
ar
X

iv
:1

21
0.

80
92

v1
 [

cs
.C

R
]

 3
0

O
ct

 2
01

2

Quantitative Questions on Attack–Defense Trees

Barbara Kordy, Sjouke Mauw and Patrick Schweitzer

University of Luxembourg, SnT
{barbara.kordy, sjouke.mauw, patrick.schweitzer}@uni.lu

Abstract Attack–defense trees are a novel methodology for graphical security modeling and as-
sessment. The methodology includes visual, intuitive tree models whose analysis is supported by a
rigorous mathematical formalism. Both, the intuitive and the formal components of the approach
can be used for quantitative analysis of attack–defense scenarios. In practice, we use intuitive ques-
tions to ask about aspects of scenarios we are interested in. Formally, a computational procedure,
defined with the help of attribute domains and a bottom-up algorithm, is applied to derive the
corresponding numerical values.
This paper bridges the gap between the intuitive and the formal way of quantitatively assessing
attack–defense scenarios. We discuss how to properly specify a question, so that it can be answered
unambiguously. Given a well specified question, we then show how to derive an appropriate attribute
domain which constitutes the corresponding formal model. Since any attack tree is in particular an
attack–defense tree, our analysis is also an advancement of the attack tree methodology.

Keywords: attack trees, attack–defense trees, attributes, quantitative analysis, quantitative questions.

1 Introduction

In graphical security modeling, the main focus lies on the visual representation of a scenario. A com-
mon requirement of graphical models is their user friendliness, and hence their intuitiveness. However,
intuitive models are prone to be ambiguous. While this in itself may already be undesirable, ambigu-
ity is detrimental for computer supported processing. Contrary to intuitive models, formal frameworks
prevent ambiguity and are able to support automated quantitative evaluation. A disadvantage of formal
frameworks is however that they are, not seldom, more difficult to understand.

Attack–defense trees [16] form a systematic, graphical methodology for analysis of attack–defense
scenarios. They represent a game between an attacker, whose goal is to attack a system, and a defender
who tries to protect the system. The widespread formalism of attack trees is a subclass of attack–
defense trees, where only the actions of the attacker are considered. The attack–defense tree methodology
combines intuitive and formal components. On the one hand, the intuitive visual attack–defense tree
representation is used in practice to answer qualitative and quantitative questions, such as “What are
the minimal costs to protect a server?”, or “Is the scenario satisfiable?” On the other hand, there exist
attack–defense terms and a precise mathematical framework for quantitative analysis using a recursive
bottom-up procedure introduced for attack trees in [26] and extended to attack–defense trees in [15].

Several case studies performed using the attack–defense tree methodology showed that there exist
a significant discrepancy between users focusing on the intuitive components of the model and users
working with the formal components. This is due to the fact that intuitive models are user friendly
but often ambiguous. In contrast, formal models are rigorous and mathematically sound. This, however,
makes them difficult to understand for users without a formal background. This discrepancy between
the two worlds is especially visible in the case of quantitative analysis. Correct numerical evaluation can
only be performed when all users have precise and consistent understanding of considered quantities also
called attributes.
Contributions. This work is an attempt to bridge the gap between the intuitive and the formal compo-
nents of the attack–defense tree methodology for quantitative security analysis. Our goal is to provide a
precise relation between intuitive questions and their formal models called attribute domains. We elabo-
rate which kind of intuitive questions occurring in practical security analysis can be answered with the
help of the bottom-up procedure on attack–defense trees. We empirically classify questions that were

http://arxiv.org/abs/1210.8092v1

collected during case studies and literature reviews. We distinguish and formally analyze three different
classes of questions: those referring to one player, those where answers for both players can be deduced
from each other and those relating to an outside third party. For each class we provide detailed guidelines
how the questions should be specified, so that they are unambiguous and can be answered correctly.
Simultaneously, we discuss templates of the attribute domains corresponding to each class.

