we get a dynami error (that is, semantially,a deadlok).3. All unde�ned variables are regarded as universally quanti�ed. That is, they an haveany possible initial value. The semantis of the MSC is then the delayed hoie ofall possible behaviours for any initial value (or set of initial values). This is basiallythe same treatment as given to stati variables in [2℄. Thus, a dynami variable istreated as a stati one until its �rst assignment. A problem with this approah isthat the number of alternatives ould be in�nite, and it is hard to give semantis foran in�nite delayed hoie, the resulting semantis without doubt being both uglyand hard to work with.4. Eah (type of) variable has a default value. Until its �rst assignment it has thisdefault value. This way there are no unde�ned variables. We need to have a defaultvalue for eah data domain, though.The hoie between these options will also be dependent on other hoies. For example,the last two options, where the variable has some value before the �rst assignment, donot �t very well with the `single assignment' dynami variables. The reason that singleassignment is simpler than multiple assignment, is that the variable will have the samevalue eah time it is used. The last two solutions will remove this advantage, so we see noreason why, if they are used, one would prefer single assignments to multiple assignments.4.5. Sope of a variableA further point on whih we an make di�erent hoies is in the de�nition of the sopeof a variable. That is, one a variable has been delared, on whih part of the MSC anit be used? This is the sope of that variable. Sopes might be nested, in whih ase thevariables in the outer sope an also be used in the inner sope, unless a new delarationof the same variable has taken plae. If a variable is used in two di�erent sopes, thenthe two uses of the variable have nothing in ommon, and they should be regarded as twodi�erent variables that happen to share the same name.We an distinguish two di�erent dimensions to the sope: Blok sope and arhiteturalsope.The blok sope of a variable is a separated (framed) part of an MSC where the variableis de�ned. Suh a separated part ould be a omplete MSC doument, a single MSC, anMSC referene expression or an Inline expression. There might be more hoies, but theseseem to be the most logial ones.

x:=1

a

a(x)

x:=1

var x: Naturalvar x: Natural

ba

b(x)

x:=2

msc localscope

b

b(x)

x:=2

a(x)

msc globalscope
var x: Natural

Figure 6. The di�erene between loal and global arhitetural sopeApart from this there is also the arhitetural sope. This gives the loality with respetto the instanes in an MSC. We ould de�ne a variable to be de�ned on only one instane,or on all instanes of the MSC. Possibilities in between, where a variable is de�ned on anumber of instanes (for example, the instanes that reside on one proessor), ould alsobe onsidered, although it might be harder to �nd a syntax for that option.The di�erene between (arhiteturally) loal and global variables an be seen in Fig-ure 6. On the left we see an MSC with a global variable x, on the right one with twoloal variables, both alled x. The di�erene is that on the right, instane a will alwaysdo a(1), as for this instane the value of x is 1, while the right instane will do b(2), asfor this instane the value of x is 2. On the left, where the variable x is global, it doesnot matter where the value of x has been hanged, and thus both instanes will use thelast value of x, wherever it ame from. Here x := 1; x := 2; a(2); b(2) is a possible trae {at the time instane a exeutes a(x) the value of x is 2, so that is the value that is used.Of ourse one ould deide to make all variables loal, in that ase the MSC on the leftwould at just like the one on the right, the reation of the variable x being shorthandfor reating suh a variable on all instanes.It might be argued that MSC is a language in whih all ommuniation is displayedexpliitly, whih implies that the introdution of a shared variable paradigm goes againstthe spirit of MSC. This would make the (arhiteturally) loal harater of variables themore logial hoie. If one uses loal variables, one does however also need a way totransport the value of a variable from one instane to another. A logial way to do sowould be through messages - see however the problems that are mentioned about this inthe 'plae of assignment' subsetion.However, if this is hosen, one should also deide whether and how the value of avariable an be ommuniated from one instane to another.5. SEMANTICSAs stated before, our aim is to parameterize the MSC language with a data language.To do so also requires to parameterize the MSC semantis. Inluded in suh a parame-

