The usage of MSC with uBET-toolsupport in the software
development process

B. Knaack? S. Mauw'
March 8, 1999

Abstract

The usage of formal methods and design tools in the software development process is be-
coming a key issue in the industrial software development world. In this light we studied the
Lucent Technologies software design process. We describe the MSC-requirements description
method and investigate how the usage of MSC can aid in the software design process. Fur-
thermore we look at the uBET-tool for the support of MSC deployment and compare the
uBET syntax and semantics with the formal MSC definition.

The usage of MSC.....(extend,extend)

1 Introduction

In the telecommunication market the time to market window is decreasing rapidly due to new
competitors and new customers in a dynamic market. Therefore the overall throughput time
of projects such as customer reported problem solution, new features and software updates is
becoming a competitive asset on the telecommunication market. To speed up the total design
cycle a new software design process is currently needed.

In this light we strive to investigate in this paper the current software design process at Lucent
Technologies, a major player on the telecommunication market.

Lucent Technologies was part of the AT&T concern until it split up in the new AT& T, NCR and
Lucent Technologies. The main business for Lucent Technologies is the development of telecommu-
nication equipment like optical networks, SDH networks, wireless communication and telephone
switches. For these products software need to be developed, extended and constantly updated.
This results in a major software development effort positioned at several sites world wide.

At Lucent Technologies a department in Holmdel USA is at the moment looking at a radical
change for this software development process as a whole. At the moment pilot projects are run in
Malmsbury and Indian Hill to gain experience in the usage of new methods and tools.

The new overall strategy as proposed by the Holmdel department for the adaptation of the
software design process foresees in a structural change. In this new strategy attention is paid to
an integrated tool support for all phases. In such an approach it is possible to exchange -next
to traditional documentation- other forms of information as well, such as for instance computer
models or program models.

In this paper we want to study part of the approach for changing the software development
process to get to a more efficient structure. To keep a clear scope on the subject we decided to
zoom in on part of the total project and try to describe how that part might be adapted, such that
it is compatible with future changes needed in other phases of the design process. Therefore we
decided to concentrate on the first phases of the software design process, where the requirements
are written and transferred to the groups responsible for the other phases.

In this paper we concentrate on the MSC standard for the following of reasons:

*Lucent Technologies
tEindhoven University of Technology

e It is an ITU standard ([2]) which is used and known by other telecommunication companies
like providers and PTT’s as well.

e There is tool support for MSC connecting it to other well known method such as SDL ([1])

e Lucent is already working on their own toolset for MSC support in the form of the uBET
tool([?]), which also implies that there is expertise available within Lucent.

e It is graphical based method, which is very appealing to the intuition, which makes it easy
to use and to understand, At the same time is has a very strong formal background.

In this paper we give a short description of MSC and explore how MSC and uBET can support
the software design process at Lucent in the different phases of the design process. In order to
do this we first give a description of the current software development process. This description
is followed by a description of MSC and uBET. After this we give an outline of where and how
MSC/uBET can be used to enhance the current design process.

In the last two sections we present some conclusions and present the first steps on how to
introduce uBET in Lucent Hilversum and integrate all this in a bigger plan for the total software
design cycle.

2 The Current Software Development Process.

The process description in this section is an abstraction of the real process in the sense that
financial, resource and organizational compounds of the process are not described. For a full
description of the process several pages would be needed. Therefore we present an outline of that
part of the process that is subject of our research.

The current software development process at Lucent consists -amongst others- of the follow-
ing phases; Requirements analysis, System Engineering, Software Development, Deliverable test,
Feature Test, Customer Delivery and Ongoing support. Each of these phases is conducted by a
separate group although there is some overlap; the groups responsible for these phases are: Project
Marketing and Management, Customer team, System Engineering, the Development groups (both
for development as for deliverable testing), Feature Test, Customer Technical Support and Local
Field Support.

In each of these phases documentation is written which is then used in the other phases. These
documents are mainly written in natural language, which can be ambiguous and sometimes hard
to use to correctly transfer ideas and concepts. On turn over from one phase to the next, the
documents are the main (if not only) means of sharing information.

If for instance Local Field Support has to solve a customer reported problem they have to
browse through this documentation and through the software code to find out what the problem
is and how it should be solved. Since the documentation is mostly in natural language and is quite
extensive, this process is time consuming and error prone.