Related work. An excellent historical overview on graphical security modeling, starting from fault
trees [28], over threat trees [3] and privilege graphs [9] leading up to Schneier’s attack trees [26], was
given by Piètre-Cambacédès and Bouissou in [22]. When Schneier introduced the attack trees formal-
ism in [26], he proposed how to evaluate, amongst others, attack costs, success probability of an attack,
and whether there is a need for special equipment. Since then, many authors have not only extended
the attack tree formalism syntactically, but also followed in his footsteps and included the possibility of
quantitative analysis in their extended formalisms. Baca and Petersen [4], for example, have extended
attack trees to countermeasure graphs and quantitatively analyzed an open-source application develop-
ment. Bistarelli et al. [6], Edge et al. [10] and Roy et al. [24] have augmented attack trees with a notion of
defense or mitigation nodes. They all analyze specific types of risk using particular risk formulas, adjusted
to their models. Willemson and Jürgenson [30] introduced an order on the leaves of attack trees to be
able to optimize the computation of the expected outcome of the attacker. There also exist a number
of case studies and experience reports that quantitatively analyze real-life systems. Notable examples
are Henniger et al. [12], who have conducted a study using attack trees for vehicular communications
systems, Abdulla et al. [1], who analyzed the GSM radio network using attack jungles, and Tanu and
Arreymbi [27], who assessed the security of mobile SCADA system for a tank and pump facility. Since
all previously mentioned papers focus on specific attributes, they do not address the general problem of
the relation between intuitive and formal quantitative analysis.

The formalism of attack–defense trees considered in this work was introduced by Kordy et al. in [15].
Formal aspects of the attack–defense methodology have been discussed in [14] and [17]. In [5], Bagnato
et al. provided guidelines for how to use attack–defense trees in practice. They analyzed a DoS attack
scenario on an RFID-based goods management system by evaluating a number of relevant attributes,
including cost, time, detectability, penalty, required skill level, impact, difficulty and profitability.
Paper structure. The necessary background concerning the attack–defense tree methodology is briefly
explained in Section 2. The relation between intuitive and formal quantitative analysis of attack–defense
scenarios is presented in Section 3. This section also introduces our classification of questions that can
be answered on attack–defense trees with the help of a bottom-up procedure. The classification contains
three classes of questions which are treated in Sections 4, 5 and 6. Section 8 presents a software tool, that
has been developed to support quantitative analysis of attack–defense scenarios. Section 9 concludes the
paper.

2 Attack–Defense Scenarios Intuitively and Formally

2.1 The Intuitive Model

An attack–defense tree (ADTree) constitutes an intuitive graphical model describing the measures an
attacker might take in order to attack a system and the defenses that a defender can employ to protect
the system. An ADTree is a node-labeled rooted tree having nodes of two opposite types: attack nodes
represented with circles and defense nodes represented with rectangles. The root node of an ADTree
depicts the main goal of one of the players. Each node of an ADTree may have one or more children
of the same type which refine the node’s goal into subgoals. The refinement relation is indicated by
solid edges and can be either disjunctive or conjunctive. The goal of a disjunctively refined node is
achieved when at least one of its children’s goals is achieved. The goal of a conjunctively refined node
is achieved when all of its children’s goals are achieved. To distinguish between the two refinements we
indicate the conjunctive refinement with an arc. A node which does not have any children of the same
type is called a non-refined node. Non-refined nodes represent basic actions, i.e., actions which can be
easily understood and quantified. Every node in an ADTree may also have one child of the opposite
type, representing a countermeasure. The countermeasure relation is indicated by dotted edges. Nodes

2

representing countermeasures can again be refined into subgoals and countered by a node of the opposite
type.

Example 1. An example of an ADTree is given in Figure 1. The root of the tree represents an attack
on a server. Three ways to accomplish this attack are depicted: insider attack, outsider attack (OA) and
stealing the server (SS). To achieve his goal, an insider needs to be internally connected (IC) and have
the correct user credentials (UC). To not be caught easily, an insider uses a colleague’s and not his own
credentials. Attack by an outsider can be prevented if a properly configured firewall (FW) is installed.

