
The usage of MSC with uBET-toolsupport in the software

development proess

B. Knaak

�

, S. Mauw

y

Marh 8, 1999

Abstrat

The usage of formal methods and design tools in the software development proess is be-

oming a key issue in the industrial software development world. In this light we studied the

Luent Tehnologies software design proess. We desribe the MSC-requirements desription

method and investigate how the usage of MSC an aid in the software design proess. Fur-

thermore we look at the uBET-tool for the support of MSC deployment and ompare the

uBET syntax and semantis with the formal MSC de�nition.

The usage of MSC.....(extend,extend)

1 Introdution

In the teleommuniation market the time to market window is dereasing rapidly due to new

ompetitors and new ustomers in a dynami market. Therefore the overall throughput time

of projets suh as ustomer reported problem solution, new features and software updates is

beoming a ompetitive asset on the teleommuniation market. To speed up the total design

yle a new software design proess is urrently needed.

In this light we strive to investigate in this paper the urrent software design proess at Luent

Tehnologies, a major player on the teleommuniation market.

Luent Tehnologies was part of the AT&T onern until it split up in the new AT&T, NCR and

Luent Tehnologies. The main business for Luent Tehnologies is the development of teleommu-

niation equipment like optial networks, SDH networks, wireless ommuniation and telephone

swithes. For these produts software need to be developed, extended and onstantly updated.

This results in a major software development e�ort positioned at several sites world wide.

At Luent Tehnologies a department in Holmdel USA is at the moment looking at a radial

hange for this software development proess as a whole. At the moment pilot projets are run in

Malmsbury and Indian Hill to gain experiene in the usage of new methods and tools.

The new overall strategy as proposed by the Holmdel department for the adaptation of the

software design proess foresees in a strutural hange. In this new strategy attention is paid to

an integrated tool support for all phases. In suh an approah it is possible to exhange -next

to traditional doumentation- other forms of information as well, suh as for instane omputer

models or program models.

In this paper we want to study part of the approah for hanging the software development

proess to get to a more eÆient struture. To keep a lear sope on the subjet we deided to

zoom in on part of the total projet and try to desribe how that part might be adapted, suh that

it is ompatible with future hanges needed in other phases of the design proess. Therefore we

deided to onentrate on the �rst phases of the software design proess, where the requirements

are written and transferred to the groups responsible for the other phases.

In this paper we onentrate on the MSC standard for the following of reasons:

�

Luent Tehnologies

y

Eindhoven University of Tehnology

1

� It is an ITU standard ([2℄) whih is used and known by other teleommuniation ompanies

like providers and PTT's as well.

� There is tool support for MSC onneting it to other well known method suh as SDL ([1℄)

� Luent is already working on their own toolset for MSC support in the form of the uBET

tool([?℄), whih also implies that there is expertise available within Luent.

� It is graphial based method, whih is very appealing to the intuition, whih makes it easy

to use and to understand, At the same time is has a very strong formal bakground.

In this paper we give a short desription of MSC and explore how MSC and uBET an support

the software design proess at Luent in the di�erent phases of the design proess. In order to

do this we �rst give a desription of the urrent software development proess. This desription

is followed by a desription of MSC and uBET. After this we give an outline of where and how

MSC/uBET an be used to enhane the urrent design proess.

In the last two setions we present some onlusions and present the �rst steps on how to

introdue uBET in Luent Hilversum and integrate all this in a bigger plan for the total software

design yle.

2 The Current Software Development Proess.

The proess desription in this setion is an abstration of the real proess in the sense that

�nanial, resoure and organizational ompounds of the proess are not desribed. For a full

desription of the proess several pages would be needed. Therefore we present an outline of that

part of the proess that is subjet of our researh.

The urrent software development proess at Luent onsists -amongst others- of the follow-

ing phases; Requirements analysis, System Engineering, Software Development, Deliverable test,

Feature Test, Customer Delivery and Ongoing support. Eah of these phases is onduted by a

separate group although there is some overlap; the groups responsible for these phases are: Projet

Marketing and Management, Customer team, System Engineering, the Development groups (both

for development as for deliverable testing), Feature Test, Customer Tehnial Support and Loal

Field Support.

In eah of these phases doumentation is written whih is then used in the other phases. These

douments are mainly written in natural language, whih an be ambiguous and sometimes hard

to use to orretly transfer ideas and onepts. On turn over from one phase to the next, the

douments are the main (if not only) means of sharing information.

If for instane Loal Field Support has to solve a ustomer reported problem they have to

browse through this doumentation and through the software ode to �nd out what the problem

is and how it should be solved. Sine the doumentation is mostly in natural language and is quite

extensive, this proess is time onsuming and error prone.

