
MSC and dataL.M.G. Feijs1;2, S. Mauw21Philips Research Laboratories Eindhoven.Prof. Holstlaan 4, 5656 AA, Eindhoven, The Netherlands.2Department of Mathematics and Computing Science,Eindhoven University of Technology,P.O. Box 513, NL{5600 MB Eindhoven, The Netherlands.feijs@win.tue.nl, sjouke@win.tue.nl AbstractThe extension of the MSC language with more advanced data concepts is one of the current topics ofdiscussion in the MSC standardization community. We discuss some problems and possibilities. Bymeans of two case studies we study the practical consequences of our proposed approach.KeywordsMSC, data, algebraic speci�cations, ASN.1, semantics1 INTRODUCTIONQuite high on the list of possible extensions for MSC [4] is data. Currently, the language has hardly anydata concept. At best, data can be expressed as a parameter of a message which is simply considered asa syntactical extension of the message name. Operations can be de�ned informally by means of actions.Again, this is considered as a purely syntactical concept.There is clearly a need for a more extensive treatment of data. This is in line with the trend that MSCis becoming a language that is more and more useful for the complete description of system behaviour,rather than for displaying single traces. But also when using MSC for the visualization of traces, actualdata values may be observed.Since MSC is closely related to SDL [3], some things can be learned from the way in which SDL dealswith data. The �rst formal data language integrated with SDL was based on algebraic speci�cations.These are known for having a very simple syntax and a clear semantical foundation. In practice, how-ever, the functional style of an algebraic speci�cation showed to be too di�cult for people used to animperative language. Therefore, an alternative data language, ASN.1 [6], was adopted. This enforced thedevelopment of a second recommendation, which exists next to the �rst one. Currently, the developmentof SDL2000 involves a redesign of the SDL data language.This situation has several drawbacks. Both recommendations have a large overlap, and thus thereis a maintenance problem. Furthermore it requires a new semantics de�nition. In which sense is thesemantics dependent on the actual data language? And �nally it is not clear what will happen if a newparadigm (such as Java) gets into the picture. Will a third recommendation be developed?We clearly do not want these problems to occur when extending MSC with data. Therefore, weinitiate research on the extension of MSC with data. The following three questions will guide us.1. At which places in the language might data be useful?2. Which extensions of MSC are natural after introducing data in MSC?3. Is it possible to set up the recommendation in such a way that the actual data language can beconsidered as a parameter, which may be easily instantiated with any formal data language.

In this paper we will discuss these questions. In other words, the question we shall investigate is: \Isit possible to use an abstract data type data type for adaptation of data models? This would allow acombined use of data coming from di�erent formalisms." We require that MSC/data, the future extensionof MSC with data, is such that there is a clear and minimal coupling between the MSC behaviouraldescription language and the data language.We will illustrate this approach with two case studies. The �rst case study concerns the extension ofMSC with a data language based on algebraic speci�cations. The second case study takes ASN.1 as astarting point and is based on the proposal from Baker and Jervis [2].AcknowledgmentsWe thank Andr�e Engels and Michel Reniers for proof reading previous versions ofthis document. We appreciated the discussions with Paul Baker, Jan Friso Groote, Clive Jervis, FransMeijs and Jaco van de Pol on the extension of MSC with data.2 THE ROLE OF DATA IN MSC2.1 Where to add data?In this section we make an inventory of places in an MSC where data might play a role. We do notadvocate that data should be allowed at all these places; we merely list options. The most obvious placewhere data will play a role is as an argument to a message (e.g. one can send the message m(len(buf)+1)).Thus parameters of a message may become expressions in some data language. In general, every variantpart of the language which is not clearly meant as an identi�er might be considered a data expression.A quick scan through Z.120 gives the following list.� instance parameter, instance kind� action text� message instance name, message parameter� condition name� timer instance name, timer duration� msc name (or rather, its parameter)� msc document name (or rather, its parameter)� sdl reference� loop boundaries� create parameterThis is probably not a complete list. A nice idea would be to treat all object declarations (i.e. msg,inst, msc, mscdoc, timer, create) in the same way. That means that they have a name and a parameterlist. This is a list of expressions over some data language. This imposes a requirement on the datalanguage, namely that these expressions can be evaluated in order to understand the meaning of theMSC.The interpretation of an action in a data language is somewhat di�erent. It is not simply an expres-sion, but a program(fragment) from the data language which might have side e�ects. This imposes therequirement that it must be possible to execute such a program in the data language and determine itsside e�ect.For conditions, there is a very simple interpretation if we can interpret them as predicates (i.e. aboolean function) over the data language. The canonical interpretation is that a condition blocks all itsattached instances whenever the predicate evaluates to false. Otherwise, it simply allows continuation.This imposes the requirement that the data language must have predicates that can be evaluated.2.2 Possible extensions by introducing dataA number of additional extensions come into the picture after having extended MSC with data. We onlymention the following.� An if-then-else construct