Attack
on

Server

Insider
Attack

Internally
Connected

User
Creds

Steal
Server

Outsider
Attack

Firewall

Figure 1. An ADTree for how to attack a server

Graphical visualization of potential attacks and possible countermeasures constitutes a first step
towards a systematic security analysis. The next step is to assign numerical values to ADTree models,
i.e., to perform a quantitative analysis. Intuitively speaking, performing a quantitative security analysis
means answering questions related to specific aspects or properties influencing the security of a system
or a company. These questions may be of Boolean type, e.g., “Is the attack satisfiable?”, or may concern
physical or temporal aspects, e.g., “What are the minimal costs of attacking a system?”, or “How long does
it take to detect the attack?” In order to facilitate and automate the analysis of vulnerability scenarios
using ADTrees, the formal model of ADTerms and their quantitative analysis have been introduced. We
briefly describe them in the next section.

2.2 The Formal Model

In this section we recall formal definitions related to our methodology. For more details and explanatory
examples we refer the reader to [16]. To formally represent and analyze ADTrees, typed terms over a
particular typed signature, called the AD–signature, have been introduced in [15]. To be able to capture
ADTrees rooted in an attacker’s node as well as those rooted in a defender’s node, we distinguish between
the proponent (denoted by p), which refers to the root player, and the opponent (denoted by o), which is
the other player. For instance, for the ADTree in Figure 1, the proponent is the attacker and the opponent
is the defender. Conversely, if the root of an ADTree is a defense node, the proponent is the defender and
the opponent is the attacker.

Furthermore, given a set S, we denote by S∗ the set of all finite strings over S, and by ε the empty
string. For s ∈ S, we denote by s+ a string composed of a finite number of symbols s.

Definition 1. The AD–signature is a pair Σ = (S,F), where

– S = {p, o} is a set of types, and
– F = B

p ∪ B
o ∪ {∨p,∧p,∨o,∧o, cp, co} is a set of function symbols, such that the sets B

p, B
o

and {∨p,∧p,∨p,∧o,∧o, cp, co} are pairwise disjoint.

Every function symbol F ∈ F is equipped with a mapping rank: F → S∗ × S, where rank(F) is defined
as a pair (in(F), out(F)). The first component of the pair describes the type of the arguments of F and

3

the second component describes the type of the values of F . We have

rank(b) = (ε, p), for b ∈ B
p, rank(b) = (ε, o), for b ∈ B

o,

rank(∨p) = (p+, p), rank(∨o) = (o+, o),

rank(∧p) = (p+, p), rank(∧o) = (o+, o),

rank(cp) = (p o, p), rank(co) = (o p, o).

Given F ∈ F and s ∈ S, we say that F is of type s, if out(F) = s. The elements of Bp and B
o are typed

constants, which represent basic actions of the proponent’s and opponent’s type, respectively. By B

we denote the union B
p ∪ B

o. The functions1 ∨p,∧p,∨o, and ∧o represent disjunctive and conjunctive
refinement operators for the proponent and the opponent, respectively. We set p = o and o = p. The
binary functions cs, for s ∈ S, represent countermeasures and are used to connect components of type s

with components of the opposite type s.

Definition 2. Typed ground terms over the AD–signature Σ are called attack–defense terms (ADTerms).
The set of all ADTerms is denoted by TΣ.

For s ∈ {p, o}, we denote by T
s

Σ
the set of all ADTerms with the head symbol of type s. We have TΣ =

T
p
Σ
∪T

o
Σ

. The elements of Tp
Σ

and T
o
Σ

are called ADTerms of the proponent’s and of the opponent’s type,
respectively. The ADTerms of the proponent’s type constitute formal representations of ADTrees.

Example 2. Consider the ADTree given in Figure 1. The corresponding ADTerm is

t = ∨p(∧p(IC,UC), SS, cp(OA,FW)).

