
Model-Driven Situational Awareness for Moving
Target Defense

Ravi Jhawar and Sjouke Mauw
SnT, University of Luxembourg, Luxembourg

Email: {firstname.lastname}@uni.lu

Abstract: Moving Target Defense (MTD) presents dynamically changing attack surfaces and system
configurations to attackers. This approach decreases the success probabilities of attacks and increases
attacker’s workload since she must continually re-assess, re-engineer and re-launch her attacks. Existing
research has provided a number of MTD techniques but approaches for gaining situational awareness and
deciding when/how to apply these techniques are not well studied. In this paper, we present a conceptual
framework that closely integrates a set of models with the system and obtains up-to-date situational
awareness following the OODA loop methodology. To realize the framework, as the first step, we propose a
modelling approach that provides insights about the dynamics between potential attacks and defenses, impact
of attacks and adaptations on the system, and the state of the system. Based on these models, we demonstrate
techniques to quantitatively assess the effectiveness of MTD and show how to formulate decision-making
problems.

Keywords: Adaptive cyber defense, Attack-Defense Trees, Dependency graphs, Security evaluation

1. Introduction

Security technologies that we use today are largely governed by cautious processes involving periodic
penetration testing, security patch development and human-in-the-loop security events monitoring. The
configuration of systems does not change for a long period and adaptations, if at all, happen only in
deterministic ways to support maintenance and availability requirements. This provides an asymmetric
advantage to the adversaries in terms of time – attackers can spend as much time as needed to perform
reconnaissance of the target system and choose the best time to launch an attack. Furthermore, once an attack
succeeds, attackers can maintain back doors and illegal privileges in the system for a long period since the
system configuration remains static and identical.

To counter the advantages afforded to adversaries, a new class of adaptation techniques called moving target
defense presents dynamically changing attack surfaces and system configurations to attackers. This approach
complicates the adversary's mission in two ways. First, the attacker's workload increases significantly since she
must continually re-assess, re-engineer and re-launch her attacks. Second, the success probabilities of her
attacks decrease. MTD is currently considered as one of the game changing themes in cyber security [CITATION
Exe \l 1033], particularly for protecting Internet services and critical infrastructures for both civilian and
military applications.

A number of MTD techniques that increase the complexity of attacks by making the system less homogeneous,
less static, and less deterministic have been proposed in the literature. For example, host-based MTD
techniques that attempt to make seemingly random adaptations to the memory layout [CITATION VIy10 \l 1033
] [CITATION CKi06 \l 1033], application's code [CITATION TRo10 \l 1033] and operating systems [CITATION
MCh02 \l 1033][CITATION XJi07 \l 1033] have been proposed. Similarly, network-based MTD techniques that
adapt network properties such as IP addresses, topology and protocols [CITATION SAn05 \l 1033][CITATION
Eha11 \l 1033] have been developed. However, a majority of existing MTD techniques (e.g., IP address space
randomization) were developed in isolation, to defeat specific attack steps (e.g., reconnaissance), by
considering only certain aspects of the system configuration [CITATION HOk13 \l 1033]. Given its potential to
be a game-changing technology, relatively recently, efforts have focused on studying MTD as a whole, instead
of confining to individual techniques. In this direction, attempts have been made to define an MTD system
using the concept of a configurable system [CITATION RZh14 \l 1033]. A few other works have focused on
developing frameworks for quantitative evaluation of the effectiveness of MTD and/or to provide approaches
for decision-making within an MTD system. We review such studies in detail and highlight research challenges
that are constraining wide adoption of MTD in Section 2.

The contributions of this paper are twofold.
 A framework that outlines an approach to address the research challenges identified in Section 2. Our

framework considers MTD in totality and represents its properties using a set of models. These
models are used to measure the effectiveness of MTD and to formulate decision-making problems
(Section 3).

 As the first step towards realizing our framework, we define the set of models that represent several
properties of an MTD system: i) dynamics between potential attacks and defenses, ii) impact of attacks
and adaptations on the system, and iii) state of the system and involved agents. We demonstrate how
these models provide situational awareness and improve security assessment (Section 4).

