
Probabilities in the TorX test derivation algorithmL.M.G. Feijs, N. Goga, S. MauwDepartment of Mathematis and Computing Siene,Eindhoven University of Tehnology,P.O. Box 513, NL{5600 MB Eindhoven, The Netherlands.feijs�win.tue.nl, goga�win.tue.nl, sjouke�win.tue.nlAbstratWe propose to extend the TorX algorithm for automati test derivation with ex-pliit probabilities. Using these probabilities, the generated test suite an be tunedand optimised with respet to the hanes of �nding errors in the implementation.The main result of this paper is a theorem that shows that the optimal balane be-tween giving stimuli and heking responses is determined by the ration of inputs andoutputs along a typial test trae. A simulation experiment demonstrates that thisgives rise to an improved error detetion apability.Keywords: testing, test generation, probabilities, tools.1 IntrodutionThe part of the software development proess where the appliation of formal methods isexpeted to have onsiderable impat in the near future is the phase of testing. Manualderivation and exeution of test ases leads to an expensive, time onsuming and sub-optimal testing proess. We think that problem areas suh as regression testing andonformane testing will bene�t from a more formal approah. In the work presented inthis paper, the entral onepts of SDL and MSC play an important role: inputs, outputsand event sequenes (although the preise syntax of SDL and MSC is not needed forthe theoretial analysis given here). Moreover we will employ HMSC whih we foundonvenient to represent the test suite of our example.The formal underpinning of the testing proess gains more and more interest, as wit-nessed by the development of theoretial foundations for testing and orresponding toolsupport. In 1998 a onsortium of Duth researh groups from aademia and industryfounded the Côte-de-Resyste projet (CdR, for short) to join e�orts in the formalizationand automatization of the testing pratie.The CdR projet aims at developing theory, methodology and tools whih supporta formal approah towards testing. The development of the CdR tools is embedded inthe design of an open tool environment, baptized TorX. This tool environment allowsfor an easy integration of a wide range of third party tools whih support the spetrumfrom (automati) test generation to (automati) test exeution (suh as the SDT tools[KGHS98℄, Lotos tools [FKG96℄, Verilog tools). For a detailed desription of the CdRprojet and the TorX tools, we refer to [Tret99℄.Of ourse, tools developed within the projet an also be linked to the TorX toolarhiteture. The tool development within the CdR projet urrently onentrates on



building a tool for automati test generation. Several ase studies have already beenperformed with this tool (see e.g. [BFVT99℄).The TorX test generation tool is based on the ioo theory (input/output onformane)developed at the University of Twente ([Tret96℄). The heart of the theory is the ioorelation, whih formally expresses the assumptions about stimulation and observationduring testing. An algorithm for deriving a sound and omplete test suite with respetto this relation forms the enter of the TorX test generation tool. This algorithm isinorporated in suh a way that it an be used both for on{the{y testing (test generationand test exeution are ombined in one phase) and bath{oriented testing (test generationand test exeution are separated phases).This algorithm is non-deterministi in the sense that in every state where the systeman do both an input and an output a hoie must be made between these two. In pratiea random generator was used to resolve this non-determinism, whih resulted in an equaldistribution of hanes.Pratial experiments showed that in most ases this equal distribution served verywell, but in some ases we enountered an anomalous situation. A ase study, onerningan elevator, indiated that the derived test suite was not optimal. Analysis showed thatthe test suite mostly ontained rather uniform test ases with respet to the ratio of inputsand outputs. Thereby negleting a olletion of unbalaned behaviours whih were veryinteresting for this partiular ase study. The natural solution to this problem is to extendthe test derivation algorithm with expliit probabilities.This researh on the role of probabilities in test derivation is also inspired by ourexperiments, performed with the SDT tool set from Telelogi (see [KGHS98℄), on testingthe onferene protool (see [BFVT99℄). This ase study also showed that a poor test suitemay result when simply seleting at random between inputs and outputs.These are the main motivations for the researh presented in this paper. We will studythe impat of parameterizing the TorX test derivation algorithm with the probabilities ofseleting between inputs and outputs. Furthermore, we will derive the optimal values forthese probabilities given a desired ratio between inputs and outputs in the test ases.This paper is strutured as follows. In Setion 2 we explain the ioo theory and theTorX test derivation algorithm. The proposed modi�ation is presented in Setion 3. Herewe also alulate optimal values for the probabilities and we analyse a simple example.Our �ndings are summarized in Setion 4.AknowledgementsWe thank the members of the CdR projet for their o-operation and support. In partiularwe thank Jan Tretmans for the stimulating disussions, Axel Belinfante for implementingour ideas in the TorX tools, and Jan Feenstra for proof reading our paper.2 Tehnial preliminariesThe TorX test generation algorithm is at the heart of the TorX arhiteture. The algorithmhas a sound theoretial base, known as the ioo theory. Below, we will give a brief summaryof this theory. For a full desription of the ioo theory see [Tret96℄.In this theory the behaviours of the implementation system (physial, real objet)are tested by using the spei�ation system (mathematial model of the system). The