terization needs to be an interfae that spei�es the information that is needed from thedata language.What exatly this interfae looks like, depends on the hoies made with respet to theissues raised above. For example, if one hooses to use default values to solve the problemof unde�ned variables, one needs these default values in the interfae.We will give example semantis for two hoies, namely parametri variables with globalarhitetural sope, and single-assignment dynami variables with stati hek of unde-�ned variables and global arhitetural sope. Several other hoies will also be mentionedin short, giving an idea of how they an be elaborated as well as the problems this mightause.5.1. General InterfaeWe �rst give a general idea about the interfae that is needed, although some thingswill be added or removed depending on the exat hoies that are made.We would, in general, need 3 kinds of expressions:� A set of delarations D, being the strings that represent variable delarations� A set of assignments A, being the strings that represent (or an represent) assign-ments to variables� A set of expressions E, being the strings that represent (or an represent) expressionsApart from this we also need a set of possible variables Var, whih in most ases willbe a subset of E, and a semanti domain S, in whih the expressions will be interpreted.To de�ne the semantis of the parameterized MSC language, we need the notion of astate. A state gives a snapshot of the values of all variables involved.A state onsists of:� A set of de�ned variables V � V ar� A valuation funtion ' : V ! S, giving the values of the variables. The set of allvaluation funtions is alled �.Then, there need to be funtions to interpret the various texts.� For delarations: d : D ! P(Var) giving the variables that are delared by D� For assignments: A set AV � A for eah set of variables V , giving the set ofassignments that may atually be used, given that only variables in V are de�ned,and a state transition funtion � : � � A ! �. �('; a) denotes the new state theMSC turns into when assignment a is exeuted in state (V; '). Note that �('; a)needs only be de�ned when a 2 AV , where V is the set of variables on whih ' isde�ned.� For expressions: A set EV � E for eah set of variables V , giving the set of expres-sions that may atually be used, given that only variables in V are de�ned, and aninterpretation funtion I' : EV ! S, where V is the set of variables on whih ' isde�ned. I'(x) gives the value that x is interpreted to.

5.2. The Interfae for our exampleFor our example language, the various elements of the Interfae are desribed below.� Var onsists of all natural and boolean variables. Natural variables are x, y, z,x1; x2; : : : ; boolean variables are p, q, r, p1; p2; : : :� Natural expressions are formed from integers, integer variables, and the operators+ and �, boolean expressions are formed from booleans, boolean variables, and theoperators :, _, ^ and = (the latter ating on natural expressions)� D onsists of all expressions of the form 'Var x: Nat', with x a natural variable or'Var p: Bool', with p a boolean variable, and of lists of suh expressions� A onsists of all expressions of the form x := e, with either x a boolean variable ande a boolean expression, or x a natural variable and e a natural expression� E onsists of all expressions of the form a(x) with a a string of haraters, and x anatural or boolean expression.� S onsists of the naturals, the booleans, as well as all expressions a(x), with a somestring and x a natural or boolean.� d(x) onsists of all variables in x� AV and EV onsist of those expressions that ontain only variables in V .� The value of a natural or boolean expression e, given a valuation funtion ' is itsnumerial or truth value when eah variable x in that expression is replaed by itsvalue '(x). This value will be alled '(e).� �('; x := e) is equal to ' with the value of x hanged into '(e).� I'(a(x)), with a some string and x some expression, equals a(I'(x)).5.3. General SemantisIn a state (V; '), all expressions must be in EV and all assignments in AV . Providedone uses variables with a well-de�ned sope, this should not be hard to hek statially.If the MSC is in a state (V; '), all events suh as ation(a; i) and send(m; i; j), haveas their \name" parts (i.e. a for an ation and m for a message) an expression, whihthus must be in EV . The semantis for suh an ation are then equal to the semantis ofation(I'(a); i) and send(I'(m); i; j), respetively in `normal' MSC, apart from the twoexeption below:� If we use assignable variables, using loal ations as assignments, then a loal ationation(a; i) may also have a 2 AV . In this ase it auses a state hange from (V; ')to (V; �('; a)).� If we use multiple times assignable variables, or single time assignable variablesthat an be used before their assignment, then to give the semantis of a messagereeipt, we need to use the state at the time the message was sent. We will disussthe problems this might result in, and how they might be solved, when disussingthe extension of the semantis to other options.

