
Test Seletion, Trae Distane and Heuristis �L.M.G. Feijs, N. Goga, S. Mauw yfeijs, goga, sjouke�win.tue.nl J. Tretmans ztretmans�s.utwente.nlSeptember 12, 2001, version 0.1Abstrat: Sine exhaustive testing is in general impossible, an important step inthe testing proess is the development of a arefully seleted test suite. Seletionof test ases is not a trivial task. We propose to base the seletion proess on awell{de�ned strategy. For this purpose, we formulate two heuristi priniples: theredution heuristi and the yling heuristi. The �rst assumes that few outgoingtransitions of ertain states show essentially di�erent behaviour. The seond assumesthat the probability to detet erroneous behaviour in a loop dereases after eah orretexeution of the loop behaviour. We formalize these heuristi priniples and we de�nea overage funtion whih serves as a measure for the error{deteting apability of atest suite. For this purpose we introdue the notion of a marked trae and a distanefuntion on suh marked traes.Keywords: test seletion, test overage, trae distane, test seletion heuristis, editdistane.1 IntrodutionSystemati testing is an important tehnique to hek and ontrol the quality of softwaresystems. Testing onsists of systematially developing a set of experiments or test ases,then running these experiments on the software system that has to be tested, also referredto as the IUT (the implementation under test), and subsequently onluding from theobservations made during the exeution whether the IUT behaved as expeted leading toa verdit about the IUT's orretness. Beause of time and resoure limitations, any formof testing an only exerise a small subset of all possible system behaviour. Therefore,testing an never give ertainty about the orretness of a system; it an only inreaseon�dene.Sine in pratie exhaustive testing is impossible, an important step in the testingproess is the development of a arefully seleted test suite, i.e., a set of test ases. Suh atest suite should have a large potential of revealing errors in the implementation. Moreover,we would like to be able to ompare di�erent test suites in order to selet the best one,and to quantify their error-deteting apability.The seletion of an appropriate set of tests from all possible ones (usually in�nitelymany test ases), is not a trivial task. We refer to this task as test seletion. Traditionally,test seletion is based on a number of heuristi riteria. Well-known heuristis inludeequivalene partitioning, boundary value analysis, and use of ode-overage riteria likestatement-, deision- and path-overage [Mye79℄. Although these riteria provide someheuristis for seleting test ases, they are rather informal and they do not allow to measurethe error-deteting apability of a test suite.If test ases are derived from a formal spei�ation, in partiular if it is done algorith-mially using tools for automati test generation, e.g., Autolink [SKGH97℄, TGV [JM99℄�This researh was supported by the Duth Tehnology Foundation STW under projet STW TIF.4111:Côte de Resyste { COnformane TEsting of REative SYSTEms; URL: http://fmt.s.utwente.nl/CdR.yEindhoven University of Tehnology, P.O. Box 513, NL{5600 MB Eindhoven, The NetherlandszUniversity of Twente, P.O. Box 217, 7500 AE Enshede, The Netherlands



or TorX [BFV+99℄, then the test seletion problem is even more apparent. These testtools an generate a large number of test ases, when given a spei�ation in the appropri-ate formalism, without muh user intervention. All these generated test ases an detetpotential errors in implementations, and errors deteted with these test ases indeed indi-ate that an implementation is not orret with respet to its spei�ation. However, thenumber of potentially generated test ases may be very large, or even in�nite. In orderto ontrol and get insight in the seletion of the tests, and by that get on�dene in theorretness of an IUT that passes the tests, it is important that the seletion proess isformally desribed and based on a well-de�ned strategy.It should be noted, however, that test seletion is an ativity that in priniple annotbe based solely on a formal spei�ation of a system. In order to deide whih testases are more valuable than others, either extra information outside the realm of thespei�ation formalism is neessary, or assumptions about the ourrene of errors in theimplementation must be made. Suh extra information may inlude knowledge aboutwhih errors are frequently made by implementers, whih kind of errors are important,e.g., in the sense of having atastrophi onsequenes, what funtionality is diÆult toimplement, whih funtionality is ruial for the well funtioning of the system, et. Anapproah to formalizing this extra information was given in [BTV91℄. On the other hand,assumptions an be made about the ourrene of errors in implementations, e.g., thaterrors will not our in isolation, i.e., if some behaviour is erroneous then there is a largeprobability that some other behaviour lose to it is also erroneous. So we only have totest one of these behaviours (equivalene partitioning: the behaviours are equivalent withrespet to the ourrene of errors). Another often used assumption is that errors aremost likely to our on the boundaries of valid data intervals (boundary value analysis).This paper approahes the problem of test seletion by making assumptions in anautomata-based, or labelled transition system-based formalism. Setion 2 introdues thelabeled transition systems and automata. Two di�erent kinds of assumptions are intro-dued and expressed as heuristi priniples in Setion 3 starting with the ideas of [CG96℄.The �rst one, alled redution heuristi, assumes that few outgoing transitions of er-tain states show essentially di�erent behaviour. The seond one, referred to as ylingheuristi, assumes that the probability to detet erroneous behaviour in a loop dereasesafter eah orret exeution of the loop behaviour. After that we propose a mathematialframework, de�ning a heuristi as a funtion on the set of behaviours (traes). This isdone in Setion 4. When we want to make the two heuristis more preise, de�ning themas funtions aording to the de�nition from Setion 4, we observe that an appropriatebehaviour representation for them is needed. Therefore in Setion 5 we de�ne the markedtrae representation. After these preparations the de�nitions of the heuristis as funtionson marked traes are straight forward (Setion 6). Subsequently, the notion of isolationand loseness of errors is formalized in Setion 7 by de�ning a distane funtion betweenbehaviours. This idea is taken from [ACV93, ACV97℄ and extended on marked traes.The trae distane implements the onsidered heuristis in the sense that the traes whihare seleted by the heuristis are remote from eah other. Every trae whih is exludedby the heuristis is lose to one of the seleted traes. A overage funtion whih mayserve as a measure for the error-deteting apability of a test suite is de�ned based onthe maximum distane between seleted and non-seleted behaviours and a formula forapproximating the overage is given in Setion 8.2 PreliminariesThe basi formalism for our disussion about test seletion is the labelled transition system,or the automaton. A labelled transition system provides means to speify, model, analyzeand reason about (onurrent) system behaviour. A labelled transition system is de�nedin terms of states and labelled transitions between states. In this setion we reall some2