behaviours of these systems are modelled by labelled transition systems. A labelled tran-sition system is de�ned as follows.De�nition 2.1 A labelled transition system is a quadruple hS;L;!; s0i, where� S is a (ountable) non empty set of states;� L is a (ountable) non empty set of observable ations;� !� S � (L [ f�g) � S is a set of transitions;� s0 2 S is the initial state.The universe of labelled transition systems over L is denoted by LT S(L).A labelled transition system is represented in a standard way as a graph or by aproess{algebrai behaviour expression.The speial ation � 62 L denotes an unobservable ation. A trae � is a sequeneof observable ations (� 2 L�) and ) means the observable transition between states(s �) s0 indiates that s0 an be reahed from state s after performing the ations fromtrae �). The empty trae is denoted by �. In some ases the transition system will notbe distinguished from its initial state (or the state in whih it is). Furthermore we willuse s a! (or s �)) to denote 9s0 : s a! s0 (or 9s0 : s �) s0).De�nition 2.2 Consider a labelled transition system p = hS;L;!; s0i and let s 2 S,� 2 L� and A � L.1) traes(s) =def f� 2 L� j s �)g (the set of traes from s);2) init(s) =def f� 2 L [ f�g j s �!g (the set of initial ations of a state);3) s after � =def fs0 2 S j s �) s0g (the set of reahable states after � 2 L�).A failure trae is a trae in whih both ations and refusals, represented by a setof refused ations, our. For this, the transition relation ! is extended with refusaltransitions (self{loop transitions labelled with a set of ations A � L, expressing that allations in A an be refused) and ) is extended analogously to '), with ' 2 (L [ P(L))�(' is a trae whih leads to a state of the system in whih all the ations from a set A � Lan be refused).De�nition 2.3 Let p 2 LT S(L); then we de�ne the failure traes of p as follows.Ftraes(p) =def f' 2 (L [ P(L))� j p ')g.A speial type of transition systems, the input{output transition systems, is used. Inthese systems the set of ations an be partitioned in a set of input ations LI and a set ofoutput ations LU . The universe of suh systems is denoted by IOT S(LI ; LU ). BeauseIOT S(LI ; LU ) = LT S(LI [ LU), these input{output transition systems are also labelledtransition systems.For modelling the absene of outputs in a state (a quiesent state) a speial ationnull (Æ in the notation of [Tret96℄, null 62 L ) is introdued and the transformation of theautomaton into a suspension automaton is used. Formally a state s is quiesent (denotedas null(s)) if 8a 2 LU [ f�g; 6 9s0 : s a! s0.



