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Abstract

In a Message Sequence Chart (MSC) the dynamical behaviour of a number of cooperating
entities is depicted. An MSC de0nes a partial order on the communication events between these
entities. This order determines the physical architecture needed for implementing the speci0ed
behaviour, such as a FIFO bu4er between each of the entities. In a systematic way, we de0ne 50
communication models for MSC and we de0ne what it means for an MSC to be implementable
by such a model. Some of these models turn out to be equivalent, in the sense that they implement
the same class of MSCs. After analysing the notion of implementability, only ten classes remain,
for which we develop a hierarchy. We also develop algorithms to check whether a given MSC
belongs to such a class. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Message Sequence Charts; Semantics; Implementation; Validation; Bu4ering; Communication
models; Hierarchy

1. Introduction

In recent years much attention has been paid to graphical languages for the visuali-
sation of communication traces in distributed systems. One of the most popular classes
of formalisms for this purpose is the class of sequence charts. Of those, Message
Sequence Chart (MSC) [27] has been standardised by the International Telecommu-
nication Union (ITU) as Recommendation Z.120 [15]. Two important reasons for the
popularity of MSCs are that they provide a clear intuition to both engineers and de-
signers and at the same time posses a well-de0ned semantics.
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Fig. 1. MSC with overtaking messages.

An example of an MSC is in Fig. 1, showing entities (also called instances) i and j
which exchange messages a and b.
The meaning of an MSC is often expressed in terms of execution traces. According

to the semantics, the 0rst event to occur is the sending of message a, followed by the
sending and reception of message b, after which, message a is received. This simple
example already shows that in an MSC there is no a priori assumption about the type
of bu4ering (if at all) taking place between the communicating entities. Clearly, this
MSC can not be implemented by a system where communication takes place using
one single FIFO bu4er. Furthermore, one may notice that this MSC describes a system
where communication is essentially asynchronous, since the sending and reception of
message a must be two di4erent events.
The assumptions about the bu4ering of messages in MSC, are in contrast with the

situation in a speci0cation language such as SDL [13], where every entity has its own
FIFO input bu4er. Since MSC and SDL are often used in conjunction, there is a need
to clarify this seemingly contradictory situation.
When considering restricted communication mechanisms, it is very natural to identify

subclasses of MSC which exactly satisfy such bu4ering properties. One can consider
the class of FIFO bu6ered MSCs, the class of synchronous MSCs, etc. In fact, the
Interworkings language [22,24] is the latter class.
When considering Interworkings simply as a subset of MSC, an obvious question to

ask is: what exactly is the distinction between synchronous and asynchronous MSCs?
Or, phrased a little bit di4erently, how can we formally characterise the class of syn-
chronous MSCs? Finding an answer to this question is not too diIcult. An MSC is
synchronous if and only if in every execution trace of the MSC there are no events
between every pair of corresponding send and receive events.
But, how about the question whether an MSC can be implemented using only one

FIFO bu4er. And what, if we are allowed to use a number of FIFO bu4ers? This gives
rise to a more general question. Can a given MSC be implemented by means of a
given communication model? This is the question which will be studied in this paper.
Thereto, we de0ne the notion of communication model, we present a formal se-

mantics of MSC based on partial orders, and we de0ne criteria for an MSC being
implementable in a given communication model. We will not study the complete range
of all possible communication models, but we will single out a number of interest-
ing options, which we systematically derive by looking at the locality of the bu4ers
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between the communicating entities. One can, e.g., assume one single FIFO bu4er for
the complete system, or a FIFO bu4er between each pair of entities, etc. We will
also take into account the di4erence between output bu4ers and input bu4ers, since in
practice this distinction is often made.
Apart from studying the fundamental concepts behind the implementability of MSCs,

there are also more practical motivations for the research presented here. First of all,
the formal relation between scenario speci0cations in MSC and complete system spec-
i0cations in a Formal Description Technique, such as SDL [13], is an important issue
in the software engineering process. Not only the derivation of MSC scenarios from a
Formal Description Technique, but also the synthesis of a complete speci0cation from
a collection of MSC scenario speci0cations is considered of great importance by many
authors and tool builders (see [1,8,10,17,18,20,21,26,28,29]). This naturally leads to
the question which MSCs can and which MSCs cannot be implemented in the given
speci0cation language.
One can also study the same question from a di4erent perspective, namely, given

an arbitrary MSC, how can we restrict (or extend) its semantics in such a way that it
can be implemented in a given communication model. This question is partly studied
by Alur et al. [2], who also derived supporting tools. Our starting point, however, will
be that we consider the standard MSC semantics.
This brings us to the variety of ways in which MSCs are used, some of which are

essentially di4erent. We mention the distinction between hot and cold MSCs (see [7])
where (parts of) MSCs must or may occur in the implementation and we mention the
di4erence between positive and negative use of MSC (an MSC must occur or is not
allowed to occur). Finally, some users apply MSC to specify one single trace, while
others consider the complete set of traces generated by an MSC.
Because an MSC has (in general) a number of traces, there are in fact two questions

we can ask: Can an MSC be implemented in a certain communication model at all,
that is, is there some trace of the MSC that is implementable (the weak case), and can
an MSC be implemented in a certain communication model without losing behaviour,
that is, is each trace of the MSC implementable (the strong case). We will discuss
both questions in this paper.
Since all implementation relations introduced in this paper identify subclasses of the

class of MSCs, it is interesting to know how these classes relate. The answer to this
question is formulated as a hierarchy of communication models for MSCs. We will
also present characterisations, which can be used to create algorithms to check to which
class a given MSC belongs. An overview of the results, with both the hierarchy and
the characterisations can be found in Fig. 23.
We present our research in the following way. In Section 2.1 we introduce a sub-

set of the MSC language called Basic Message Sequence Charts, and give a formal
semantics based on partial orders. The communication models which we study are de-
0ned in Section 2.2. In order to be able to deal with two distinct bu4ers between two
communicating entities, we will extend the standard partial order semantics in Section
2.3. The de0nition of implementability of a single trace with respect to a communica-
tion model is given in Section 2.4. In Section 3, we classify traces according to their
implementability. This work is lifted to the level of MSCs in Section 4, where we 0rst
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study the strong case (Section 4.1), and then the weak case (Section 4.2). The overall
picture combining the strong and the weak case is given in Section 4.3. We also give
a number of characterisations of the implementability relations, which make it possible
to determine the implementability of a given MSC algorithmically (see Section 5).
Section 6 contains a comparison with related literature and in Section 7 we summarise
our 0ndings and discuss options for further research.

2. Message Sequence Charts

2.1. Basic Message Sequence Charts

The MSCs studied here consist of a collection of instances (or entities) with a
number of messages attached to them. These are known as Basic Message Sequence
Charts, but in this paper we use the term MSCs to denote them.
An example of an MSC can be seen in Fig. 2. It consists of vertical lines, denot-

ing the various communicating entities and arrows between these instances, denoting
exchanged messages.
We allow messages from an instance to itself, but we only consider closed systems,

that is, we do not consider messages to the environment. We assume that the names
of the instances and messages are unique. Therefore, the instances to which a message
is attached are determined uniquely by the message name.
In this section we explain the semantical foundations of MSC. We use a partial

order on the events of an MSC to express the semantics. In literature several ways
to de0ne the semantics of MSC are proposed [9,11,16,19,23]. The process algebra
approach [25] has been standardised as Annex B to ITU recommendation Z.120 [14].
The partial order representation [2] used in this paper coincides with most of these
proposals for the class of Basic Message Sequence Charts. We also de0ne the traces
expressed by an MSC.
The easiest way to express the semantics of such a simple MSC is by using a

partial order on the events that are comprised in an MSC. Depending on the particular
dialect of the MSC language, one can assign di4erent classes of events to an MSC. For

Fig. 2. Example MSC.
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example, in Interworkings [22,24] every message is considered to be a single event.
There is no bu4ering, and thus communication is synchronous.
In MSC [15], messages are divided into two events, the output and the input of the

message. The output of message m is denoted by !m and the input by ?m. The only
assumption about the implementation of communication is that an output precedes its
corresponding input. An MSC describes a partial order on output and input events.

De�nition 1 (MSC). An MSC is a quintuple 〈I; M; from; to; {¡i}i∈I 〉, where I is a
0nite set of instances, M is a 0nite set of messages, from and to are functions from
M to I , and {¡i}i∈I is a family of orders. For each i∈I it is required that ¡i is a
total order on {!m | from(m)= i}∪ {?m | to(m)= i}. We use the shorthand Emsc(M) to
denote the set {!m; ?m |m∈M}.

In the above de0nition, from(m) denotes the instance which sends message m. Like-
wise, to(m) denotes the instance which receives message m. Given an instance i, the
order ¡i denotes in which order the events attached to instance i occur.
MSC Example 1 from Fig. 2 is thus represented by the quintuple

〈I; M; from; to; {¡i}i∈I 〉;

where

• I = {i; j; k; l},
• M = {a; b; c; d},
• from(a)= from(b)= i, from(c)= k, and from(d)= l,
• to(a)= to(c)= j, to(b)= k, and to(d)= l, and
• ¡i= {(!a; !b)}, ¡j = ∅, ¡k = {(?b; !c)}, and ¡l= {(!d; ?d)}.
The partial order denoting the semantics of an MSC k is derived from two requirements.
First, the order of the events per instance is respected, and second, a message can only
be received after it has been sent. The 0rst requirement is formalised by de0ning the
instancewise partial order ¡inst

k :

¡inst
k =

⋃

i∈I
¡i;

and the second requirement is formalised by the output-before-input order ¡oi
k :

¡oi
k = {(!m; ?m) |m ∈ M}:

Now, we de0ne the partial order induced by the MSC as the transitive closure (denoted
by +) of the instancewise order and the output-before-input order. For an MSC k, we
denote this order by ¡msc

k or by ¡msc if k is known from the context.

De�nition 2. For a given MSC k = 〈I; M; from; to; {¡i}i∈I 〉, the relation ¡msc
k is

de0ned by ¡msc
k =(¡inst

k ∪¡oi
k )

+.
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Fig. 3. Inconsistent MSC.

