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intuitive. But, in order to allow for the analysis of complex models, the language should besupported by a formal syntax and semantics. Such properties are not often combined in languagesfor specifying business processes [7].The Testbed language, called Amber (for Architectural Modelling Box for Enterprise Re-design), is a graphical speci�cation language. Both the behaviour in a business process as well asthe agents of the process and the data used are modeled. Behaviour is speci�ed as actions withtheir enabling relations. Also, behaviour can be structured in a sequential fashion (phasing) andusing CSP or Lotos style synchronisation (interaction or co-operation). Analysis is possible forboth functional properties as well as quantitative (performance) properties. Quantitative analysisis discussed elsewhere [8].This paper discusses how automated functional analysis in the Testbed setting can be realised.We do so by using the language Promela and the tool Spin [9, 10, 11] to perform the analysis.Amber models are translated to Promela on the basis of an operational semantics. Propertiesare speci�ed in Linear Time Temporal Logic for the moment, though work is under way to allowfor more intuitive property speci�cations as well: Ltl is too cumbersome a language for use bybusiness architects.We developed a translation from Amber to Promela that covers almost the complete language.Amber allows for the speci�cation of in�nite state systems, which cannot be veri�ed by Spin.Such models had to be precluded. For �nite state models di�erent types of properties, such asprecedence, consequence and exclusion, can be veri�ed. The approach has been validated usingnon-trivial examples, all of which could be tackled easily. The limits of Spin have not yet beenreached. It must be stated, however, that we have only used data in business models to a verylimited extent.The paper is organised as follows. Section 2 contains an informal presentation of the Amberlanguage used for specifying business processes. Section 3 describes the methodology used in theTestbed project for validating Amber speci�cations. Section 4 illustrates the application of thismethodology to an example inspired from a real-life Amber speci�cation. Finally, Section 5 givessome concluding remarks and directions for further work.2 The AMBER languageIn this section we give an informal explanation of the syntax and semantics of an Amber model.Currently, the Amber language is being applied to real world case studies, using the Amber toolset, which is called Testbed Studio. The Amber language (both syntax and semantics) has notyet reached its �nal shape. Feedback from the practical case studies will inuence the furtherdevelopment of the language. In this section we present the basic constructs of the Amberlanguage in its current shape.2.1 Actions and causalityAmber is a graphical language for the speci�cation of business processes. Such a speci�cationdescribes which actions are involved in the business process and the causal relation between theseactions.Graphically, an action is represented by a circle which contains the name of the action. The factthat there is a causal relation between two actions is expressed by means of an arrow connectingthe actions.
b caFigure 1: A simple Amber model with three actions.Figure 1 describes a process consisting of actions a, b and c. Action b may only be executedafter action a and action c after action b. We can also speak of this causal relation in terms2