De�nition 2.4 Let p 2 LT S(L) (L = LI [ LU ). Then the suspension automaton of p isthe labelled transition system hSnull; Lnull;!null; q0i 2 LT S(Lnull), where� Snull = P(S) n f;g;� Lnull =def L [ fnullg;� !null=def fq a�!null q0 j q; q0 2 Snull; a 2 L; q0 = [s2qfs0 2 S j s a! s0g;9s 2 q; s0 2q0; s a! s0g [ fq null�!null q0 j q0 = fs 2 q j null(s)g; q 6= ;; q0 6= ;g;� q0 =def fs0g.The suspension traes of p 2 LT S(L) (p is a normal automaton) are: Straes(p) =defFtraes(p) \ (L [ fLUg)� (for LU ouring in a suspension trae, we write null).Informally, an implementation i is a orret implementation with respet to the spei�-ation s and implementation relation iooF if for every trae � 2 F eah output or abseneof outputs, that the implementation i an perform after having performed sequene �, isspei�ed by s.De�nition 2.5 Let i 2 IOT S(LI ; LU ), s 2 LT S(LI [ LU ) ( i and p are normal au-tomata), and F �L�null, then:i iooF s =def 8� 2 F : out(i after �) � out(s after �)where out(p after �) =def init(p after �) \ (LU [ fnullg).The orretness of an implementation with respet to an implementation is heked byexeuting test ases (whih spei�es a behaviour of the implementation under test). A testase is seen as a �nite labelled transition system whih ontains the terminal states Passand Fail. An intermediate state of the test ase should ontain either one input or a set ofoutputs. The set of outputs is extended with the output � whih means the observationof a refusal (detetion of the absene of ations). A test suite is a set of test ases. Whenexeuting a test ase against an implementation the test ase an give a Pass verdit ifthe implementation satis�es the behaviour spei�ed by the test ases or a Fail verdit ifthe implementation does not satisfy the behaviourThe onformane relation used between an implementation i and a spei�ation s isiooF . In the ideal ase, the implementation should pass the test suite (ompleteness) ifand only if the implementation onforms. In pratie beause the test suite an be verylarge, ompleteness is relaxed to the detetion of non{onformane (soundness). Exhaus-tiveness of a test suite means that the test suites an only assure onformane but it analso rejet onforming implementations. For deriving tests the following spei�ation ofan algorithm is presented in [Tret96℄:The spei�ation of the test derivation algorithmLet S be the suspension automaton of a spei�ation and let F � traes(S); then a testase t 2 T EST (LI ; LU ) is obtained by a �nite number of reursive appliations of one ofthe following three nondeterministi hoies:� 1.(*terminate the test ase*)t = Pass;