basi de�nitions.De�nition 2.1 A labelled transition system is a 4-tuple hQ;L; T; q0i, where Q is a non-empty set of states, L is a set of labels, T � Q � L � Q is the transition relation, andq0 2 Q is the initial state.The labels in L represent the ations of a system. An ation a 2 L is exeutable instate q 2 Q if (q; a; q0) 2 T for some state q0 2 Q, whih is said to be the new state afterexeution of a; we also write q a! q0. A �nite sequene of pairs hstate, ationi ending intoa state is alled a path. Similarly, a �nite sequene of ations is alled a trae. The set ofall traes over L is denoted by L�, with � denoting the empty sequene. Abusing notation,we will use p to denote both the labelled transition system and the urrent (or initial)state of the system.The traes of a labelled transition system p are all sequenes of ation that p anexeute from its initial state q0: traes(p) =def f � 2 L� j q0 �! g. Here we use thefollowing additional de�nitions (n 2 IN, i � n, q, q0, qi 2 Q, ai 2 L, � 2 L�):q a1�:::�an! q0 =def 9q0; : : : ; qn : q = q0 a1! q1 a2! : : : an! qn = q0q �! =def 9q0 : q �! q0For our presentation and formalization we use minimal, deterministi, �nite-state tran-sition systems. A �nite-state labelled transition system has a �nite number of states, i.e.,Q is �nite. A transition system is deterministi if for any state q 2 Q and ation a 2 Lthere is at most one suessor state, i.e., T : Q � L ! Q is a (partial) funtion. A tran-sition system is minimal if there are no equivalent states, i.e., no two states with exatlythe same traes, whih means: 69q; q0 2 Q : traes(q) = traes(q0). We (ab)use the wordautomaton for these minimal, deterministi, �nite-state transition systems.Although it may seem a severe limitation to restrit to automata an important formaltest theory, viz. ioo-testing [Tre96℄, an be expressed, for the larger part, in terms ofautomata. So the test seletion approah whih is presented in this paper an be integratedwith ioo-testing.In testing, the traes of the minimal, deterministi, �nite automata are used. A om-plete (maximal) test suite for an automaton spei�ation s is expressed as traes(s).However, even if s is �nite-state, its set of traes will usually be in�nite and ontain traesof unbounded length. Hene, a omplete test suite will have in�nitely many tests of un-bounded length. Suh a test suite an never be exeuted within any reasonable limits oftime and resoures. Consequently, the problem of test seletion onsists of seleting a �nitesubset T � traes(s), suh that we end up with a reasonably sized set of bounded-lengthtest ases.The hallenge of test seletion now is to hoose T suh that the resulting test suitekeeps a large error-deteting apability. Moreover, we wish to quantify this apability inorder to ompare and selet test suites. The next setions will present and formalize anapproah to seletion and quanti�ation.3 Introdution to heuristis, distane and overageIn this setion we introdue the onepts of heuristis and overage. Two spei� heuristiswill be proposed in Setion 3.1. They are illustrated by an example in Setion 3.2.3.1 The heuristis priniples for the test seletionAs motivated in Setion 2, the spei�ation is seen as a minimal �nite-state automaton.The spei�ation has a set of traes whih usually is too large; for this reason, we want toobtain a smaller set of traes. As we explained in Setion 1, this goal an be reahed bymaking assumptions on automata, assumptions whih are expressed as heuristi priniples.The heuristi priniples with whih we are working in this paper are:3



� Redution: if the spei�ation automaton ontains for ertain states a large numberof outgoing transitions, only a small number of these transitions need to be seleted;� Cyling: eah yle in the automaton needs to be traversed only a limited numberof times by every single trae.3.2 A �rst illustration of the test seletionNow we will give an example on whih we will apply our heuristis for test seletion.Let s be the spei�ation automaton from the left{hand side of Figure 1. The spe-i�ation has four states. The labelset is L = fb; ; d; e; fg [ fai j i 2 INg and the initialstate is the state I. This state has in�nitely many outgoing transitions (fai j i 2 INg). Viaa transition ai from the initial state, one arrives at II. This state ontains a yle whihgoes via III using the transitions b and d; the state III ontains another yle, via thetransition . From II one arrives at IV using e or f . For simpliity, we will onsider onlythe traes of s that end in IV. Let T be the set of traes of s.
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IVFigure 1: A minimal automaton of a spei�ationNow let us onsider a0 as being the representative transition in the initial state; byhoosing this transition the Redution heuristi is applied in this state. By this appliationwe redue the labelset to a �nite one L0 = fa0; b; ; d; e; fg. This labelset L0 orresponds tothe redued automaton from the right{hand side of Figure 1. Now our initial set of traesbeomes TRedution and it ontains all the traes of the automaton whih are starting fromstate I, arriving in state IV and going through transition a0 in I (TRedution equals also theset of traes of the redued automaton). In this example one representative is seleted; ina more general example it ould also be two or more of the ai.The following heuristi to be applied is the Cyling heuristi. The traes are ylingvia the states II and III of the automaton. In this automaton the state II has a ylevia the sequene of transitions bd and the state III has another yle via the transition .We an �x the yle limit number to 1 for the yling states II and III. So the transitions from III and bd from II an be traversed only one by every single trae of TRedution.The traes whih respet this ondition and form the set of traes TRedution, Cyling are:TRedution, Cyling = fa0e; a0bde; a0bde; a0f; a0bdf; a0bdfg
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Figure 2: An appliation of the Cyling heuristiThe appliation of the Cyling heuristi is represented graphially in Figure 2. Thefull set is represented at the left{hand side and the redued set at the right. As it an beseen the set TRedution, Cyling is a �nite set and all its traes have a length of at most 5(�nite length).Our method deals with bigger yles as well, suh as going via the transitions bd severaltimes; the tehnique of [ACV93℄ deals only with simple yles { suh as going via transition4



 several times. Another advantage is that with the proposed test seletion tehnique onean deal with an in�nite branhing of transitions (see the initial state of this automaton).As we saw in our example, limiting the yle number impliitly limits the length andtherefore a length heuristi, whih is onsidered by [ACV93℄, is not neessary for us.Now we are going to express the heuristi priniples in terms of distanes among traes.A distane is a measure whih expresses how far apart two traes are. A partiular wayto ompute suh a trae distane is given in Setion 7.2. For getting a feeling of how thetrae distane is related to the heuristi priniples, let us take as an example the distanebetween the traes a0bdf and a0bdbdf . In Figure 3, it an be seen that the distanebetween the traes a0bdf and a0bdbdf is smaller than the distane for example betweena0f and a0bdbdf . This happens beause the trae a0bdf yles one time via the state II,a0bdbdf yles two times and a0f yles zero times. Therefore intuitively, the trae a0bdfshould be loser to a0bdbdf than to the other traes (exatly as we assume in the Cylingheuristi that the later yles are less important, so the distane between two traes whihare yling more often through a state will derease).
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Figure 3: A overing of the initial set using trae distaneIn Figure 3, every trae from the redued set TRedution, Cyling is the enter of a sphere.The initial set T is overed by the redued set TRedution, Cyling, suh that every trae fromT has a orresponding trae in TRedution, Cyling to whih the distane is smaller than agiven limit " (" is the radius of the spheres). This proess of seleting one representative foreah sphere leads to a notion of overage. When taking big spheres only few representativesare seleted and the error detetion apability is low. Small spheres, on the other hand givea large overage. If we sale things in suh a way that 0 � " � 1 , then the overage an beexpressed as 1� ". The overage of the redution from T to TRedution, Cyling is denotedas ov(T; TRedution, Cyling). Therefore we express ov(T; TRedution, Cyling) = 1� ".This gave some intuition about how the heuristis and the trae distane are used inthe test seletion and omputation of the overage. Now we are going to be more formal.4 The trae distane and the test heuristisIn our test seletion method we use heuristis whih are applied on traes and distanesbetween traes. This setion desribes the formal de�nitions of these notions.In a formal way a trae heuristi is a funtion between two sets of traes suh that therange is a proper subset of the domain (so the heuristi redues the size of the initial set).De�nition 4.1 A trae heuristi h is a funtion h : T �! T , where T is a set of traesand Ran(h) � T .De�nition 4.2 Let T be a set. Then a funtion d : T � T �! IR�0 is a distane i�: 1)d(x; x) = 0; 2) d(x; y) = d(y; x); 3) d(x; y) � d(x; z) + d(z; y); for all x; y; z 2 T .In partiular we use De�nition 4.2 for sets of traes and suh distanes are alled traedistanes. The pair (T; d) is a metri spae. It is ustomary to express overages bynumbers in the range [0; 1℄ and therefore we restrit ourselves to distane funtions suhthat 0 � d(x; y) � 1 for all x; y. This an be done without loss of generality (suppose wewould have distanes in [0;1) and " numbers in the range [0;1℄ then we ould sale them5



