
The usage of MSC with uBET-toolsupport in the software

development pro
ess

B. Knaa
k

�

, S. Mauw

y

Mar
h 8, 1999

Abstra
t

The usage of formal methods and design tools in the software development pro
ess is be-

oming a key issue in the industrial software development world. In this light we studied the

Lu
ent Te
hnologies software design pro
ess. We des
ribe the MSC-requirements des
ription

method and investigate how the usage of MSC
an aid in the software design pro
ess. Fur-

thermore we look at the uBET-tool for the support of MSC deployment and
ompare the

uBET syntax and semanti
s with the formal MSC de�nition.

The usage of MSC.....(extend,extend)

1 Introdu
tion

In the tele
ommuni
ation market the time to market window is de
reasing rapidly due to new

ompetitors and new
ustomers in a dynami
 market. Therefore the overall throughput time

of proje
ts su
h as
ustomer reported problem solution, new features and software updates is

be
oming a
ompetitive asset on the tele
ommuni
ation market. To speed up the total design

y
le a new software design pro
ess is
urrently needed.

In this light we strive to investigate in this paper the
urrent software design pro
ess at Lu
ent

Te
hnologies, a major player on the tele
ommuni
ation market.

Lu
ent Te
hnologies was part of the AT&T
on
ern until it split up in the new AT&T, NCR and

Lu
ent Te
hnologies. The main business for Lu
ent Te
hnologies is the development of tele
ommu-

ni
ation equipment like opti
al networks, SDH networks, wireless
ommuni
ation and telephone

swit
hes. For these produ
ts software need to be developed, extended and
onstantly updated.

This results in a major software development e�ort positioned at several sites world wide.

At Lu
ent Te
hnologies a department in Holmdel USA is at the moment looking at a radi
al

hange for this software development pro
ess as a whole. At the moment pilot proje
ts are run in

Malmsbury and Indian Hill to gain experien
e in the usage of new methods and tools.

The new overall strategy as proposed by the Holmdel department for the adaptation of the

software design pro
ess foresees in a stru
tural
hange. In this new strategy attention is paid to

an integrated tool support for all phases. In su
h an approa
h it is possible to ex
hange -next

to traditional do
umentation- other forms of information as well, su
h as for instan
e
omputer

models or program models.

In this paper we want to study part of the approa
h for
hanging the software development

pro
ess to get to a more eÆ
ient stru
ture. To keep a
lear s
ope on the subje
t we de
ided to

zoom in on part of the total proje
t and try to des
ribe how that part might be adapted, su
h that

it is
ompatible with future
hanges needed in other phases of the design pro
ess. Therefore we

de
ided to
on
entrate on the �rst phases of the software design pro
ess, where the requirements

are written and transferred to the groups responsible for the other phases.

In this paper we
on
entrate on the MSC standard for the following of reasons:

�

Lu
ent Te
hnologies

y

Eindhoven University of Te
hnology

1

� It is an ITU standard ([2℄) whi
h is used and known by other tele
ommuni
ation
ompanies

like providers and PTT's as well.

� There is tool support for MSC
onne
ting it to other well known method su
h as SDL ([1℄)

� Lu
ent is already working on their own toolset for MSC support in the form of the uBET

tool([?℄), whi
h also implies that there is expertise available within Lu
ent.

� It is graphi
al based method, whi
h is very appealing to the intuition, whi
h makes it easy

to use and to understand, At the same time is has a very strong formal ba
kground.

In this paper we give a short des
ription of MSC and explore how MSC and uBET
an support

the software design pro
ess at Lu
ent in the di�erent phases of the design pro
ess. In order to

do this we �rst give a des
ription of the
urrent software development pro
ess. This des
ription

is followed by a des
ription of MSC and uBET. After this we give an outline of where and how

MSC/uBET
an be used to enhan
e the
urrent design pro
ess.

In the last two se
tions we present some
on
lusions and present the �rst steps on how to

introdu
e uBET in Lu
ent Hilversum and integrate all this in a bigger plan for the total software

design
y
le.

2 The Current Software Development Pro
ess.

The pro
ess des
ription in this se
tion is an abstra
tion of the real pro
ess in the sense that

�nan
ial, resour
e and organizational
ompounds of the pro
ess are not des
ribed. For a full

des
ription of the pro
ess several pages would be needed. Therefore we present an outline of that

part of the pro
ess that is subje
t of our resear
h.