The entire ADTerm, as well as its six subterms ∧p(IC,UC), cp(OA,FW), IC, UC, SS, and OA, are of
the proponent’s type. Term t also contains a subterm of the opponent’s type, namely FW.

In order to facilitate and automate quantitative analysis of vulnerability scenarios, the notion of an
attribute for ADTerms has been formalized in [15]. An attribute expresses a particular property, quality,
or characteristic of a scenario, such as the minimal costs of an attack or the expected impact of a defensive
measure. A specific bottom-up procedure for evaluation of attribute values on ADTerms ensures that the
user, for instance a security expert, only needs to quantify the basic actions. From these, the value for
the entire scenario is deduced automatically. Attributes are formally modeled using attribute domains.

Definition 3. An attribute domain for ADTerms is a tuple

Aα = (Dα,∨
p
α
,∧p

α
,∨o

α
,∧o

α
, cp

α
, co

α
),

where Dα is a set of values and, for s ∈ {p, o},

– ∨s
α
, ∧s

α
are unranked operations on Dα,

– cs are binary operations on Dα.

Let Aα = (Dα,∨
p
α,∧

p
α,∨

o
α,∧

o
α, c

p
α, c

o
α) be an attribute domain for ADTerms. The bottom-up compu-

tation of attribute values on ADTerms is formalized as follows. First, a value from Dα is assigned to
each basic action, with the help of function βα : B → Dα, called a basic assignment. Then, a recursively
defined function α : TΣ → Dα assigns a value to every ADTerm t, as follows

α(t) =

βα(t), if t ∈ B,

∨s
α(α(t1), . . . , α(tk)), if t = ∨s(t1, . . . , tk),

∧s
α
(α(t1), . . . , α(tk)), if t = ∧s(t1, . . . , tk),

csα(α(t1), α(t2)), if t = cs(t1, t2),

(1)

where s ∈ {p, o} and k > 0.
The example below illustrates the bottom-up procedure for an attribute called satisfiability.

1 In fact, symbols ∨
p,∧p,∨o, and ∧

o represent unranked functions, i.e., they stand for families of functions
(∨p

k
)k∈N, (∧

p

k
)k∈N, (∨

o

k)k∈N, (∧
o

k)k∈N.

4

Example 3. The question “Is the considered scenario satisfiable?” is formally modeled using the satisfiabil-
ity attribute. The corresponding attribute domain is Asat = ({0, 1},∨,∧,∨,∧, ⋆, ⋆), where ⋆(x, y) = x∧¬y,
for all x, y ∈ {0, 1}. The basic assignment βsat : B → {0, 1} assigns the value 1 to every basic action which
is satisfiable and the value 0 to every basic action which is not satisfiable. Using the recursive evaluation
procedure defined by Equation (1), we evaluate the satisfiability attribute on the ADTerm from Exam-
ple 2. Assuming that all basic actions are satisfied, i.e., that βsat(X) = 1 for X ∈ {IC,UC, SS,OA,FW},
we obtain

sat(∨p(∧p(IC,UC), SS, cp(OA,FW))) =

∨ (∧(βsat(IC), βsat(UC)), βsat(SS), ⋆(βsat(OA), βsat(FW))) =

∨ (∧(1, 1), 1, ⋆(1, 1)) = ∨(1, 1, 0) = 1.

The satisfiability attribute, as introduced in the previous example, allows us to define which player is
the winner of the considered attack–defense scenario. If the satisfiability value calculated for an ADTerm
is equal to 1, the winner of the corresponding scenario is the proponent, otherwise the winner is the
opponent. In Example 3, the root attack is satisfied, so the winner is the attacker.

3 Classification of Questions

One of the goals of this paper is to describe how to correctly specify a question for an ADTree. This allows
us to construct the corresponding formal model and deduce an answer using the bottom-up procedure.
Let us motivate our approach with the following example.