bak to [0; 1℄ using a suitable monotoni and ontinuous bijetion b : [0;1℄ �! [0; 1℄). Inorder to use a trae distane for test seletion the onept of "{over is useful.De�nition 4.3 A set T 0 is an "{over of T (T 0 � T; " � 0) if for every t 2 T there existst0 2 T 0 suh that d(t; t0) � ".The property of "{over gives rise to the property of total boundedness for a metrispae.De�nition 4.4 A metri spae (T; d) is totally bounded if for every " > 0 it is possibleto �nd a �nite set T" � T suh that T" is an "{over of T with respet to distane d.Now a link between a heuristi and a trae distane is established: if for that heuristithe subset obtained by the appliation of that heuristi is an "{over of the original set,then the trae distane implements the heuristi.De�nition 4.5 Let T be a set of traes and h be a trae heuristi suh that h : T �! T .Let d be a trae distane de�ned on T . Then d implements the heuristi h i�: 9"h � 0 :Ran(h) is an "h{over of T with respet to the distane d.The following de�nition shows how to obtain the overage.De�nition 4.6 Let T be a set of traes and T 0 � T be an "{over of T with respet to atrae distane d. Let "m = inff" � 0 j T 0 is an "{over of Tg be the inferior minimum ofthe " values. Then the overage of T 0 with respet to T is ov(T 0; T ) = 1� "m.5 The marked trae representationWhen we want to make the two heuristis more preise, de�ning them as funtions a-ording to De�nition 4.1, we observe that an appropriate trae representation for themis needed. When we apply the Cyling heuristi on a trae, we observe that the traedoes not have enough information regarding how it was generated, what states it has beengoing through and how often it went through them. As a result, we will represent thetrae in suh a way that the information regarding its generation from the automaton willbe inluded. This leads us to a onept alled marked traes, whih will be developed inSetion 5.1. In general a given trae an be interpreted in several ways as being the re-sult of running through yles in the automaton. This introdues a problem of ambiguitywhih is addressed in Setion 5.2.5.1 The marked traesThe �rst example in this setion will explain why a new representation for the traes isneeded.Example Let us onsider the automaton from Figure 4 and one of its traes abbd. Thistrae is traversing (yling) twie via the state II. But this information is not present inthe trae. Therefore this representation is not appropriate for working with yles. Nowlet us transform it into a path, whih is IaII bIII II bIII IIdIV . We an observe that thepath ontains extra information whih is not needed for yles: for example it ontains thestates I and IV whih are not part of any yle. Summing up the observations, we arriveat the onlusion that a new representation is needed. An intuitive one is a[hbihbi℄2;IIdwhere [hbihbi℄2;II indiates that two yles of the transitions b are performed throughthe state II .As we saw in the introdutory example, we assoiate the yles with how many timesa trae is traversing a state. The name of the state, whih is seen as a mark, will representthe identi�er of the yle. Also we will inlude the number of yles through a state. We6
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Figure 4: A trae whih yles through an automatonall suh an extended trae a marked trae. Now we have all the ingredients to de�ne amarked representation of a trae.De�nition 5.1 Let L be a labelset and Q a set of states. Then a marked trae is indu-tively de�ned by1. a 2 L, � and [ ℄0;q (q 2 Q) are marked traes;2. if u and v are marked traes then uv is a marked trae;3. if u and [�℄n;q (n 2 IN; q 2 Q) are marked traes then [�hui℄n+1;q is a marked trae.In the de�nition from above � is a sequene of type h�1i:::h�ni where �i are markedtraes (i = 1; :::n).Example Some examples of marked traes are: a[hbi℄1;IId and a[hbihbi℄2;IId with II2 Q.We will denote the set of all the marked traes over a labelset L and a set of marksQ as L�Q. The transformation between the marked representation of a trae and a normalrepresentation of a trae an be made easily by eliminating all the parentheses whih ourin the marked representation. For example the marked trae a[hbihbi℄2;IId is transformedin the trae abbd. We will all this transformation unfold.De�nition 5.2 Let L be a labelset, let Q be the set of marks and let L�Q be the set ofmarked traes. Then the funtion unfold : L�Q �! L� whih transforms a marked traeinto a trae is1. if a 2 L; q 2 Q then unfold(a) = a, unfold(�) = �, unfold([ ℄0;q) = �;2. if u and v are marked traes then unfold(uv) =unfold(u)unfold(v);3. if u and [�℄n;q (q 2 Q;n 2 IN) are marked traes thenunfold([�hui℄n+1;q) =unfold([�℄n;q)unfold(u).In the following example, we will illustrate a way in whih a trae an be transformedinto a marked trae. In general, this transformation is not unique. To illustrate this, weneed a more omplex example.Example Consider the automaton from Figure 1. The states of the automaton are markedwith I, II, III, IV. The yling states are the states II and III. Consider the trae a0bdbde.Adding boxes to reet nesting struture, the orresponding path is Ia0 II b III  IIId II b III  III d II eIV . The state II (surrounded with a box in the path) is repeatedthree times. Between two ourrenes of state II in the path, the state III (surroundedwith two boxes) appears twie. If we math every new ourrene of state II in the pathwith its �rst ourrene (we will all this way of mathing the states �rst state mathing),the path will be divided in 4 omponent paths: Ia0II| {z }[hIIbIII IIIdII| {z }ihII bIII IIIdII| {z }i℄2;II IIeIV| {z } .1 2 3 4If we do the same for III in the paths 2) II bIII III dII and 3) II bIII III dII and eliminateall the states, we obtain the marked trae a0[hb[hi℄1;IIIdihb[hi℄1;IIIdi℄2;IIe. This markedtrae orresponds to the initial trae a0bdbde. However, there are also other ways oftransforming it into a marked trae. For example, the states of the same trae an be7