For MSC Example 1 we thus have ¡oi= {(!a; ?a); (!b; ?b); (!c; ?c); (!d; ?d)} and
therefore ¡msc= {(!a; !b); (!a; ?a); (!b; ?b); (?b; !c); (!c; ?c); (?c; ?a); (!d; ?d); (!a; ?b);
(!a; !c); (!a; ?c); (!b; !c); (!b; ?c); (?b; ?c); (!c; ?a)}.
It may be the case that ¡msc does not de0ne a partial order, due to cyclic de-

pendencies of the events. Such an MSC is said to contain a deadlock, or is called
inconsistent. An example of an inconsistent MSC is given in Fig. 3. In Z.120 [15],
inconsistent MSCs are considered illegal, and in [4] an algorithm is described for deter-
mining whether a given MSC is consistent. In the remainder of this paper we consider
consistent MSCs only, which implies that ¡msc is a partial order.

De�nition 3 (Traces). A trace t over a set of events E is a total order on these
events.

We denote the ith element of a trace t by ti, and its length by |t|. As a consequence
of the above de0nition we can associate with each trace t an order ¡trace

t . This order
is useful in expressing that a certain trace t is actually a trace of an MSC k.

De�nition 4 (Trace order). For a trace t over a set of events E we de0ne an order
¡trace
t on E, for all 16i6|t| and 16j6|t|, by ti¡trace

t tj⇔ i¡j. Thus, an event ei
is smaller, according to ¡trace

t , than an event ej if and only if it occurs earlier in the
trace.

De�nition 5 (msc-trace). A trace t is said to be an msc-trace of the MSC k if and
only if it is de0ned over the set of events Emsc(M) of k, and ¡msc

k ⊆¡trace
t .

Lemma 6. For an MSC k over M , and events e; e′∈Emsc(M), we have e¡trace
t e′ for

all msc-traces t of k if and only if e¡msc
k e′.

Proof. The ‘if’-part is trivial. For the ‘only if’-part we use contraposition. Suppose
that e =¡msc

k e′. Then the relation ¡msc
k ∪{(e′; e)} does not contain a cycle. Thus, it

can be extended to a total order¡. Because¡msc ⊆¡;¡ will be the order¡trace
t of

some msc-trace t of k. In this msc-trace we will have e′¡trace
t e, and thus e =¡trace

t e′.
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2.2. Models for communication

In this section we discuss possible architectures for realising an MSC. We consider
only communication models consisting of FIFO bu4ers for the output and input of
messages. For msc-traces, we de0ne what it means to be implementable on some
architecture.
The particular communication models which we are interested in are constructed of

entities that communicate with each other via FIFO bu4ers. We assume that the bu4ers
have an unbounded capacity. We discern two uses of bu4ers, namely for the output
and for the input of messages.
A second distinction can be made based on the locality of the bu4er. From most

global to most local we distinguish the following types:

• global: A global FIFO bu4er: All messages from all instances pass this bu4er.
• inst: A FIFO bu4er, local to an instance: All messages sent (or received) by one
single instance go through the same bu4er.

• pair: A FIFO bu4er, local to two instances: All messages that are sent from one
speci0c instance to another speci0c instance go through this bu4er.

• msg: A FIFO bu4er, local to a message: There is one bu4er for every message.

This last model, a bu4er per message, is a speci0c architecture to catch up the cases
in which the bu4ers do not behave like FIFO queues, but as random-access bu4ers.
Taking into account the assumption that messages are unique, it can easily be seen that
it is equivalent to a global random-access bu4er. A communication model with only
a random-access bu4er represents the implied model of the MSC standard: the only
assumption made about the implementation of communication is that output precedes
input, no more, and no less.
Finally, we consider the following possibility:

• nobuf: There are no bu4ers; communication is synchronous.

We assume that all output bu4ers are of the same type, and similarly that all input
bu4ers are of the same type. This results in four possibilities for the output as well as
for the input. Adding the possibility of using no bu4er at all, we have a total of 25
possible architectures, as shown in Fig. 4. To denote the elements of this scheme, we
use the notation (X ,Y ), where X denotes the type of output bu4er, and Y the type of
input bu4er.
In Fig. 5 we give examples of a physical architecture of three communication mod-

els. A circle denotes an instance, an open rectangle denotes an output bu4er, a 0lled
rectangle denotes an input bu4er, and an arrow denotes a communication channel.
Each example contains three instances. The 0rst example illustrates the (nobuf; global)
model. There is no output bu4er, and one universal input bu4er. As there is no output
bu4er, the messages go straight into the input bu4er. This single bu4er could be re-
garded as an output bu4er as well, so this example is an illustration of (global; nobuf)
too if we replace the input bu4er by an output bu4er. The second example shows the
(global; inst) model. There is one general output bu4er and every instance has a local
input bu4er. The third architecture is an example of the (pair; pair) model.
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Fig. 4. Communication models.

Fig. 5. Some models: (nobuf; global), (global; inst) and (pair; pair).

Please note that not all models described in Fig. 4 make equally sense. For ex-
ample, the model (global; inst) (i.e., a shared medium for transmitting messages and
an input bu4er for each entity) is more natural than the exotic (global; pair)
model.
Many of these architectures occur in practice as either the underlying communication

architecture of a programming language or as a physical architecture. We give some
examples of languages. The model (nobuf; nobuf) is typical for process algebraic for-
malisms based on synchronous communication, such as LOTOS [12] and ACP [5]. The
speci0cation language SDL [13,3], which is closely related to MSC, has as a general
communication model (pair;msg), but if we leave out the save construct we obtain
(pair; inst) and if we also do not consider the possibility of delayed channels, we have
(nobuf; inst). Some examples of physical architectures are: an asynchronous complete
mesh has a (nobuf; pair) architecture, and an Ethernet connection with locally bu4ered
input and output behaves like (inst; inst).
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Fig. 6. Events associated with a communication.

2.3. Extending the semantics

In the previous section, we have seen that we consider communication models
of communication in MSCs where each message passes at most two FIFO bu4ers.
In order to reason about such communication models, we will extend the semantics
of MSC in this section. In this extension of the semantics, a single communication of
message m will be modeled by three events. These are the events !m; !!m, and ?m.
The intuition here is, as expressed in Fig. 6, that !m denotes the putting of a message
into an output bu4er, !!m is the transmission of the message from the output bu4er
to the appropriate input bu4er, and ?m is the removal of the message from the input
bu4er. We assume these events to be instantaneous.
The intermediate transmit events !!m play a crucial role in our description of the

communication models. However, we have formulated the semantics of an MSC with-
out using transmit events. In the remainder of this section, we will de0ne a semantics
of MSC in which the transmit event occurs. The approach is similar to the previously
de0ned semantics.
The order ¡i is lifted in the trivial way to the set Eimpl(M)= {!m; ?m; !!m |m∈M}.
We de0ne the output-before-transmit-before-input order by

¡oti
k = {(!m; !!m); (!!m; ?m) |m ∈ M}

and the relation ¡impl
k by adding the instancewise order on the MSC.

De�nition 7. For a given MSC k = 〈I; M; from; to; {¡i}i∈I 〉, the order ¡impl
k is de0ned

by ¡impl
k =(¡inst

k ∪¡oti
k )

+.

It is easy to see that ¡msc is the restriction of ¡impl to output and input events.
From an operational point of view, one can say that an MSC describes a set of traces.
We distinguish msc-traces and impl-traces: where an msc-trace denotes the ordering of
output and input events (!m and ?m), an impl-trace denotes those of transmit events
(!!m) as well.

De�nition 8 (impl-traces). An impl-trace is the same as an msc-trace (see De0ni-
tion 5), except for the fact that it contains transmit events as well.

De�nition 9 (impl-trace). A trace t is said to be an impl-trace of the MSC k if and
only if it is de0ned over the set of events Eimpl(M) of k, and¡

impl
k ⊆¡trace

t .

An impl-trace can be turned into an msc-trace by removing all transmit events (!!m).
If, for an impl-trace t this results in an msc-trace t′, then t is said to be an extension
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Fig. 7. Example MSC.

of t′. It is not hard to see that an impl-trace t is a trace of an MSC k if and only if
the trace of which it is an extension is an msc-trace of the MSC and additionally the
output-before-transmit-before-input order is respected: ¡oti

k ⊆¡trace
t .

The MSC Example 2 from Fig. 7 implies the following orderings: !a¡msc ?a,
!b¡msc?b, and ?a¡msc?b. The 0rst two are implied by the ¡oi-order, the third by the
¡inst-order. The MSC has exactly three msc-traces: !a?a!b?b, !a!b?a?b, and !b!a?a?b.
These msc-traces can be extended, by adding transmit events, to ten impl-traces, such
as !a!!a?a!b!!b?b and !a!b!!b!!a?a?b.

2.4. Implementability

The main question of this paper is, whether a system with a given implementation
model can exhibit the behaviour described by a certain MSC. To answer this ques-
tion, we 0rst give a formal de0nition of what it means for a trace to have a certain
implementability property. The de0nitions below can be seen as a formalisation of the
notions introduced in Section 2.2.

De�nition 10 (Output-implementability).

• nobuf-output: Every output event is directly followed by the corresponding transmit
event. Thus, output and transmit events may be combined into one new event. An
impl-trace t is nobuf-output implementable if and only if

∀
m∈M

¬ ∃
e∈Eimpl(M)

!m ¡trace
t e ¡trace

t !!m:

• global-output: The order of two output events is respected by the corresponding
transmit events. An impl-trace t is global-output implementable if and only if

∀
m;m′∈M

!m ¡trace
t !m′ ⇒!!m ¡trace

t !!m′:

• inst-output: The order of any two output events from the same instance is respected
by the corresponding transmit events. An impl-trace t is inst-output implementable
if and only if

∀
m;m′∈M

from(m) = from(m′)⇒ (!m ¡trace
t !m′ ⇒!!m ¡trace

t !!m′):



A.G. Engels et al. / Science of Computer Programming 44 (2002) 253–292 263

• pair-output: The order of two output events with the same source and the same
destination, is respected by the corresponding transmit events. An impl-trace t is
pair-output implementable if and only if

∀
m;m′∈M

from(m) = from(m′) ∧ to(m) = to(m′)

⇒ (!m ¡trace
t !m′ ⇒!!m ¡trace

t !!m′):

• msg-output: An impl-trace t is always msg-output implementable.