In the first phases of the software development process the customer requirements need to be
acquired. Once the customer requirements are known they have to be translated to a specification
document which can then be used for software development. In this specification document,
scenarios for the possible system behavior are given to clarify the descriptions, which are mainly
given in natural language. These specifications are then used by the development phases.

In the current software engineering process if examples of scenarios are given, they are given in
seqflow, which is a very simple scenario description language. In segflow the processes in a scenario
are denoted by vertical line and messages between processes are (mostly horizontal) arrows. The
vertical 'axis’ denotes the time, the further down a message the later it appears in the scenario
(see Figure 1).

In this section we look at four groups in more detail and outline the internal structure of the
work done by each group. We have chosen these four groups since we expect them to benefit the
most from the methods we describe in this paper. An oversight of the relation between the four
different groups is given in Figure 2.

OTP Nat_prot CORE Call Control

PNU Establish| Indication
| ESTIND
MGOFFHOOK
PAC < PSAHSTACK
-
-

Figure 1: An example of a seqflow scenario

ProjectMarketing

and Management _AWorkitem

System
Engineering

Software
Development

Feature Test
Code

Figure 2: The process overview

2.1 Product Marketing & Management

The Product Marketing & Management group (PM&M) defines in discussion with a customer
team or as a result of market analysis a product that should be developed. This definition is
refined in a Product Definition (AF) document at a conceptual level in natural language. This
product definition can be at a very high conceptual level.

2.2 System Engineering

The System Engineering team (SE) is involved in the software development process on more then
one occasion. First they are required by PM&M to work out the PDAF2 document into several
work-items. Each work-item is a brief technical description of part of the features as demanded
by PM&M in the PDAF2. The work items divide the work in logically ’separate’ tasks that have
to be performed by the different development groups to come to the full functionality.

Although the definition of the workitems is done by SE it is under the responsibility of Project
Marketing and Management. After the workitems have been committed —after (possibly) a number
of feedback loops with PM&M- each workitem gets appointed to a software development group
that ’owns’ the functional area expertise that is needed for that workitem.

After having defined these workitems, each workitem is written out in a FSD (Feature Descrip-
tion Document) which is a more detailed description of the functionality splitting up the workitem
in a list of requirements, that are to be met by the system. In these FSD’s scenarios are sometimes
used to illustrate the design, but they are not used to describe requirements.

2.3 System Engineering to Software Development

To make sure that the FSD contains all necessary information needed by the software development
groups, a document review is held at the end of the system engineering phase. In this document
review mostly one or two developers from the team that has to implement these changes are
participating. After this document has been reviewed and the rework has been done the FSD is
handed over to a software development group.

2.4 Software Development

In the software development group the FSD is used as a basis for a High Level Design that zooms
in on the specific functional area of the software group. It contains a conceptual description of
the solution that will be used to implement the changes, a survey on what code will have to be
changed and what data structures need to be added. All of these are part of the standard High
Level Design Template.

For clarification a number of scenarios might be included. New requirements will be given
in the High Level Design that cover (and mostly refine) the requirements in the FSD. After the
review of the High Level Design, a Low Level Design is made that clearly states how the solutions
described in the high level design are to be implemented. The Low Level Design is then used for
the eventual coding.

The next step in the development phase is the deliverable test phase, where whitebox testing
is performed. To execute the whitebox tests the scenarios are identified that need to be executed
on the code simulator or on an actual telephone switch. The result of these whitebox test is stored
in a test database together with a scenario that was used to perform the test.

2.5 System Engineering to Feature Test

The same FSD that was given to the Software Development group is also given to the Feature
Test Group. To keep the test procedure unbiased the feature test group does not get the High
Level Design nor the Low Level Design that were made by the Software Development group.

2.6 Feature Test

The feature test is responsible for testing the functionality of the new code using a black box
testing approach. Furthermore they have to test possible feature interactions with other features.
To specify the test they have to perform they write a Requirements Test Plan (RTP). This RTP
is based on the description in the FSD.

Since the feature test team is not involved in the development nor in the review of the FSD,
the feature testers have to ‘(re)interpret’ the requirements as given in the FSD. In order to get
a clear understanding of the system requirements, they are sometimes translated into scenarios.
Once the system requirements are known the feature tester has to conceive which other features
might interact with the new functionality and set up tests for these interactions.