2. State-of-the-art and research challenges

Figure 1 illustrates how MTD, in comparison with traditional system and adaptive hardening approaches,
operates on a networked system and how it affects the attack surface. While traditional hardening aims at
reducing the system’s attack surface by removing unnecessary resources, MTD constantly shifts the attack
surface and manifests its size, shape and frequency. This implies that the existing definitions of attack surface
[CITATION PMa11 \t \l 1033] are not suitable for evaluating a shifting attack surface and the following remains
an open research challenge.1 [RC1] There is a need to provide a definition of attack surface that can serve as a
metric for characterizing MTD, formulate its semantics, and develop methods to measure it.

Figure 1 Impact of traditional hardening approaches and MTD on a networked system and attack surface

2.1 Measuring the effectiveness of MTD

We now review the two main approaches for measuring the effectiveness of MTD. The first approach to MTD
evaluation consists in defining models to represent MTD techniques, and in providing methods to measure
specific properties using those models [CITATION JXu14 \l 1033][CITATION Hon16 \l 1033]. However, using
existing solutions, either the impact of both attacks and defenses on the system is not modelled or the state of
the system cannot be derived. This situation gives rise to the following research challenge. [RC2] There is a
need to develop modelling schemes that can not only capture the dynamics between attacks and defenses but
also the state of the system, involved agents, and interdependencies.

The second approach to evaluate MTD consists in evaluating a set of system parameters using testbeds or
simulations. Studies have focused on identifying the aspects that each MTD technique is intended to improve
and measuring the technique's ability to realize that improvement e.g.,[CITATION PJD15 \l 1033]. In contrast,
[CITATION KZa15 \l 1033] proposed a framework to evaluate MTD using testbeds, where the attacker's
characteristics are mapped using cyber kill chains and metrics validated using simple mission models.

While the problem of assessing the effectiveness of MTD has been recognized as an important issue, existing
solutions have considered only specific types of MTD techniques and have been validated using a single

1 Research challenges are enumerated for the sake of readability (RC1, RC2, RC3, RC4).

evaluation method. In this context, the following research challenge arises. [RC3] A holistic framework with
well-defined approaches to measure the impact of MTD on a system needs to be designed.

2.2 Decision-making for MTD

A method to quantify the shift in attack surface and a stochastic game model to determine an optimal MTD
strategy was introduced in [CITATION PMa13 \t \l 1033]. The goal of this work is to reduce the attack surface
based on the trade-off between security and usability. However, the problems arising from the potential state
space explosion and the instantiation of this model has not been studied yet. Albanese et al. define a model for
evaluating and countering attacker's reconnaissance effort. The basic idea consists in controlling how an
attacker perceives the attack surface of the target system. By doing so, attackers can be made to spend more
time in identifying their target [CITATION MAl14 \l 1033]. Similarly, in [CITATION SJo15 \l 1033] a game model
is used to evaluate and make decisions within an MTD system. In this case, the game's players compete with
each other to control a shared resource.

The aspect of decision-making for MTD has been a central component of many recent frameworks. However,
this aspect is still in a nascent stage and most frameworks are at a conceptual work-in-progress level. [RC4] A
research challenge consists in formulating the MTD decision-making problem and providing efficient methods
to solve them.

3. Overview of our framework

In this section, we present a conceptual framework that outlines the approach we adopt to address the
research challenges (RC1—RC4) highlighted in the previous section. Our framework considers the MTD system
in totality and models its properties using a set of formal security models. These models are kept up-to-date
with the system and are used to measure the effectiveness of MTD techniques i.e., to perform quantitative
security evaluation. Security models and evaluation results in turn allow us to formulate MTD decision-making
problems and to answer questions such as: Which combination of MTD techniques satisfies given security
goals? How often and when should one adapt the system? In the following, we discuss each component of our
framework and summarize its operational details.