For msg-output implementability we can remark that it can be put in line with the
three de0nitions preceding it, by restating it as

∀
m;m′∈M

m = m′ ⇒ (!m ¡trace
t !m′ ⇒!!m ¡trace

t !!m′):

For nobuf-output implementability such a translation is not possible; this is qualitatively
another de0nition. Also note that, because ¡trace is a total order, !m¡trace

t !m′ ⇒ !!m
¡trace
t !!m′ is equivalent to both !m¡trace

t !m′ ⇔ !!m¡trace
t !!m′ and !m¡trace

t !m′ ⇐ !!m
¡trace
t !!m′.
The input implementabilities are de0ned analogously.

De�nition 11 (Input-implementability).

• nobuf-input: An impl-trace t is nobuf-input implementable if and only if

∀
m∈M

¬ ∃
e∈Eimpl(M)

!!m ¡trace
t e ¡trace

t ?m:

• global-input: An impl-trace t is global-input implementable if and only if

∀
m;m′∈M

!!m ¡trace
t !!m′ ⇒?m ¡trace

t ?m′:

• inst-input: An impl-trace t is inst-input implementable if and only if

∀
m;m′∈M

to(m) = to(m′)⇒ (!!m ¡trace
t !!m′ ⇒?m ¡trace

t ?m′):

• pair-input: An impl-trace t is pair-input implementable if and only if

∀
m;m′∈M

from(m) = from(m′) ∧ to(m) = to(m′)

⇒ (!!m ¡trace
t !!m′ ⇒?m ¡trace

t ?m′):

• msg-input: An impl-trace t is always msg-input implementable.

Having de0ned formally the notions of output- and input-implementability, we now
combine them and obtain our notion of communication model.

De�nition 12. For X; Y ∈{nobuf; global; inst, pair;msg}, an impl-trace is said to be
(X; Y )-implementable if and only if it is X -output implementable and Y -input
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implementable. An msc-trace is said to be (X; Y )-implementable if and only if it can
be extended (by adding !!m’s) to an impl-trace that is (X; Y )-implementable.

3. Classi�cation of implementability of traces

To each of the communication models de0ned in the previous section we can as-
sociate the set of all traces that are implementable in the model. Based on the subset
relation on these sets of traces, we can order communication models. We consider two
models equivalent if they have the same set of implementable traces.
In Lemma 13 we give a classi0cation of the notions of output-implementability.

It states that a trace that is implementable on a certain architecture is also implementable
on an architecture where these bu4ers are partitioned into bu4ers with a more restricted
locality. For example, if a trace can be implemented on an architecture with one output
bu4er per instance, it can also be implemented on an architecture with an output bu4er
per pair of instances (provided the input bu4ers remain the same).

Lemma 13 (Classi;cation of output-implementability).

• Every nobuf-output implementable trace is global-output implementable.
• Every global-output implementable trace is inst-output implementable.
• Every inst-output implementable trace is pair-output implementable.
• Every pair-output implementable trace is msg-output implementable.

Proof. For impl-traces this follows directly from the de0nitions. For msc-traces this
follows from the de0nition plus the fact that it holds for impl-traces.

Note that the counterpart of Lemma 13, where ‘output’ is replaced by ‘input’ also
holds. The following lemmas give the orderings between the communication models.

Lemma 14.

• Every (inst; global)-implementable msc-trace is (inst; nobuf)-implementable.
• Every (global; global)-implementable msc-trace is (global; nobuf)-implementable.
• Every (pair; pair)-implementable msc-trace is (pair; nobuf)-implementable.
• Every (msg;msg)-implementable msc-trace is (msg; nobuf)-implementable.

Proof. We show the proof for (inst; global). The other proofs are roughly analogous.
Let t be an msc-trace over the set of events Emsc(M), and let t′ be an impl-trace that is
an (inst; global)-implementable extension of t. It suIces to construct an (inst; nobuf)-
implementable extension t′′ of t. We create t′′, for which we will prove that it is
(inst; nobuf)-implementable, in the following way: Starting from t, for each message
m∈M we add the transmit event !!m just before the input event ?m. This t′′ is nobuf-
input implementable by de0nition, so it suIces to prove that t′′ is inst-output imple-
mentable. Thereto, let m;m′∈M such that from(m)= from(m′). We have to prove that
!m¡trace

t′′ !m′ ⇒ !!m¡trace
t′′ !!m′.
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Fig. 8. Equivalence of communication models for traces.

Suppose that !m¡trace
t′′ !m′. Then, since t′′ is an extension of t, we have !m¡trace

t !m′,
and similarly, since t′ is an extension of t; !m¡trace

t′ !m′. Using that t′ is inst-output
implementable and from(m)= from(m′) we have !!m¡trace

t′ !!m′. By using that t′ is
global-input implementable, we also have ?m¡trace

t′ ?m′. Since t′ is an extension of t
we have ?m¡trace

t ?m′ and since t′′ is an extension of t also ?m¡trace
t′′ ?m′. Since t′′ is

nobuf-input implementable, we obtain !!m¡trace
t′′ !!m′, which completes the proof.

Also Lemma 14 has a counterpart, which is obtained from Lemma 14 by switch-
ing the types of output and input bu4ers (i.e. by replacing (X; Y )-implementable with
(Y; X )-implementable).
Next, we describe how the above lemmas are useful in ordering the models. Lemma

13 and its counterpart provide us with a partial order on the various implementations:
Any (X; Y )-implementable trace is implementable by all communication models located
to the right of or below (X; Y ) in Fig. 4. Lemmas 13 and 14, together with their
counterparts, give us the equivalences as expressed in Fig. 8 by means of the clustering
of communication models.
For example, the models from the last column are equivalent. This can be seen as

follows. Because of the analogue of Lemma 14, any (msg,msg)-implementable msc-
trace is (nobuf;msg)-implementable, while Lemma 13 gives that any (nobuf;msg)-
implementable msc-trace is (X;msg)-implementable, and every (X;msg)-implementable
msc-trace is (msg;msg)-implementable.
Now we have reduced the number of communication models to only seven di4erent

classes. Of course, some of these could still be equivalent for other reasons than the
above lemmas. That this is not the case, will be seen in Corollary 19 below. We name
the equivalence classes as follows: nobuf, global, inst out; inst in, inst2, pair, msg
(see Fig. 8).
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Fig. 9. Ordering of the communication models for traces.

Of these, the 0rst two and last two will be clear immediately, inst out means that
there are instancewise output bu4ers and global or no input bu4ers, inst in means that
there are instancewise input bu4ers and global or no output bu4ers, and inst2 means
that there are both an instancewise output bu4er and an instancewise input bu4er.

Theorem 15. For msc-traces, the 7 communication models are ordered as shown in
Fig. 9.

Proof. This follows from the Lemmas 13 and 14 and their counterparts as explained
above.

Note that of these seven cases only inst2 is not of the form (X; nobuf) or (nobuf; X ).
As these forms imply that there is respectively no input bu4er or no output bu4er, of
these seven cases only the case inst2 needs two bu4ers, all other cases can be modeled
such that each message goes through at most one bu4er.
It will prove useful to have a characterisation of these implementabilities (except for

inst2 of course) that does not use transmit events.

Lemma 16. Let t be an msc-trace over a set of events Emsc(M). Then:

• t is nobuf-implementable if and only if

∀
m∈M

¬ ∃
e∈Emsc(M)

!m ¡trace
t e ¡trace

t ?m;

• t is global-implementable if and only if

∀
m;m′∈M

!m ¡trace
t !m′ ⇒?m ¡trace

t ?m′;
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• t is inst out-implementable if and only if

∀
m;m′∈M

from(m) = from(m′)⇒ (!m ¡trace
t !m′ ⇒?m ¡trace

t ?m′);

• t is inst in-implementable if and only if

∀
m;m′∈M

to(m) = to(m′)⇒ (!m ¡trace
t !m′ ⇒?m ¡trace

t ?m′);

• t is pair-implementable if and only if

∀
m;m′∈M

from(m) = from(m′) ∧ to(m) = to(m′)

⇒ (!m ¡trace
t !m′ ⇒?m ¡trace

t ?m′);

• t is always msg-implementable.

Again note that because¡trace
t is a total order, ∀m;m′∈M !m¡trace

t !m′⇒?m¡trace
t ?m′

can be replaced by ∀m;m′∈M !m¡trace
t !m′ ⇔ ?m¡trace

t ?m′ without loss of correctness.

Proof. The proofs for this are easily found by realising that an msc-trace is (X; nobuf)-
implementable exactly if the conditions for X -output implementability hold with !!m
everywhere replaced by ?m.

4. Classi�cation of MSCs

The use of MSCs in practice (and theory) is twofold. First, MSCs are often used to
restrict the behaviour of communicating entities. In this use, it is the intention that the
actual behaviour of the system is contained in the behaviour speci0ed by the MSC.
It does not mean that all behaviour of the MSC must be realised in the system. In
this case only one of the msc-traces of the MSC has to be implementable in the given
communication model. This notion of implementability is called weak implementability.
On the other hand, if the language MSC is used for the description of required

behaviour (as for example in use cases), it is intended that each of the behaviours
speci0ed by the MSC is realised. In this case all msc-traces of the MSC have to be
implementable in the given communication model. This notion of implementability is
called strong implementability.
We 0rst focus on strong implementability, then on weak implementability. After this

we consider the relation between classes from the strong and weak spectrum.

4.1. Strong implementability

De�nition 17. An MSC k is said to be strongly X -implementable, notation Xs-imple-
mentable, if and only if all msc-traces t of k are X -implementable.

From this de0nition it follows immediately that the ordering of the communication
models for msc-traces as given in Fig. 9 also holds for MSCs as far as strong imple-
mentability is concerned (see Fig. 14). Next, we demonstrate that the communication
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Fig. 10. MSC to distinguish nobufs- and globals-implementability.

Fig. 11. MSCs to distinguish globals-, inst outs-, inst ins-, and inst2s-implementability.

models, obtained by lifting them from the trace level to MSCs in the strong way, are
indeed di4erent. This is achieved by 0nding examples of MSCs that are in one class
but not in another.
MSC 1 in Fig. 10 shows an example that is globals-implementable, but not nobufs-

implementable. It is not nobufs-implementable, because the msc-trace !a !b ?a ?b is not.
The input events necessarily have to be ordered in the same way as the output events,
so it is globals-implementable.
MSC 2a in Fig. 11 is inst outs-implementable, but not globals-implementable due to

the trace !b !a ?a ?b. That MSC 2a is inst outs-implementable can be seen as follows:
All messages go through a di4erent output bu4er, so there is no problem with the
output bu4ers at all. Similarly, MSC 2b (in the same 0gure) is inst ins-implementable,
but not globals-implementable due to the trace !a !b ?b ?a.
MSCs 2a and 2b show the di4erence between inst outs and inst ins. MSC 2a is

inst outs-implementable, as mentioned before, but not inst ins-implementable. The trace
!b !a ?a ?b is not inst in-implementable, because the input events of instance j do not
reach the input bu4er in the order in which they are to be manipulated. For MSC 2b
the reverse is the case: It is inst ins-implementable, but not inst outs-implementable.
MSC 2a is inst outs-implementable and therefore also inst2s-implementable. We have
already established that it is not inst ins-implementable. Similarly, MSC 2b is inst ins
and inst2s-implementable, but not inst outs-implementable. Together, these show that
inst outs, inst ins and inst2s are all di4erent.
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Fig. 12. MSC to distinguish inst outs- and pairs-implementability.