grouped in another way as Ia0II b III  III dII b III  III dII eIV and the same trae hasanother orrespondent marked trae whih is a0b[hihdbihi℄3;IIIde.For this example we see that there is not a unique way of transforming a trae ina marked trae. Therefore we leave it as an option to the implementer (the user ofour theory) to hoose the way by whih he transforms a trae into a marked trae (onealgorithm will be given in the next subsetion { Subsetion 5.2). We will only de�ne theset of marked traes of an automaton whih will be the set of all possible marked traeswhih an be derived from the traes of an automaton. After that we make a partitionon the set of marked traes (an equivalene lass of marked traes ontains all the markedtraes whih unfold to the same trae) and we assume that the implementer hooses a setof representatives from the equivalene lasses of marked traes. Below we will de�ne theset of marked traes of an automaton. In this de�nition, we use C[[x℄℄ to denote a termwith an ourrene of a substring x. C[[ ℄℄ is alled the ontext in whih x ours.De�nition 5.3 Let s be an automaton. Let path(s) be the set of its paths; let Q be theset of its states. Then1. the set of marked paths MPath(s) of s is:(a) if p 2 path(s) then p 2 MPath(s);(b) if m 2 MPath(s), m = C[[p℄℄, p 2 path(s) suh that p = p1qp2q:::qpn, thenC[[p1q[hqp2qi:::hqpn�1qi℄n�2;qqpn℄℄ 2 MPath(s)with q 2 Q, n 2 IN, p1q, qpiq; qpn 2 path(s), i = 2; :::; n � 1;2. the set of marked traes of an automaton is: MTraes(s) = fm jtraej m 2 MPath(s)g,where jtrae transforms a path to a trae by eliminating all the states whih appearin the path and keeping all the labels.At this point it is not neessary to demand that the proedure from step 1.b) is applieduntil it annot be done further; we ome bak to this in Setion 5.2. Considering the waywe onstruted MTraes(s), it is evident that every trae has at least one orrespondingmarked trae. Two marked traes will be equivalent if their unfold will give the sametrae.De�nition 5.4 Let m1;m2 be two marked traes. Then m1 is equivalent with m2, de-noted as m1 � m2, i�: unfold(m1) = unfold(m2).The equivalene relation gives a partition on MTraes(s) in a set of equivalene lasses.By hoosing a representative for every lass, the implementer builds the set of represen-tatives traesm(s). A way to obtain suh a set is given in the beginning of the nextsubsetion. For the remainder of this paper we will work only with the set of representa-tives traesm(s) and we will abuse the words marked trae for suh representative markedtrae.5.2 An algorithm for obtaining a set of representativesIn the beginning of this subsetion we give a way to implement the transformation of atrae in a representative marked trae and to obtain the set of representatives.This set is obtained by applying the following funtion (ALG) on eah trae (path) of a�nite-state minimal deterministi automaton s. The funtion builds a marked trae froma trae using a �rst state math tehnique like the one we used for the trae a0bdbdeat the beginning of the previous example. In ALG we use the following funtion andproedure: 1) the funtion NotRepetitivesState(p;Q), p a path, Q a set of states, returnstrue if every state of p whih is ontained in Q ours only one in p and 2) the proedureDivide(p; Q; q; p1; :::; pn) �nds q 2 Q and splits p in p1; :::; pn (n 2 IN, i = 2; :::; n� 1, p1q,8



qpiq, qpn paths) suh that: i) q 2 Q is the �rst repetitive state in p, ii) p = p1qp2q:::qpnand iii) the set of states of pj does not ontain q (j = 1; :::; n).funtion ALG (p : Path, Q : SetStates) : MarkedTrae;var q : State;p1; :::; pn : (�+Label)(State Label)�(�+State);beginif (NotRepetitiveState(p; Q)) thenreturn p jtrae;elseDivide(p; Q; q; p1; :::; pn);Q = Q n fqg;return ALG(p1q; Q)[hALG(qp2q; Q)i:::hALG(qpn�1q; Q)i℄n�2;qALG(qpn; Q);endInitially, the funtion ALG is applied on a path p and on the set of states Q of theautomaton. When a) p does not ontain states from Q whih are repetitive, ALG returnsthe trae orresponding to p (p jtrae). When a) does not hold, ALG �nds the �rstrepetitive state q 2 Q in p and divides p in n parts p1; :::; pn. Every pi (i = 2; :::; n � 1)lies between two ourrenes of q in p; p1 and pn are the initial part (ending with q)and respetively the last part (starting with q) of p. After this the state q is deletedfrom Q, whih beomes Q n fqg. Making so, terms as [ [ ℄ ;q ℄ ;q in whih q is interpretedtwie as a yle are avoided. Without deletion, the repetition of q an be reinterpretedas a yle by a later all of ALG, when it is applied on a omponent path qpiq. Afterthe transformation of Q, ALG returns the onatenations of the marked traes obtainedby reursively applying the algorithm to the omponents p1; :::; pn, whih is ALG(p1q;Q)[hALG(qp2q; Q)i:::hALG(qpn�1q; Q)i℄n�2;qALG(qpn; Q).The set of representatives is traesm(s) = fALG(p;Q) j p 2 path(s)g. In the remain-der of this paper, in the examples whih we use, we assume that the marked traes aregenerated with ALG from the traes of an automaton.As one an see, our way of building the set of representatives is rather omplex. Onean imagine trivial solutions as for example: every marked trae is the trae itself. But themarked traes built with ALG have nie properties whih are required for the appliationof our test seletion theory. For example the width of suh marked traes is uniformlybounded (Lemma 5.6), a property whih is used in the theorem of total boundedness(Theorem 8.2). The marked traes generated with the trivial solution do not have thisproperty.In onlusion, one we have the set of representatives, we want to know if it has somespei� properties. So for a marked trae of an automaton we want to know if the widthof it is uniformly bounded, and if the nesting depth of it is also bounded. Here uniformlybounded means that the same upperbound applies at all nesting levels. But �rst let usde�ne these terms.De�nition 5.5 Let s be an automaton. Let L be the labelset and Q the set of states ofs. Then the funtion width : traesm(s) �! IN is1. if a 2 L; q 2 Q then width(a) = 1, width(�) = 0, width([ ℄0;q) = 1;2. if u and v are marked traes then width(uv) =width(u)+width(v);3. if u and [�℄n;q (q 2 Q;n 2 IN) are marked traes then width([�hui℄n+1;q) = 1.In the de�nition above the terms [ ℄ ; are ounted as single terms of the marked trae.Example Let us take the trae a0[hbdihbdi℄2;IIf . Thenwidth(a0[hbdihbdi℄2;IIf) = width(a0) + width([hbdihbdi℄2;II) + width(f) = 1 + 1 + 1 = 3The following lemma shows that the width of every marked trae generated with ALGis uniformly bounded. 9



Lemma 5.6 The width of a marked trae generated with ALG from an automaton andthe widths of all its omponent marked traes are less than or equal to 2m� 1, where m isthe number of the states of the automaton. (Without proof)De�nition 5.7 Let s be an automaton. Let L be the labelset and Q the set of states ofs. Then the funtion nesting : traesm(s) �! IN is1. if a 2 L; q 2 Q then nesting(a) = 0, nesting(�) = 0, nesting([ ℄0;q) = 1;2. if u and v are marked traes then nesting(uv) =max(nesting(u);nesting(v));3. if u and [�℄n;q (q 2 Q;n 2 IN) are marked traes thennesting([�hui℄n+1;q) = 1+max(nesting(�),nesting(u)).Example Let us take the trae a0[hbdihb[hi℄1;IIdi℄2;IIf . Thennesting(a0[hbdihb[hi℄1;IIIdi℄2;IIf) = max(nesting(a0);nesting([hbdihb[hi℄1;IIdi℄2;II);nesting(f)) = max(0; 1 +max(nesting(bd);nesting(b[hi℄1;IIId)); 0) = max(0; 2; 0) = 2The following lemma shows that the nesting depth of every marked trae generatedwith ALG is bounded.Lemma 5.8 The nesting depth of a marked trae generated with ALG from an automatonis less than or equal to the number of the states of the automaton. (Without proof)As we motivated before, for applying our theory of test seletion we need some spei�properties to be owned by the set of representatives. So we require for the set of (represen-tative) marked traes of an automaton that the width of every marked trae, the widthsof all its omponent marked traes, and its nesting depth to be uniformly bounded. Inthis subsetion we showed that the marked traes generated with ALG have these prop-erties (Lemma 5.6, Lemma 5.8). Certain algorithms works as well. For example, similarlyas we did in this subsetion, one an prove that the marked traes obtained with a laststate mathing tehnique (the last repetitive state of the path is mathed) have also theseproperties. Independent of the way in whih the set of marked traes is obtained, one ithas the required properties, our test seletion theory an be applied on it.Now we have an algorithm that makes sure that every trae of the automaton has aunique orrespondent representative marked trae, we will work with marked traes inplae of traes throughout the remainder of this paper.6 The heuristis de�ned for marked traesBelow we will de�ne the heuristis in a formal way. As we presented in Setion 3.1, theintuition behind the heuristis Redution and Cyling is that they take into aount twoaspets: the �niteness of 1) the number of outgoing transitions of ertain states and of 2)the number of times eah yle an be traversed by every single trae.When Redution is applied, the labelset L is split in two parts: the seleted labels whihform a �nite set L0 � L and the set of unseleted labels whih is L n L0. This appliationan be seen as the appliation of a mapping funtion trans: L �! L0 whih maps everyunseleted label to a seleted label from L0 and every seleted label to itself. One pratialway to make the seletion and to obtain L0 and trans is by de�ning a distane dL betweenlabels, suh that the metri spae (L; dL) is totally bounded. Let us �x a positive realnumber "L � 0. Now L0 will be a labelset whih is an "L{over of L. The labels whihare remote from eah other (their distane is greater than "L) are seleted and the labelsfrom L n L0 remain unseleted. The funtion trans: L �! L0 an be de�ned in this asesuh that trans(a) = b with a 2 L; b 2 L0 and dL(a; b) minimum.10