In the �rst phases of the software development proess the ustomer requirements need to be

aquired. One the ustomer requirements are known they have to be translated to a spei�ation

doument whih an then be used for software development. In this spei�ation doument,

senarios for the possible system behavior are given to larify the desriptions, whih are mainly

given in natural language. These spei�ations are then used by the development phases.

In the urrent software engineering proess if examples of senarios are given, they are given in

seqow, whih is a very simple senario desription language. In seqow the proesses in a senario

are denoted by vertial line and messages between proesses are (mostly horizontal) arrows. The

vertial 'axis' denotes the time, the further down a message the later it appears in the senario

(see Figure 1).

In this setion we look at four groups in more detail and outline the internal struture of the

work done by eah group. We have hosen these four groups sine we expet them to bene�t the

most from the methods we desribe in this paper. An oversight of the relation between the four

di�erent groups is given in Figure 2.

2

Establish Indication
ESTIND

MGOFFHOOK

PSAESTACK

OTP Nat_prot Call ControlCORE
PNU

PAC

Figure 1: An example of a seqow senario

System
Engineering

ProjectMarketing
and Management

Software
Development Feature Test

PDAF2

Workitem

FSD FSD

Code

Figure 2: The proess overview

3

2.1 Produt Marketing & Management

The Produt Marketing & Management group (PM&M) de�nes in disussion with a ustomer

team or as a result of market analysis a produt that should be developed. This de�nition is

re�ned in a Produt De�nition (AF) doument at a oneptual level in natural language. This

produt de�nition an be at a very high oneptual level.

2.2 System Engineering

The System Engineering team (SE) is involved in the software development proess on more then

one oasion. First they are required by PM&M to work out the PDAF2 doument into several

work-items. Eah work-item is a brief tehnial desription of part of the features as demanded

by PM&M in the PDAF2. The work items divide the work in logially 'separate' tasks that have

to be performed by the di�erent development groups to ome to the full funtionality.

Although the de�nition of the workitems is done by SE it is under the responsibility of Projet

Marketing and Management. After the workitems have been ommitted {after (possibly) a number

of feedbak loops with PM&M{ eah workitem gets appointed to a software development group

that 'owns' the funtional area expertise that is needed for that workitem.

After having de�ned these workitems, eah workitem is written out in a FSD (Feature Desrip-

tion Doument) whih is a more detailed desription of the funtionality splitting up the workitem

in a list of requirements, that are to be met by the system. In these FSD's senarios are sometimes

used to illustrate the design, but they are not used to desribe requirements.

2.3 System Engineering to Software Development

To make sure that the FSD ontains all neessary information needed by the software development

groups, a doument review is held at the end of the system engineering phase. In this doument

review mostly one or two developers from the team that has to implement these hanges are

partiipating. After this doument has been reviewed and the rework has been done the FSD is

handed over to a software development group.

2.4 Software Development

In the software development group the FSD is used as a basis for a High Level Design that zooms

in on the spei� funtional area of the software group. It ontains a oneptual desription of

the solution that will be used to implement the hanges, a survey on what ode will have to be

hanged and what data strutures need to be added. All of these are part of the standard High

Level Design Template.

For lari�ation a number of senarios might be inluded. New requirements will be given

in the High Level Design that over (and mostly re�ne) the requirements in the FSD. After the

review of the High Level Design, a Low Level Design is made that learly states how the solutions

desribed in the high level design are to be implemented. The Low Level Design is then used for

the eventual oding.

The next step in the development phase is the deliverable test phase, where whitebox testing

is performed. To exeute the whitebox tests the senarios are identi�ed that need to be exeuted

on the ode simulator or on an atual telephone swith. The result of these whitebox test is stored

in a test database together with a senario that was used to perform the test.

2.5 System Engineering to Feature Test

The same FSD that was given to the Software Development group is also given to the Feature

Test Group. To keep the test proedure unbiased the feature test group does not get the High

Level Design nor the Low Level Design that were made by the Software Development group.

4

2.6 Feature Test

The feature test is responsible for testing the funtionality of the new ode using a blak box

testing approah. Furthermore they have to test possible feature interations with other features.

To speify the test they have to perform they write a Requirements Test Plan (RTP). This RTP

is based on the desription in the FSD.

Sine the feature test team is not involved in the development nor in the review of the FSD,

the feature testers have to `(re)interpret' the requirements as given in the FSD. In order to get

a lear understanding of the system requirements, they are sometimes translated into senarios.