The
urrent software development pro
ess at Lu
ent
onsists -amongst others- of the follow-

ing phases; Requirements analysis, System Engineering, Software Development, Deliverable test,

Feature Test, Customer Delivery and Ongoing support. Ea
h of these phases is
ondu
ted by a

separate group although there is some overlap; the groups responsible for these phases are: Proje
t

Marketing and Management, Customer team, System Engineering, the Development groups (both

for development as for deliverable testing), Feature Test, Customer Te
hni
al Support and Lo
al

Field Support.

In ea
h of these phases do
umentation is written whi
h is then used in the other phases. These

do
uments are mainly written in natural language, whi
h
an be ambiguous and sometimes hard

to use to
orre
tly transfer ideas and
on
epts. On turn over from one phase to the next, the

do
uments are the main (if not only) means of sharing information.

If for instan
e Lo
al Field Support has to solve a
ustomer reported problem they have to

browse through this do
umentation and through the software
ode to �nd out what the problem

is and how it should be solved. Sin
e the do
umentation is mostly in natural language and is quite

extensive, this pro
ess is time
onsuming and error prone.

In the �rst phases of the software development pro
ess the
ustomer requirements need to be

a
quired. On
e the
ustomer requirements are known they have to be translated to a spe
i�
ation

do
ument whi
h
an then be used for software development. In this spe
i�
ation do
ument,

s
enarios for the possible system behavior are given to
larify the des
riptions, whi
h are mainly

given in natural language. These spe
i�
ations are then used by the development phases.

In the
urrent software engineering pro
ess if examples of s
enarios are given, they are given in

seq
ow, whi
h is a very simple s
enario des
ription language. In seq
ow the pro
esses in a s
enario

are denoted by verti
al line and messages between pro
esses are (mostly horizontal) arrows. The

verti
al 'axis' denotes the time, the further down a message the later it appears in the s
enario

(see Figure 1).

In this se
tion we look at four groups in more detail and outline the internal stru
ture of the

work done by ea
h group. We have
hosen these four groups sin
e we expe
t them to bene�t the

most from the methods we des
ribe in this paper. An oversight of the relation between the four

di�erent groups is given in Figure 2.

2

Establish Indication
ESTIND

MGOFFHOOK

PSAESTACK

OTP Nat_prot Call ControlCORE
PNU

PAC

Figure 1: An example of a seq
ow s
enario

System
Engineering

ProjectMarketing
and Management

Software
Development Feature Test

PDAF2

Workitem

FSD FSD

Code

Figure 2: The pro
ess overview

3

2.1 Produ
t Marketing & Management

The Produ
t Marketing & Management group (PM&M) de�nes in dis
ussion with a
ustomer

team or as a result of market analysis a produ
t that should be developed. This de�nition is

re�ned in a Produ
t De�nition (AF) do
ument at a
on
eptual level in natural language. This

produ
t de�nition
an be at a very high
on
eptual level.

2.2 System Engineering

The System Engineering team (SE) is involved in the software development pro
ess on more then

one o

asion. First they are required by PM&M to work out the PDAF2 do
ument into several

work-items. Ea
h work-item is a brief te
hni
al des
ription of part of the features as demanded

by PM&M in the PDAF2. The work items divide the work in logi
ally 'separate' tasks that have

to be performed by the di�erent development groups to
ome to the full fun
tionality.

Although the de�nition of the workitems is done by SE it is under the responsibility of Proje
t

Marketing and Management. After the workitems have been
ommitted {after (possibly) a number

of feedba
k loops with PM&M{ ea
h workitem gets appointed to a software development group

that 'owns' the fun
tional area expertise that is needed for that workitem.

After having de�ned these workitems, ea
h workitem is written out in a FSD (Feature Des
rip-

tion Do
ument) whi
h is a more detailed des
ription of the fun
tionality splitting up the workitem

in a list of requirements, that are to be met by the system. In these FSD's s
enarios are sometimes

used to illustrate the design, but they are not used to des
ribe requirements.

2.3 System Engineering to Software Development

To make sure that the FSD
ontains all ne
essary information needed by the software development

groups, a do
ument review is held at the end of the system engineering phase. In this do
ument

review mostly one or two developers from the team that has to implement these
hanges are

parti
ipating. After this do
ument has been reviewed and the rework has been done the FSD is

handed over to a software development group.