� 2.(*supply an input for the implementation*)Take a 2 LI suh that Fa 6= ;t = a; tawhere Fa = f� j a� 2 Fg , S a!null Sa and ta is obtained by reursively applyingthe algorithm for Sa and Fa;� 3.(*hek the next output of the implementation*)t = ∑fx;Fail j x 2 LU [ f�g; x 62 out(S); � 2 Fg+∑fx;Pass j x 2 LU [ f�g; x 62 out(S); � 62 Fg+∑fx; tx j; x 2 LU [ �; x 2 out(S)gwhere x is a notation for x in whih the null ation is replaed by � ation and vieversa, Fx = f� j x� 2 Fg, S x!null Sx and tx is obtained by reursively applying thealgorithm for Sx and Fx. The summation symbol ∑ denotes the generalized hoieas usual in proess algebra.In the implementation of the algorithm initially F equals traes(S).The algorithm has three Choies. In every moment it an hoose to supply an inputa from the set of inputs LI or to observe all the outputs (LU [ f�g) or to �nish. When it�nishes, beause this does not mean that the algorithm deteted an error, it �nishes witha Pass verdit. After supplying an input, the input beomes part of the test ase and thealgorithm is applied reursively for building the test ase. When it heks the outputs,if the urrent output is present in out(S), that output will beome also part of the testase and the algorithm will be applied reursively. If the output is not present in out(S)the algorithm �nishes in almost all the ases with a Fail verdit (if the empty trae isonsidered an element of F ). If the empty trae is not in F then the verdit will be Pass.This algorithm saties�es the following properties (for a proof see [Tret96℄):Theorem 2.6 1. A test ase obtained with this algorithm is �nite and sound with respetto iooF .2. The set of all possible test ases that an be obtained with the algorithm is exhaustive.For a good understanding of the algorithm let us take the following example: thesuspension automaton for a simple andy mahine (Figure 1). The label set of thisautomaton is the union of the set of inputs LI = fbutig and of the set of outputsLU = fnull; liqu; houg (for the suspension automaton the set of outputs is extendedwith the null output whih denotes the absene of outputs). After pushing the buttonbuti, the mahine will produe liquorie liqu or nothing null. When the button buti ispushed again the andy mahine will produe liquorie liqu or hoolate hou. If nothingwas produed and the button is pressed, the mahine will provide only the hoolate.After the hoolate or the liquorie are given, pushing the button will give only a voidresponse (null output).The implementation of this algorithm in the TorX arhiteture usually generates thetest ases on{the{y. To simplify our explanation below we willl use a bath orientedapproah. The set F equals the set traes(andy).A possible exeution sequene of the algorithm on this automaton is:
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9Figure 1: The suspension automaton for a andy mahine� First Choie 2 (*selet an input*) (S = S1, F = traes(S1)):t = buti; t1;� To obtain t1 the algorithm hooses Choie 2 (S = S2, F = traes(S2)):t1 = buti; t2;� Now Choie 3 is seleted (*hek the output*) for omputing t2 (S = S5, F =traes(S5), � 2 F ):t2 = liqu; t21 + hou; t22 + �; Fail;� For liqu the algorithm �nishes (Choie 1) (S = S7, F = traes(S7)):t21 = Pass;� For hou the algorithm again heks the output (Choie 3):t22 = liqu; Fail + hou; Fail + �; t31 (S = S8, F = traes(S8), � 2 F );� If the � ation is produed, it hooses Choie 1 (S = S8, F = traes(S8)):t31 = Pass.The resulting test is shown in Figure 2. Beause in the ioo theory the test ontainsthe output � for the observation of a refusal, the output � will replae the null output.3 Adding probabilitiesOur optimization of the TorX algorithm introdues global probabilities p1, p2 and p3 tothe three hoies of the algorithm. To get started, we assume that the probabilities p1, p2and p3 are globals by whih we mean that they do not depend on the spei� moment ofgeneration. Furthermore, we have:p1 + p2 + p3 = 1; p1 6= 0; p2 6= 0; p3 6= 0The modi�ed TorX algorithm now reads as follows:
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Figure 2: The test generated for the andy mahine� Choose Choie 1 (*terminate the test ase*) with probability p1;� Choose Choie 2 (*supply an input for the implementation*) with probability p2;Selet every input with the same probability;� Choose Choie 3 (*hek the next output of the implementation *) with probabilityp3;An important observation is that the extended algorithm still produes the same testases. We only ontrol the hane of a trae to our. This means that it keeps theproperties of the old algorithm (Theorem 2.6): a generated test-ase is �nite, sound andthe union of all tests is exhaustive.After having extended the algorithm with probabilities, the question whih still remainsis: what value we should give to these probabilities?The answer to this question is related to the introdutory problem of ratio betweeninputs and outputs. Given a required ratio between the inputs and the outputs in a testtrae what values should the probabilities of sending an input and reeiving an outputhave? The answer will be formulated by the Lemma and the Theorem whih will follow.Lemma 3.1 will provide a formula for the probability that the algorithm will arrive atthe end of one given trae. Theorem 3.2 will ompute a on�guration for p1, p2 and p3whih maximizes the probability to arrive at the end of one given trae.Now, for a good understanding, we will de�ne a speial tree whih will be used in thesubsequent proofs. We all this tree the behaviour tree and it is formed by the union of allthe traes derived from a spei�ation S. An example of this tree is given in Figure 3.This behaviour tree is omposed of the following kinds of nodes:� Final: in this node the trae of the test stops with a verdit (Pass, Fail);� Intermediate: this node ontains the name of the input or of the output.In the behaviour tree in Figure 3 the Pass Final state appears twie in one level beauseone Pass verdit an be generated from Choie 1 and one from Choie 3. When we referto a given trae we refer to a trae of this tree whih starts from the Root state and stopssomewhere in the tree (the traes an be in�nite). The signals from the trae are mapped
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Figure 3: A probabilisti walk through the behaviour treeon the internal nodes of the behaviour tree. In the behaviour tree all the tests generatedfor the algorithm are inluded.Lemma 3.1 Consider an arbitrary but �xed �nite trae whih does not end in a �nalverdit. Let n be the number of inputs on the trae and p the length of the trae. Let nl,l = 1; 2; 3::n be the number of inputs whih an be seleted when the l-th input on the traeis seleted. Let Pk, k = 1; 2; 3::p � n be the probability of the k-th output in the trae tobe produed by the implementation (IUT). Then the probability to generate this trae withthe TorX algorithm is omputed in the following way:P = n
∏l=1( 1nl � p2)� p