After this survey the tests are developed that have to be performed on the actual telephone
switch to test the interactions of the new feature with already existing features and the function-
ality of the new code on itself.

The RTP is then reviewed together with the development team, to make sure that the tests and
their expected results are indeed feasible. During these reviews the mismatches in interpretation
of the requirements from Feature Test and software development rise to the surface.

After this the tests are performed and their results -including the test scenario- are stored in
a test tracking system.

3 Message Sequence Charts

Many languages have been designed to describe the behaviour of information systems. Using such
a language, one can describe the high-level behaviour of a system without having to worry (yet)
about the exact implementation details. One such language is Message Sequence Chart (MSC) [1].
It differs from other languages in two important aspects. In the first place it puts emphasize on
communication between processes, not paying much attention to the internal behaviour of these
processes. This way, it specializes on systems in which communication is important. One area
where it is much used, and the one for which it was originally created, is telecommunication
systems. In the second place, MSC provides a fully graphical picture, rather than a textual
description. Because of this, it can be more easily and intuitively understood by human users.
Still, behind this graphical syntax lies an exact meaning and a well-defined semantics. Because of
this, it can also be well understood by commercial and academic tools.

MSC-like diagrams have a long history in formal descriptions of information systems, but
the official Message Sequence Chart language has been developed starting in the early nineties
within the ITU (International Telecommunication Union) and its predecessor, the CCITT (Comité
Consultatif International Télégraphique et Téléphonique)

MSCs are used in different contexts. The original purpose of MSC when it was first formalized,
was to describe requirements in the early phases of the development process. It was intended to be
an addition to SDL (Specification and Description Language), where the two languages would be
used in different phases of the development process, MSC early on, when requirements and global
specifications are made, SDL later on, when specifications are closer to the final implementation.

However, the language is now used in many more applications. To name a few: the description
of the actual behaviour of an existing system, especially in the context of testing, the generation
of test cases, the specification of protocols and the formalization of use cases.

As we saw in the introduction there are important advantages in preferring the MSC method
for system design and analysis:

e Due to its standardization by the ITU, there is world wide interest in the further development
of the language and its supporting tools. It is well documented and known throughout the
telecommunication society. MSC is a stable language, which is maintained by the ITU study
group in a four year cycle.

e It is graphical based method, which is very appealing to the intuition, which makes it easy
to use and to understand.

e The MSC language supports many features. Basic features include asynchronous commu-
nication, timers and local actions. The ordering of events can be weakened by so-called
coregions and strengthened by means of general orderings. Inline expressions can be used to
define small variations of a scenario. Top-down design is supported by instance decomposi-
tion. High-Level MSCs and MSC references can be used for a modular design and allow for
the reuse of parts of an MSC specification. Finally, the upcoming revision of the language,
MSC2000, will support the inclusion of a data language, timing requirements, and a control
flow mechanism (as in UML).

e There is tool support for MSC connecting it to other well known methods such as SDL ([1]).
This tool support is still improving and new tools are still developed to increase the usability
of MSC. The Lucent Technologies uBET toolset is an example of a tool that provides support
in MSC-design and is still evolving to become more powerful and usable.

e Despite its graphical appearance, MSC has a strong formal background. This makes it
possible to:

— make unambiguous system-descriptions;
— interface with other tools that might be used to support the other design phases;

— use formal validation methods on the designs.

Because MSCs are based on a simple and intuitive paradigm, many similar languages have been
developed independently. The seqflow diagrams can actually be seen as an MSC-like language.
However seqflow is limited in its application and expressive power with respect to the full MSC
language.

The complete expressive power of the MSC language can not be explained in just a few pages.
Therefore, we will only highlight some of the most relevant features by means of a simple example.
For a complete description of the language we refer to [2]. An extensive tutorial is in [3].

A scenario in MSC exists -just like in seqflow- of a number of processes (represented by vertical
lines) and messages between these processes (denoted by “horizontal” arrows) (see Figure 3).

The (meaningless) example in this figure also shows some other features, such as the condition,
denoted by a hexagon, which indicates a state of the system. The hour glass symbol denotes the
setting of a timer.

Small variations on scenarios can be expressed by inline expressions. This is denoted by the
rectangular box labeled with alt in the upper left corner. The two alternative parts of the scenario
are separated by a dashed line.