One the system requirements are known the feature tester has to oneive whih other features

might interat with the new funtionality and set up tests for these interations.

After this survey the tests are developed that have to be performed on the atual telephone

swith to test the interations of the new feature with already existing features and the funtion-

ality of the new ode on itself.

The RTP is then reviewed together with the development team, to make sure that the tests and

their expeted results are indeed feasible. During these reviews the mismathes in interpretation

of the requirements from Feature Test and software development rise to the surfae.

After this the tests are performed and their results -inluding the test senario- are stored in

a test traking system.

3 Message Sequene Charts

Many languages have been designed to desribe the behaviour of information systems. Using suh

a language, one an desribe the high-level behaviour of a system without having to worry (yet)

about the exat implementation details. One suh language is Message Sequene Chart (MSC) [1℄.

It di�ers from other languages in two important aspets. In the �rst plae it puts emphasize on

ommuniation between proesses, not paying muh attention to the internal behaviour of these

proesses. This way, it speializes on systems in whih ommuniation is important. One area

where it is muh used, and the one for whih it was originally reated, is teleommuniation

systems. In the seond plae, MSC provides a fully graphial piture, rather than a textual

desription. Beause of this, it an be more easily and intuitively understood by human users.

Still, behind this graphial syntax lies an exat meaning and a well-de�ned semantis. Beause of

this, it an also be well understood by ommerial and aademi tools.

MSC-like diagrams have a long history in formal desriptions of information systems, but

the oÆial Message Sequene Chart language has been developed starting in the early nineties

within the ITU (International Teleommuniation Union) and its predeessor, the CCITT (Comit�e

Consultatif International T�el�egraphique et T�el�ephonique)

MSCs are used in di�erent ontexts. The original purpose of MSC when it was �rst formalized,

was to desribe requirements in the early phases of the development proess. It was intended to be

an addition to SDL (Spei�ation and Desription Language), where the two languages would be

used in di�erent phases of the development proess, MSC early on, when requirements and global

spei�ations are made, SDL later on, when spei�ations are loser to the �nal implementation.

However, the language is now used in many more appliations. To name a few: the desription

of the atual behaviour of an existing system, espeially in the ontext of testing, the generation

of test ases, the spei�ation of protools and the formalization of use ases.

As we saw in the introdution there are important advantages in preferring the MSC method

for system design and analysis:

� Due to its standardization by the ITU, there is world wide interest in the further development

of the language and its supporting tools. It is well doumented and known throughout the

teleommuniation soiety. MSC is a stable language, whih is maintained by the ITU study

group in a four year yle.

� It is graphial based method, whih is very appealing to the intuition, whih makes it easy

to use and to understand.

5

� The MSC language supports many features. Basi features inlude asynhronous ommu-

niation, timers and loal ations. The ordering of events an be weakened by so-alled

oregions and strengthened by means of general orderings. Inline expressions an be used to

de�ne small variations of a senario. Top-down design is supported by instane deomposi-

tion. High-Level MSCs and MSC referenes an be used for a modular design and allow for

the reuse of parts of an MSC spei�ation. Finally, the upoming revision of the language,

MSC2000, will support the inlusion of a data language, timing requirements, and a ontrol

ow mehanism (as in UML).

� There is tool support for MSC onneting it to other well known methods suh as SDL ([1℄).

This tool support is still improving and new tools are still developed to inrease the usability

of MSC. The Luent Tehnologies uBET toolset is an example of a tool that provides support

in MSC-design and is still evolving to beome more powerful and usable.

� Despite its graphial appearane, MSC has a strong formal bakground. This makes it

possible to:

{ make unambiguous system-desriptions;

{ interfae with other tools that might be used to support the other design phases;

{ use formal validation methods on the designs.

Beause MSCs are based on a simple and intuitive paradigm, many similar languages have been

developed independently. The seqow diagrams an atually be seen as an MSC-like language.

However seqow is limited in its appliation and expressive power with respet to the full MSC

language.

The omplete expressive power of the MSC language an not be explained in just a few pages.

Therefore, we will only highlight some of the most relevant features by means of a simple example.

For a omplete desription of the language we refer to [2℄. An extensive tutorial is in [3℄.

A senario in MSC exists -just like in seqow- of a number of proesses (represented by vertial

lines) and messages between these proesses (denoted by 'horizontal' arrows) (see Figure 3).

The (meaningless) example in this �gure also shows some other features, suh as the ondition,

denoted by a hexagon, whih indiates a state of the system. The hour glass symbol denotes the

setting of a timer.