Figure 2 Overview of our framework and interaction between various components

MTD System and attacker model:2 In general, our approach applies to any system that can implement MTD
techniques. However, in this study, we consider a typical enterprise network that comprises servers and
workstations and supports classic business applications such as emails, web services and databases as our
system of interest. On the one hand, solutions developed for such general-purpose enterprise networks can be
customized easily for other networked systems, and on the other hand, enterprise networks are increasingly
hosting critical applications and are becoming part of large-scale attacks. For example, Stuxnet malware that
targeted supervisory control and data acquisition (SCADA) systems, inflicting massive consequences on
different levels including national scale disasters, first compromised the enterprise corporate network and used
the conditions created in order to penetrate into the SCADA system [CITATION SKr12 \l 1033].

2 Components Attacker and MTD System – Part 1 – of Figure 2.

Enterprise networks typically comprise subnets delimited by firewalls, where each subnet supports a specific
business unit, and the network is supported by security measures such as an intrusion detection system and
access control. We consider a threat model where an attacker characterizes a standard kill chain (following
steps: reconnaissance, access, exploit development, attack launch and persistence) [CITATION EHu11 \l 1033]
[CITATION HOk13 \l 1033], whose goal is to breach security measures in the network. To defend against such
attacks, we assume that the system administrator, in addition to the traditional defenses, has deployed the
following MTD techniques that can together counter all stages of a kill chain.

 Network Address Space Randomization: This technique can be implemented in two modes. In the
first mode, it improves the agility of the network gateway by frequently changing externally visible
network addresses. This technique is effective against reconnaissance and access steps of the kill chain
w.r.t. a remote adversary. In the second mode, it slows the effect of network scanning (as a
consequence, the effect of IP address hitlist-based worms) by assigning short address leases to the
hosts in the network and by changing the addresses when the lease expires.

 Dynamic runtime environment: To counter the exploit development and the attack launch steps of the
kill chain, this technique prevents injection attacks on generic hosts and database servers as follows.

o Address space layout permutation: This technique prevents the programs running on the
hosts from code injection by randomizing individual programs independently.

o Randomized SQL: This technique prevents buffer overflow attacks based on SQL injection by
randomizing the query language so that any injected code is not executed. This technique is
particularly useful when the query depends partially on untrusted inputs.

 Lightweight portable security: This technique uses a bootable OS that resides on a read-only medium
to enable rapid recovery of hosts by ensuring that the OS boots into a clean and known good state.
Such recovery removes existing infections and helps mitigate persistence threats on a system.

 Dynamic policies: To mitigate exploitation of trust conditions, this technique allows applications to
change security policies in response to attempted intrusions, while maximizing the utility of machines
in the network. Security policies can be changed over the entire network or on individual machines.

The techniques listed above are only examples of how MTDs can protect the system against a class of attackers.
Our approach remains applicable even if a subset of the above techniques is considered or if new defenses
introduced.

Models, security assessment, and decision-making:3 Existing solutions have primarily focused on developing
MTD techniques and on assessing and decision-making either using simulation methods or ad hoc models. In
contrast, our approach consists in defining a set of well-integrated formal security models that not only
represent the dynamics between potential attacks and defenses and their impact on the system, but also the
state of the system and involved agents. This set of models provides basic situational awareness of the system.
We discuss our modeling approach in detail in Section 4.

We use this set of models to assess the effectiveness of MTD. The security assessment component of our
framework, for instance, complements Attack—Defense Trees with dependency graphs to measure the impact
of each attack on the system and with stochastic techniques to measure temporal-probabilistic metrics. We
note that assessing key temporal aspects is important because one of the goals of MTD is to eliminate
attacker’s asymmetric advantage of time. As part of the future work, we will provide new formalism of attack
surface based metrics (e.g., shift in attack surface) and develop a model-driven approach to measure these
metrics.

Finally, before discussing about MTD decision-making, we need to take into account the notion of overhead
costs. MTD techniques introduce additional costs while defending against attacks. The term cost denotes
administrative costs, service downtimes or performance costs. For instance, MTD that changes virtual machine
images to implement platform diversity is useful against exploit development and persistence but likely
disrupts running services, introducing downtime. In this direction, our goal is to formulate the cost function
that measures the usefulness of MTD against introduced overhead costs.