2.4 Software Development

In the software development group the FSD is used as a basis for a High Level Design that zooms

in on the spe
i�
 fun
tional area of the software group. It
ontains a
on
eptual des
ription of

the solution that will be used to implement the
hanges, a survey on what
ode will have to be

hanged and what data stru
tures need to be added. All of these are part of the standard High

Level Design Template.

For
lari�
ation a number of s
enarios might be in
luded. New requirements will be given

in the High Level Design that
over (and mostly re�ne) the requirements in the FSD. After the

review of the High Level Design, a Low Level Design is made that
learly states how the solutions

des
ribed in the high level design are to be implemented. The Low Level Design is then used for

the eventual
oding.

The next step in the development phase is the deliverable test phase, where whitebox testing

is performed. To exe
ute the whitebox tests the s
enarios are identi�ed that need to be exe
uted

on the
ode simulator or on an a
tual telephone swit
h. The result of these whitebox test is stored

in a test database together with a s
enario that was used to perform the test.

2.5 System Engineering to Feature Test

The same FSD that was given to the Software Development group is also given to the Feature

Test Group. To keep the test pro
edure unbiased the feature test group does not get the High

Level Design nor the Low Level Design that were made by the Software Development group.

4

2.6 Feature Test

The feature test is responsible for testing the fun
tionality of the new
ode using a bla
k box

testing approa
h. Furthermore they have to test possible feature intera
tions with other features.

To spe
ify the test they have to perform they write a Requirements Test Plan (RTP). This RTP

is based on the des
ription in the FSD.

Sin
e the feature test team is not involved in the development nor in the review of the FSD,

the feature testers have to `(re)interpret' the requirements as given in the FSD. In order to get

a
lear understanding of the system requirements, they are sometimes translated into s
enarios.

On
e the system requirements are known the feature tester has to
on
eive whi
h other features

might intera
t with the new fun
tionality and set up tests for these intera
tions.

After this survey the tests are developed that have to be performed on the a
tual telephone

swit
h to test the intera
tions of the new feature with already existing features and the fun
tion-

ality of the new
ode on itself.

The RTP is then reviewed together with the development team, to make sure that the tests and

their expe
ted results are indeed feasible. During these reviews the mismat
hes in interpretation

of the requirements from Feature Test and software development rise to the surfa
e.

After this the tests are performed and their results -in
luding the test s
enario- are stored in

a test tra
king system.

3 Message Sequen
e Charts

Many languages have been designed to des
ribe the behaviour of information systems. Using su
h

a language, one
an des
ribe the high-level behaviour of a system without having to worry (yet)

about the exa
t implementation details. One su
h language is Message Sequen
e Chart (MSC) [1℄.

It di�ers from other languages in two important aspe
ts. In the �rst pla
e it puts emphasize on

ommuni
ation between pro
esses, not paying mu
h attention to the internal behaviour of these

pro
esses. This way, it spe
ializes on systems in whi
h
ommuni
ation is important. One area

where it is mu
h used, and the one for whi
h it was originally
reated, is tele
ommuni
ation

systems. In the se
ond pla
e, MSC provides a fully graphi
al pi
ture, rather than a textual

des
ription. Be
ause of this, it
an be more easily and intuitively understood by human users.

Still, behind this graphi
al syntax lies an exa
t meaning and a well-de�ned semanti
s. Be
ause of

this, it
an also be well understood by
ommer
ial and a
ademi
 tools.

MSC-like diagrams have a long history in formal des
riptions of information systems, but

the oÆ
ial Message Sequen
e Chart language has been developed starting in the early nineties

within the ITU (International Tele
ommuni
ation Union) and its prede
essor, the CCITT (Comit�e

Consultatif International T�el�egraphique et T�el�ephonique)

MSCs are used in di�erent
ontexts. The original purpose of MSC when it was �rst formalized,

was to des
ribe requirements in the early phases of the development pro
ess. It was intended to be

an addition to SDL (Spe
i�
ation and Des
ription Language), where the two languages would be

used in di�erent phases of the development pro
ess, MSC early on, when requirements and global

spe
i�
ations are made, SDL later on, when spe
i�
ations are
loser to the �nal implementation.

However, the language is now used in many more appli
ations. To name a few: the des
ription

of the a
tual behaviour of an existing system, espe
ially in the
ontext of testing, the generation

of test
ases, the spe
i�
ation of proto
ols and the formalization of use
ases.