Example 4. “What are the costs of the considered scenario?” seems to be a valid question on an ADTree.
However, this question is underspecified, because we do not know whether we should quantify the at-
tacker’s costs, the defender’s costs or both. Clarifying this information is necessary to correctly define the
corresponding basic assignment. We improve the question and ask “What are the costs of the attacker?”
The new question is still underspecified, since it is not clear whether we are interested in the minimal,
maximal, average or other costs. Making also this information explicit is necessary to correctly define the
way how to aggregate the values for disjunctively refined nodes of the attacker.

In this paper, we provide a pragmatic taxonomy of quantitative questions that can be asked about
ADTrees. The presented classification results from case studies, e.g., [5,10,27], as well as from a detailed
literature overview concerning quantitative analysis of security. Our study allowed us to identify three
main classes of empirical questions, as described below.

Class 1: Questions referring to one player. Most of the typical questions for ADTrees have an
explicit or implicit reference to one of the players which we call owner of the question. This is moti-
vated by the fact that the security model is usually analyzed from the point of view of one player only.
Examples of questions referring to one player are “What are the minimal costs of the attacker?” (here
the owner is the attacker) or “How much does it cost to protect the system?” (here implicitly mentioned
owner is the defender). When we ask a question of Class 1, we assume that its owner does not have
extensive information concerning his adversary. Thus, we always consider the worst case scenario with
respect to the actions of the other player. Most of the questions usually asked for attack trees can be
adapted so that they can be answered on ADTrees as well. Thus, questions related to attributes such
as attacker’s/defender’s costs [26,7,27,4,25,21,31,1,24,8,2,29,10], attack/defense time [12,26,29], attack
detectability [27,8], attacker’s special skill [21,1,26], difficulty of attack/protection [8,11,27,12,21,1,3,29],
penalty [7,13,29], impact of the attack [26,27,12,19,25,21,3,1,23,10,29], attacker’s profit [3,13,6,24], etc.,
all belong to Class 1. We analyze questions of this class in Section 4.

Class 2: Questions where answers for both players can be deduced from each other. Exemplary
questions belonging to Class 2 are “Is the scenario satisfiable?”, or “How probable is it that the scenario
will succeed?”. We observe that if the scenario is satisfied for the attacker, then it is not satisfied for the
defender, and vice versa. Similarly, knowing that one player succeeds with probability p, we also know that
the other player succeeds with probability 1−p. The foremost goal of attack trees and all their extensions is

5

to represent whether attacks are possible. Thus, the satisfiability attribute is considered, either explicitly
or implicitly, in all works concerning attack trees and their extensions. As for probability2 , the attribute
has been extensively studied in [26,7,12,19,20,31,1,24,8,10,29]. We perform a detailed analysis of questions
of Class 2 in Section 5.

Class 3: Questions referring to an outside third party. Questions belonging to Class 3 relate to
a universal property which is influenced by actions of both the attacker and the defender. They quantify
attack–defense scenarios from the point of view of an outside third party which is neither the attacker nor
the defender. For instance, one could ask about “How much data traffic is involved in the attack–defense
scenario?”. In this case, we do not need to distinguish between traffic resulting from the attacker’s and
the defender’s actions, as both players contribute to the total amount. Another example of a question of
Class 3 is “What is the global environmental impact of the scenario?”. Instances of environmental impact
could be CO2 emission or water pollution. Attributes corresponding to questions in Class 3 have not
been addressed in the attack tree literature, since attack trees focus on a single player. The importance of
those questions becomes apparent when actions of two opposite parties are considered. The case study [5]
that we have performed using the attack–defense tree methodology showed that such attributes relate
to essential properties which should not be disregarded by the security assessment process. Questions of
Class 3 are discussed in Section 6.