Fig. 13. MSC to distinguish pairs- and msgs-implementability.

One might suspect that the class of inst2s-implementable MSCs is simply equal to
the intersection of the classes of inst outs-implementable and inst ins-implementable
MSCs. This is not the case, as can easily be shown by combining the MSCs 2a and
2b into one MSC (see MSC 8 in Fig. 22).
MSC 3 in Fig. 12 is an example of an MSC that is pairs-implementable, but not

inst2sin-implementable. It is easy to see that it is pairs-implementable, because each
message goes through a di4erent bu4er. Its only msc-trace is !c !a ?a !b ?b ?c. If we try
to extend this to an inst2-implementable impl-trace t′, we need to have !!c¡trace

t !!a
¡trace
t !!b¡trace

t !!c, which is impossible (the 0rst ¡trace
t is because of the inst-output

implementability and !c¡trace
t !a, the second is clearly true for every impl-trace of

the MSC, and the third is because of the inst-input implementability together with
?b¡trace

t ?c).
Finally, MSC 4 in Fig. 13 shows the di4erence between pairs- and msgs-implementa-

bility. All other communication models are also pairwise di4erent. This result is ob-
tained due to the transitive closure of the ordering as presented in Fig. 14.
Together the examples used above show that if we look at strong implementability,

the seven remaining implementation models are indeed di4erent for MSCs, and thus
that they are also di4erent for msc-traces.
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Fig. 14. Ordering scheme for strong implementability.

Theorem 18. The communication models for strong implementability of Fig. 14 are
di6erent and these are ordered as expressed in Fig. 14.

Proof. In the above text we have demonstrated by means of counterexamples that the
communication models must be di4erent. Also the ordering has been explained above.

Corollary 19. The classes nobuf, global, inst out, inst in, inst2, pair, and msg are
di6erent for traces.

4.2. Weak implementability

De�nition 20. An MSC k is said to be weakly X -implementable, notation Xw-imple-
mentable, if and only if there is an X -implementable msc-trace t of k.

As was the case for strong implementability, for weak implementability we also
have the ordering as expressed in Fig. 9 as a starting point. However, using weak
implementability, we do not have anymore that all communication models di4er. To
see this, we 0rst give an alternative way to characterise some of the implementations
and prove that these are equivalent to the original de0nition.
We will use some new relations (to denote these relations we will use the same type

of symbols as we have used to denote partial orders) to give these characterisations.
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The idea is that these new relations give a requirement that must be ful0lled by an msc-
trace so as to be inst out-implementable, inst in-implementable or inst2-implementable.
For example, to be inst out-implementable, each time two messages m and m′ come
from the same instance, they must be received in the same order as the order in which
they were sent. Because they are on the same instance, there will be some ¡msc-order
between !m and !m′. To ensure that the msc-trace has the receipts in the same order,
we will have to add the equivalent order between ?m and ?m′.

De�nition 21. Let k be an MSC over the set of messages M . Then we de0ne the
relations ¡io

k and ¡ii
k on Emsc(M) and ¡

i2
k on Eimpl(M) as follows:

¡io
k = (¡msc

k ∪{(?m; ?m′) |m;m′ ∈ M ∧ from(m) = from(m′)∧!m ¡msc
k !m′})+;

¡ii
k = (¡msc

k ∪{(!m; !m′) |m;m′ ∈ M ∧ to(m) = to(m′)∧?m ¡msc
k ?m′})+;

¡i2
k = (¡impl

k ∪{(!!m; !!m′) |m;m′ ∈ M ∧ from(m) = from(m′)∧!m ¡impl
k !m′}

∪ {(!!m; !!m′) |m;m′ ∈ M ∧ to(m) = to(m′)∧?m ¡impl
k ?m′})+:

A picture of these orders can be seen in Fig. 15. It shows an MSC together with
its ¡msc, ¡impl, ¡io, ¡ii and ¡i2 relations. For the last three, the orders that have
been added when compared to ¡msc or ¡impl have been dashed, while the orders that
caused these extra orders have been drawn fat.
The inst out-implementable msc-traces of the MSC are also traces of the order ¡oi

k
as they respect the requirements for inst out-implementability by de0nition, and vice
versa. Basically this is what is expressed in Lemma 22.

Lemma 22. Let t be an msc-trace of an MSC k. Then,

• t is inst out-implementable if and only if ¡io
k ⊆¡trace

t ;
• t is inst in-implementable if and only if ¡ii

k ⊆¡trace
t ;

• t is inst2-implementable if and only if there exists an extension t′ of t such that
¡i2
k ⊆¡trace

t′ .

Proof. We only give the proof for the last proposition. The proofs for the 0rst two
propositions follow the same line.
First, suppose that t is inst2-implementable. Then we must prove that ¡i2

k ⊆¡trace
t′

for some impl-trace t′ which is an extension of t. Let the impl-trace t′ be an arbitrary
inst2-implementable extension of t (the existence of such a trace follows trivially from
De0nition 12). Suppose that e¡i2

k e
′ for arbitrary events e; e′∈Eimpl(M). Now it suIces

to prove e¡trace
t′ e′. Since e¡i2

k e
′ we have the existence of events e1; : : : ; en such that

e≡ e1, e′ ≡ en and for all 16i¡n we have one of the following:
• ei¡impl

k ei+1;
• ei≡ !!m and ei+1≡ !!m′ for some m;m′∈M such that from(m)= from(m′) and
!m ¡impl

k !m′;
• ei≡ !!m and ei+1≡ !!m′ for some m;m′∈M such that to(m)= to(m′) and
?m¡impl

k ?m′.
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Fig. 15. Explanation of the ¡io, ¡ii and ¡i2 relations.

In the 0rst case we immediately have ei¡trace
t: ei+1. Due to the fact that t′ is an inst2-

implementable impl-trace, and thus both inst-output and inst-input implementable, we
can conclude that ei¡trace

t′ ei+1 for the second and third case as well (see De0nitions 10
and 11). Since ¡trace

t′ is transitive we have e¡trace
t′ e′, which completes this part of

the proof.
Second, suppose that ¡i2

k ⊆¡trace
t′ for some impl-trace t′ which is an extension of

t. We must prove that t is (inst; inst)-implementable. Thereto, it suIces to show that
t′ is (inst; inst)-implementable, i.e., that t′ is inst-output implementable and inst-input
implementable. We prove that t′ is inst-output implementable, the proof that t′ is inst-
input implementable is analogous. Let m;m′∈M such that from(m)= from(m′). Then
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it suIces to show that !m¡trace
t′ !m′ ⇒ !!m¡trace

t′ !!m′. Thus, suppose that !m¡trace
t′ !m′.

Since from(m)= from(m′), we have !m¡msc
k !m′. So !!m¡i2

k !!m
′. Because ¡i2

k ⊆¡trace
t′

we therefore have !!m¡trace
t′ !!m′.

Thus far, we have seen that the order¡io
k has as its traces the inst out-implementable

msc-traces of MSC k. An MSC k is inst outw-implementable if and only if it has a
trace t that is inst out-implementable. Clearly, such a trace exists if and only if there
is a trace for the order ¡io

k , in other words, if and only if ¡
io
k is cycle-free.

Theorem 23. Let k be an MSC. Then,

• k is inst outw-implementable if and only if ¡io
k is cycle-free;

• k is inst inw-implementable if and only if ¡ii
k is cycle-free;

• k is inst2w-implementable if and only if ¡i2
k is cycle-free.

Proof. Follows immediately from Lemma 22.

We use the alternative characterisations provided by Theorem 23 in the proof of the
equivalence of the classes inst outw, inst inw, and inst2w.

Lemma 24. Let k be an MSC over the set of messages M and let m;m′∈M .
If ?m¡io

k ?m
′, then !!m¡i2

k !!m
′

Proof. Suppose that ?m¡io
k ?m

′. Then by the de0nition of ¡io
k we have the existence

of events e1; : : : ; en such that e1≡ ?m, en≡ ?m′, and for 16i¡n we have one of the
following:

• ei¡msc
k ei+1;

• ei≡ ?p, ei+1≡ ?p′ for some p;p′∈M such that from(p)= from(p′) and !p¡msc
k !p′.

In the second case we have !!p¡i2
k !!p

′ directly from De0nition 21. In the 0rst case we
have a sequence of events where the smallest steps are due to ¡inst or due to ¡oi.
In this sequence any subsequence of events which are de0ned on the same instance
can be replaced by one single step. As a result we have the existence of messages
m1; : : : ; mn′ such that

ei6inst!m1¡oi?m1¡inst!m2¡oi?m2¡inst · · ·¡inst!mn′¡oi?mn′6instei+1;

where f6instf′ is short for f¡instf′ or f≡f′. Now we observe that we only have
the following three possibilities for ¡inst:

• !q¡inst !q′ for some q; q′ ∈M such that from(q)= from(q′). Then also !!q¡i2
k !!q

′ by
the de0nition of ¡i2.

• ?q¡inst?q′ for some q; q′ ∈M such that to(q)= to(q′). Then also !!q¡i2
k !!q

′, again
by the de0nition of ¡i2.

• ?q¡inst !q′ for some q; q′ ∈M such that to(q)= from(q′). Then !!q¡impl
k ?q¡impl

k !q′

¡impl
k !!q′, so clearly !!q¡impl

k !!q′ and !!q¡i2
k !!q

′ (since ¡i2
k ⊆¡impl

k ).

Thus, we obtain !!ei¡i2
k !!ei+1 for all 16i¡n. Therefore !!m¡

i2
k !!m

′.
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Fig. 16. MSC to distinguish nobufw- and globalw-implementability.