Using the semantis of existing MSC, the semantis of MSC with data an now bedesribed by (we will inlude the �rst but not the seond exeption):x ation(a;i)�! x0; a 2 E(x; V; ') ation(I'(a);i)�! (x0; V; ')x ation(a;i)�! x0; a 2 A(x; V; ') ation(a;i)�! (x; V; �('; a))An operational rule like x a�! x0 means that in an expression x one an do an ationa, to end up in the expression x0. In the above rules, the interpretation of MSC with data(x; V; '), is derived from that of MSC without data x { the step below the line an betaken if the step above the line an.5.4. Parametri VariablesThe interpretation to parametri variables as given below omplies with the all-by-valuepriniple used in many programming languages for instantiating the values of proeduralparameters.In parametri data, we do not have expliit assignments, so we an do away with A,and delarations will probably also not be neessary, as they are impliit as well. Whatremains are E, Var, EV , and I'.In parametri variables, we ould have an MSC referene expression (most importantexample) refer to an MSC ms name(e1; e2; : : : en), with e1; : : : ; en 2 EV , provided thatMSC ms name is de�ned as ms ms name(x1; : : : ; xn), with xi 2 V ar, xi 6= xj.In this ase the semantis of the MSC referene expression ms name(e1; : : : ; en) in astate (V; ') an be found by pre-proessing the MSC ms name by hanging expressionse into I'�(e), using the state (V [fx1; : : : ; xng; '�), where:� '�(x) = ei if x = xi� '�(x) = '(x) if x 62 fx1; : : : ; xngParametri variables are relatively simple, semantially speaking, whih an be seenfrom the fat that pre-proessing, as desribed above, is enough to desribe the semantis.When we get to dynamial data, this will not be the ase { we will have to use the statewithin the operational alulations5.5. Single Time Assignable VariablesOur seond example will use the following setting: single time assignable variables,stati heks that unassigned variables are not used, arhiteturally global variables, andassignments in loal ations.Here it is important to use unique names for variables. To do this, eah time we meeta delaration of an already used variable, we use a new name. Eah ation in the sopegets a list of whih variable is atually used when some variable (like x) is meant.That is, if we get a variable x in a sope, we de�ne a fresh variable xi, and everywherewithin the sope, all ations get a pointer, saying that instead of the value of x, the value

of xi has to be heked. To be able to do so, the delaration of variables should be hekedby the semantis at a time when it is lear what is and what is not the sope.To do so, we need to `rename' the variable within the sope, if it also has a meaningoutside the sope. Thus, we will need to have renaming operators �(x7!y) : E 7! E and�x7!y : A 7! A for eah pair of variables x and y, de�ning what is the result when x isreplaed by y. Furthermore, to make everything work, Var should be (ountably) in�nite,and � should have ertain nie properties, for example I'�(�x7!y(e)) = I'(e), when ' isnot de�ned on y, and '� is given by adding '(y) = '(x) to '.Suppose an MSC referene expression is alled, whih onsists of a variable delarationD, and an MSC-part k. Then the semantis of MSC-referene expression (D; k) in astate (V; ') is that of �x1 7!y1(�x2 7!y2(: : : (k) : : :)) in a state (V [fy1; y2; : : : yng; ') (lifting� to MSC ations and expressions, then to a list of them, in the obvious way). Beausethe value of the new variables annot be used until they have been assigned, how ' isextended to the new variables does not matter. x1; : : : ; xn are the variables de�ned by D,that is, v(D), and y1; : : : ; yn are n unused variables.Having done all this, we an then use the semantis as given in setion 5.3.5.6. TypesIn the example language, there are variables in two types, natural and boolean. Itis probably useful to add this onept to the MSC semanti interfae, so we know thatthe expressions x ^ y is only legal if x and y are boolean expressions. Above we haveused di�erent sets of variables (p, q, r, p1; : : : pn for booleans and x, y, z, x1; : : : xn fornaturals) to distinguish the two types, but in more realisti languages, one variable ouldbe of more than one type, depending on the preeding delaration. Of ourse, whih typesexist, what their semantial interpretation is, and how the variables are given types, shouldbe inherited from the data language. It has no atual relevane for the MSC languageand its semantis. An exeption ould be the type of booleans, whih would be the onlyallowable type if guarding expressions in expressions are added (see setion 4.2); a similartreatment ould also be given to naturals, whih are used to give the number of timesa loop must be passed, this ould also be extended to inlude general expressions of theappropriate type.Semantially, a semanti domain is asked for eah possible type; their interation is om-pletely left to the data language. Using types would give a somewhat more ompliatedinterfae, whih we will not give here.5.7. Other hoiesAbove for two possible hoies, the semantis have been disussed. We will now lookat the other options, but in muh less detail, giving only the main di�erenes with ourexample settings in both the interfae and the semantis.Multiply assignable variables: Compared to singly assignable variables, the extraproblem is in the situation that the value of a variable may hange between the sendingand the reeipt of a message. Yet, the reeipt should use the values as they were whenthe message was sent. To make this possible, one should add either to the proess algebraexpression or to the state, a list of messages that have been sent, and how they wereinterpreted. Then, when a message must be reeived, instead of looking up the urrentvalue, one should use the value given by this list. This method only works if one stritly