Small variations on senarios an be expressed by inline expressions. This is denoted by the

retangular box labeled with alt in the upper left orner. The two alternative parts of the senario

are separated by a dashed line.

A senario spei�ation of a system will in general onsist of a large number of suh MSCs.

In order to struture these senarios, High-Level MSCs (HMSCs) an be used. Suh an HMSC

shows in whih way the respetive senarios must be ombined. An example of an HMSC is given

in Figure 4). The HMSC in this �gure expresses that �rst MSC Setup is exeuted. Then there

are two alternative senarios to ontinue with, namely Metering and Emergeny. After having

exeuted one of these, exeution ontinues at MSC Fored end and �nishes with Disonnet.

The high level desription given by HMSCs an be used to give an abstrat overview of the

system. but it an also be used to design the system requirements top down by starting to desribe

the abstrat behavior of the system and re�ning these HMSC until the basi MSC level is reahed.

Other extra primitives on Basi MSC level; suh as gates, timers and the fat the eah basi

MSC has its own unique ID enhane the expressive power of the MSC method and make modu-

larisation and reuse possible. As the MSC method desribes the interation between proesses it

is spei�ally useful for modelling behavioral aspets of multiproess systems. For data intensive

systems MSC is not the ideal modelling tool.

6

Establish Indication
ESTIND

MGOFFHOOK

PSAESTACKPAC

timer

ALT

STATE

Messagename

ProcessoriginationOTP
MSC setup

Figure 3: A basi MSC with explanatory omments

Metering

Forced end

Disconnect

Setup

Emergency

MSC V5PSTN

MSC reference

Connector

Figure 4: A High-level MSC

7

4 uBET

The uBET tool is developed by Luent, Murray Hill. The toolset started of as an MSC editor for

Basi MSC. It provided a means for quikly drawing proesses, messages between proesses, timers

and states. These basi building bloks provided a good basis for drawing MSCs as desribed in

MSC92.

Later in a graph editor was introdued that an be used to ombine the Basi MSCs into larger

struture. These graphs an reursively be used as part of a graph at a higher level making it a

true hierarhial struture. The result of this ombination is an MSC editor whih inorporates

important feature of the MSC96 desription.

The struture of uBET allows for a top down approah of design as well as bottom up by not

enforing a order of design. Furthermore uBET o�ers a number of analysis possibilities. The tool

is available on both PC and SUN platform and is freely available for all engineering groups within

Luent.

[Sreen shot℄

If we ompare the uBET tool to full MSC we have to onlude that there are di�erenes in

both syntax and expressivity.

The main di�erenes in syntax an be summarized as:

� the timer-set, -reset and -expiration events are denoted di�erently

� the edges in graphs of uBET are labelled, where as in HMSC the onnetions between

MSC referenes are unlabelled.

� referene between a node in the graph and the senario that 're�nes' it is not denoted in the

graphial representation but eletronially in the model.

These di�erenes in syntax.......

The main di�erene in expressiveness an be summarized as:

� no gates

� absene of re�nement

Finally the syntati sugar that is introdued in MSC suh as inline expressions and the

possibility to referene to multiple MSC with one MSC referene is not all implemented in the

uBET-tool. The addition of this syntati sugar to uBET would not be of inuene on the

expressiveness of the uBET method, but it substantially aid in the readability and larity of the

senarios.

5 The uBET/MSC support possibilities

It is lear from the desription of the urrent software development proess (see Setion 2 that

senarios play an important role in many respets. They are applied in many ways, suh as

requirements spei�ation, doumentation, design, and testase spei�ation. Currently, senario

spei�ations are being used in an informal and non-standardized way, with only elementary tool

support.

Clearly, adoption of the reommended MSC standard will strengthen the use of senarios in

the development proess. The advantages of using the MSC language as mentioned in Setion 3

evidently apply to the situation at Luent. There is, e.g. a lear need for omposing larger and

more omplete senarios from simple ones.

Of ourse, there will only be maximal bene�t from the MSC method if appropriate tool support

is provided for. Although the uBET tool is not fully ompatible with the most reent ITU standard,

we think that it an be e�etively applied in the urrent development proess.

Below, we will indiate at various plaes in the software proess what the impat would be

of using the MSC/uBET methodology. Rather than giving a omplete and detailed desription

8

of the use of MSC/uBET in these situations, we aim at making a global inventory of its use. A

follow up in the form of a number of ase studies is needed for understanding the full appliability

of the MSC/uBET method.

System Engineering Starting at the system engineering phase the uBET-tool and MSC an be

used to apture part of the requirements. These desriptions an be produed with aid of Software

Development and Feature Test. The uBET desription of these senarios unambiguously de�nes

the desired system behavior. The uBET tool an then be used to extrat example senarios for

doumentation.