A scenario specification of a system will in general consist of a large number of such MSCs.
In order to structure these scenarios, High-Level MSCs (HMSCs) can be used. Such an HMSC
shows in which way the respective scenarios must be combined. An example of an HMSC is given
in Figure 4). The HMSC in this figure expresses that first MSC Setup is executed. Then there
are two alternative scenarios to continue with, namely Metering and Emergency. After having
executed one of these, execution continues at MSC Forced end and finishes with Disconnect.

The high level description given by HMSCs can be used to give an abstract overview of the
system. but it can also be used to design the system requirements top down by starting to describe
the abstract behavior of the system and refining these HMSC until the basic MSC level is reached.

Other extra primitives on Basic MSC level; such as gates, timers and the fact the each basic
MSC has its own unique ID enhance the expressive power of the MSC method and make modu-
larisation and reuse possible. As the MSC method describes the interaction between processes it
is specifically useful for modelling behavioral aspects of multiprocess systems. For data intensive
systems MSC is not the ideal modelling tool.

MSC setup oTP e Processorigination
[] [] [] O 1) []
Establish| Indication RO
STATE ESTIND -
BN MGOFFHOOK
{pPac_) _ .. PSAESTACK
1 < —
- Messagename
< .
ALT J \
N timer
| | | | |

Figure 3: A basic MSC with explanatory comments

:"MSC V5PSTN

MSC reference

Emergency

Metering

Forced end

Disconnect

Figure 4: A High-level MSC

4 uBET

The uBET tool is developed by Lucent, Murray Hill. The toolset started of as an MSC editor for
Basic MSC. It provided a means for quickly drawing processes, messages between processes, timers
and states. These basic building blocks provided a good basis for drawing MSCs as described in
MSC92.

Later in a graph editor was introduced that can be used to combine the Basic MSCs into larger
structure. These graphs can recursively be used as part of a graph at a higher level making it a
true hierarchical structure. The result of this combination is an MSC editor which incorporates
important feature of the MSC96 description.

The structure of uBET allows for a top down approach of design as well as bottom up by not
enforcing a order of design. Furthermore uBET offers a number of analysis possibilities. The tool
is available on both PC and SUN platform and is freely available for all engineering groups within
Lucent.

[Screen shot)

If we compare the uBET tool to full MSC we have to conclude that there are differences in
both syntax and expressivity.

The main differences in syntax can be summarized as:

e the timer-set, -reset and -expiration events are denoted differently

o the edges in graphs of uBET are labelled, where as in HMSC the connections between
MSC references are unlabelled.

e reference between a node in the graph and the scenario that 'refines’ it is not denoted in the
graphical representation but electronically in the model.

These differences in syntax.......
The main difference in expressiveness can be summarized as:

e 10 gates
e absence of refinement

Finally the syntactic sugar that is introduced in MSC such as inline expressions and the
possibility to reference to multiple MSC with one MSC reference is not all implemented in the
uBET-tool. The addition of this syntactic sugar to uBET would not be of influence on the
expressiveness of the uBET method, but it substantially aid in the readability and clarity of the
scenarios.

5 The uBET/MSC support possibilities

It is clear from the description of the current software development process (see Section 2 that
scenarios play an important role in many respects. They are applied in many ways, such as
requirements specification, documentation, design, and testcase specification. Currently, scenario
specifications are being used in an informal and non-standardized way, with only elementary tool
support.

Clearly, adoption of the recommended MSC standard will strengthen the use of scenarios in
the development process. The advantages of using the MSC language as mentioned in Section 3
evidently apply to the situation at Lucent. There is, e.g. a clear need for composing larger and
more complete scenarios from simple ones.

Of course, there will only be maximal benefit from the MSC method if appropriate tool support
is provided for. Although the uBET tool is not fully compatible with the most recent ITU standard,
we think that it can be effectively applied in the current development process.

Below, we will indicate at various places in the software process what the impact would be
of using the MSC/uBET methodology. Rather than giving a complete and detailed description

of the use of MSC/uBET in these situations, we aim at making a global inventory of its use. A
follow up in the form of a number of case studies is needed for understanding the full applicability
of the MSC/uBET method.