� If an instance sends some message to some other instance, the sender may parameterize the messagewith some concrete data value, while the receiver may bind this value to some (local) variable.Graphically this can be expressed by associating two message names to a message arrow. One nearthe sending instance (e.g. m(4)) and one near the receiving instance (e.g. m(v)). The interpretationis that after reception of the message the value of the variable v has become 4.2.3 Parameterization of the standard with a data languageThe question of how to parameterize the MSC language with a data language seems to be the mostimportant one, because a good solution anticipates at a large number of problems.Let us �rst have a look at possible ways to integrate data into MSC.� private (identi�er-based, as is now)� �xed external (select one of Act-One, ASN.1, C, . . .)� parameterized over a �xed enumerated set of external languages (allow e.g. Act-One, ASN.1 andC)� parameterized over a lexicon (we only use the lexical syntax of the data language)� parameterized over a signature.� parameterized over a context-free grammar� parameterized over an attribute grammar� parameterized over some grammar with some semantical informationThe most appealing and general solution is the last one. It implies that the recommendation does notexplicitly de�ne the data language. It merely describes which syntactical and semantical properties a datalanguage must have, in order to be considered as a valid instantiation. Syntactical requirements couldbe a restriction on the character set and the requirement that parenthesis are always properly nested (inorder to be able to detect the end of the data expression in m(: : :)). Another syntactical requirementcould be a function to detect type-correctness of an expression.Some semantical requirements have already been stated in the discussion on the �rst question, namely,we must have a function to evaluate a data expression and we must be able to evaluate a predicate. Incase that we have an imperative language (i.e. a data language with the notion of a state or variables),we must also be able to determine the result of an action (i.e. a program fragment with side e�ects).Therefore, we must be able to keep track of the state of the system.It may be assumed that the inclusion of a functional data language is much easier than of an imperativelanguage. In a functional language, programs have no side e�ects, and thus an action simply occurs andvariables are just place holders. In an imperative language, we must be able to determine the e�ect ofan action on the state space, and furthermore we must be able to determine the scope of variables. Arevariables local to an instance or global to all instances (shared variables seem to contradict the spirit ofMSC)?To allow parameterization of the MSC language, we must determine which properties of the datalanguage are required in order to formally de�ne syntax, well-formedness and semantics of an MSC withdata.Please note that we can reach this situation without ever having to select a particular data language.For every data language that meets the criteria, the integration of MSC with this language is a simplestep. One only has to de�ne the required functions for evaluation, etc.Every user or every tool builder may introduce his own favored data language. In order to preventMSC from becoming a moving target the MSC standardization group may select several possibilities andde�ne for these languages the required functions.3 CASE STUDIES3.1 Approach chosenIn this section we choose to replace the present syntax for message parameters by a more general expressionlanguage with variables and subexpressions (the third � from Section 2.1). Then the MSC language