As we saw in the introdu
tion there are important advantages in preferring the MSC method

for system design and analysis:

� Due to its standardization by the ITU, there is world wide interest in the further development

of the language and its supporting tools. It is well do
umented and known throughout the

tele
ommuni
ation so
iety. MSC is a stable language, whi
h is maintained by the ITU study

group in a four year
y
le.

� It is graphi
al based method, whi
h is very appealing to the intuition, whi
h makes it easy

to use and to understand.

5

� The MSC language supports many features. Basi
 features in
lude asyn
hronous
ommu-

ni
ation, timers and lo
al a
tions. The ordering of events
an be weakened by so-
alled

oregions and strengthened by means of general orderings. Inline expressions
an be used to

de�ne small variations of a s
enario. Top-down design is supported by instan
e de
omposi-

tion. High-Level MSCs and MSC referen
es
an be used for a modular design and allow for

the reuse of parts of an MSC spe
i�
ation. Finally, the up
oming revision of the language,

MSC2000, will support the in
lusion of a data language, timing requirements, and a
ontrol

ow me
hanism (as in UML).

� There is tool support for MSC
onne
ting it to other well known methods su
h as SDL ([1℄).

This tool support is still improving and new tools are still developed to in
rease the usability

of MSC. The Lu
ent Te
hnologies uBET toolset is an example of a tool that provides support

in MSC-design and is still evolving to be
ome more powerful and usable.

� Despite its graphi
al appearan
e, MSC has a strong formal ba
kground. This makes it

possible to:

{ make unambiguous system-des
riptions;

{ interfa
e with other tools that might be used to support the other design phases;

{ use formal validation methods on the designs.

Be
ause MSCs are based on a simple and intuitive paradigm, many similar languages have been

developed independently. The seq
ow diagrams
an a
tually be seen as an MSC-like language.

However seq
ow is limited in its appli
ation and expressive power with respe
t to the full MSC

language.

The
omplete expressive power of the MSC language
an not be explained in just a few pages.

Therefore, we will only highlight some of the most relevant features by means of a simple example.

For a
omplete des
ription of the language we refer to [2℄. An extensive tutorial is in [3℄.

A s
enario in MSC exists -just like in seq
ow- of a number of pro
esses (represented by verti
al

lines) and messages between these pro
esses (denoted by 'horizontal' arrows) (see Figure 3).

The (meaningless) example in this �gure also shows some other features, su
h as the
ondition,

denoted by a hexagon, whi
h indi
ates a state of the system. The hour glass symbol denotes the

setting of a timer.

Small variations on s
enarios
an be expressed by inline expressions. This is denoted by the

re
tangular box labeled with alt in the upper left
orner. The two alternative parts of the s
enario

are separated by a dashed line.

A s
enario spe
i�
ation of a system will in general
onsist of a large number of su
h MSCs.

In order to stru
ture these s
enarios, High-Level MSCs (HMSCs)
an be used. Su
h an HMSC

shows in whi
h way the respe
tive s
enarios must be
ombined. An example of an HMSC is given

in Figure 4). The HMSC in this �gure expresses that �rst MSC Setup is exe
uted. Then there

are two alternative s
enarios to
ontinue with, namely Metering and Emergen
y. After having

exe
uted one of these, exe
ution
ontinues at MSC For
ed end and �nishes with Dis
onne
t.

The high level des
ription given by HMSCs
an be used to give an abstra
t overview of the

system. but it
an also be used to design the system requirements top down by starting to des
ribe

the abstra
t behavior of the system and re�ning these HMSC until the basi
 MSC level is rea
hed.

Other extra primitives on Basi
 MSC level; su
h as gates, timers and the fa
t the ea
h basi

MSC has its own unique ID enhan
e the expressive power of the MSC method and make modu-

larisation and reuse possible. As the MSC method des
ribes the intera
tion between pro
esses it

is spe
i�
ally useful for modelling behavioral aspe
ts of multipro
ess systems. For data intensive

systems MSC is not the ideal modelling tool.