For the Cyling heuristi we relate the yles of the automaton to the marked represen-tation of the trae; limiting the numbers of times of traversing the yles means limitingthe powers of the marked symbols in the marked traes. Now, let us de�ne these heuristisin a formal way.De�nition 6.1 Let s be an automaton. Let L be the labelset and Q the set of states ofs. Let L0 � L be a �nite subset of L and let trans: L �! L0 be the mapping funtion.Then the heuristi Redution : traesm(s) �! traesm(s) is1. if a 2 L; q 2 Q then Redution(a) =trans(a), Redution(�) = �, Redution([ ℄0;q) =[ ℄0;q;2. if u and v are marked traes then Redution(uv) =Redution(u)Redution(v);3. if u and [�℄n;q (q 2 Q;n 2 IN) are marked traes thenRedution([�hui℄n+1;q) = [Redution(�),Redution(u)℄n+1;q .Example Let us onsider the automaton from Figure 1. For this automaton the set oflabels is L = f; b; d; e; fg [ fai j i = 0; 1; :::g.Let L0 = fa0; ; b; d; e; fg be a �nite subset of L and trans: L �! L0trans(x) = ( a0 x = ai; i 2 INx otherwiseThen Redution(a3e) =Redution(a3)Redution(e) =trans(a3)trans(e) = a0e.De�nition 6.2 Let s be an automaton. Let L be the labelset and Q the set of states ofs. Let l be the yle limit. Then the heuristi Cyling : traesm(s) �! traesm(s) is1. if a 2 L; q 2 Q then Cyling(a) = a, Cyling(�) = �, Cyling([ ℄0;q) = [ ℄0;q;2. if u and v are marked traes then Cyling(uv) =Cyling(u)Cyling(v);3. if u and [�℄n;q (q 2 Q;n 2 IN) are marked traes then(a) Cyling([�hui℄n+1;q) = [Cyling(�)Cyling(u)℄n+1;q , for l > n;(b) Cyling([�hui℄n+1;q) = [Cyling(�0)℄l;q, for l � nwhere � = h�1i:::h�ni and �0 = h�1i:::h�li is obtained by utting � after lsymbols.Example Let us onsider the automaton from Figure 1. Let us �x l to 2. ThenCyling(a0[hbdihbdihbdi℄3;IIe) =Cyling(a0)Cyling([hbdihbdihbdi℄3;II)Cyling(e) =a0[hbdihbdi℄2;IIeLemma 6.3 Redution(Cyling(x))=Cyling(Redution(x)) (Without proof)7 The trae distane for marked traesIn this setion we make the trae distane more preise, de�ning it as a distane funtionaording to De�nition 4.2. As explained in Setion 4, this gives us an alternative for-malization of the ideas behind the heuristis (they will be ompared in Setion 8). Wewill ombine these ideas with another well{known idea, viz. the edit distane. Setion 7.1introdues the edit distane. After this preparation, the de�nition of the trae distanefuntion an be given (Setion 7.2).7.1 The edit distane between stringsBeause in our trae distane we use the onept of edit distane we shall present this �rst.The onept is applied in problems suh as string searh, words substitution using ditio-naries, et. Informally the edit distane is de�ned as the minimum number of insertions,deletions and substitutions required to transform one string into another.Levenshtein ([Ste92℄) de�ned the edit distane d(x; y) between two strings x and y asthe minimum of the ost of editing x to transform it into y. The ost of editing is the sumof the osts of a number of atomi edit ations. Aording to Levenshtein the osts are asfollows: inserting a symbol osts 1, deleting a symbol osts 1 and hanging an a into a bosts 1 too. 11



Wagner and Fisher ([Ste92℄) generalized the de�nition of Levenshtein by adopting dif-ferent osts for the various atomi edit ations. Aording to Wagner{Fisher transforminga into a b osts w(a; b). Extending this notation, w(a; �) is the ost of deleting a andw(�; b) is the ost of inserting b. Again, the ost of editing is the sum of the osts of theatomi edit ations, and d(x; y) is the minimum ost over all possible edit sequenes thattransform x into y.De�nition 7.1 Let w(a; b) be the weighting for the ost of transforming symbol a insymbol b, w(a; �) be the ost of deleting a and w(�; b) be the ost of inserting b. Of oursew(a; a) = 0. Then the edit distane between the strings x and y is denoted as ED(x; y)and it is omputed as1. ED(au; bv) = min(w(a; b) + ED(u; v); w(a; �) + ED(u; bv); w(�; b) + ED(au; v));2. ED(au; �) = w(a; �)+ED(u; �); ED(�; bv) = w(�; b)+ED(�; v); ED(�; �) = 0;where a; b are symbols and u; v are strings.This de�nition will be used throughout the paper.Example Let us take the labelset L = fa; b; g with the ost 1 for insertion, deletion,and for transforming a symbol in another symbol. The edit distane between a and ba isomputed asED(a; ba) = min(w(a; b)+ED(�; a); w(a; �)+ED(�; ba); w(�; b)+ED(a; a)) = min(1+w(�; a)+w(�; �); 1 + w(�; b) + w(�; a) + w(�; �); 1 +min(w(a; a) + ED(�; �); w(a; �) + ED(�; a);w(�; a) + ED(a; �))) = min(1 + 1; 1 + 2; 1 + 0) = 1So the edit distane between a and ba is 1 whih orresponds to the deletion of b.7.2 De�ning the trae distaneOur test seletion tehnique uses two heuristis. For expressing these heuristis in the traedistane, it is important to remember that in the formalization of the Redution heuristia label distane was used. The inorporation of this heuristi in the trae distane isahieved in a simple way by using the label distane in the formula of the trae distane.Now a solution should be found for the Cyling heuristi.For the Cyling heuristi we simply weight every level k of a yling symbol (a markedtrae of type [ ℄n;q; n 2 IN; q 2 Q) with a weight from a series of positive numbers pk.This series has the property that P1k=1 pk = 1. The logi behind this weighting is thatsumming the weights after a given limit (whih is the yle limit) will ontribute with asmall number reeting our assumption that the �rst yles are more important than thelater yles.We will de�ne the trae distane for all the possible ombinations of the points (1),(2), (3) of De�nition 5.1 (whih are generating marked traes). We summarize theseombinations below� between the marked traes generated with point (1) (suh as [ ℄0;q; q 2 Q and a 2 L)we will de�ne a distane funtion alled AtomiDistane beause these are the atomielements whih form the marked trae; of ourse the AtomiDistane between twolabels will be given by dL, the distane between these labels; between a label and amarked trae suh as [ ℄0;q it will be maximum (one) and between two marked traessuh as [ ℄0;q ,[ ℄0;q0 (q; q0 2 Q; q 6= q0) it will also be one;� between the marked traes generated with point (2) (suh as af or ae) we will use adistane funtion alled EditDistane; we took this option beause these traes aregenerated in a similar style as the strings are formed and it is quite natural to useit beause it ompares in a good way the terms whih form the marked traes (forexample in the traes a0e and a0[hbdi℄1;IIe the edit distane will reognize that thelabels a0 and e from the �rst trae are present in the seond trae);12