of enabledness. We say that execution of a enables action b. An action may have at most oneincoming arrow and at most one outgoing arrow. An action without incoming arrow is enabledinitially.Please note the di�erence between such a causality relation and a sequential compositionrelation. The former speci�es restrictions on the occurrence of actions, while the latter wouldspecify the control ow of a system. The example in Figure 2 clari�es the di�erence.
baFigure 2: A deadlocking Amber model.In Amber this cyclic graph does not describe a process that loops between actions a and b, aswould be the case when interpreting the arrows as sequential connectors. It merely expresses thataction b should be preceded by action a, and vice versa. Clearly, no process in which a or b occurcan satisfy this cyclic dependency. This models a deadlocking situation.Nevertheless, the Amber language does have a way to express loops. We will discuss thisfeature later. Unless in such a loop, an action can only be executed once, regardless how often itis enabled. After execution, an action outside a loop can never be executed again.2.2 Splits and JoinsApart from expressing the causal relation between pairs of actions, Amber also allows for morecomplex causal structures. Examples are shown in Figure 3. Figure 3(a) shows an AndJoin node,represented by a �lled box. It means that in order for action c to become enabled, both a and bmust be executed.
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that after execution of action a, both b and c are enabled. The OrSplit from Figure 3(d) impliesthat after execution of action a either b or c is enabled. This choice between b and c is madenon-deterministically. Later on we will see that conditions can be attached to arrows, possiblyrestraining the freedom of choice.A Join node must have at least one incoming arrow and exactly one outgoing arrow. A Splitnode must have exactly one incoming arrow and at least one outgoing arrow.We will call Join and Split nodes functional nodes. Using these functional nodes, complexcausal relations can be de�ned, such as in Figure 4.
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Figure 4: Composing functional nodes.This example expresses that after execution of both a and b a choice is made between threecontinuations. If d or e is chosen, f is enabled, while after choosing c there are no enabled actionsleft.Only actions have observable behaviour.2.3 LoopsAs explained before, we need additional machinery to express loops in Amber. A typical exampleof such a loop is in Figure 5. An execution sequence described by this model starts with a, andis followed by an arbitrary (possibly in�nite) number of repetitions of the sequence of two actionsbc. Finally, if the loop is repeated a �nite number of times, after the last b, action d is enabled.
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Figure 5: Expressing a loop.A double arrow is used here for closing the loop, rather than a single arrow which would yieldan inconsistent speci�cation, as explained before. It is allowed that more than one double headedarrow enters an action node. The action nodes within the loop are outlined in order to expressthat they may be executed more than once. We will call this a new occurrence of the action.Two more complex examples of the use of loops are given in Figure 6.The �rst example shows two partly overlapping loops. There is no restriction on the couplingof loops thus leading to potentially very complicated behaviour. The second example shows that itis possible to specify a process with an in�nite state space. The only di�erence with the standardloop example from Figure 5 is that the OrSplit is replaced by an AndSplit. The AndSplit makesthat for each cycle through the loop, a new occurrence of both b and c is enabled. However, it isnot necessary that this occurrence of c executes before the next cycle through the loop. Therefore,while the previous occurrence of c is still enabled, a new occurrence of c can be enabled. In thisway, any �nite number of c's may become enabled, before execution.These examples show that in order to obtain easy to understand and �nite state systems, somerestrictions on the use of double headed arrows should apply. We will not discuss these restrictionsin more detail. 4
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Figure 6: Two examples of loops.2.4 BlocksThe Amber language has a modularisation construct for structuring speci�cations. A number ofactions can be grouped into a block, which is represented by a rectangle with rounded corners, as inFigure 7. This example describes three blocks, named x, y and z, which have several connectionsto each other.
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Figure 7: A speci�cation with three blocks.There are two ways to connect blocks to each other. First, there can be a causal relationfrom a node in one block to a node in another block. The arrow representing this causality is notallowed to simply cross the border of the blocks. It has to connect via the exit and entry pointsof the blocks. These exits and entries are represented by triangles. Entries and exits are syntacticelements that have no observable behaviour. The example in Figure 7 shows a causal relationbetween actions a and b through the entry of block x.The second way of connecting blocks is by using interactions, which is a way to synchronizeactions between blocks. An interaction is represented by a half circle, such as node c in Figure 7.Two or more interactions can be linked together by an interaction relation. There is, e.g., aninteraction relation between interactions c and d. This means that c and d have to occur simul-taneously. An interaction relation is enabled if all its interactions are enabled. An interactionrelation between more than two interactions is represented graphically by a forked line.5



Blocks can be nested and can have any number of entries, exits and interactions.2.5 DataFinally, we mention that Amber has a notion of data. At the moment, the actual data languagehas not yet been selected. For the sake of simplicity, we have imported the Promela language asour data language.A simple example of the combined use of Amber and Promela is given in Figure 8. Itdescribes a loop which is executed exactly ten times.
int i;

i < 10

i = i + 1;
i = 0;