∏k=n+1(Pk � p3)The full proof of the theorem an be found in Appendix A. Here an example will begiven whih is a good illustration for the way of omputing the probability to generate agiven trae (see Figure 4).Example In the onsidered trae there are two inputs Ia, Id and three outputs Ob, Oand Oe. The number of all inputs whih an be seleted when Ia is seleted is �ve and for Idit is three. Then the probability that the input Ia or the input Id is hosen from the set ofinputs is 15 respetively 13 (independent events). The probability that the implementation(IUT) sends the output Ob, O or Oe is 13 , 14 respetively 15 . The probability of arrivingin the Root state is always one. With this the omputation of arriving at the end of thistrae is:P (S1) = P (Root) = 1P (S2) = P (S1)� P (Choie 2)� P (Selet input Ia) = 1� (15 � p2)P (S3) = P (S2)� P (Choie 3)� P (Ob) = 1� (15 � p2)� (13 � p3)P (S4) = P (S3)� P (Choie 3)� P (O) = 1� (15 � p2)� (13 � p3)� (14 � p3)P (S5) = P (S4)�P (Choie 2)�P (Selet input Id) = 1�(15�p2)�(13�p3)�(14�p3)�(15�p2)P (S6) = P (S5)�P (Choie 3)�P (Oe) = 1�(15�p2)�(13�p3)�(14�p3)�(15�p2)�(12�p3) =
∏2l=1( 1nl � p2)�∏5k=3(Pk � p3)with n1 = 5; n2 = 3; P3 = 13 ; P4 = 14 ; P5 = 12
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∏k=n+1(Pk � p3) = pn2 � pm3 � n
∏l=1 1nl � n+m

∏k=n+1Pk )P (p1; p2) = pn2 � (1� p1 � p2)m � n
∏l=1 1nl � p

∏k=n+1PkNow we observe that that ∏nl=1 1nl and ∏n+mk=n+1 Pk are onstants whih will be alledC1 and C2.



dP (p1; p2) = �P�p1 (p1; p2)dp1 + �P�p2 (p1; p2)dp2dP (p1; p2) = 0) { �P�p1 (p1; p2) = 0�P�p2 (p1; p2) = 0�P�p1 (p1; p2) = C1 � C2 �m� (�1)� pn2 � (1� p1 � p2)m�1�P�p2 (p1; p2) = C1 �C2 � (n� pn�12 � (1� p1 � p2)m +m� (�1)� pn2 � (1� p1 � p2)m�1)�P�p1 (p1; p2) = 0)C1 �C2 �m� (�1)� pn2 � (1� p1 � p2)m�1 = 0) { p2 = 0 orp2 = 1� p1The points are (p1; 0); (p1; 1� p1). �P�p2 (p1; p2) = 0)C1 � C2 � pn�12 � (1� p1 � p2)m�1 � (n� (1� p1 � p2)�m� p2) = 0)










p2 = 0 orp2 = 1� p1 orn� n� p1 � n� p2 �m� p2 = 0) p2 = nn+m � (1� p1)The points are (p1; 0); (p1; 1� p1); (p1; nn+m � (1� p1)).The graph of the funtion is skethed in Figure 5.
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P (p1; 0) = 0 point of minimum beause the probability is 0 � P � 1 ;P (p1; 1� p1) = 0 point of minimum;P (p1; nn+m� (1�p1)) = C1�C2� ( nn+m)n� (1� nn+m)m� (1�p1)n+m point of maximum.We have the following:� P maximal ) (1� p1)n+m maximal ) p1 ! 0;� p3 = 1� p1 � p2 = mn+m � (1� p1).b) Let us onsider a �nite trae with ratio nm where n is the number of inputs and m thenumber of outputs on the trae. Then to maximize the probability to generate this traewe have (point a))p2 = nn+m � (1� p1)) p2 = nmnm+1 � (1� p1) andp3 = mn+m � (1� p1)) p3 = 1nm+1 � (1� p1)Example
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Figure 6: Tests derived from andy mahine represented in an HMSCLet us onsider all exeution traes of the tests generated from the andy mahinewith a length less then or equal to three. These traes are represented in the HMSC (see