Lemma 25. The communication models inst outw ; inst inw ; and inst2w are equivalent.

Proof. We show that each inst2w-implementable MSC is also inst outw-implementable.
The reverse implication is trivial, and the proofs with inst inw are analogous. From
Lemma 23 we see that it suIces to prove that ¡io is cycle-free if ¡i2 is cycle-
free. We prove this using contraposition, so we assume that ¡io has a cycle. Let
e1¡ioe2¡io : : :¡ioen¡ioe1 be an arbitrary cycle such that for every consecutive pair of
events in the cycle, say ei¡ioei+1, either ei¡mscei+1, and hence ei¡i2ei+1, or ei≡ ?m,
ei+1≡ ?m′ for some m;m′ ∈M such that !m¡msc!m′ and from(m)= from(m′) (any
cycle can be extended to some cycle of this form by the addition of events).
If the 0rst is always the case, then we have a cycle in ¡msc, so certainly in ¡i2.

Now assume we have the second at least once in the cycle. In that case we have at
least two input events in the cycle, say ?m and ?m′. Then ?m¡io?m′ and ?m′¡io?m.
Lemma 24 gives that this implies that !!m¡i2!!m′ and !!m′¡i2!!m, so ¡i2 has a cycle.

Lemma 25 establishes that the classes inst outw, inst inw, and inst2w are equivalent.
In the remainder we denote this class by instw. The remaining models are all di4erent.
MSC 3 and MSC 4 in Figs. 12 and 13 show the di4erence between instw and pairw, and
pairw and msgw, respectively, in the weak case too (these MSCs have only one msc-
trace, so their weak implementability equals their strong implementability). MSC 5
in Fig. 16 is globalw-implementable, but not nobufw-implementable. The msc-trace
!a !b ?a ?b is global-implementable, but because both output events must have been
executed before any input event can be processed, there is no nobuf-implementable
msc-trace.
MSC 6 in Fig. 17 is instw-implementable, but not globalw-implementable. It is

not globalw-implementable, as can be seen thus: !a¡
msc!b, so if an msc-trace t of

this msc is global-implementable, we must have ?a¡trace
t ?b. Because !d¡msc?a and

?b¡msc!c, we get !d¡trace
t !c. But we also have ?c¡msc?d, and thus ?c¡trace

t ?d,
from which it follows that t cannot be global-implementable. On the other hand,
the msc-trace !a !b !d ?a ?b !c ?c ?d is inst out-implementable, so the MSC is instw-
implementable.
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Fig. 17. MSC to distinguish globalw- and instw-implementability.

Fig. 18. Ordering scheme for weak implementability.

Theorem 26. The communication models for weak implementability of Fig. 18 are
all di6erent and they are ordered as expressed in Fig. 18.

Proof. The counterexamples that imply that the communication models are di4erent
are given above. The ordering of the models is inherited from the ordering of the com-
munication models with respect to traces. Lemma 25 provides that the communication
models inst outw, inst inw, and inst2w are equivalent.

4.3. Combining the strong and weak hierarchies

The relations between the classes in one of the two hierarchies have been stud-
ied extensively in the previous sections. We have 12 possible implementations left:
nobufs, globals, inst outs, inst ins, inst2s, pairs and msgs in the strong case, and
nobufw, globalw, instw, pairw and msgw in the weak case. From the de0nitions of
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Fig. 19. Incomplete hierarchy.

strong and weak implementability it is clear that any Xs-implementable MSC is also
Xw-implementable. The remaining classes are ordered as shown in Fig. 19.
An arrow pointing from one of the classes to another means that all MSCs that are

implementable in the communication model corresponding to the 0rst class are also
implementable in the communication model corresponding to the second class. Any
superOuous arrows (those that can be inferred from the transitivity of the relation)
have been removed.
These evident relationships between the two hierarchies have led us to the further

investigation of such relationships. As it turns out there are more relationships between
and identi0cations of the classes from the two hierarchies. First, we prove that some
classes can be identi0ed.

Lemma 27. An MSC is pairs-implementable if and only if it is pairw-implementable.

Proof. Clearly, any pairs-implementable MSC is also pairw-implementable. It remains
to prove that any pairw-implementable MSC is also pairs-implementable. Let k be a
pairw-implementable MSC. Let t be an arbitrary msc-trace of k. Let m;m

′ ∈M such
that from(m)= from(m′) and to(m)= to(m′). We want to prove that !m¡trace

t !m′ ⇒ ?m
¡trace
t ?m′, from which it follows that the (arbitrary) trace t is pair-implementable.
Suppose that !m¡trace

t !m′. Then, because from(m)= from(m′) and !m¡trace
t !m′, we

have !m¡msc
k !m′ (when from(m)= from(m′), either !m¡msc

t !m′ or !m′¡msc
t !m, and

the second cannot be the case). Since k is pairw-implementable there exists a trace
t′ that is pair-implementable. Since !m¡msc

k !m′ we have !m¡trace
t′ !m′. Since t′ is

pair-implementable we have by Lemma 16 that ?m¡trace
t′ ?m′. Because to(m)= to(m′)

we then have ?m¡msc
k ?m′. Therefore we have ?m¡trace

t ?m′, which completes the proof.
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Lemma 28. An MSC is msgs-implementable if and only if it is msgw-implementable.

Proof. Trivial, because every impl-trace is msg-implementable, and thus each msc-
trace is as well.

Lemmas 27 and 28 establish that the classes pairs and pairw, and msgs and msgw
are equivalent. In the remainder we denote these by pair and msg, respectively.
Next, we will prove that any inst outs-implementable MSC is globalw-implementable

and that any inst ins-implementable MSC is globalw-implementable. To do this we 0rst
give some alternative characterisations for these implementations.

Lemma 29. An MSC k is inst outs-implementable if and only if ¡io
k =¡

msc
k . An

MSC k is inst ins-implementable if and only if ¡ii
k =¡

msc
k .

Proof. We only give the proof for the 0rst proposition. The proof of the second
proposition follows the same lines.
First, suppose that MSC k is inst outs-implementable. By de0nition ¡msc

k ⊆¡io
k ,

so it only remains to be proven that ¡io
k ⊆¡msc

k . Suppose that e¡io
k e

′ for arbitrary
e; e′ ∈Emsc(M). Then we have the existence of e1; : : : ; en such that e≡ e1, e′ ≡ en and
for all 16i¡n we have one of the following:

• ei¡msc
k ei+1;

• ei≡ ?m and ei+1≡ ?m′ for some m;m′ ∈M such that from(m)= from(m′) and
!m¡msc

k !m′.

In the second case we have, by Lemma 6, !m¡trace
t !m′ for every msc-trace t of k.

Since k is inst outs-implementable we have that every msc-trace of k is inst out-
implementable. Thus, by Lemma 16 and the assumption that from(m)= from(m′) we
have ?m¡trace

t ?m′ for every msc-trace t of k. Then, again by Lemma 6, we have
?m¡msc

k ?m′. In the 0rst case we already know that ei¡msc
k ei+1, and taking all these

steps together we have e¡msc
k e′, from which it follows that ¡io

k ⊆¡msc
k .

Second, suppose that ¡io
k =¡

msc
k . Then we must prove that MSC k is inst outs-

implementable. Let t be an msc-trace of k, and let m;m′ ∈M such that from(m)=
from(m′). Suppose !m¡trace

t !m′. Then because of from(m)= from(m′), we have
!m¡msc

k !m′. By the de0nition of ¡io
k we then have ?m¡io

k ?m
′. By the assumption

that ¡io
k =¡

msc
k , this implies ?m¡msc

k ?m′, and thus ?m¡trace
t ?m′.

For a similar characterisation of globalw-implementability we de0ne a relation ¡
g
k .

De�nition 30. Let k be an MSC. The relation¡g
k on Emsc(M) is de0ned as the smallest

relation that satis0es:

(1) ¡msc
k ⊆¡g

k ;
(2) ¡g

k is transitive;
(3) !m¡g

k !m
′ ⇔ ?m¡g

k ?m
′ for all m;m′ ∈M .

Lemma 31. An MSC k is globalw-implementable if and only if the relation ¡g
k is

cycle-free.
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Proof. First, suppose that MSC k is globalw-implementable. Let t be a global-
implementable msc-trace of k. Then ¡trace

t adheres to the restrictions in De0nition 30,
and thus ¡g

k ⊆¡trace
t , and ¡g

k is cycle-free.
Second, suppose that the relation ¡g

k is cycle-free. The idea of the proof is that we
extend this relation until it is a total order. Then, if we can prove that the msc-trace
corresponding with this total order is global-implementable, we are done.
We extend the relation ¡g

k to form an order ¡ by repeatedly choosing a smallest
element that has not yet been chosen, and taking that as the next element of our total
order, all the while ensuring that the preconditions of De0nition 30 are still being met.
More formally, we will use the following algorithm (with S and ¡ as variables):

(1) S :=Emsc(M), ¡:=¡
g
k .

(2) Let e be any smallest element of S with respect to ¡, that is, any element of S
for which there is no e′ ∈ S with e′¡e.

(3) S := S\{e}
(4) ¡:= (¡∪{(e; e′) | e′ ∈ S})+
(5) if e≡ !m for some m∈M , then ¡:= (¡∪{(?m; ?m′) | !m′ ∈ S})+
(6) Repeat steps 2 to 5 until S = ∅.
We 0rst remark that the following invariant holds: ?m¡?m′ ⇒ ?m¡g

k ?m
′ ∨ !m =∈ S for

all m;m′ ∈M . This clearly holds at the beginning, and only pairs (?m; ?m′) are added
for which !m =∈ S since, otherwise, ?m would not be a smallest element of S. Also,
after every execution of the body of the repetition (i.e. after step 5), ¡ is a total order
on those events that are not contained in S.
Before we can make any arguments regarding the resulting order¡, we have to prove

that the algorithm is well-de0ned. In particular, for step 2 of the above algorithm it is
necessary that ¡ is cycle-free. After step 1 ¡ is cycle-free because by the assumption
¡g
k is cycle-free. There are two places where the relation ¡ is extended, namely step 4

and step 5. Step 4 maintains cycle-freeness of ¡. This can be seen as follows. Let
e be an arbitrary smallest element of S with respect to ¡. Suppose that by adding
the pairs (e; e′) for e′ ∈ S\{e} to ¡ a cycle appears. Then e′¡e for some e′ ∈ S\{e}
which contradicts the assumption that e is a smallest element of S with respect to ¡.
Step 5 maintains cycle-freeness as-well. Suppose that !m is a smallest element of ¡

with respect to S. Suppose that a cycle is introduced by step 5. This can only be the
case if a pair (?m; ?m′) is added to ¡ for which we already had ?m′¡?m and !m′ ∈ S.
By the previously mentioned invariant we have ?m′¡g

k ?m. By the de0nition of ¡
g
k

then also !m′¡g
k !m. As !m

′ ∈ S this contradicts the assumption that !m was a smallest
element of S with respect to ¡. Thus, we have established that step 2 of the algorithm
is well-de0ned. The other steps cause no problems, so the algorithm is well-de0ned.
The algorithm is guaranteed to terminate as the number of elements of the 0nite set

S is decreased by one every time the body of the repetition is executed. Furthermore,
because ¡ is a total order on those events that are not contained in S, and S is empty
when the algorithm ends, upon termination of the algorithm, ¡ is a total order on
Emsc(M). This total order corresponds to an msc-trace of the MSC as ¡msc

k ⊆¡g
k ⊆¡.