depends on the data language and we assume that this is to be done by letting the MSC languagebeing parameterized over some grammar with some semantical information (the last � from our list inSection 2.3).We learn from the work of Baker and Jervis [2] that it may be desirable to work with constraintswhich apply to the messages. In this way it is possible to completely �x a message, but it is also possibleto give constraints to one or more �elds, leaving the value of the other �elds unspeci�ed. This seems agood idea, which will be at the heart of the case study. Also from Baker and Jervis we take the idea toconsider only languages whose syntax �ts in a natural way in the m or m(p1; : : : pn) format of MSC96.We want to experiment with two kinds of data languages, aimed at two di�erent ways of using MSCand coming from two di�erent backgrounds:� an algebraic data language,� a constrained syntax language.The former is likely to reect the needs when using MSC as a speci�cation and design formalism. Theidea is that variables may be used; such an `MSC with variables' represents a large collection of normalMSCs, namely those which can be obtained by instantiating the variables. Algebraic data languages havea strong tradition in academic research.The latter is more likely to reect the needs when using MSC as test speci�cation language. The ideais that certain messages or certain �elds are deliberately left unspeci�ed, for example because they arenot relevant (yet) or because a value has to be provided later. Constrained syntax languages have a longtradition in industrial applications, notably the languages ASN.1 [6] and TTCN [7].3.2 MSC and an algebraic speci�cation languageExampleWe start this section with a simple example that shows the combination of MSC with a data languagebased on algebraic speci�cations (see Figure 1).
sort
 Color
function
 green : -> Color
 yellow : -> color
 red : -> Color
 next : Color -> Color
equation
 next(green) = yellow
 next(yellow) = red
 next(red) = green

reply(next(x))

bump(x)

a b

variable
 x : -> Color

msc switch_color

Figure 1: Combining MSC and algebraic speci�cations.This MSC consists of two parts, namely, the data declaration and the behaviour speci�cation. Thedata declaration speci�es a signature: a sort named color, three constants of this sort, named green,yellow and red, and a function next from Color to Color. The meaning of this function is fully speci�edby the three equations. Finally a variable x of sort Color is declared.The behavioural speci�cation is a standard MSC. It describes two messages, a bump message, param-eterized with the term x and a reply message, parameterized with the term next(x). Clearly, it is theintention that these parameters refer to the algebraic speci�cation.The intended meaning of this MSC is that for any given value of x, a bump message is sent frominstance a to instance b, followed by the reply from b with the next color. In a more formal way, we cansay that the meaning of this MSC is the choice between three basic MSCs that are derived by substitutingthe three possible values green, yellow and red for x. In Figure 2 we show the intended meaning of theMSC from Figure 1, denoting the choice with the symbol � which is known as the delayed choice (see[1]).

a b a b

reply(yellow)

a b

bump(green) bump(yellow)

reply(red) reply(green)

bump(red)Figure 2: Intended semantics of the example.FormalizationNext, we formalize the construction from the previous section. As explained before, our aim is to studywhat the interface is between the behavioural MSC language and the data language. We try to abstractas much as possible from the actual data language being used.We consider Message Sequence Charts consisting of instances and messages only.First, we concentrate on the behavioural (data-free) Message Sequence Charts. MSCP denotes theclass of MSCs with parameters of messages taken from some set P . This set will be instantiated later.We presuppose existence of a semantical function SP that maps MSCs into some semantical domainAP . SP :MSC P !APFurthermore, we assume that an operator � for alternative composition is de�ned on the semanticaldomain: � : AP �AP !APWe assume that this operator is independent of the set P . In order to be able to generalize this operatorto an operator P, we require that � is associative and commutative and that there is a unit element forthis operator. This unit element is the outcome when taking an empty summation. It is also needed torequire that P is well-de�ned for in�nite sequences of arguments (unless only �nite data domains areused).Next, we consider the data language. Let D consist of all strings that represent a well-formed datadeclaration. In order to check whether some string is in D we need the predicatewf decl : String ! BoolThis predicate is necessary to check syntactical correctness of the data part of an MSC/data speci�cation.So D is the set of strings s such that wf decl(s) = true. Let T (decl) (or T for short) represent the set ofwell-formed terms over decl 2 D, then we need the predicatewf term : D � String! BoolThis predicate is needed to check whether parameters of messages are syntactically well-formed.Now we can de�ne an MSC/data speci�cation as a tuple < decl;msc > such that decl 2 D andmsc 2MSCT .In order to de�ne the semantics of such an MSC/data speci�cation, we need some additional infor-mation.First, we must be able to make a distinction between open and closed terms. An open term (in caseof an algebraic speci�cation) is a term which contains variables. In general it is a term which can bemade concrete (closed) in several ways by means of a substitution. Therefore, we need the predicateclosed : D � T ! BoolThis predicate determines whether a given term from T , given a data declaration fromD has no variables.We denote the set of closed terms by Tclosed. From the function closed we can derive a similar functionwhich checks if all terms occurring in an MSC are closed.closed : D �MSC T ! Bool