i >= 10
cba Figure 8: A loop which is executed ten times.It shows that the Amber language is extended at three places with data. Firstly, we needa preamble for the declaration of data types and variables. In the example we only need thedeclaration of variable i. Secondly, we allow to associate program fragments to actions. Theprogram fragment is assumed to be executed every time that its action is executed. In the example,an initialisation statement is associated to action a and an increment statement to action b. Since itis in a loop, the increment statement will be repeated as often as action b executes. And thirdly, weallow to attribute arrows with conditions. After evaluation, such a condition determines whetherthe enabling arrow can be taken.2.6 Other featuresWe have given an overview of most features of the Amber language. Only two features have notbeen discussed yet, namely, disabling arrows and optional (inter)actions. An (inter)action is madeoptional by dashing its border. It simply means that it may, or may not, execute. Think of anactivity like pay invoice: although a customer should pay the invoice, he can refrain from doingso. Such an activity is typically modelled as an optional action.An enabling arrow is made into a disabling arrow by adding a slash through the arrow. Ifaction a is connected to action b via a disabling arrow, it means that execution of a prevents theexecution of b. We will not treat these features in more detail.3 Veri�cation using SPINIn order to ensure the reliability of business processes described in the Amber language, formalveri�cation methods are needed. A part of the Testbed project is concerned with the functionalanalysis of business processes by means of model-checking techniques. In this section we give adetailed presentation of the approach used in Testbed for functional analysis of Amber speci�ca-tions, which is based upon the Spin model-checker and its input language Promela.3.1 MethodologyThe approach adopted in the Testbed project for validating Amber speci�cations is illustrated inFigure 9. Objects are denoted by oval shapes and transformations by rectangles. Two function-alities are o�ered: simulation of an Amber speci�cation (left track in the �gure) and veri�cationof temporal properties of an Amber speci�cation (right track in the �gure).6
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Figure 9: Overview of the validation methodology.The Amber speci�cation to be analysed is automatically translated into a Promela programmodelling the execution of actions in the Amber model. We will give more details about thistranslation in Section 3.2. The Promela model obtained may serve as input for both simulationand veri�cation using the Spin tools.To perform simulation of the Amber speci�cation, the Spin simulator is used on the corre-sponding Promelamodel to generate random execution traces of actions contained in the Ambermodel. An additional �lter is applied to these traces in order to remove irrelevant informationand to add some Amber speci�c details.To perform veri�cation, the temporal properties of the Amber speci�cation are described asformulas in Ltl (Linear Temporal Logic). These properties may concern both the execution ofactions and the values of data variables in the Amber model. We will make precise in Section 3.3the way in which these properties are speci�ed. The temporal logic formulas are translated inPromela using the Spin Ltl compiler and are subsequently veri�ed on the Promela model ofthe Amber speci�cation using the Spin model-checker. Besides indicating whether a formula issatis�ed or not by the model, Spin also generates diagnostic traces whenever a formula does nothold. Using an additional �lter, these traces are translated into a form that is easier to relate tothe original Amber speci�cation.3.2 Translation from AMBER to PromelaIn order to translate Amber speci�cations into Promela models, we must interpret the Amberlanguage using an interleaving semantics rather than a causality-based semantics. This operationalinterleaving semantics is de�ned as a state automaton. In this state automaton all nodes in theAmber model correspond to transitions: actions and (combined) interactions, as well as functionalnodes de�ne state transitions. Thus the executions of individual actions, functional nodes, andinteraction relations in an Amber speci�cation A are atomic events.States are determined by the enabledness of nodes and the values of the data variables. Theinitial state is characterised by the set of events enabled initially (i.e., the actions having noincoming arrows) and by the initial values of the data variables of A.The transition relation of A describes in which way A evolves from one state to another.A transition between two states s1 and s2 is performed by executing a single event a, chosen7