System Engineering Starting at the system engineering phase the uBET-tool and MSC can be
used to capture part of the requirements. These descriptions can be produced with aid of Software
Development, and Feature Test. The uBET description of these scenarios unambiguously defines
the desired system behavior. The uBET tool can then be used to extract example scenarios for
documentation.

The structure that can be used in describing the requirements will greatly aid in the readability
of the requirements and will also aid in the communication of high level concepts and behavioral
structures. Combining the descriptions of the different workitems, can clarify the cohesion between
the different work items that need to be developed.

Software development As soon as part of the FSD is designed in a uBET model, this uBET
model can be used by the software development group to understand the meaning of the require-
ments. The refinement of the requirements that are given in MSC can now be done by refining
these MSCs. From these MSCs whitebox tests can be derived by using uBET to produce scenarios
that are compliant with the MSC.

Again the refined MSCs can be included in the documentation to give an unambiguous de-
scription of the expected system behavior.

On the longer term as soon as part of the existing code is already available in MSCs, these
existing MSCs can be reused and adapted to desired system description. This reusability does
require that the MSC descriptions are kept up to date and that they have been checked to represent
the current code.

Another possibility for support would be that the system specification in MSC can be used to
analyse and verify the behavior of the system that has been built. This would however require a
considerable amount of extra effort in tool development and an abstract description of the code
in a formalism like VFSM or OBJECT-time.

Feature test The uBET description of the requirements in the FSD can help feature test to
understand the meaning of the requirements since they structurize the information and give the
possibility to interactively view the scenarios that are described by the uBET model.

The feature tester can choose to refine the uBET model that is given in FSD to come to a better
system description as a basis for the test to be developed. The refinement made by feature test
can then be compared to the one made by software development to come to clear understanding of
possible mismatches in interpretation. Since the MSC language offers an unambiguous description
the number of mismatches in interpretation can go down anyway.

On the long term as soon as the description of other features is given as uBET models as well
t can be possible to automatically detect possible feature interactions and create the proper test
scenarios.

6 Conclusions

Since scenarios already play an important role in a number of phases in the development process,
the usage of MSC to describe these scenarios can greatly help. On the short term the usage of
MSC (uBET) enables the designer to structurize the scenarios, aid in top down and bottom up
design and help to communicate the scenarios with other groups. The automatic processing of
scenarios from the Ubet models makes it possible to quickly use the editor even in the current
Software design process.

A prerequisite for this is however that all involved engineers will have to learn how the MSC
method works and -to a certain extent- what the underlying theory is like.

On a longer term, much profit can be gained from reusing scenarios. The MSC method
supports this reuse by means of its constructs for modularization. The formal semantics guarantee
an unambiguous description so interaction and compatibility with other support tools can be
achieved.

The uBET tool is a sophisticated and user friendly tool that is compatible with the MSC
method. Even though the syntax might differ a bit and the full expressiveness of MSC is not
captured in the tool it can be a very useful tool to use for capturing part of the system requirements.

To fully use the power of MSC, the uBET tool will however have to be extended with extra
functionality.

In addition to the usage of the uBET tool and MSC to denote scenarios and specify (part
of) the requirements the software development process as a whole can be supported by formal
methods and tools. If these tools are combined with some slight changes in the process structure,
Lucent Technologies can greatly benefit from the power of formal methods.

7 Future work

The information in this paper has been based on literature studies, interviews with experts and
some data from projects at Lucent in Malmsbury and Indian Hill. As a follow up to this paper
we advise to do some experiments and projects using uBET in Hilversum, such that we can gain
first hand experience

In order to get such an experiment going we would suggest to start up a small project where
the engineers involved use uBET to specify their requirements and then look to what extend they
can use these descriptions in other parts of the design process.

To fully use the MSC method, research is needed to find out whether and how MSC descriptions
can be abstracted from the current code.

Acknowledgments

We would like to acknowledge Willem van Willigenburg and Jeroen Collard for their help and
support. Furthermore we would like to thank Kanwilander Singh and Gerard Holzmann for the
information they have provided. We thank André Engels for his support in describing the MSC
language.

References

[1] ITU-TS. ITU-TS Recommendation Z.100: Specification and Description Language (SDL).
ITU-TS, Geneva, 1988.

[2] ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS, Geneva,
1997.

[3] E. Rudolph, P. Graubmann, and J. Grabowski. Tutorial on message sequence charts (msc’96).
In FORTE, 1996.

10