The struture that an be used in desribing the requirements will greatly aid in the readability

of the requirements and will also aid in the ommuniation of high level onepts and behavioral

strutures. Combining the desriptions of the di�erent workitems, an larify the ohesion between

the di�erent work items that need to be developed.

Software development As soon as part of the FSD is designed in a uBET model, this uBET

model an be used by the software development group to understand the meaning of the require-

ments. The re�nement of the requirements that are given in MSC an now be done by re�ning

these MSCs. From these MSCs whitebox tests an be derived by using uBET to produe senarios

that are ompliant with the MSC.

Again the re�ned MSCs an be inluded in the doumentation to give an unambiguous de-

sription of the expeted system behavior.

On the longer term as soon as part of the existing ode is already available in MSCs, these

existing MSCs an be reused and adapted to desired system desription. This reusability does

require that the MSC desriptions are kept up to date and that they have been heked to represent

the urrent ode.

Another possibility for support would be that the system spei�ation in MSC an be used to

analyse and verify the behavior of the system that has been built. This would however require a

onsiderable amount of extra e�ort in tool development and an abstrat desription of the ode

in a formalism like VFSM or OBJECT-time.

Feature test The uBET desription of the requirements in the FSD an help feature test to

understand the meaning of the requirements sine they struturize the information and give the

possibility to interatively view the senarios that are desribed by the uBET model.

The feature tester an hoose to re�ne the uBET model that is given in FSD to ome to a better

system desription as a basis for the test to be developed. The re�nement made by feature test

an then be ompared to the one made by software development to ome to lear understanding of

possible mismathes in interpretation. Sine the MSC language o�ers an unambiguous desription

the number of mismathes in interpretation an go down anyway.

On the long term as soon as the desription of other features is given as uBET models as well

t an be possible to automatially detet possible feature interations and reate the proper test

senarios.

6 Conlusions

Sine senarios already play an important role in a number of phases in the development proess,

the usage of MSC to desribe these senarios an greatly help. On the short term the usage of

MSC (uBET) enables the designer to struturize the senarios, aid in top down and bottom up

design and help to ommuniate the senarios with other groups. The automati proessing of

senarios from the Ubet models makes it possible to quikly use the editor even in the urrent

Software design proess.

A prerequisite for this is however that all involved engineers will have to learn how the MSC

method works and -to a ertain extent- what the underlying theory is like.

9

On a longer term, muh pro�t an be gained from reusing senarios. The MSC method

supports this reuse by means of its onstruts for modularization. The formal semantis guarantee

an unambiguous desription so interation and ompatibility with other support tools an be

ahieved.

The uBET tool is a sophistiated and user friendly tool that is ompatible with the MSC

method. Even though the syntax might di�er a bit and the full expressiveness of MSC is not

aptured in the tool it an be a very useful tool to use for apturing part of the system requirements.

To fully use the power of MSC, the uBET tool will however have to be extended with extra

funtionality.

In addition to the usage of the uBET tool and MSC to denote senarios and speify (part

of) the requirements the software development proess as a whole an be supported by formal

methods and tools. If these tools are ombined with some slight hanges in the proess struture,

Luent Tehnologies an greatly bene�t from the power of formal methods.

7 Future work

The information in this paper has been based on literature studies, interviews with experts and

some data from projets at Luent in Malmsbury and Indian Hill. As a follow up to this paper

we advise to do some experiments and projets using uBET in Hilversum, suh that we an gain

�rst hand experiene

In order to get suh an experiment going we would suggest to start up a small projet where

the engineers involved use uBET to speify their requirements and then look to what extend they

an use these desriptions in other parts of the design proess.

To fully use the MSC method, researh is needed to �nd out whether and howMSC desriptions

an be abstrated from the urrent ode.

Aknowledgments

We would like to aknowledge Willem van Willigenburg and Jeroen Collard for their help and

support. Furthermore we would like to thank Kanwilander Singh and Gerard Holzmann for the

information they have provided. We thank Andr�e Engels for his support in desribing the MSC

language.

Referenes

[1℄ ITU-TS. ITU-TS Reommendation Z.100: Spei�ation and Desription Language (SDL).

ITU-TS, Geneva, 1988.

[2℄ ITU-TS. ITU-TS Reommendation Z.120: Message Sequene Chart (MSC). ITU-TS, Geneva,

1997.

[3℄ E. Rudolph, P. Graubmann, and J. Grabowski. Tutorial on message sequene harts (ms'96).

In FORTE, 1996.

10