non-deterministically from the set of events enabled in s1. Also the values of the data variablesassociated with a are updated. Each transition is therefore labelled with the event a that hasdetermined it. An event may also correspond to the execution of several nodes in the graph, inthe case of an interaction relation.Such a state automaton can be easily translated to Promela. Other translations than via anautomaton have been tried, but resulted in extremely poor performance of Spin.In the following, we sketch the translation and we illustrate it by means of an example. It isworth noticing that, since the e�ciency was our primary concern, this translation does not strivefor the most elegant Promela modelisation, but rather for reducing the state space as much aspossible.Let A be a correct Amber model. The state space of the automaton is spanned by the productof the data variables and a set of control variables per node i:� A boolean state variable triggered i, which is true if a predecessor of i has executed and\triggers" i via an enabling arrow.� For every AndJoin i there is a counter variable in counter i, which keeps track of thenumber of incoming enabling arrows of i that have been traversed. The node i can executewhen it is triggered and all of its enabling predecessors have been executed, i.e., the valueof in counter i equals the number of enabling arrows leading to i.In the presence of disabling arrows, additional boolean variables and counters are used, in a similarway, to encode the states of the nodes having incoming disabling arrows. We do not treat theseencodings in more detail here. Also, OrSplit nodes that are not on a loop require special attentionto ensure they are executed only once.The Promela model of A consists roughly of two parts:1. A preamble containing declarations and initialisations of the data variables contained in Aand of additional variables representing the state of A.2. A processmodelling the transition relation of the automaton. The process consists of a single,non-terminating do-od loop, the body of which is a large case distinction having one branchfor each event (i.e., node or interaction relation) in A. Each branch is guarded by a booleanexpression encoding the enabledness condition of the corresponding event. If more than onebranch is enabled, Spin chooses one non-deterministically. If there is no branch enabled atall, Spin will detect this by means of a timeout, causing the termination of the process. Thecondition is followed by the state update, corresponding to the transition taken.In case of an OrSplit, a branch following the split is chosen non-deterministically, possiblyconstrained by extra conditions. For each interaction relation in A, the corresponding branch isobtained by the combination of all Promela fragments for the individual interactions in thatinteraction relation.To illustrate the translation described above, we give below (a simpli�ed version of) thePromela code generated by the Testbed Studio translator from the Amber model shown inFigure 8 (in which the OrSplit node has been noted s).1 int i; /* data variables */23 bool triggered_a = true; /* boolean flags for */4 bool triggered_b = false; /* nodes in the graph */5 bool triggered_s = false;6 bool triggered_c = false;78 active proctype AMBER_simulator () /* main process */9 {10 do /* simulation loop */11 :: triggered_a ->12 printf("Execute Action a\n"); /* trace message */8



13 triggered_a = false; /* effect on source */14 i = 0; /* effect on data */15 triggered_b = true; /* effect on successors */16 :: triggered_b ->17 printf("Execute Action b\n"); /* trace message */18 triggered_b = false; /* effect on source */19 i = i + 1; /* effect on data */20 triggered_s = true /* effect on successors */21 :: triggered_s ->22 printf("Execute OrSplit s\n"); /* trace message */23 triggered_s = false; /* effect on source */24 if /* effect on successors */26 :: i < 10 -> triggered_b = true;25 :: i >= 10 -> triggered_c = true27 fi28 :: triggered_c ->29 printf("Execute Action c\n"); /* trace message */30 triggered_c = false; /* effect on source */31 printf ("Value of i: %d\n", i); /* effect on data */32 od33 }The preamble contains the declaration of the counter variable i (line 1) and the de�nitions of thestate variables associated to the four nodes in the graph (lines 3{6). The process contains a do-odloop (lines 10{32) with four branches, one for each node in the graph. The code for the actionnodes a, b, and c contains the e�ects on source, on data, and on successors previously describedin the translation (except for node c, which has no successors). The successor of the OrSplit nodeis chosen after evaluation of the conditions present on its outgoing edgesIt is worth noticing that the Promela code shown above can be further optimised, e.g., byencapsulating every deterministic sequence of instructions in the Promela d step construct,which allows to reduce the state space explored by Spin. Several optimisations of this kind areactually carried out by the Testbed Studio translator, but for the sake of clarity we did not describethem here.For simulation purposes, each branch in the do-od loop contains also an additional printfstatement witnessing the execution of the corresponding node. Applied to the Promela programabove, the Spin simulator produces the following execution sequence (obtained after �ltering):Execute Action a /* start */Execute Action b /* 1st iteration */Execute OrSplit s...Execute Action b /* 10th iteration */Execute OrSplit sExecute Action c /* stop */Value of i: 10This indicates that, after executing action a, the loop is traversed exactly ten times before exe-cuting action c. The execution of c produces no real e�ect on data, but only outputs the currentvalue of the i variable.3.3 Speci�cation of temporal propertiesThe temporal properties of Amber speci�cations are expressed using Ltl [12], which is the prop-erty speci�cation formalism accepted as input by Spin. Detailed descriptions of Ltl can be foundin [12] or [9]. For the sake of completeness, we give here only a brief outline of the logic, mainlyinsisting on the way in which Ltl formulas are related to Amber speci�cations.Ltl formulas, noted f, are built from atomic proposition symbols p (denoting boolean predi-cates) and the constants true and false, combined using boolean connectives and/or temporal9