From an open term, we may derive a number of closed terms by substituting concrete values for thevariables. Thus we need a set of substitutions, which we call SUBST , and a function which applies agiven substitution to some term: apply : SUBST � T ! TWe require that the function apply is the identity on the set of closed terms. We generalize this functionin the obvious way to MSCs. The application of a substitution to an MSC consists of the application ofthe substitution to all terms occurring in the MSC.Before we can �nally present the semantics of the MSC/data speci�cation, we presuppose that theclosed terms are interpreted in some semantical data domain D. Then we need a functionSdata : D � Tclosed !Dwhich de�nes the semantics of a given (closed) term with respect to a given data declaration. Thisfunction can be extended to closed MSCs in a straightforward way: replace all closed terms that occuras the parameter of a message by their interpretation in D (applying Sdata). This gives a function[[:]] : :MSC Tclosed �D !MSCDFinally, we can de�ne the semantics of an MSC/data speci�cation by means of the functionS : D �MSC T !ADwhich is de�ned as S(< decl;msc >) =Xk2V SD(k)where the set V is de�ned byV = f [[apply(�;msc)]]decl j � 2 SUBST ; closed(decl; apply(�;msc)) gThis means that, for a given msc 2 MSC T with parameters from T , possibly containing variables,we �rst determine the set of MSCs that result from all possible closed substitutions. Next, we replaceevery closed term obtained in this way by its semantical interpretation. For all the resulting MSCs wedetermine the semantics and, �nally, we consider the resulting semantical expressions as alternatives.This describes the transformation from Figure 1 to Figure 2. However, we should then read the MSCsin Figure 2 as the graphical representations of their semantical meaning in AD.3.3 MSC and a constrained syntax languageExampleIn this section we study the extension of MSC with a constrained syntax language as proposed by Bakerand Jervis [2]. The proposal is aimed at allowing a more exible syntax for the speci�cation of messageparameters. Its main virtues are the following.� Not all parameters of a message have to be provided. An unspeci�ed parameter may have anyvalue.� Parameter values may be speci�ed in an unordered way by using a reference syntax.� Constraints can be used to reduce the number of allowed values of a parameter.In Figure 3 we show an example of an MSC speci�cation combined with a simple ASN.1 speci�cation.Please note that this example deviates slightly from the syntax proposed in [2]. Namely, we have addeda message name m, rather than considering the type Frame as the name of the message. The reason forthis is that for a minimal interface between the MSC language and the data language, we do not wantthat the names of the messages have a semantical interpretation in both parts.The ASN.1 part of the MSC/data speci�cation declares a nested structure, named Frame. The �rstcomponent of a Frame has name P1 and ranges over the bitstrings of length 2. The second component,P2, is of type Pair. A Pair consists of two �elds X and Y, which both contain a bit. Finally, a constraint

b

msc frames

a

m(Frame(P2.X=>1,P2.Y=>1))

m(Frame(Cons1:P2.Y=>1))