[MR97℄) from Figure 6. We use HMSC (High level Message Sequene Chart) to representthe test ases beause this is a onvenient tehnique whih supports reusing parts of thediagramIn the HMSC the Fail traes fnull liqu, null hou, null null liqu, null null hougare not represented beause in onformane with our observation, only hoosing to hekthe outputs will not lead to interesting test ases (so for the sake of the simpliity weexluded them). Our example works even if these traes are present in the set of Failtraes onsidered.The set of all the Fail traes are represented in Figure 7. In this �gure, also the ratiobetween the number of inputs in that trae and the number of outputs is represented. Sofor example the trae buti null liqu has one input and two outputs so the ratio is 12 ; thesame proedure is applied to every trae in the set.
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Figure 7: Fail traes represented in HMSCIn this set of Fail traes there are two traes with a ratio between inputs and outputs of01 , six with a ratio 12 , one with ratio 11 and one with ratio 21 . It is lear that the number oftraes with ratio 12 is the longest and we will hoose it to be the ratio between inputs andoutputs ( nm = 12 ). For omputing the new on�guration of the probabilities (Theorem 3.2)we hoose p1 = 0 if the length of the trae is less than three and p1 = 1 if the lengthis equal to three. Beause the theorem applies to the traes whih do not end in a Failverdit, in the omputation of p2 and p3, p1 will be zero. So by applying the Theorem 3.2b) we obtain:p2 = 1212+1 � (1� 0) = 13 � 0:33andp3 = 112+1 � (1� 0) = 23 � 0:67The old on�guration of the TorX algorithm of (p2; p3) was (0:5; 0:5); the new one is(0:33; 0:67). For omputing the probability of getting a Fail when the algorithm runs onetime against an erroneous implementation (whih has all the Fail traes from the set) �rstthe probability of every individual Fail trae should be omputed. The probability thatthe TorX algorithm generates and exeutes a trae is given by Lemma 3.1. A graphial
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Figure 8: The probability of generating and exeuting the trae buti null liqurepresentation for the omputation of the probability of the trae (buti null liqu) is givenin Figure 8 for the old and the new on�guration of (p2; p3).After performing the trae buti, the IUT an send three outputs null, liqu, and hou, sothe probability of sending one of it, suh as null, is 0:33. In the same way the probabilityof sending liqu is also 0:33. By applying the lemma it results that the probability ofgenerating and exeuting the trae buti null liqu is 0:0014 for the old on�guration ofthe probabilities and 0:0018 for the new one. In a similar way the probabilities for everyindividual trae whih ends in a Fail are omputed.It is not entirely trivial to see that optimizing for eah individual Fail trae leads toa better error detetion apability for the suite as a whole. In order to show that this isthe ase, we made some further alulation in the ontext of this example. The generallaims about better error detetion apability are outside the sope of the present paper.The probability Pr(Fail, TorX, 1) of getting a Fail verdit when the TorX algorithmruns one against the IUT is obtained by summing the probabilities of every individualFail trae; so for the old on�guration this probability is Prold(Fail, TorX, 1 ) = 0:51and for the new on�guration it is Prnew( Fail, TorX, 1 ) = 0:64. This simple aselearly demonstrates that a modi�ation of the probabilities an lead to a higher haneof disovering an erroneous implementation in the same amount of algorithm runs. Thisis also lear from the graph in Figure 9 in whih the probability of getting a Fail (Pr(Fail, TorX, n)) in funtion of the number n of test generation{exeutions is expressed (forthe old and for the new probabilities on�guration).