The following three sections set up guidelines for how to correctly specify quantitative questions of
all three classes. The guidelines’ main purpose is to enable us to find a corresponding attribute domain
in order to correctly compute an answer using the bottom-up procedure. Figure 2 depicts the three
classes of questions, as well as general templates for the corresponding attribute domains, as introduced
in Definition 3. Symbols •, ◦, ⋄ and • serve as placeholders for specific operators. Corresponding symbols
within a tuple indicate that the functions coincide. For instance, (D, ◦, •, •, ◦, •, ◦) means that ∨p

α = ∧o
α =

co
α

and that ∧p
α
= ∨o

α
= cp

α
. We motivate these equalities and give possible instantiations of •, ◦, ⋄ and •

in the following three sections.

quantitative question
(Dα,∨

p

α,∧
p

α,∨
o

α,∧
o

α, c
p

α, c
o

α)

related to one player
(D, ◦, •, •, ◦, •, ◦)

related to both players
(D, ◦, •, ◦, •, ⋄, ⋄)

where answers for both
players are deducible
from each other
(D, ◦, •, ◦, •, •, •)

referring to external
property/party
(D, ◦, •, ◦, •, •, •)

Figure 2. Classification of questions and attribute domains’ templates

4 Questions Referring to One Player

4.1 Defining a Formal Model for Questions of Class 1

Questions belonging to Class 1 refer to exactly one player, which we call the question’s owner. As we
explain below, in the attack–defense tree setting, only two situations occur for a question’s owner: either
he needs to choose at least one option or he needs to execute all options. Therefore, two operators
suffice to answer questions of Class 1 and the generic attribute domain is of the form (D, ◦, •, •, ◦, •, ◦).
Furthermore, if we change a question’s owner, the attribute domain changes from (D, ◦, •, •, ◦, •, ◦) into
(D, •, ◦, ◦, •, ◦, •).

We illustrate the construction of the formal model for Class 1 using the question “What are the
minimal costs of the attacker?”, where the owner is the attacker. In the case of Class 1, all values assigned

2 We would like to point out that, the probability attribute can only be evaluated using the bottom-up procedure
given by Equation (1), if the ADTree does not contain any dependent actions.

6

to nodes and subtrees express the property that we are interested in from the perspective of the question’s
owner. In the minimal costs example, this means that even subtrees rooted in defense nodes have to be
quantified from the attacker’s point of view, i.e., a value assigned to the root of a subtree expresses what
is the minimal amount of money that the attacker needs to invest in order to be successful in the current
subtree.

Subtrees rooted in uncountered attacker’s nodes can either be disjunctively or conjunctively refined.
In the first case the attacker needs to ensure that he is successful in at least one of the refining nodes,
in the second case he needs to be successful in all refining nodes. The situation for subtrees rooted in
uncountered defender’s nodes is reciprocal. If a defender’s node is disjunctively refined, the attacker needs
to successfully counteract all possible defenses to ensure that he is successful at the subtree’s root node;
if the defender’s node is conjunctively refined, successfully counteracting at least one of the refining nodes
already suffices for the attacker to be successful at the subtree’s root node.

This reciprocality explains that two different operators suffice to quantify all possible uncountered
trees: The operator that we use to combine attribute values for disjunctively refined nodes of one player
is the same as the operator we use for conjunctively refined nodes of the other player.

Furthermore, the same two operators can also be used to quantify all remaining subtrees. If a subtree
is rooted in a countered attacker’s node, the attacker needs to ensure that he is successful at the action
represented by the root node and that he successfully counteracts the existing defensive measure. Dually,
for the attacker to be successful in a subtree rooted in a defender’s countered node, it is sufficient
to successfully overcome the defensive action or to successfully perform the attack represented by the
countering node. This implies that we can use the same operator as for conjunctively refined attacker’s
nodes in the first case and the same operator as for disjunctively refined attacker’s nodes in the second
case.

4.2 Pruning

For attributes in Class 1, we are only interested in one player, the owner of a question. Therefore for this
class, we should disregard subtrees that do not lead to a successful scenario for the owner. We achieve
this with the help of the pruning procedure illustrated in the following example.