EXAMPLE DEFINITIONS ::=
BEGIN

 P1 BITSTRING (SIZE (2)),
 P2 Pair }

 X BIT,
 Y BIT }
Cons1 ::= Frame (WITH COMPONENTS
 {P1 (‘00..01’B) })
END

Frame ::= SEQUENCE {

Pair ::= SEQUENCE {Figure 3: Combining MSC and constrained syntax notation.Cons1 is de�ned. When applied, it reduces the possible range of values for a Frame in the sense that onlyframes are allowed of which component P2 ranges between the bitstring 00 and 01.The meaning of the MSC is that �rst a message m is sent from instance a to instance b. Only messagesare allowed of which the parameters satisfy constraint Cons1 and the Y �eld equals 1. Next, a messagem is sent back. For this message we know that both X and Y are equal to 1.Just like the example in Figure 1, this MSC denotes a choice between a number of standard MSCs,namely all MSCs which satisfy the above mentioned requirements on the parameters. Since there arefour possible instantiations of the �rst message and also four instantiations of the second message, thereis a choice between 16 di�erent MSCs.FormalizationThe formal treatment of the combination of MSC with a constrained syntax notation very much resemblesthe formalization of MSC with an algebraic speci�cation language as in Section 3.2.The only di�erence is that we should not consider a single substitution for a complete MSC, but a listof substitutions; one for each message. The reason for this is that the same constraint may occur withindi�erent messages, while the unspeci�ed �elds may have di�erent values. A single substitution functionwould always give the same closed term for all identical constraints.De�ne SUBST � as the set of all sequences of substitutions and let ~� 2 SUBST �. Then we generalizethe function apply to lists of substitutions. The �rst substitution is applied to the �rst message (assumingsome ordering on the messages), the second substitution to the second message, and so on.Now, we de�ne the semantics of an MSC/data speci�cation as follows.S(< decl;msc >) =Xk2V SD(k)where V is now de�ned asV = f [[apply(~�;msc)]]decl j ~� 2 SUBST �; j~�j = jmscj; closed(decl; apply(�;msc)) gWe use j~�j and jmscj to denote the length of the sequence ~� and the number of messages in msc,respectively. The only di�erence with the previous de�nition of the semantics is the use of these lists ofsubstitutions.3.4 Interface between MSC and dataFrom the above de�nitions, we can derive the interface which is needed between the two parts of theMSC/data language. In order to be able to de�ne well-formedness and the meaning of such an MSC/dataspeci�cation, we need that the predicates, sets and functions from Table 1 are de�ned.In order to have one interface that works for both algebraic speci�cation languages and constrainedsyntax languages we need an auxiliary functionis comp : SUBST � SUBST ! Bool

The reason for this is that we cannot simply adopt the semantics of the constrained syntax extension forthe algebraic speci�cation extension. This would mean that for every message we could select a di�erent(incompatible) substitution, allowing the value of a variable to vary through the di�erent messages.Therefore, we need the requirement that the substitutions in the list are all compatible. In the case ofthe algebraic speci�cation extension this means that they agree upon the value of all variables occurringin the MSC. So the semantical expression for MSC/data speci�cations from Section 3.3 also holds foralgebraic speci�cations, provided that we add the condition that all elements of ~� are compatible.Please note that in order for the constructions to be e�ective, all instantiations of the given functionsmust be computable.Concerning behavioural MSC:semantical process domain APsemantical interpretation of MSCs SP :MSCP !APoperator for alternative composition � : AP � AP !APConcerning data:syntax check on data declarations wf decl : String ! Boolsyntax check on parameters wf term : D � String ! Boolclosedness of terms closed : D � T ! Boolset of substitutions SUBSTapplication of substitution apply : SUBST � T ! Rsemantical data domain Dsemantical interpretation of data Sdata : D � Tclosed !Dcompatibility of substitutions is comp : SUBST � SUBST ! BoolTable 1: Interface between MSC and dataThe functions needed in the previous paragraphs to de�ne the semantics of an MSC/data speci�cationwhich are not in Table 1, can be derived from the functions in this table.3.5 Instantiating the interfaceFor every particular data language we only need to instantiate the interface from Table 1 in order tode�ne syntax and semantics of a combined MSC/data speci�cation. First, we discuss the instantiationof the interface for an extension of MSC with a simple algebraic speci�cation language (e.g. from [5]).The instantiation is sketched in Table 2. It shows that for most entries references to literature orstandard solutions are provided.Concerning behavioural MSC:AP the process algebra as de�ned in Z.120 Annex BSP :MSCP !AP the semantical function as de�ned in Z.120 Annex B� : AP �AP !AP the delayed choice operator from Z.120 Annex BConcerning data:wf decl : String ! Bool see the BNF grammar and typing rules from [5]wf term : D � String ! Bool see the BNF grammar and typing rules from [5]closed : D � T ! Bool all terms constructed from function symbols onlySUBST all functions from variables to (closed) termsapply : SUBST � T ! R application of the (extended) substitution functionD the term modelSdata : D � Tclosed !D the equivalence class of a term w.r.t. derivable equalityis comp : SUBST � SUBST ! Bool substitutions agree on values for variablesTable 2: Instantiation of the interface for an algebraic speci�cation languageIn Table 3 we show the instantiation of the interface for the constrained syntax notation. For mostcomponents we refer to [2]. Since we allow all possible substitutions for all terms, we set the function