6

Establish Indication
ESTIND

MGOFFHOOK

PSAESTACKPAC

timer

ALT

STATE

Messagename

ProcessoriginationOTP
MSC setup

Figure 3: A basi
 MSC with explanatory
omments

Metering

Forced end

Disconnect

Setup

Emergency

MSC V5PSTN

MSC reference

Connector

Figure 4: A High-level MSC

7

4 uBET

The uBET tool is developed by Lu
ent, Murray Hill. The toolset started of as an MSC editor for

Basi
 MSC. It provided a means for qui
kly drawing pro
esses, messages between pro
esses, timers

and states. These basi
 building blo
ks provided a good basis for drawing MSCs as des
ribed in

MSC92.

Later in a graph editor was introdu
ed that
an be used to
ombine the Basi
 MSCs into larger

stru
ture. These graphs
an re
ursively be used as part of a graph at a higher level making it a

true hierar
hi
al stru
ture. The result of this
ombination is an MSC editor whi
h in
orporates

important feature of the MSC96 des
ription.

The stru
ture of uBET allows for a top down approa
h of design as well as bottom up by not

enfor
ing a order of design. Furthermore uBET o�ers a number of analysis possibilities. The tool

is available on both PC and SUN platform and is freely available for all engineering groups within

Lu
ent.

[S
reen shot℄

If we
ompare the uBET tool to full MSC we have to
on
lude that there are di�eren
es in

both syntax and expressivity.

The main di�eren
es in syntax
an be summarized as:

� the timer-set, -reset and -expiration events are denoted di�erently

� the edges in graphs of uBET are labelled, where as in HMSC the
onne
tions between

MSC referen
es are unlabelled.

� referen
e between a node in the graph and the s
enario that 're�nes' it is not denoted in the

graphi
al representation but ele
troni
ally in the model.

These di�eren
es in syntax.......

The main di�eren
e in expressiveness
an be summarized as:

� no gates

� absen
e of re�nement

Finally the synta
ti
 sugar that is introdu
ed in MSC su
h as inline expressions and the

possibility to referen
e to multiple MSC with one MSC referen
e is not all implemented in the

uBET-tool. The addition of this synta
ti
 sugar to uBET would not be of in
uen
e on the

expressiveness of the uBET method, but it substantially aid in the readability and
larity of the

s
enarios.

5 The uBET/MSC support possibilities

It is
lear from the des
ription of the
urrent software development pro
ess (see Se
tion 2 that

s
enarios play an important role in many respe
ts. They are applied in many ways, su
h as

requirements spe
i�
ation, do
umentation, design, and test
ase spe
i�
ation. Currently, s
enario

spe
i�
ations are being used in an informal and non-standardized way, with only elementary tool

support.

Clearly, adoption of the re
ommended MSC standard will strengthen the use of s
enarios in

the development pro
ess. The advantages of using the MSC language as mentioned in Se
tion 3

evidently apply to the situation at Lu
ent. There is, e.g. a
lear need for
omposing larger and

more
omplete s
enarios from simple ones.

Of
ourse, there will only be maximal bene�t from the MSC method if appropriate tool support

is provided for. Although the uBET tool is not fully
ompatible with the most re
ent ITU standard,

we think that it
an be e�e
tively applied in the
urrent development pro
ess.

Below, we will indi
ate at various pla
es in the software pro
ess what the impa
t would be

of using the MSC/uBET methodology. Rather than giving a
omplete and detailed des
ription

8

of the use of MSC/uBET in these situations, we aim at making a global inventory of its use. A

follow up in the form of a number of
ase studies is needed for understanding the full appli
ability

of the MSC/uBET method.

System Engineering Starting at the system engineering phase the uBET-tool and MSC
an be

used to
apture part of the requirements. These des
riptions
an be produ
ed with aid of Software

Development and Feature Test. The uBET des
ription of these s
enarios unambiguously de�nes

the desired system behavior. The uBET tool
an then be used to extra
t example s
enarios for

do
umentation.

The stru
ture that
an be used in des
ribing the requirements will greatly aid in the readability

of the requirements and will also aid in the
ommuni
ation of high level
on
epts and behavioral

stru
tures. Combining the des
riptions of the di�erent workitems,
an
larify the
ohesion between

the di�erent work items that need to be developed.

Software development As soon as part of the FSD is designed in a uBET model, this uBET

model
an be used by the software development group to understand the meaning of the require-

ments. The re�nement of the requirements that are given in MSC
an now be done by re�ning

these MSCs. From these MSCs whitebox tests
an be derived by using uBET to produ
e s
enarios

that are
ompliant with the MSC.