operators. Boolean conjunction, disjunction, negation, implication, and equivalence are denotedby f1 && f2, f1 || f2, !f, f1 -> f2, and f1 <-> f2, respectively. The formulas <> f and [] fdenote the eventually and always temporal operators, meaning that f will be satis�ed by somestate (all states) in the future. The formula f1 U f2 denotes the strong until temporal operator,stating that f2 will certainly hold in the future, and f1 will continuously hold until then.The correctness requirements of an Amber speci�cation A may combine two kinds of temporalproperties:behavioural properties, concerning the execution of the actions contained in A. This kind ofproperties are expressed by means of special boolean variables witnessing the execution ofthe nodes referred to in the temporal property. For each such node i, a boolean variableexecuted i is automatically declared in the preamble of the Promela model generated fromA (see Section 3.2). The variable is initialised to false (in the preamble) and set to true(as an additional e�ect of i) when the node i is executed. These variables can be used asatomic propositions in the Ltl formulas.data-based properties, concerning the evolution of the data variables de�ned in A. This kindof properties are expressed by means of atomic propositions de�ned in the preamble of thePromela model that denote predicates over the data variables. For each atomic propositionp referred to in the Ltl formula, there must be a de�nition #define p exp, where expdenotes a Promela expression of type bool. These de�nitions must be provided by theuser together with the temporal formula; they will be expanded when the Promela modelof A and the Ltl formula are processed by Spin.We illustrate the expression of both behavioural and data-based temporal properties on theAmber example shown in Figure 8, for which the corresponding Promela model has been givenin Section 3.2.A simple liveness property of the system is that the action c will be eventually executed (i.e.,the loop will be eventually exited). This can be expressed by the Ltl formula below:<> executed_cwhere the variable executed c must be appropriately de�ned and updated, by adding the linebool executed_c = false;in the preamble of the Promela model (lines 3{6), and the lineexecuted_c = true;in the simulation loop branch corresponding to c (lines 28{31). The developed tools automaticallytake care of this.A simple safety property of the system is that the variable i will never exceed the value 10.This can be expressed by the following Ltl formula:[] pwhere the atomic proposition p must be appropriately de�ned, by adding the line#define p (i <= 10)in the preamble of the Promela model.Using the Spin model-checker, we can verify that both properties are satis�ed by the model.4 ApplicationIn order to illustrate the methodology presented in the previous section, we present here theveri�cation of a more involved example of business processes described in Amber. We �rst givethe Amber speci�cation, next we express the desired correctness properties, and �nally we showthe veri�cation results obtained. 10



4.1 The AMBER speci�cationWe consider the Amber speci�cation illustrated in Figure 10. This Amber model describes theinteraction between a process Garage, modelling the repairing of a car after an accident hasoccurred, and a process Pro-fit, handling the evaluation of the claim issued by a customer to aninsurance company.
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Figure 10: An example of Amber speci�cation.The Amber speci�cation also contains several data entities, which are modelled in Promelausing the following types:mtype = {Whole, Broken, Repaired, /* car status */None, Approved, Rejected, /* decision status */Idle, UnderConsideration, Informed /* customer status */};typedef Customer { /* customer attributes */byte customerGroup;mtype status;bool claimReceived;}where byte and bool are prede�ned Promela types. The states of the di�erent data entitiesare encoded as values of an enumerated type, de�ned using the mtype Promela construct. Eachcustomer has associated three informations: his group (identi�ed by a number), his status (whichmay be Idle, UnderConsideration or Informed), and a boolean value indicating whether hisclaim has been received or not by the process Pro-fit. The data entities used in the speci�cationare given below.� A �le recording information about customers, modelled by an array variable customerFile:Customer customerFile[5];� A customer, modelled by a variable customerId:byte customerId; 11