keeps the uniqueness of message names. The semantis urrently assume this uniqueness,but in the presene of loops, maintaining it is triky.Apart from this problem, multiply assignable variables an be given the same semantisthat have been given to singly assignable variables.Assignment in messages: One option here would be to make an inoming messageexpression orrespond to an outgoing message expression, provided there is some assign-ment to variables that would allow it. The value of the variable after that would be anyvalue for whih the `�t' would work. Still, there is the problem of when an inomingmessage is de�ning a value, and when it is merely using it. We do not see an immediatelyobvious answer to this question.Guarding onditions: First, we need to de�ne a set of Boolean expressions B, whihhave BV and I' like normal expressions have EV and I', but neessarily have ftrue; falsegas their semanti domain. All onditions need to have a text whih is a boolean expressionin BV . Where until now eah ondition ould be gone through without hanging anything,this now will only be true for onditions that evaluate to 'true'. If a ondition evaluatesto 'false', it ats as a deadlok.The more detailed semantis for suh a guarding ondition, depends on what hoie ismade to deal with the 'hanging value' problem, whether it be one of the �ve options weprovide or yet another one.Dynamial hek of unused variables: The state now ontains two sets of variablesinstead of one. One of these is the existing set V of de�ned variables, the other a set V 0 �V of variables that atually have reeived a value. An ation ontaining an expressionmay only be done when its expression is not just in EV , but in EV 0. An ation beingdisallowed is equivalent to making it a deadlok. For assignments, whether an assignmentis allowed is dependent both on V and on V 0, resulting in AV;V 0 instead of AV . If a variablegets assigned a value, it is added to V 0.Default values for unused variables: It is neessary to add the default variables foreah variable (or, more likely, one default value for eah variable type) to the interfae.Apart from that, the problem of variable value hanges, found in multiply assignablevariables, also needs to be dealt with again; we propose the same solution.Unused variables are universally quanti�ed: We need the semantis to be thedelayed hoie of all possible `default value' semantis. A problem here is that this maybe a delayed hoie of in�nitely many options. Suh an in�nite operator makes thingsvery ompliated. Rules an probably be found for it, but most likely will be both uglyand unworkable.Loal variables: Instead of one set of variables V and one valuation funtion ', wenow have one set and one funtion for eah instane in the MSC. The set and the funtionof the instane on whih an ation takes plae are used to determine the semantis of thatation. Of ourse message reeipt is an exeption, heking the instane from whih themessage was sent rather than the instane on whih the ation itself takes plae.When we have globally de�ned variables with loal values, it seems logial to allowmessages to make the value of a variable known to other instanes. To allow this, wewould need an extra interfae funtion : E ! Var, giving the variables whose values aresent when the expression is sent.For eah message, a 'snapshot' of the sender's state when the message was sent is

remembered, and not only is this snapshot used to interpret the reeipt of the message,but also for the variables in (e), the value on the reeiving instane is set to the valuethey have in this snapshot.6. CONCLUSIONSIn this paper we have argued that the extension of MSC with a data language shall beaomplished in suh a way that the data language de�nition is a parameter of the MSClanguage de�nition. This will overome maintenane problems of the reommendationand will make it possible to antiipate at the variety of data languages already used inonjuntion with MSC.In [2℄ we have shown feasibility of this approah for the ase of a data language withstati variables, using as our examples an algebrai spei�ation language and a on-straint syntax language. In the urrent paper we have extended this researh to dynamivariables. Rather than giving a preise desription of how to inorporate dynami datavariables in MSC, we have listed a range of questions and possible answers onerningthe onnetion between MSC and a data language. Sine most of the questions are or-thogonal, in the sense that possible answers to one question do not restrit the answersto other questions, this gives raise to a large variety of options.One suh option is the following: variables an be assigned only one, stati heks onthe MSC guarantee that no referenes to uninitialized variables are made, variables areknown to all instanes, and only in loal ations variables an be assigned a value.For a number of suh options we have experimented with de�ning the interfae be-tween the MSC language and the data language, and we have skethed a semantis ofthis ombined language, based on suh an interfae. These experiments indiate thatthe parameterization approah is also feasible for dynami variables. Of ourse, a moredetailed treatment of the semantis of the ombined MSC/Data language is dependentupon the design hoies made by the MSC standardization group. However, the presentpaper gives an overview of both the possibilities and the problems from a semanti pointof view.REFERENCES1. P. Baker and C. Jervis. Formal desription of data. Experts meeting SG10, Lutter-worth TDL16, ITU-TS, 1997.2. L.M.G. Feijs and S. Mauw. MSC and data. In Yair Lahav, AdamWolisz, Joahim Fis-her, and Ekhardt Holz, editors, SAM98 - 1st Workshop on SDL and MSC. Proeed-ings of the SDL Forum Soiety on SDL and MSC, number 104 in Informatikberihte,pages 85{96. Humboldt-Universit�at Berlin, 1998.3. ITU-TS. ITU-TS Reommendation Z.100: Spei�ation and Desription Language(SDL). ITU-TS, Geneva, 1988.4. ITU-TS. ITU-TS Reommendation Z.120: Message Sequene Chart (MSC). ITU-TS,Geneva, 1997.5. D. Steedman. Abstrat syntax notation one (ASN.1): the tutorial and referene.Tehnology Appraisals Ltd., 1990.