All that remains to be proven is that ¡ corresponds to a global-implementable msc-
trace of k. Note that, after step 1, for all m;m′ ∈M we have !m¡!m′ ⇒ ?m¡?m′. If in
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step 4, !m¡!m′ is added then in step 5 ?m¡?m′ is added. Thus, !m¡!m′ ⇒ ?m¡?m′

is an invariant, from which it follows that the msc-trace corresponding with ¡ is
global-implementable.

Lemma 32. If e¡g
k e

′, there is a sequence of events e1e2 : : : en, such that:

(1) e≡ e1, e′ ≡ en.
(2) Either ei¡msc

k ei+1 or ei≡ ?m and ei+1≡ !m for a certain m ( for each i such that
16i¡n).

(3) The number of ei’s for which ei �¡msc
k ei+1 (and thus ei≡ ?m and ei+1≡ !m hold)

is less than or equal to the number of ei’s for which ei≡ !m and ei+1≡ ?m.

Thus the sequence consists of ¡msc-orderings with additionally some messages that
are passed ‘in the wrong direction’, but there are at least as many messages passed in
the right as in the wrong direction.
As an example, look at MSC 2a in Fig. 11. In this MSC, !a¡g!b. The sequence

of events corresponding to the lemma is !a ?a ?b !b. There is one message (b) that is
passed from receipt to sending, and one message (a) that is passed from sending to
receipt.

Proof. In this proof we will denote the sequence e≡ e1; : : : ; en≡ e′ for a given e and
e′ by

−−−→
(e; e′). This sequence is of course in general not uniquely de0ned, but this does

not matter for the proof.
First we note that ¡g

k can be constructed by the following algorithm:

(1) ¡g
k :=¡

msc
k

(2) ¡g
k :=¡

g
k ∪{(?m; ?m′) | !m¡g

k !m
′}

(3) ¡g
k :=¡

g
k ∪{(!m; !m′) | ?m¡g

k ?m
′}

(4) ¡g
k :=¡

g
k ∪{(e; e′) | ∃e′′ : e¡g

k e
′′ ∧ e′′¡g

k e
′}

(5) Repeat steps 2 to 4 until no change occurs.

We will prove that the lemma remains true throughout the running of this algorithm.
It is trivially true after step 1. Suppose that step 2 introduces a new pair into ¡g

k ,

?m¡g
k ?m

′. Then !m¡g
k !m

′ already is part of ¡g
k , so by induction hypothesis

−−−−−→
(!m; !m′)

exists. Then

−−−−−−→
(?m; ?m′) = (?m) ++

−−−−−→
(!m; !m′) ++(?m′)

(where (e1; : : : ; en)++ (f1; : : : ; fn) is de0ned to be (e1; : : : ; en; f1; : : : ; fn)) satis0es the
requirements. There is one pair of the form (?m; !m) added, but also one of the form
(!m′; ?m′), so this step does not invalidate the lemma. Likewise, if step 3 introduces
a new pair !m¡g

k !m
′, we can choose

−−−−−→
(!m; !m′)= (!m)++

−−−−−−→
(?m; ?m′)++ (!m′). Finally,

if step 4 introduces a new pair e¡g
k e

′, we can choose
−−−→
(e; e′)=

−−−→
(e; e′′)++

−−−−→
(e′′; e′) (or

rather, we should remove one of the now double e′′ to get a correct sequence).
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Lemma 33. Every inst outs-implementable MSC is globalw-implementable. Every
inst ins-implementable MSC is globalw-implementable.

Proof. We prove this for an inst outs-implementable MSC. The proof is completely
analogous for a inst ins-implementable MSC.
We prove this by contradiction, so we assume that k is an inst outs-implementable

MSC that is not globalw-implementable. By Lemma 29 we have ¡
io
k =¡

msc
k , and by

Lemma 31 we have that ¡g
k has a cycle.

Because ¡g
k has a cycle, we can conclude from Lemma 32 that there is a cycle of

steps which are either steps of ¡msc
k or of the form (?m; !m), where, furthermore, the

number of steps of the form (?m; !m) is not greater than the number of steps of the
form (!m; ?m). We call such a cycle a quasi-cycle of order N , where N is the number
of times that a step of the form (?m; !m) occurs in the cycle.
We prove that this cycle can be changed into a quasi-cycle of order 0. Let the order

be greater than 0. Because the quasi-cycle is a cycle, and contains at least one (?m; !m)-
step and at least one (!m; ?m)-step, there will be at least one (!m; ?m)-step, such that
after that (!m; ?m)-step a (?m; !m)-step will take place before the next (?m; !m)-step.
Thus, the quasi-cycle contains a subsequence (?m; !m; : : : ; !m′; ?m′), where there are no
steps of the forms (?m; !m) or (!m; ?m) between !m and !m′.
Because we have !m¡msc

k !m′, by de0nition we get ?m¡io
k ?m

′, from which we get
?m¡msc

k ?m′ from the assumption that ¡msc
k =¡io

k . Thus, by removing all steps between
?m and ?m′, and replacing them with a single step, we still have a cycle of ¡msc

k and
(!m; ?m) steps, but with one less occurrence of both the type (!m; ?m) and the type
(?m; !m). Thus, this is a quasi-cycle of order N − 1. Repeating this, we will 0nally
obtain a quasi-cycle of order 0. However, a quasi-cycle of order zero is a cycle of
only ¡msc-steps.
Thus, we see that, given the assumption, ¡msc must have a cycle. This is impossible,

so the assertions cannot simultaneously hold, so each inst outs-implementable MSC is
globalw-implementable.

In Fig. 20 we give all communication models that remain after the identi0cations
obtained until now. The arrows between these models follow also from the previ-
ous theorems and lemmas. Finally, we have to prove that the arrows between models
from the strong and weak hierarchy are strict and that there are no additional ar-
rows necessary. It suIces to show that the following arrows do not exist: globals
to nobufw, nobufw to inst2s, and inst2s to globalw. The rest then follows because
of transitivity. For example, the non-existence of an arrow from globals to nobufw
implies the non-existence of an arrow from inst outs to nobufw, because if the sec-
ond arrow exists then, by transitivity, also the 0rst must exist. Similarly we obtain
the non-existence of arrows from inst ins and inst2s to nobufw. We use the MSCs in
Figs. 21 and 22 to indicate that the 0rst two arrows do not exist. MSC 7 is globals-
implementable, but not nobufw-implementable. It has one trace, !a !b ?a ?b, which is
global-implementable, but not nobuf-implementable. We see that MSC 7 contains
only one instance, so all messages are messages to the same instance that sent them.
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Fig. 20. Final hierarchy.

Fig. 21. MSC distinguishing globals- and nobufw-implementability.

Fig. 22. MSC distinguishing inst2s- and nobufw-implementability.
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This is no coincidence, it can be shown that all possible counterexamples have such
messages.
MSC 8 is nobufw-implementable, but not inst2s-implementable. That it is nobufw-

implementable can be seen from the picture, which shows that there is the msc-trace
!a ?a !b ?b !c ?c, which is nobuf-implementable. However, the trace !b !c ?c !a ?a ?b is
not inst2-implementable: Because ?b is after ?a in the trace, !!b must be after !!a to
make the trace inst-input implementable, while, because !b is before !c, !!b must be
before !!c to make the trace inst-output implementable. However, !!a must be after
!a and !!c before ?c, so !!c will be before !!a in any extension of this trace, which
implies that !!b cannot be both before !!c and after !!a.
The non-existence of an arrow from inst2s to globalw is taken care of by MSC 6 in

Fig. 17. It has already been shown not to be globalw-implementable. It is
inst2s-implementable because every msc-trace of this MSC can be extended to an
inst2-implementable impl-trace by adding !!a and !!b immediately after !a and !b,
and !!c and !!d immediately before ?c and ?d.

Theorem 34. The communication models from Fig. 20 are all di6erent, and they are
ordered as expressed in Fig. 20.

Proof. This has been explained in the text above.

5. Characterisations

Thus far, we have considered the notions of strong and weak implementability and
we have ordered those in a hierarchy. In this section, we will consider how to determine
the implementability of a given MSC with respect to a given communication model.
That is, we study the algorithmic aspects of the communication models. The original
de0nitions of the communication models are hard to check automatically. To do so
would require one to look at all msc-traces, possibly even all impl-traces, of the MSC
and check whether or not they are implementable with respect to the communication
model. An MSC can have many traces, in fact their number is exponential in the
number of events of the MSC.
In the previous sections, for the communication models globalw, globals, instw,

inst outs, and inst ins characterisations have already been given that are easier to check.
These are based on cycle-freeness of relations between the events, or the equality of
two orders. Both the creation of these relations and orders, and checking for their cycle-
freeness or equality can be done in polynomial time in the number of events. For the
communication models pair and msg the fact that weak and strong implementability
coincide leads directly to an easy to use characterisation: Because implementability of
a single msc-trace and implementability of all msc-traces are equivalent, looking at one
single trace suIces. Thus, we only need new characterisations for nobufw, nobufs, and
inst2s.

De�nition 35. Let k be an MSC over the set of messages M . The relation ¡w
k on M

is for all m;m′ ∈M de0ned by m¡w
k m

′ if and only if !m¡msc
k ?m′ and m �≡m′.
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Lemma 36. An MSC k is nobufw-implementable if and only if the relation ¡w
k is

cycle-free.