� between the marked traes generated with point (3) (suh as building [hbdi℄1;II onewe know that [ ℄0;II is a marked trae) we employ the priniple that yles of di�erentmarks are very remote and hene have the maximum distane, i.e, 1; when dealingwith yles of the same mark we employ weighting fators pk with the e�et thatthe later iterations are onsidered less important than e.g. the �rst iteration; thisan be done by using a funtion EditDistaneWeighted whih is an edit distane forwhih the formula of De�nition 7.1 is modi�ed in suh a way to take into aountthe weights.The rest of the possible ombinations suh as (1) with (2), (2) with (3) et. are de-�ned in a similar style by using one of the tehniques mentioned above (EditDistane orAtomiDistane).We observe also that this trae distane is to be used in the omputation of overagewhih should be in the range [0; 1℄. For simplifying the omputation of overage, wewant the trae distane values to be in the range [0; 1℄. This an be done by dividing allthe above mentioned values (generated with an EditDistane or AtomiDistane) by themaximum width of the marked traes from traesm(s) (the maximum width is �nite, seeSetion 5.2). For ompleting the piture it is neessary to add that the trae distanebetween a null trae (�) and any other marked trae is maximum (1).Now we have all the ingredients to de�ne a trae distane on marked traes. We will allit d. In the de�nition, the distanes already mentioned (EditDistane and AtomiDistane)will be used; also it is impliitly assumed that the de�nition is symmetri in the sense thatd(x; y) = d(y; x), x and y being marked traes and that d(x; x) = 0.As explained above (�rst bullet), the funtion AtomiDistane deals with the ases �,a 2 L and [ ℄0; . We generalize it to marked traes of the form [ ℄ ; as well.De�nition 7.2 Let s be an automaton. Let L be the labelset of s, dL the label distanede�ned on it and Q the set of states of s. The metri spae (L; dL) is totally boundedand dL has all its values in the range [0; 1℄. Let lm be the maximum of the width of themarked traes from traesm(s). Let pk (k = 1; 2; :::) be a series of positive numbers suhthat P1k=1 pk = 1. The trae distane d is symmetri in the sense that d(x; y) = d(y; x), xand y being marked traes and that d(x; x) = 0. Then1. d(a; b) = AtomiDistane(a;b)lm ;d(a; �) = d(�; [ ℄0;q) = 1;d(a; [ ℄0;q) = AtomiDistane(a;[ ℄0;q)lm ;d([ ℄0;q; [ ℄0;q0) = AtomiDistane([ ℄0;q ;[ ℄0;q0)lmwith a; b 2 L; q; q0 2 Q;2. d(a; uv) = EditDistane(a;uv)lm ;d(�; uv) = 1;d([ ℄0;q; uv) = EditDistane([ ℄0;q ;uv)lmwith u; v marked traes and a 2 L; q 2 Q;3. d(a; [uhvi℄n+1;q) = AtomiDistane(a;[uhvi℄n+1;q)lm ;d(�; [uhvi℄n+1;q) = 1;d([ ℄0;q; [uhvi℄n+1;q) = AtomiDistane([ ℄0;q ;[uhvi℄n+1;q0 )lmwith v and [u℄n;q0 marked traes (n 2 IN; q0 2 Q) and a 2 L; q0 2 Q;4. d(uv; rt) = EditDistane(uv;rt)lmwith u; v; r; t marked traes; 13



5. d(uv; [rhti℄n+1;q) = EditDistane(uv;[rhti℄n+1;q)lmwith u; v; t; [r℄n;q marked traes (n 2 IN; q 2 Q);6. d([uhvi℄n+1;q ; [rhti℄n0+1;q0) = AtomiDistane([uhvi℄n+1;q ;[rhti℄n0+1;q0)lmwith v; t; [u℄n;q; [r℄n0;q0 marked traes (n; n0 2 IN; q; q0 2 Q);where� AtomiDistane(x; y) = 8>>><>>>: dL(x; y) x; y 2 LEditDistaneWeighted(x; y) x = [ ℄n;q; y = [ ℄n0;q; q 2 Qn; n0 2 IN; n 6= 0; n0 6= 01 otherwise� EditDistane(uv; rt) = min(AtomiDistane(u; r) + EditDistane(v; t);AtomiDistane(u; �) + EditDistane(v; rt);AtomiDistane(�; r) + EditDistane(uv; t));EditDistane(uv; �) = AtomiDistane(u; �)+EditDistane(v; �);EditDistane(�; rt) = AtomiDistane(�; r)+EditDistane (�; t);EditDistane(�; �) = 0with u; v; r; t marked traes;� EditDistaneWeighted([hu1i:::huni℄n;q; [hv1i:::hvpi℄p;q) = EDW 1([hu1i:::huni℄n;q; [hv1i:::hvpi℄p;q)with ui and vj marked traes (i = 1; :::; n, j = 1; :::; p, n; p 2 IN, q 2 Q).We add some explanation. It is easy to hek that the de�nition of EditDistaneand EditDistaneWeighted are opied from De�nition 7.1 exept for the fat that suitableweighting fators pk have been inorporated. To omplete the de�nition we only have togive the auxiliary EDWEDW k([hui�℄h;q; [hvi�0℄g;q) = min(pk � d(u; v) + EDW k+1([�℄h�1;q; [�0℄g�1;q);pk � d(u; �) + EDW k+1([�℄h�1;q; [hvi�0℄g;q);pk � d(�; v) + EDW k+1([hui�℄h;q; [�0℄g�1;q));EDW k([hui�℄h;q; [ ℄0;q) = pk � d(u; �) + EDW k+1([�℄h�1;q; [ ℄0;q);EDW k([ ℄0;q; [hvi�0℄g;q) = pk � d(�; v) + EDW k+1([ ℄0;q; [�0℄g�1;q);EDW k([ ℄0;q; [ ℄0;q) = 0with k; h; g 2 IN, q 2 Q and u; v; [�℄h�1;q; [�0℄g�1;q marked traes;The parameter k in EDW k indiates the position at whih the next edit ation takesplae. Please note that the reursive de�nition of EDW k is well de�ned beause at leastone of the right{hand sides of the equation is one symbol shorter than the orrespondingleft{hand side (therefore, the fat that k is inreasing auses no problem). The base aseis EDW k([ ℄0;q; [ ℄0;q) = 0. We will illustrate how the EditDistaneWeighted funtionis working. Let us onsider two strings ab and , (although EditDistaneWeighted isde�ned on marked traes, for making the example more understandable, let us showhow it works on ommon strings). For transforming one string into another, there are�ve possible ombinations: 1)(ab; �), 2)(ab; �), 3)(�ab; ��), 4)(a�b; ��), 5)(ab�; ��). TheEditDistaneWeighted will be the minimum from the osts of the �ve ombinations. Theost for every ombination is omputed as the sum of the edit ations multiplied withthe orresponding weights. For example, the ombination (ab�; ��), whih means twoinsertions followed by one deletion, we enounter weighting fators for d(a; "), d(b; ") andd(�; ), whih are p1, p2 and p3, respetively. The ost of this ombination will be p1 �d(a; ") + p2 � d(b; ") + p3 � d("; ). In a similar style the ost of the other ombinations is14