Again the re�ned MSCs
an be in
luded in the do
umentation to give an unambiguous de-

s
ription of the expe
ted system behavior.

On the longer term as soon as part of the existing
ode is already available in MSCs, these

existing MSCs
an be reused and adapted to desired system des
ription. This reusability does

require that the MSC des
riptions are kept up to date and that they have been
he
ked to represent

the
urrent
ode.

Another possibility for support would be that the system spe
i�
ation in MSC
an be used to

analyse and verify the behavior of the system that has been built. This would however require a

onsiderable amount of extra e�ort in tool development and an abstra
t des
ription of the
ode

in a formalism like VFSM or OBJECT-time.

Feature test The uBET des
ription of the requirements in the FSD
an help feature test to

understand the meaning of the requirements sin
e they stru
turize the information and give the

possibility to intera
tively view the s
enarios that are des
ribed by the uBET model.

The feature tester
an
hoose to re�ne the uBET model that is given in FSD to
ome to a better

system des
ription as a basis for the test to be developed. The re�nement made by feature test

an then be
ompared to the one made by software development to
ome to
lear understanding of

possible mismat
hes in interpretation. Sin
e the MSC language o�ers an unambiguous des
ription

the number of mismat
hes in interpretation
an go down anyway.

On the long term as soon as the des
ription of other features is given as uBET models as well

t
an be possible to automati
ally dete
t possible feature intera
tions and
reate the proper test

s
enarios.

6 Con
lusions

Sin
e s
enarios already play an important role in a number of phases in the development pro
ess,

the usage of MSC to des
ribe these s
enarios
an greatly help. On the short term the usage of

MSC (uBET) enables the designer to stru
turize the s
enarios, aid in top down and bottom up

design and help to
ommuni
ate the s
enarios with other groups. The automati
 pro
essing of

s
enarios from the Ubet models makes it possible to qui
kly use the editor even in the
urrent

Software design pro
ess.

A prerequisite for this is however that all involved engineers will have to learn how the MSC

method works and -to a
ertain extent- what the underlying theory is like.

9

On a longer term, mu
h pro�t
an be gained from reusing s
enarios. The MSC method

supports this reuse by means of its
onstru
ts for modularization. The formal semanti
s guarantee

an unambiguous des
ription so intera
tion and
ompatibility with other support tools
an be

a
hieved.

The uBET tool is a sophisti
ated and user friendly tool that is
ompatible with the MSC

method. Even though the syntax might di�er a bit and the full expressiveness of MSC is not

aptured in the tool it
an be a very useful tool to use for
apturing part of the system requirements.

To fully use the power of MSC, the uBET tool will however have to be extended with extra

fun
tionality.

In addition to the usage of the uBET tool and MSC to denote s
enarios and spe
ify (part

of) the requirements the software development pro
ess as a whole
an be supported by formal

methods and tools. If these tools are
ombined with some slight
hanges in the pro
ess stru
ture,

Lu
ent Te
hnologies
an greatly bene�t from the power of formal methods.

7 Future work

The information in this paper has been based on literature studies, interviews with experts and

some data from proje
ts at Lu
ent in Malmsbury and Indian Hill. As a follow up to this paper

we advise to do some experiments and proje
ts using uBET in Hilversum, su
h that we
an gain

�rst hand experien
e

In order to get su
h an experiment going we would suggest to start up a small proje
t where

the engineers involved use uBET to spe
ify their requirements and then look to what extend they

an use these des
riptions in other parts of the design pro
ess.

To fully use the MSC method, resear
h is needed to �nd out whether and howMSC des
riptions

an be abstra
ted from the
urrent
ode.

A
knowledgments

We would like to a
knowledge Willem van Willigenburg and Jeroen Collard for their help and

support. Furthermore we would like to thank Kanwilander Singh and Gerard Holzmann for the

information they have provided. We thank Andr�e Engels for his support in des
ribing the MSC

language.

Referen
es

[1℄ ITU-TS. ITU-TS Re
ommendation Z.100: Spe
i�
ation and Des
ription Language (SDL).

ITU-TS, Geneva, 1988.

[2℄ ITU-TS. ITU-TS Re
ommendation Z.120: Message Sequen
e Chart (MSC). ITU-TS, Geneva,

1997.

[3℄ E. Rudolph, P. Graubmann, and J. Grabowski. Tutorial on message sequen
e
harts (ms
'96).

In FORTE, 1996.

10