is comp to true.Concerning behavioural MSC:AP the process algebra as de�ned in Z.120 Annex BSP :MSCP !AP the semantical function as de�ned in Z.120 Annex B� : AP �AP !AP the delayed choice operator from Z.120 Annex BConcerning data:wf decl : String ! Bool see the BNF grammar and typing rules from [2]wf term : D � String ! Bool see the BNF grammar and typing rules from [2]closed : D � T ! Bool terms of which all components are fully determinedSUBST all functions that yield fully determined termswhich satisfy the constraintsapply : SUBST � T ! R application of the substitution functionD the semantical model from [2]Sdata : D � Tclosed !D the interpretation of a term in the model from [2]is comp : SUBST � SUBST ! Bool the function that always yields trueTable 3: Instantiation of the interface for a constrained syntax notation4 CONCLUSIONSThis paper can be seen as a feasibility study on the incorporation of data in MSC. The wide range ofdi�erent application areas of MSC does not allow for a single �xed data language. We have arguedthat this problem is addressed as a research topic; the present paper is meant as a contribution to thisresearch, rather than as the �nal solution. We have shown that it is possible to parameterize over thedata language actually being used. We have de�ned an interface between the behavioural MSC languageand the data language, which enables us to give a complete syntactical and semantical de�nition ofMSC/data. Although the interface is derived from only two data languages, this does not mean that itis only suited for these two languages. We expect that this interface is suitable for a large class of datalanguages.Please note that the main question under investigation was de�ning the interface such that onelanguage can take another language as a parameter. A priori, it was not clear that this would be possibleat all, but our work demonstrates that we could factor-out the commonalities of two quite remote datalanguages. The topic of language engineering has some resemblance with the engineering of large computerprograms: the major concern is in �nding the right interfaces, creating freedom of implementation onone hand, and a range of future applications on the other.We have started by listing many places in an MSC where data can play a role, but we have onlyexercized with message parameters. Within the MSC standardization group a selection of these placesshould be made. In this paper we have merely listed options, some of which are more useful than others.We expect that, e.g. the possibility to write predicates within conditions, thus guarding continuation ofan MSC, will strengthen the use of conditions. Obviously, the interface then has to be extended withpredicates, a well-formedness function for predicates and an evaluation function of predicates. So boththe class of data languages and the choice where to allow data in an MSC will inuence the interface.The combination of named variables, acting as place holders, from an algebraic speci�cation languagewith the unnamed variables implicit to the constrained syntax language, enforced the extension of theinterface. A compatibility predicate on substitutions was needed to combine both approaches. Whenallowing other programming paradigms, the interface will have to be revised again.We propose to conduct further case studies regarding more (and other types of) data languages, suchas imperative languages containing state variables. At least the data languages supported by SDL shouldbe studied in detail.5 REFERENCES[1] J.C.M. Baeten and S. Mauw. Delayed choice: an operator for joining Message Sequence Charts. In

D. Hogrefe and S. Leue, editors, Formal Description Techniques, VII, pages 340{354. Chapman &Hall, 1995.[2] P. Baker and C. Jervis. Formal description of data. SG10 meeting Lutterworth TDL16, ITU-TS,October 1997.[3] ITU-TS. ITU-TS Recommendation Z.100: Speci�cation and Description Language (SDL). ITU-TS,Geneva, 1988.[4] ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS, Geneva, 1997.[5] S. Mauw and G.J. Veltink. A process speci�cation formalism. Fundamenta Informaticae, XIII:85{139,1990.[6] D. Steedman. Abstract syntax notation one (ASN.1): the tutorial and reference. Technology Ap-praisals Ltd., 1990.[7] ISO/IEC Information technology. OSI conformance testing methodology and framework, part 3: TheTree and Tabular Notation (TTCN). ISO document ISO9646. ISO/IEC, 1990.