Using the cost function, the effectiveness measures and the set of models, our framework formulates MTD
decision-making problem as a i) multi-objective constrained optimization problem and ii) game-theoretic

3S Second block of Figure 2.

problem. An example of the first category of a decision-making problem is as follows. Given a set of available
MTD techniques and the state of the system, identify the course of actions that minimizes the attack surface of
a mission, while satisfying the functional and security requirements provided as constraints. This approach is
effective if the attack surface remains constant during an attack and if the system remains static. However,
since these conditions may not be satisfied, one must assume continuous stream of attacks that seek to disrupt
system operations and act against defender's goals. Therefore, our framework extends the work in [CITATION
RJh161 \t \l 1033] and models the decision-making problem as a game between the attacker and the defender
with competing objectives. The cost function provides the pay-off values to each player and the equilibrium
provides the decision results. Solvers such as GTE [CITATION Ege15 \l 1033] are used to obtain game's
equilibrium and model different types of knowledge states that each player possesses.

Operational details: Figure 2 illustrates how the components of our framework interact with the MTD system.
Given that the system is highly dynamic, we adopt the OODA loop methodology as follows:

 Observe – collate information from the system (e.g., by means of continuous monitoring, IDS and
honeypots) about system incidents, ongoing attacks and adaptations.

 Orient – arrange the collated information by updating the set of models, say, using incremental
generation methods. This step provides models that are in sync with the system. We note that this
step is essential since the system is expected to experience frequent adaptations.

 Decide – quantitatively measure the security of the new configuration and the cost values. Apply
decision-making algorithms in concurrence with the updated models and measures.

 Act – Perform what-if analysis to check if the system will be in a valid state if the decision results (e.g.,
an adaptation solution) are enforced. If true, implement appropriate actions (e.g., change in
configuration) on to the system.

The loop reverts to the observe step after act and continues similarly thereafter.

The framework presented in this section outlines our high-level approach to address the research challenges in
this domain. The most critical aspect of our approach consists in building a set of models that provide basic
situational awareness. These models then serve as the basis for security assessment and decision-making. In
the rest of this paper, we therefore focus on our modeling methodology and briefly discuss its relationship with
security assessment. Formulation of the MTD decision-making problem and in depth semantics of MTD
effectiveness measurement is out of the scope of this paper due to space restriction.

4. Modelling MTD-based security scenarios

In this section, we describe our methodology for modeling an MTD system. We start by representing attacker’s
behavior and potential defender’s options.

4.1 Attack—Defense Trees

Attack—Defense Trees (ADTrees) provide a formal yet intuitive approach to systematically represent potential
attacks and countermeasures in a system. ADTrees improve the widely used attack trees formalism, by
including not only the actions of an attacker, but also possible counteractions of a defender. The root node in
an ADTree represents the attacker’s (or defender’s) goal and the children of a given node represents its
refinement into sub-goals. Each node can have one child of the opposite type, representing the node’s
counteraction, which can be refined and countered again. The leaves of an ADTree represent the basic actions
of an agent, which need not be refined any further [CITATION Kor14 \l 1033].

Example 1: The Stuxnet attack can be distinguished into two main phases: i) infiltration and propagation into
the corporate enterprise network and ii) compromising SCADA systems and industrial sabotage. The ADTree in
Figure 3 shows how an attacker can achieve the first phase of Stuxnet. For the sake of simplicity, the second
phase of the attack is not shown in this example. The triangle on top of the ADTree’s root node indicates that
the part of the tree (above) modelling attack on SCADA system has been abstracted. To compromise the
enterprise network, the attacker must first gain privileges on the hosts in the network, then inject its payload
into other legitimate processes (attack launch), and finally propagate the malware in the network in order to
infect as many workstations as possible (this maximizes her chances to transit later to the control network). To
gain privileges on the hosts, the attacker must perform reconnaissance of the network to identify potential
vulnerabilities, develop specific exploits (e.g., several Windows and 0-day exploits are known to be used), and

establish trust conditions on her target hosts. She can then use these conditions to launch her attack by either
performing code or control injection on the hosts and database servers. Finally, the attacker can propagate the
malware either via LAN or by sending email attachments. The worm can use network shares or printers to
propagate via LAN.