� A car, modelled by a variable car:mtype car = Whole;� A decision taken by the process Pro-fit, modelled by a variable decision:mtype decision = None;� A damage assessed by the process Garage, modelled by a variable damage:int damage;The data variables above are modi�ed by the execution of certain nodes in the Amber modelgiven in Figure 10. For each of these nodes, the e�ects performed on data are modelled by thefragments of Promela code indicated below.� Accident occurs:customerFile[0].customerGroup = 1; /* customer file initialisation */customerFile[0].status = Idle;customerFile[0].claimReceived = false;...customerFile[4].customerGroup = 5;customerFile[4].status = Idle;customerFile[4].claimReceived = false;car = Broken; /* car status */if /* customer selection */:: true -> customerId = 0;...:: true -> customerId = 4;fi;� Damage assessment:if :: true -> damage = 1000;...:: true -> damage = 5000;:: true -> damage = 6000;fi;� Receipt assessment:customerFile[customerId].status = UnderConsideration;� Claim receipt:customerFile[customerId].claimReceived = true;� Evaluate:if :: damage < customerFile[customerId].customerGroup * 1000 ->decision = Approved;:: damage >= customerFile[customerId].customerGroup * 1000 ->decision = Rejected;fi; 12



� Notify of decision:customerFile[customerId].status = Informed;� Damage repair:car = Repaired;The assignment of random values to customerId and damage is modelled by means of the non-deterministic Promela construct if-fi. A claim is approved (and subsequently treated by theprocess Garage) if the value of the damage is below a certain threshold, determined by thecustomer group.4.2 The correctness propertiesWe give here the correctness properties of the Amber speci�cation described in Section 4.1.To express more conveniently certain safety properties, besides the Ltl operators mentioned inSection 3.3, we will also use the weak until operator W, de�ned as f1 W f2 = [] f1 || (f1 U f2),which states that f1 continuously holds until f2 is satis�ed (which may never happen, in this casef1 being always satis�ed).To express behavioural properties, we will use in the Ltl formulas several propositions de-noting the execution of nodes in the Amber model. These are modelled by means of specialboolean variables executedi, associated to each node i used in the formulas (see Section 3.3). Forclarity, we will use for these variables the names of their corresponding nodes: the propositionsdamage repair, deliver car, and submit invoicewill denote the execution of the nodes labelledby \damage repair," \deliver car," and \submit invoice," respectively.To express data-based properties, we will use in the Ltl formulas several propositions over thedata variables of the Amber speci�cation. These propositions are de�ned as follows:#define claim_approved (decision == Approved)#define claim_below_6000 (damage <= 6000)#define customer_4 (customerId == 4)#define claim_rejected (decision == Rejected)Some typical temporal properties are described below.Property 1. Is the car repaired only when the claim is approved?This question can be answered by checking the following Ltl formula:[] (!damage_repair W claim_approved)specifying that the car cannot be repaired unless the claim is approved.Property 2. Will every claim below 6000 be approved for customer 4?This reduces to the veri�cation of the Ltl formula below:[] ((claim_below_6000 && customer_4) -> <> claim_approved)stating that every claim less than 6000 issued for customer 4 will be eventually approved.Property 3. Is the car always repaired when delivered?To answer this, we check the following Ltl formula:[] (!deliver_car W damage_repair)expressing that it is impossible to reach a car delivery before performing a damage repair.13