omputed and the minimum is hosen for EditDistaneWeighted.Example Let us onsider the automaton from Figure 1. For this automaton the maximumwidth of the marked trae is 3. Let pk = 12k ; k = 1; 2; :::. Let dL be the following labeldistanedL(x; y) = 8><>: 0 x = yj 14i+1 � 14j+1 j x = ai; y = aj ; i; j 2 IN1 otherwise1. Let us onsider the traes a0e and a0[hbdi℄1;IIe.d(a0e; a0[hbdi℄1;IIe) = 13 � (EditDistane(a0e; a0[hbdi℄1;IIe)) = 13 � (AtomiDistane(�;[hbdi℄1;II)) = 13 .The trae distane reognizes that the symbols a0 and e from the �rst trae arepresent in the seond trae.2. The yling e�et:Let us take the traes a0[hbdi℄1;IIe, a0[hbdihbdi℄2;IIe and a0[hbdihbdihbdi℄3;IIe;d(a0[hbdi℄1;IIe; a0[hbdihbdi℄2;IIe) = 13�(EditDistane(a0[hbdi℄1;IIe; a0[hbdihbdi℄2;IIe)) =13 � (EditDistaneWeighted([hbdi℄1;II; [hbdihbdi℄2;II)) = p23 = 112 ;d(a0[hbdihbdi℄2;IIe; a0[hbdihbdihbdi℄3;IIe) = 13�(EditDistane(a0[hbdihbdi℄2;IIe; a0[hbdihbdihbdi℄3;IIe)) = 13 � (EditDistaneWeighted([hbdihbdi℄2;II ; [hbdihbdihbdi℄3;II)) = p33 =124 .When two marked traes are yling more times through the same yle, the valuesof the trae distane start to derease.3. The redution e�et:Let us take the traes a0e, a1e and a2ed(a0e; a2e) = 13 � (EditDistane(a0e; a2e)) = dL(a0;a2)3 = 0:233 ;d(a1e; a2e) = 13 � (EditDistane(a1e; a2e)) = dL(a1;a2)3 = 0:063 .When the label distane between the labels (whih ompose the marked traes) isdereasing, the trae distane is also dereasing.8 Transforming the heuristis into a overageThe trae distane formula depends on the label distane dL whih implements the Re-dution heuristi and the weights pk whih implement the Cyling heuristi. On the otherhand, by hoosing for eah automaton s a �nite set L" � L whih is an "L{over of L withrespet to dL and a yling limit l, a �nite set of marked traes T � traesm(s) an beobtained. This is done by the appliation of the Cyling and the Redution heuristis ontraesm(s) by taking T =Ran(Cyling Æ Redution). Now for this T and using d we want toompute its "{over of traesm(s) so that we an ompute the overage ov(T; traesm(s)){ see De�nition 4.6. Intuitively " should depend on "L and l. Its formula is given byTheorem 8.1.The next theorems are about other properties of the trae distane d: Theorem 8.2shows that for any desired " it is possible to obtain an "{over by hoosing a suitableyle limit and a suitable label approximation, with other words that the metri spae(traesm(s); d) is a metri spae that is totally bounded. Theorem 8.3 shows that thedistane d implements the Redution and Cyling heuristis.Theorem 8.1 Let s be an automaton. Let L be the labelset of s and dL the label dis-tane de�ned on it. The metri spae (L; dL) is totally bounded and dL has all its values15



in the range [0; 1℄. Let l be the yle limit. Let pk (k = 1; 2; :::) be a series of posi-tive numbers suh that P1k=1 pk = 1. Let lm be the maximum of the width and z themaximum of the nesting depth of the marked traes from traesm(s). Let L" � L bean "L{over of L. Then the �nite set T =Ran(Redution Æ Cyling) of traes obtainedby the appliation of the two heuristis on traesm(s) is an "{over of traesm(s) with" = "z and "0 = "L; for i = 1; :::; z : "i = Plk=1 pk � (maxj=0;:::;i�1("j)) +P1k=l+1 pk;"i = maxyles=0;:::;lm( yles�"i+(lm�yles)�"Llm ). (Without proof)The following theorem shows that the metri spae (traesm(s); d) is a totally boundedmetri spae.Theorem 8.2 Let s be an automaton. Let L be the labelset of s and dL the label distanede�ned on it. The metri spae (L; dL) is totally bounded and dL has all its values in therange [0; 1℄. Let pk (k = 1; 2; :::) be a series of positive numbers suh that P1k=1 pk = 1. Letlm be the maximum of the width and z the maximum of the nesting depth for the markedtraes from traesm(s). Then for every " a positive real number in the range [0; 1℄, thereexists a yling limit l and a label approximation "L with "L =P1k=l+1 pk � "2z suh thatthe �nite set T =Ran(Redution Æ Cyling) of traes obtained by the appliation of the twoheuristis on traesm is an "{over of traesm(s) and the metri spae (traesm(s); d) istotally bounded. (Without proof)The following theorem shows that the trae distane d implements the Cyling and theRedution heuristis, in the sense of De�nition 4.5.Theorem 8.3 Let s be an automaton. Let L be the labelset of s and dL the label distanede�ned on it. The metri spae (L; dL) is totally bounded and dL has all its values in therange [0; 1℄. Let l be the yle limit. Let pk (k = 1; 2; :::) be a series of positive numberssuh that P1k=1 pk = 1. Let lm be the maximum of the width and z the maximum of thenesting depth for the marked traes from traesm(s). Then the distane d implements theRedution and the Cyling heuristis. (Without proof)For the omputation of the overage we approximate the minimum "m from De�ni-tion 4.6 with the "z omputed in Theorem 8.1. We will illustrate the omputation of theoverage in the following example.Example Consider the automaton from Figure 1. Let us �x the �nal state to be IV.Let us onsider the redued set L" = fa0; b; ; d; e; fg whih is an "L{over of the labelsetL with "L = 0:25 ("L is omputed with respet to the dL de�ned in the example fromSetion 7.2). For this automaton the maximum width is lm = 3 and the maximum nestingdepth is z = 2. Let us �x the series pk = 12k (k 2 IN) and in the beginning l = 1.Then the set of traes T whih is obtained by the appliation of the heuristisRedutionand Cyling is an "{over of the whole set of traes traesm(s) with " omputed with theformula from Theorem 8.1 as1. l = 1, L" = fa0; b; ; d; e; fg"0 = "L = 0:25; "1 =P1k=1 pk � "0 +P1k=l+1 pk = 0:252 +P1k=l+1 12k = 0:63;"1 = maxyles=0;:::;3( yles�"1+(lm�yles)�"Llm ) = 0:63; " = "2 = 0:81;The overage is omputed via De�nition 4.6 and it is ov(T; traesm(s)) = 1 � " =0:19;2. l = 2, L" = fa0; b; ; d; e; fgWhen we enlarge the set T to T 0 for l = 2 we �nd that ov(T 0; traesm(s)) = 0:51;3. l = 1, L"0 = fa0; a1; b; ; d; e; fgWhen we enlarge the set T to T 00 for L"00 = fa0; a1; b; ; d; e; fg we �nd that "00L = 0:06and that ov(T 00; traesm(s)) = 0:29. 16