If the system administrator deploys the MTD techniques discussed in Section 3, the attacks on the enterprise
network can be countered as shown in the ADTree (Figure 3).

Figure 3 Attack--Defense Tree decorated with the likelihood attribute

ADTrees can be used to quantify security scenarios with respect to given parameters, called attributes. For
example, an attribute could be the likelihood of satisfying the attacker’s (or defender’s) goal. The bottom-up
algorithm is the most widely used approach for calculating attribute values. In this approach, the user first
assigns attribute values to the leaf nodes and functions corresponding to each refinement type. Attribute
values are then propagated up to the root node. As an example, we show the probability with which an
attacker can compromise the enterprise network in Figure 3 (see the numbers associated to each node and
functions at the bottom of the figure). For instance, let the probability with which the countermeasure network
address space randomization (gateway) prevents a scanning attack be 0.3; then, an attacker performing
reconnaissance with probability 0.7 will be successful with likelihood 0.49.

Therefore, we can infer that ADTrees are well suited to reason about the refinement of security goals into easily
understandable actions, to capture the dynamics between potential attacks and defenses, and for simple
attribute evaluation. However, to improve situational awareness, in addition to attack—defense information,
we also need to gain insights on the impact of an attack (or a defense) on the system. We achieve this using the
notion of dependency graphs.

4.2 Dependency graphs

A dependency graph is a directed acyclic graph that captures how system components depend on each other.
The nodes of the dependency graph correspond to the network entities and an edge between two nodes
(n1 , n2) denotes the relationship n1 depends on n2 . For instance, the dependency graph in Figure

4 (right side only) illustrates that workstation WS3 depends on WS2, which further depends on three servers.
The application server, web server, email server and print server depend on the database server. We note that
the dependencies at any abstraction level could be defined (e.g., instead of network entities, nodes in the
graph could represent business units) and, as discussed in [CITATION MAl11 \l 1033], information related to
the nature of dependencies (e.g., redundancy, graceful degradation, strict dependency) can also be
represented.

We now demonstrate how the information provided by the dependency graph improves situational awareness.
Consider the enterprise network described in Section 3; based on the ADTree in Figure 3, the system
administrator may try to prevent worm propagation via the print server since the attacker is most likely to
perform this action (with probability 0.8). However, considering the dependency graph in Figure 4, it appears
that this choice may not be optimal because only workstation WS1 depends on the print server and
consequently the damage is marginal. On the other hand, worm propagation via Email server or LAN, although
less likely (0.4 and 0.6 respectively), could have a much higher impact (e.g., since WS2 and WS3 depends on
Email server).

Figure 4 Attack--Defense Tree and the dependency graph

Our modeling approach consists in combining ADTrees and dependency graphs, and denoting how the
execution of an attack or a defense (nodes in the ADTree) might impact the performance and utility of one or
more system components (nodes in the dependency graph), and how this may further affect the components
that depend on the directly affected components.

Example 2: Similarly to [CITATION MAl11 \l 1033] where attack graphs and dependency graphs are combined
for scalable analysis of attack scenarios, assume that the system administrator associates a number with each
network entity in the dependency graph to denote its performance/utility value. For simplicity, this number
could be normalized in [0,1] where 1 associated to the web server indicates that it is functioning at its
optimal capacity and 0 associated to WS1 indicates that this workstation is completely unusable. Similarly,
associate a number with each edge connecting an attack node in the ADTree and a network entity in the
dependency graph. This number represents the percentage reduction in the utility of the network entity due to
this attack. For instance, Figure 4 illustrates that the code injection attack makes the web server unusable.
Since WS2 and WS3 depend strictly on the web server, their utility also becomes 0. Similarly, the damage
caused by the control injection attack on the application server is 0.5*0.9=0.45 and its total impact is 0.45 +
0.8(WS2) + 0.7(WS3) = 1.95.