Property 4. Can the car be repaired if the claim is rejected?We answer this question by checking the Ltl formula below:[] (claim_rejected -> [] !damage_repair)specifying that after a claim has been rejected, the car will never be repaired.Property 5. Can the garage submit an invoice even if the claim is rejected?This can be translated into the following Ltl formula:[] (claim_rejected -> [] !submit_invoice)stating that every time a claim is rejected, the garage will never submit an invoice.4.3 The veri�cation resultsThe �ve correctness properties given in Section 4.2 have been veri�ed using the Testbed Studiotoolset on the Amber speci�cation described in Section 4.1.The Promela model generated by the Testbed translator has about 300 lines. The veri�cationresults of the temporal properties on this model are summarised in Table 1. For each property,the table gives its result on the model, the number of states explored by Spin, and the memoryand time required for the veri�cation. All experiments have been performed on a Silicon Graphicsworkstation with 64 Mbytes of memory.Property Result Nb. states Memory (Mb) Time (sec.)1 true 1,797 2.542 352 false 969 2.542 173 false 37 2.542 44 true 1,240 2.542 235 true 1,240 2.542 23Table 1: Veri�cation results.Properties 1, 4, and 5 are true on the model. This con�rms the intended behaviour of theAmber speci�cation, meaning that the answers on the corresponding questions are \yes," \no,"and \no," respectively. Properties 2 and 3 are false, but this also con�rms the intended semanticsof the Amber model, meaning that the answers to the corresponding questions are \no." Forproperty 2, Spin produces an error trace leading to the rejection of a claim with value 5000 forcustomer 4 (this is indeed the behaviour imposed by the claim evaluation). For property 3, theerror scenario leads to a car delivery without any damage repair (this happens indeed when theclaim is rejected).5 Conclusion and future workThe main conclusion that can be drawn from this work is that it is feasible to use model checkingtechniques for analysing Amber speci�cations.We have succeeded in providing a translation from Amber to Promela which preserves theintended semantics for the subset of �nite state Amber speci�cations. The restriction to �nitestate speci�cations is motivated by the fact that techniques for model checking of in�nite statesystems are still in the stage of academic research.By means of examples we have shown how properties of Amber speci�cations expressed innatural language can be translated into Ltl, the property language of Spin.14



Tools have been developed, which prove feasibility of our methodology. These tools are cur-rently being integrated in the Amber toolset, called Testbed Studio. Examples show that for themodel checking of industrially relevant Amber speci�cations time and memory requirements staywithin reasonable limits. We expect that in practice the size of the data attributes and items usedin the Amber speci�cation will be most critical.From doing this work we have learnt that it is very hard to develop a language and its toolswithout having a formal semantics. Ideally, syntax, tools and semantics should be developed inparallel because they inuence each other.Nevertheless, in the course of the work, we have provided a formal semantics for a part ofAmber. This semantics lines up very neatly with the translation to Promela. Drawback of thisapproach is that it is a very operational semantics, not in the least fully abstract.Our experience with the Spin tools was positive, but some comments apply.� We had to restrict ourselves to a sublanguage of Promela which is very basic. Our �rstapproach to modelling Amber in Promela made heavy use of the Promela process model.It appeared to be much more e�cient to encode all behaviour into one single Promelaprocess.� The use of non-trivial data structures in Promela to encode the state automaton, such asarrays and structs, resulted in signi�cantly higher memory requirements.� In some cases properties can be expressed more easily in a branching time logic than in thelinear time logic provided by Spin.� Spin only supports weak fairness, whereas in Amber often strong fairness is assumed.Although this work has showed feasibility of the approach, there are several points of interestthat require attention in the near future.First of all, the Amber language has not yet reached its �nal shape. In particular, a datalanguage still has to be selected and integrated withAmber. A translation from this data languageto Promela has to be provided.An interesting question that remains is how to specify veri�cation properties. Such propertiesshould be speci�ed by (skilled) business architects. In that context temporal logic is too di�cultand too abstract. Even for people with experience in temporal logic it is quite cumbersometo write correct properties concerning the order of activities in processes. Currently, we areinvestigating two di�erent directions. The �rst direction is to use simple, unstructured Ambermodels as property speci�cations. This means that such speci�cation have to be interpretedslightly di�erently: an action a preceding an action b can be interpreted as if a occurs, then bshould follow it, or if b occurs, it should be preceded by a, or even as a and b occur both, and aprecedes b.A second way of making property speci�cation accessible is to de�ne a set of parameterised pat-terns that occur frequently when verifying business properties. Such properties can be presentedgraphically, in a \drag and drop" style to the user. A prototype thereof has been constructed andseems to be quite appealing to the intented users. Both property speci�cation styles are translatedto temporal logic formulae.Closely related to this is the question of what fairness assumptions should be considered andhow they could be expressed in Ltl.The de�nition of su�cient conditions to ensure that a given Amber graph describes a �nitestate system is also of practical interest.Finally, the interaction between the model checker and the simulation tool under developmentshould be made clear in such a way that the error scenarios produced by Spin can be interactivelyreplayed in the Testbed simulation tool.
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