Proof. Let k be an MSC over the set of messages M . First, suppose that k is nobufw-
implementable. Suppose furthermore that ¡w

k has a cycle, say m1¡w
k m2¡

w
k · · ·¡w

k mn
for some m1; m2; : : : ; mn ∈M such that m1≡mn. Then, from the de0nition of ¡w

k and
¡msc
k , we obtain for all 16i¡n that !mi¡msc

k ?mi+1 and !mi+1¡msc
k ?mi+1. Then, for

every msc-trace t of k, we must have !mi¡trace
t ?mi+1 and !mi+1¡trace

t ?mi+1 for all
16i¡n. Since k is nobufw-implementable, there is a nobuf-implementable msc-trace
t′. In this trace, there can be no events between !mi+1 and ?mi+1, so !mi¡trace

t′ ?mi+1 im-
plies !mi¡trace

t′ !mi+1. Thus we get !m1¡trace
t′ !m2¡trace

t′ · · ·¡trace
t′ !mn and since !m1≡ !mn

we thus have a cycle of ¡trace
t′ . Thus such a nobuf-implementable msc-trace t′ does

not exist. This contradicts the assumption that k is nobufw-implementable. Therefore,
¡w
k is cycle-free.
Second, suppose that ¡w

k is cycle-free. We extend ¡w
k to a total order ¡, say

m1¡m2¡ · · ·¡mn where M = {m1; m2; : : : ; mn}. Then the trace
t ≡!m1 ?m1 !m2 ?m2 · · ·!mn ?mn

is clearly nobuf-implementable. Thus, if suIces to prove that the trace t is a trace of
MSC k. Thereto, suppose that e¡msc

k e′ for some e; e′ ∈Emsc(M). We distinguish four
cases:

• e≡ !m and e′ ≡ !m′ for some m;m′ ∈M . As !m¡msc
k !m′ and !m′¡msc

k ?m′, we also
have !m¡msc

k ?m′. Then, by the de0nition of ¡w
k , we have m¡

w
k m

′, and therefore
!m¡trace

t !m′.
• e≡ !m and e′ ≡ ?m′ for some m;m′ ∈M . If m≡m′, then trivially !m¡trace

t ?m′. Other-
wise, by the de0nition of ¡w

k , we have m¡
w
k m

′, and therefore !m¡trace
t ?m′.

• e≡ ?m and e′ ≡ !m′ for some m;m′ ∈M . As !m¡msc
k ?m, ?m¡msc

k !m′ and
!m′¡msc

k ?m′, we have !m¡msc
k ?m′. Then, by the de0nition of ¡w

k , we have m¡
w
k m

′,
and therefore ?m¡trace

t !m′.
• e≡ ?m and e′ ≡ ?m′ for some m;m′ ∈M . As !m¡msc

k ?m and ?m¡msc
k ?m′, we have

!m¡msc
k ?m′. Then, by the de0nition of ¡w

k , we have m¡w
k m

′, and therefore
?m¡trace

t ?m′.

In each of the four cases we have e¡trace
t e′, which completes the proof.

Lemma 37. If an MSC k is nobufs-implementable, then ¡msc
k is a total order.

Proof. Let k be an MSC over the set of messages M . We use contraposition, so assum-
ing that¡msc

k is not a total order, we prove that k is not nobufs-implementable. Let t be
an arbitrary msc-trace of the MSC. Because ¡msc

k is not a total order, there are events
e; e′ ∈Emsc(M) such that e¡trace

t e′, but not e¡msc
k e′. For any event e′′ ∈Emsc(M)

with e¡trace
t e′′¡trace

t e′ we have either e�msc
k e′′ or e′′�msc

k e′ as otherwise e¡msc
k e′.

So there also is a such a pair of events that are immediately after one another in the
msc-trace t. Then, interchanging these events would result in another msc-trace t′ of
the MSC. It cannot be the case that both t and t′ are nobuf-implementable.
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Lemma 38. Let ¡ be a partial order, such that b� a and d� c, and let ¡′=
(¡

⋃ {(a; b); (c; d)})+ contain a cycle. Then it contains a simple cycle with both (a; b)
and (c; d) part of this cycle.

Proof. If ¡′ has a cycle, then so does ¡
⋃ {(a; b); (c; d)}. Look at an arbitrary simple

cycle of ¡
⋃ {(a; b); (c; d)}. If this cycle did not contain (a; b) or (c; d), then this

would also be a cycle of ¡. If it contained (a; b) but not (c; d), we would have b¡a,
and if it contained (c; d) but not (a; b), we would have d¡c. Thus, the cycle must
contain both (a; b) and (c; d).

Lemma 39. An MSC k is globals-implementable if and only if for all m;m′ ∈M ,
we either have both !m¡msc

k !m′ and ?m¡msc
k ?m′, or we have both !m′¡msc

k !m and
?m′¡msc

k ?m.

Proof. First, suppose that MSC k is globals-implementable. Let m;m
′ ∈M . With-

out loss of generality, we may assume !m′�msc
k !m. Then it suIces to prove that

!m¡msc
k !m′ and ?m¡msc

k ?m′. Now we can distinguish two cases: !m¡msc
k !m′ and

!m�msc
k !m′.

Suppose that !m¡msc
k m′. Then, by Lemma 6, !m¡trace

t !m′ for every msc-trace t of
k. Since every msc-trace of k is global-implementable, we have by Lemma 16 that
?m¡trace

t ?m′ for every msc-trace t of k. Then, again by Lemma 6, we have ?m¡msc
k ?m′,

which completes this part of the proof.
Now, suppose that !m�msc

k !m′. A similar reasoning as above shows that ?m¡msc
k ?m′

implies !m¡msc
k !m′ (remember that the single arrow in Lemma 16 is allowed to be

read as a double arrow), so ?m�msc
k ?m′, and analogously ?m′�msc

k ?m. We will now
show that there exists an msc-trace t of k such that !m¡trace

t !m′ and ?m′¡trace
t ?m,

thereby contradicting the assumption that k is globals-implementable. We de0ne the or-
der ¡ as follows: ¡=(¡msc

k ∪{(!m; !m′); (?m′; ?m)})+. We prove that ¡ is cycle-free,
from which it immediately follows that there is an msc-trace t such that !m¡trace

t !m′

and ?m′¡trace
t ?m (just extend ¡ to a total order). Assume that ¡ is not cycle-

free. From Lemma 38 we can conclude that there exists a simple cycle in ¡ with
both !m¡!m′ and ?m′¡?m. Because this is a simple cycle, this would imply that
!m¡!m′¡msc

k ?m′¡?m¡msc
k !m. However, ?m¡msc

k !m is impossible because !m¡msc
k ?m

and ¡msc
k is cycle-free. Thus, ¡ is cycle-free, which leads to a contradiction with

the assumption that k is globals-implementable, so this possibility cannot
occur.

Second, suppose that for all m;m′ ∈M we have !m¡msc
k !m′ and ?m¡msc

k ?m′, or
!m′¡msc

k !m and ?m′¡msc
k ?m. We must prove that MSC k is globals-implementable.

Let t be an arbitrary msc-trace of MSC k. Let m;m′ ∈M . By Lemma 16 it suIces to
prove that !m¡trace

t !m′ ⇒ ?m¡trace
t ?m′. Suppose that !m¡trace

t !m′. Then, by Lemma 6,
!m′�msc

k !m. Therefore, by the assumption, !m¡msc
k !m′ and ?m¡msc

k ?m′. So, by
Lemma 6, we have ?m¡trace

t ?m′.

Lemma 40. An MSC k is inst2s-implementable if and only if ¡i2
k =¡

impl
k .
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Proof. Let k be an MSC over the set of messages M . First, suppose that k is inst2s-
implementable. By de0nition, ¡impl

k ⊆¡i2
k , so it only remains to be proven that ¡

i2
k ⊆

¡impl
k . Suppose that e¡i2

k e
′ for some e; e′ ∈Eimpl(M). Then we have the existence of

e1; : : : ; en such that e≡ e1, e′ ≡ en and for all 16i¡n we have one of the following:
• ei¡impl

k ei+1;
• ei≡ !!m and ei+1≡ !!m′ for some m;m′ ∈M such that from(m)= from(m′) and
!m¡impl

k !m′;
• ei≡!!m and ei+1≡!!m′ for some m;m′∈M such that to(m)= to(m′) and ?m¡impl

k ?m′.

In the second case we use induction on the number of output events !m′′ that can be
in between !m and !m′ to prove that !!m¡impl

k !!m′.

• If there is no output event !m′′ such that !m¡impl
k !m′′¡impl

k !m′, then either !m¡inst !m′

or ?m¡impl
k !m′. In the 0rst case, if !!m¡impl

k !!m′ did not hold, ¡impl
k ∪{(!!m′; !!m)}

would be cycle-free. Any extension of this relation to a total order would be ¡trace
t

for an impl-trace t that is not inst out-implementable, and thus not inst2-
implementable. In the second case we have !!m¡impl

k ?m¡impl
k !m′¡impl

k !!m′.
• If there is at least one output event !m′′ such that !m¡impl

k !m′′¡impl
k !m′, then, using

the induction hypothesis, we have !!m¡impl
k !!m′′¡impl

k !!m′.

For the third case a similar reasoning gives ei¡
impl
k ei+1. Thus, in all cases we obtain

ei¡
impl
k ei+1 and therefore also e¡

impl
k e′ which was to be proven.

Second, suppose that ¡i2
k =¡

impl
k . Let t be an impl-trace of k, and let m;m′ ∈M .

Suppose that from(m)= from(m′) and that !m¡trace
t !m′. Then we have that !m¡trace

t !m′

implies !m¡impl
k !m′. Then, by the de0nition of ¡i2, we have !!m¡i2

k !!m
′. Since we

assumed that ¡i2
k =¡

impl
k we also have !!m¡impl

k !!m′, and therefore !!m¡trace
t !!m′.

Reversely, suppose that !m�trace
t !m′. With a fully analogous argument we ob-

tain !!m �trace
t !!m′. The proof that to(m)= to(m′)⇒ (?m¡impl

k ?m′ ⇔ !!m¡impl!!m′)
is analogous.

In the following theorem we list the characterisations for implementability we have
given in this paper and we add characterisations for the implementabilities not yet
characterised. An overview is presented in Fig. 23.

Theorem 41. (1) An MSC k is nobufw-implementable if and only if ¡w
k is cycle-free.