4.3 State transition system

The combination of ADTrees and dependency graphs provides insights about the interaction between attack
and defenses and their impact on the system in a systematic manner. Finally, we need models that allow us to
represent the state of the system and how it reacts to various attacks and defenses in order to obtain complete
situational awareness. Such models are useful, for instance, to identify whether an adaptation moves the
system to an invalid state or not. To achieve this, we introduce the notion of labeled state transition model
(STS) in which a state characterizes the configuration of the system, and the transitions denote the actions that
move the system from one state to another. State transitions can be enriched with system events, security

policy conditions, or probability distributions. The formalism of an STS with probability distributions, providing
an equivalent representation of an ADTree, is given in [CITATION RJh16 \t \l 1033].

Example 3: For the ADTree in Figure 3, an abstract and representational STS in Figure 5 shows how the system
transits from one state to another depending on the attacker’s actions and MTD techniques. For instance, the
MTD lightweight portable security, by reverting the OS to a known clean state, negates the exploits that the
attacker had developed and removes any trust conditions generated. This moves the system from State 5 back
to State 2. We note that MTD techniques remove the monotonicity assumption normally attributed to
attacker’s behavior in traditional security modeling, and is captured using STS. Similarly, by code or control
injection, an attacker can successfully inject payload of the malware (i.e., complete the attack launch step and
reach State 7) and move to the state (8, 9 or 10) where she can start propagating the worm within the network.

Figure 5 State transition model

In our framework, ADTree, dependency graph and STS provide situational awareness in an MTD system. These
models not only capture the dynamics between potential attacks and defenses, and their impact on the
system, but also the state of the system and involved agents. These models serve as our basis for assessing the
effectiveness of MTD and decision-making.

5. Conclusions and Future work

MTD has the potential of complicating adversary’s missions and of protecting Internet services and critical
infrastructures. We provided an overview of the state-of-the-art and highlighted the research challenges that
are constraining wide adoption of MTD. We then proposed a framework that outlined our model-driven
approach to security evaluation and decision-making. Finally, we presented our modeling approach using
ADTrees, dependency graphs and STS, and demonstrated how it provides situational awareness and how it can
help us in realizing our framework. This paper is only the first step towards achieving our research goals in this
area. As part of our future work, in addition to the points mentioned in the paper, we will develop the
language, syntax and semantics of our models, and develop approaches to automatically generate these
models.

Acknowledgements
The research leading to these results has received funding from the Fonds National de la Recherche
Luxembourg under grant C13/IS/5809105.

6. References

Albanese, M., Battista, E., Jajodia, S., & Casola, V. (2014). Manipulating the attacker’s view of a system's attack
surface. IEEE CNS, (pp. 472-480). San Francisco, USA.

Albanese, M., Jajodia, S., Pugliese, A., & Subrahmanian, V. S. (2011). Scalable Analysis of Attack Scenarios.
ESORICS (pp. 416–433). Leuven, Belgium: Springer.

Al-Shaer, E. (2011). Toward Network Configuration Randomization for MTD. In MTD: Creating Asymmetric
Uncertainty for Cyber Threats (pp. 153-159).

Antonatos, S., Akritidis, P., Markatos, E. P., & Anagnostakis, K. G. (2005). Defending against hitlist worms using
network address space randomization. ACM Workshop on Rapid Malcode, (pp. 30–40). Fairfax, VA,
USA.

Chew, M., & Song, D. (2002). Mitigating buffer overflows by operating system randomization. CMUCS-02-197.

Donovan, P. J., McLamb, J. W., Okhravi, H., Riordan, J., & Wright, C. V. (2015). Quantitative evaluation of moving
target technology. HST (pp. 1-7). IEEE.