(p ,p  )= (0.5, 0.5)
21

Pr( Fail, TorX, n)

n1 2 3 4

0.2

0.4

0.6

0.8

1
21

(p ,p  )= (0.33, 0.67)

Pr( Fail, TorX, n)=1-(1-Pr(Fail, TorX,1)) nFigure 9: The probability of getting a Fail in funtion of the number of test runs4 ConlusionsIn this paper we proposed to modify the TorX test derivation algorithm suh that theprobabilities of the non-deterministi alternatives are made expliit.We argued that in some ases the generated test suite an be optimized by adaptingthe values of these probabilities. Case studies gave evidene that assuming an equaldistribution of hanes, the TorX algorithm will sometimes yield relatively few reallyinteresting test ases. Our alulations on the example of the andy mahine also showedthat an appropriate hoie of the probabilities improves the ability to detet errors in theimplementation.An important question is, of ourse, whether there are heuristis whih help in seletingappropriate values for the probabilities. In the ase studies whih we performed, learlythe ratio between the number of inputs and the number of outputs in a test trae inuenedthe quality of the test ases. Therefore, we derived in this paper the optimal values forthe probabilities in the algorithm given some prefered ratio between the number of inputsand outputs.The proposed modi�ation of the TorX algorithm has already been implemented. Itis an option for futher researh to study the impat of this work on the ongoing series ofase studies performed in the CdR projet.An important option for follow up of the urrent researh is the extension of thetesting theory from [HT96℄ in more ways with probabilities. In partiular the study of theprobabilisti overage seems promising.Referenes[Tret96℄ J. Tretmans. Test generation with inputs, outputs and repetitive quiesene.Software|Conepts and Tools, 17(3):103{120, 1996. Also: Tehnial Report No.96-26, Centre for Telematis and Information Tehnology, University of Twente,The Netherlands.[BFVT99℄ A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N. Goga, L. Feijs, S. Mauw,L. Heerink. Formal test automation: A simple experiment. In G. Csopaki, S. Dibuz,and K. Tarnay, editors, 12th Int. Workshop on Testing of Communiating Systems,pages 179{196. Kluwer Aademi Publishers, 1999.
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O Passwu Figure 10: Root situation.The Choies: 1, 2 and 3 are independent events.The Root state has probability 1 (sure event).The probability to selet an input Ii; i = 1; 2; 3::u from the set of the inputs is 1u (inde-pendent events).Now:a)Node= Contains an input:PN = P(Choie 2)�P(Selet an input from the set of inputs) = p2�1u = 1
∏l=1( 1n1�p2)� 1

∏k=2(Pk�p3)



with n1 = u;a)Node= Contains an output OiPN = P(Choie 3)� P(output Oi is sent ) = p3 � POi = 0
∏l=1( 1nl � p2)� 1

∏k=1(Pk � p3)with Pk = POi ;2)Indution step:Let us assume that the probability for the urrent node is omputed likePN = nN
∏l=1( 1nl � p2)� pN

∏k=nN+1(Pk � p3)then the probability to arrive in one of the next nodes (exept Final state) is omputedlike: PN+1 = nN+1
∏l=1 ( 1nl � p2)� pN+1

∏k=nN+1+1(Pk � p3)
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tvFigure 11: Intermediary situation.The probability to selet an input from the set of inputs in this ase is 1v (independentevents):Now:a)Next node= Contains an input:PN+1 = P(Current node) � P(Choie 2)� P(Selet an input from the set of inputs) == (∏nNl=1( 1nl � p2)�∏pNk=nN+1(Pk � p3))� p2 � 1v == ∏nN+1l=1 ( 1nl � p2)�∏pN+1k=nN+1+1(Pk � p3)with nN+1 = nN + 1, pN+1 = pN , Pk = Pk�1, nnN = v;b)Next node= Contains an output Oi:PN+1 = P(Current node) � P(Choie 3)� P(Oi) == (∏nNl=1( 1nl � p2)�∏pNk=nN+1(Pk � p3))� p2 � POi == ∏nN+1l=1 ( 1nl � p2)�∏pN+1k=nN+1+1(Pk � p3)with nN+1 = nN , pN+1 = pN + 1 OpN+1 = Oi.