(2) An MSC k is nobufs-implementable if and only if it has exactly one
msc-trace, and that trace is nobuf-implementable.

(3) An MSC k is globals-implementable if and only if for each pair of messages m
and m′ either both !m¡msc

k !m′ and ?m¡msc
k ?m′, or both !m′¡msc

k !m and ?m′¡msc
k ?m

hold.
(4) An MSC k is globalw-implementable if and only if ¡g

k is cycle-free.
(5) An MSC k is inst outs-implementable if and only if ¡io

k =¡
msc
k .

(6) An MSC k is inst ins-implementable if and only if ¡ii
k =¡

msc
k .
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Fig. 23. Overview.

(7) An MSC k is inst2s-implementable if and only if ¡i2
k =¡

impl
k .

(8) An MSC k is instw-implementable if and only if ¡io
k is cycle-free.

(9) For any msc-trace t of an MSC k, k is pair-implementable if and only if t is
pair-implementable.
(10) An MSC k is always msg-implementable.

Proof. (1) See Lemma 36.
(2) If the MSC k is nobufs-implementable it has one trace because ¡msc

k is a total
order (Lemma 37).

(3) See Lemma 39.
(4) See Lemma 31.
(5) See Lemma 29.
(6) See Lemma 29.
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(7) See Lemma 40.
(8) See Lemma 23.
(9) First, if k is pair-implementable, it is pairs-implementable and thus every trace t

of k is pair-implementable. Second, if a randomly chosen trace t is pair-implementable,
then k is pairw-implementable, and thus pairs-implementable.
(10) See Lemma 28.

6. Related work

In this section we will compare our conclusions with those found in related literature.
In [6] Charron-Bost et al. discuss three di4erent implementations for MSC-like di-

agrams: Realizable with Synchronous Communication (RSC), Causally Ordered (CO)
and FIFO. They also de0ne A (asynchronous), but this is (just like msg in our hier-
archy) used to denote the set of all allowable diagrams, not some subset. They 0nd
that there is a strict inclusion RSC⊂CO⊂FIFO⊂A.

Theorem 42. The implementations that in [6] are named RSC and FIFO are equivalent
to the implementations nobufw, and pair. The implementation CO is strictly between
the implementations instw and pair.

Proof.

• RSC-nobufw: De0nition 3.6 in [6] states, after translating it into our terminology,
that a computation is RSC if and only if there is a trace t for which for each m∈M
we have that the set {x∈C | !m¡trace

t x¡trace
t ?m} is empty, which is equivalent to

the de0nition that is obtained by combining Lemma 16 and De0nition 20.
• FIFO-pair: The de0nition for FIFO in [6] (De0nition 3.3) translates to (by rewriting
the terminology of Charron-Bost et al. in ours): !m¡msc

k !m′ ∧ from(m)= from(m′)∧
to(m)= to(m′)⇒ ?m¡msc

k ?m′, or from(m)= from(m′)∧ to(m)= to(m′)⇒ (!m¡msc
k

!m′ ⇒ ?m¡msc
k ?m′), which is seen to be equivalent to the de0nition in Lemma 16

once it is realised that (for the basic MSCs considered here) to(m)= to(m′)⇒ (?m
¡msc
k ?m′ ∨ ?m′¡msc

k ?m) and from(m)= from(m′)⇒ (!m¡msc
k !m′ ∨ !m′¡msc

k !m).
• CO: That the class of pair-implementable MSCs is strictly greater than that of
CO-implementable MSCs is shown in [6]. Remains to be shown that the class
of CO-implementable MSCs is strictly greater than that of instw-implementable
MSCs. Remains to be shown that the class of CO-implementable MSCs is strictly
greater than that of instw-implementable MSCs. The de0nition of CO as given in [6]
(De0nition 3.4) can be translated to to(m)= to(m′)∧ !m¡msc

k !m′ ⇒ ?m¡msc
k ?m′. An

example of an MSC that is CO-implementable, but not instw-implementable, is
the MSC lobster in Fig. 24. It is CO-implementable, because there is no pair of
messages with to(m)= to(m′) where !m and !m′ are ordered, but it is not instw-
implementable, as can for example be seen by the fact that !a¡msc!c and !b¡msc!d,
and thus ?a¡io?c and ?b¡io?d, while at the same time we clearly have ?c¡io?b
and ?d¡io?a, so ¡io contains a cycle.
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Fig. 24. MSC to distinguish CO- and instw-implementability.

It remains to be proven that each instw-implementable MSC is also CO-imple-
mentable. We do this using contraposition. So, let k be an MSC that is not CO-
implementable. We then have that there are messages m and m′ with !m¡msc

k !m′,
?m �¡msc

k ?m′ and to(m)= to(m′). From the last two facts we can derive that ?m′¡msc

?m, and thus we have both ?m¡io?m′ (because !m¡msc
k !m′) and ?m′¡io?m (because

?m′¡msc?m), so the MSC k is not instw-implementable.

Another paper in which di4erent communication models for MSC have been studied,
is [2]. Although some of their communication models are similar to some of ours,
the works cannot be directly compared, because of the di4erent focus. Whereas our
question is whether an MSC can be implemented in a given communication model,
their question is whether an MSC will run as expected if it is implemented on a given
communication model.
Their main point of focus is the problem of race conditions, in which two messages

which might be supposed by the user to be received in the order prescribed by the MSC,
might in reality arrive in the reverse order. The communication model inOuences both
which messages the user assumes to arrive in the correct order and which messages
actually do.
This line of thought has been extended in [26]. There a set of channels is assumed,

which can be any communication model between pair and msg (other possible models
can be inserted easily, but were not looked at because of the speci0c subject of the
paper, namely characterisation of an MSC in SDL). Then, for each message it is
checked which messages on the same channel that have to be dealt with later may
have been received earlier.

7. Concluding remarks and future research

We have considered communication models for asynchronous communication in
Message Sequence chart. These models consist of FIFO bu4ers for the sending and
reception of messages. By varying the locality of the bu4ers we have arrived, in a
systematic way, at 25 models for communication. With respect to traces, consisting of
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putting a message into a bu4er and removing a message from a bu4er, there are seven
di4erent models.
By lifting this implementability notion from traces to MSCs in two ways, strong and

weak, we obtain fourteen models. After identi0cation, ten essentially di4erent models
on the level of MSCs remain.
For de0ning the models we have used the notion of impl-traces; these are a natural

extension of normal msc-traces if a message can pass two bu4ers on its way from
source to destination.
In this paper, we have only considered basic message sequence charts. An interesting

question is how to transfer the notions and properties de0ned for this simple language
to the complete language MSC. As many of our theorems rely on the fact that the
events on an instance are totally ordered, an extension to MSC with more sophisticated
ordering mechanisms (e.g., coregion and causal ordering) will imply a revision of the
hierarchy. Another interesting question is whether the implementation properties are
preserved under composition by means of the operators of MSC.
Furthermore, we have restricted ourselves to the treatment of architectures in which

each message has exactly one possible communication path and where each such path
contains at most two bu4ers. The extension to more Oexible architectures is non-trivial
and is expected to lead to an extension of the hierarchy.
An important assumption that we have made in this paper, which is often not true

in real-life examples, is the assumption of homogeneity, that is, the assumption that
all instances have exactly the same type of bu4ers. In real life it may for example
well be the case, that there is more than one channel between two instances, but
some channels are still used for more than one message, thus creating an architecture
somewhere between our ‘one bu4er per pair’ and ‘one bu4er per message’. This subject
has been given some attention in [2,26].
Finally, our assumption of in0nite FIFO bu4ers may be relaxed, allowing other types

of bu4ers and bu4ers with 0nite capacity.
The results obtained in this paper form a solid base for several applications. First,

they allow us to discuss the relation between di4erent variants of MSC, such as Inter-
workings [22]. Interworkings presuppose a synchronous communication mechanism. An
Interworking can be considered as the restriction of the semantics of an MSC to only
the nobuf-implementable traces. Thus, an MSC can be interpreted as an Interworking
if and only if there is at least one such trace, i.e., the MSC is nobufw-implementable.
This implies that using the theory in this paper, a formal semantics of Interworkings
can be derived in a systematic way from the semantics of MSC. We also envisage
tool-oriented applications. One could for example consider a tool in which a user can
select a communication model, draw an MSC and invoke an algorithm to check if the
MSC is implementable with respect to the selected model. Alternatively, the user can
provide an MSC and use a tool to determine the minimal architecture, according to
our hierarchy, which is needed for implementation.
Often, a user is interested in the question whether all msc-traces of his MSC are

implementable with respect to a certain architecture. We can also envisage two possible
uses relying on the implementability of a single msc-trace. First, MSCs are often used
to display one single msc-trace, for example if it is the result of a simulation run. In this
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case, the question is not whether the MSC is strongly or weakly implementable, but
whether the implied msc-trace is implementable (as de0ned in Section 3). Second,
given an MSC, a user may want to know if at least one msc-trace is implementable
and if so, which trace that is. He is interested in a witness. Both applications can easily
be derived from the results on weak implementability. The algorithms (see above) can
easily be modi0ed to check implementability of a given msc-trace and to produce a
witness.
A more involved application would be to use a selected communication model to

reduce the set of msc-traces de0ned by a given MSC to only those traces that are
implementable on the given model. In this way, the semantics of an MSC would be
relative to some selected model.
For most of these applications computer support would be useful. Based upon the

de0nitions presented in this paper, it is feasible to derive eIcient algorithms. All
models in the weak spectrum can be characterised in terms of the cycle-freeness of
an extended order relation, see Theorem 41. An example of such a characterisation
is given in Theorem 23. There it is stated that an MSC k is inst outw-implementable
i4 the order ¡io

k (which is an extension of ¡msc
k ) is cycle-free. Thus checking if an

MSC is inst outw-implementable boils down to checking cycle-freeness of this relation.
This immediately gives a wide range of eIcient implementations for checking class-
membership as many algorithms are known in literature for determining whether a
given order is cycle-free. For the strong spectrum characterisations are given as well.
Note that the MSCs that distinguish between the di4erent models are surprisingly

simple. This indicates that the di4erences between the classes will appear not only in
theory, but also in practice. Besides that, for these distinguishing MSCs, it is not easy
to indicate at a glance to which class they do or do not belong. This also supports
our view that mechanical support for determining whether a given MSC belongs to a
given class is necessary.
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