Egesdal, M., Gomez-Jordana, A., Pelissier, C., Prause, M., Savani, R., & Stengel, B. (2015). Game Theory Explorer.
Retrieved from http://gte.csc.liv.ac.uk/gte/builder/

Executive Office of the President, NST Council, USA. (2011). Retrieved from Trustworthy cyberspace: Strategic
plan for the federal cybersecurity research and development program: https://www.whitehouse.gov/

Hong, J. B., & Kim, D. S. (2016). Assessing the effectiveness of moving target defenses using security models.
IEEE Trans. on Dep. and Sec. Comp, 163-177.

Hutchins, E., Cloppert, M., & Amin, R. (2011). Intelligence-driven computer network defense informed by
analysis of adversary campaigns and intrusion kill chains. ICCWS. Washington, DC, USA.

Iyer, V., Kanitkar, A., Dasgupta, P., & Srinivasan, R. (2010). Preventing overflow attacks by memory
randomization. ISSRE (pp. 339–347). IEEE.

Jhawar, R., Mauw, S., & Lounis, K. (2016). A Stochastic Framework for Quantitative Analysis of Attack–Defense
Trees. STM. Heraklion, Greece: Springer.

Jhawar, R., Mauw, S., & Zakiuddin, I. (2016). Automated Cyber Defense Responses using Attack-Defense Trees
and Game Theory. ECCWS, (pp. 163-172). Munich, Germany.

Jiang, X., Wangz, H. J., Xu, D., & Wang, Y. (2007). Randsys: Thwarting code injection attacks with system service
interface randomization. SRDS. IEEE.

Jones, S., Outkin, A., Gearhart, J., Hobbs, J., Siirola, J., Phillips, C., . . . Mulder, S. (2015). Evaluating Moving
Target Defense with PLADD. Sandia National Laboratories.

Kil, C., Jun, J., Bookholt, C., Xu, J., & Ning, P. (2006). Address space layout permutation: Towards finegrained
randomization of commodity software. ACSAC (pp. 339–348). IEEE.

Kordy, B., Mauw, S., Radomirovic, S., & Schweitzer, P. (2014). Attack-defense trees. Journal of Logic and
Computation, 55--87.

Kriaa, S., Bouissou, M., & Pietre-Cambacedes, L. (2012). Modeling the Stuxnet attack with BDMP: Towards
more formal risk assessments. CRiSIS, (pp. 1-8).

Manadhata, P. (2013). Game Theoretic Approaches to Attack Surface Shifting. In MTD II: Application of Game
Theory and Adversarial Modeling (pp. 1-13). Advances in Inf. Sec., Springer.

Manadhata, P., & Wing, J. (2011). An attack surface metric. IEEE Trans. on Software Engg., 37(3):371-386.
Okhravi, H., Rabe, M. A., Mayberry, T. J., Leonard, W. G., Hobson, T. R., Bigelow, D., & Streilein, W. W. (2013).

Survey of cyber moving target techniques. MIT Lincoln Lab.
Roeder, T., & Schneider, F. (2010). Proactive obfuscation. ACM Trans. Comp. Sys., 28(2):1–54.
Xu, J., Guo, P., Zhao, M., Erbacher, R. F., Zhu, M., & Liu, P. (2014). Comparing different moving target defense

techniques. ACM Workshop on MTD, (pp. 97–107). Scottsdale, USA.
Zaffarano, K., Taylor, J., & Hamilton, S. (2015). A quantitative framework for moving target defense effectiveness

evaluation. ACM Workshop on MTD, (pp. 3-10). Denver, USA.
Zhuang, R., DeLoach, S. A., & Ou, X. (2014). Towards a theory of moving target defense. ACM Workshop on

MTD, (pp. 31-40). Scottsdale, USA.

	Model-Driven Situational Awareness for Moving Target Defense
	Ravi Jhawar and Sjouke Mauw
	SnT, University of Luxembourg, Luxembourg
	Email: {firstname.lastname}@uni.lu

	1. Introduction
	2. State-of-the-art and research challenges
	2.1 Measuring the effectiveness of MTD
	2.2 Decision-making for MTD

	3. Overview of our framework
	4. Modelling MTD-based security scenarios
	4.1 Attack—Defense Trees
	4.2 Dependency graphs
	4.3 State transition system

	5. Conclusions and Future work
	6. References