In this example, one an see that the overage inreases more by adopting a highervalue for the yling limit than by using a larger label subset. Consequently, one anonlude that it is better to inrease the yling limit for obtaining a better overage. Butthis is not always true beause we de�ned spei� values for pk and dL (for other values,to inrease the label subset will be better).It an be seen from this example that the monotoniity property required in [BTV91℄that T � T 0 ) ov(T ) � ov(T 0) is respeted by our overage. From an intuitive pointof view this property is reasonable: if one wants a better overage, one needs to generatemore tests.We want to prove it in the general ase. For this we will make an assumption whihis quite natural: for a label set L when we have L" and L"0 suh that these sets are an"L{over and respetively an "0L{over of L, L" � L"0 then "L � "0L.Theorem 8.4 Let s be a minimal �nite deterministi automaton. Let L be the labelset ofs and dL the label distane de�ned on it. The metri spae (L; dL) is totally bounded anddL has all its values in the range [0; 1℄. Let l and l0 be two yle limits (l � l0). Let lmbe the maximum of the width and z the maximum nesting depth of the marked traes fromtraesm(s). Let pk (k = 1; 2; :::) be a series of positive numbers suh that P1k=1 pk = 1.Let L" � L be an "L{over of L and L"0 � L be an "0L{over of L suh that L" � L"0 and"L � "0L. Let T =Ran(Redution Æ Cyling) and T 0 =Ran(Redution Æ Cyling) be the two�nite sets of traes obtained by the appliation of the two heuristis on traesm(s) usingL", l and respetively L"0, l0. Then ov(T; traesm(s)) � ov(T 0; traesm(s)). (Withoutproof)9 ConlusionsIn this paper we have studied two heuristis for reduing the number of traes in a testsuite. The underlying assumption is that when automatially generating a set of traes,many traes will show similar behaviour. Test traes an be deleted without essentiallyreduing the error detetion power of the test suite.The �rst heuristi studied deals with restriting the branhing degree of the nodes,when representing a set of test ases as a �nite automaton. The basi idea is that inpratie a high branhing degree is generated beause at the branhing point an ation isallowed whih is parameterized by an element from a (large) data domain. The observationis that only a few values from suh a data domain will show essentially di�erent behaviour.The seond heuristi onerns the number of times a yle in a �nite automaton rep-resentation may be traversed. This is onneted to the assumption that only for a fewnumbers of traversals the test ases will show essentially di�erent behaviour.The fat that we studied only these two heuristis in this paper, does not mean thatthese are the only interesting heuristis. More heuristis an be de�ned, e.g. with respetto the general length of a trae and with respet to the uniformity of the number ofoutgoing transitions from a state. We embedded the two heuristis hosen in a moregeneral framework whih allows the extension of our work with other heuristis.A heuristi is a general guideline for reduing test suites, whih must be made morepreise to be pratially appliable. Espeially for the yling heuristi we had to introdueadditional notation. The reason is that the yling struture of a trae through a �niteautomaton must be made expliit. We introdued marked traes for this purpose, whihenabled us to extend the work on yle redution by Vuong [ACV93, ACV97℄.In order to introdue a notion of overage for the test suites redued by means of theabove mentioned heuristis, we de�ned a trae distane on marked traes. The results ofour studies an be used to e�etively alulate the overage of a test suite redued withour tehniques. 17



Although our formal de�nitions of Redution and Cyling work on large, sometimeseven in�nite sets this need not ause pratial or algorithmi problems. For example, thepratial generation of traes ould be done in a similar way to [ACV97℄, starting witha �rst trae and then suppress the generation of a subsequent trae if it is lose to analready generated trae. Other solutions ould be based on a suitable transformation ofthe automaton, as in fat we did in Figure 1. A similar remark applies to the alulationof the " value for a generated test suite. A solution is to hoose l and "L and alulate "arithmetially using the results of Setion 8.One issue deserves attention, viz. the hoie of representatives embodied in the algo-rithms of Setions 5.1 and 5.2. At �rst sight, the reader may think that the distane dde�ned in Setion 7.2 is independent of the hoie of the representatives. However, thisdoes not hold in general beause of the essential ambiguity in the onept of yle whenusing an automaton as a spei�ation.The proposed test seletion tehnique an be ompared to the existing theories in thisarea. In partiular, these are the hypothesis theory developed by [CG97℄ and the traedistane theory of [ACV93, ACV97℄. The hypothesis theory embodies the trae distanetheory (see [CG97℄), but the nie thing about trae distane theory is that it gives ameasure for the degree to whih a redued set of traes approximates the original one. Sowe hose an approah whih ombines these two theories. In our view, �rst the heuristis(test hypotheses in the theory of [CG97℄) are to be de�ned. After that, based on theseheuristis a trae distane is built. This gives the possibility to make a test seletion witha given " approximation. The hange of the heuristis leads to the hange of the traedistane used in test seletion.We have started work on implementing our tehniques in the TorX tool environment([BFV+99℄). An assumption for implementing our work is that a label distane exists.Beause the TorX tools support the input of �nite automata de�ned in LOTOS [Bri88℄,we de�ned a label distane on LOTOS labels. This is not trivial beause LOTOS labelsmay be parameterized by arbitrary data types.Another restriting requirement is that we assume the spei�ation to be given as aminimal �nite deterministi automaton. Some test generation tools already provide suh aformat, but others support general �nite automata. Determinizing a �nite automata mayost exponential time. In this ase it would be interesting to know whether the theoretialresults ahieved in this paper ould be extended to non deterministi automata.Referenes[ACV93℄ J. Alilovi-Curgus and S.T. Vuong. A metri based theory of test seletion and overage.In A. Danthine, G. Ledu, and P. Wolper, editors, Protool Spei�ation, Testing, andVeri�ation, volume XIII, pages 289{304. North-Holland, 1993.[ACV97℄ J. Alilovi-Curgus and S.T. Vuong. Sensitivity analysis of the metri based test se-letion. In M. Kim, S. Kang, and K. Hong, editors, Int. Workshop on Testing ofCommuniating Systems, volume X, pages 200{219. Chapman & Hall, 1997.[BFV+99℄ A. Belinfante, J. Feenstra, R.G. Vries, J. Tretmans, N. Goga, L. Feijs, S. Mauw, andL. Heerink. Formal test automation: A simple experiment. In G. Csopaki, S. Dibuz,and K. Tarnay, editors, Intenational Workshop on Testing of Comuniation Systems,pages 179{196. Kluwer Aademi, 1999.[Bri88℄ E. Brinksma. On the design of extended lotos. Phd. Thesis, University of Twente,Netherland, 1988.[BTV91℄ E. Brinksma, J. Tretmans, and L. Verhaard. A framework for test seletion. In B. Jon-sson, J. Parrow, and B. Pehrson, editors, Protool, Spei�ation, Testing, and Veri�a-tion, volume XI, pages 233{248. North-Holland, 1991.18
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