Example 5. Consider the ADTree in Figure 1 and assume that we are interested in calculating the minimal
costs of the attacker. In this case, there is no need to consider the subtree rooted in “Outsider Attack”,
because it is countered by the defense “Firewall” and thus does not lead to a successful attack. The
subtree rooted in “Outsider Attack” therefore should be removed. This simultaneously eliminates having
to provide values for the non-refined nodes “Outsider Attack” and ‘Firewall”. The computation of the
minimal costs is then executed on the term corresponding to the tree in the right of Figure 3.

Attack
Server

Insider
Attack

Internally
Connected

User
Creds

Steal
Server

Outsider
Attack

Firewall

Pruning
−−−−−→

Attack
Server

Insider
Attack

Internally
Connected

User
Creds

Steal
Server

Outsider
Attack

Firewall

Figure 3. Pruning the “attack server” scenario for questions of Class 1 owned by the attacker

To motivate the use of the pruning procedure, let us distinguish two situations. If a non-refined node
of the non-owner is countered, its assigned value should not influence the result of the computation. If

7

a non-owner’s node is not countered, its value should indicate that the owner does not have a chance to
successfully perform this subscenario. Mathematically, it means that the value assigned to the non-refined
nodes of the non-owner needs to be neutral with respect to one operator and simultaneously absorbing
with respect to the other. Since, in general, such an element may not exist, we use pruning to eliminate
one of the described situations. which results in elimination of the absorption condition.

Below we explain how to intuitively prune an ADTree and how to model the pruning in a mathematical
way.

Pruning intuitively. Let us consider a question of Class 1 and its owner. In order to graphically prune
an ADTree, we perform the following procedure. Starting from a leaf of the non-owner, we traverse the tree
towards the root until we reach the first node v satisfying one of the following conditions, as illustrated
in Figures 4, 5, 6, and 7.

∨
p

A B C

D

Pruning
−−−−−→

∨
p

A B C

D

Figure 4. Pruning a proper disjunctive refinement

A

∧
o

D E F

Pruning
−−−−−→

A

∧
o

D E F

Figure 5. Pruning a proper conjunctive refinement

A

∨
o

C D

E

Pruning
−−−−−→

A

∨
o

C D

E

Figure 6. Pruning a countermeasure

– v is a node of the owner and part of a proper3 disjunctive refinement (see Figure 3);
– v is a node of the non-owner and part of a proper conjunctive refinement (see Figure 5);

3 A refinement is called proper if it contains at least two refining nodes.

8

A

B

Pruning
−−−−−→

A

B

Figure 7. Pruning an entire ADTree

– v is a node of the owner that counteracts a refined node of the non-owner (see Figure 6);
– v is the root of the ADTree (see Figure 7).

The subtree rooted in node v is removed from the ADTree. The procedure is repeated, starting from all
leaves of the non-owner. We note that the order in which we perform the procedure does not influence
the final result. Also, in some cases the pruning procedure results in the removal of the entire ADTree.
This is the case when the owner of the question does not have any way of successfully achieving his goal.

Pruning formally. Let Q be a question Q of Class 1 and let own denotes the owner of Q. In order
to model the pruning procedure in a mathematical way, we construct the formal model answering the
question “Can the owner of Q succeed in a considered attack–defense scenario?” The idea is to assign the
Boolean value 1 to all subtrees in which the owner of Q can succeed and the value 0 to the subtrees in
which he cannot. Formally, we evaluate an attribute that we denote by satown, defined as follows. First
we set the basic assignment

βsatown
(b) =

{
1 if b ∈ B

own

0 if b ∈ B
own.

(2)

Then, given an ADTerm t, we use the following attribute domain4 to derive the values of the at-
tribute satown at all subterms of t:

Asatown
=

{
({0, 1},∨,∧,∧,∨,∧,∨) if own = p

({0, 1},∧,∨,∨,∧,∨,∧) if own = o .
(3)

The following theorem shows that satown models the pruning procedure soundly and correctly.

Theorem 1. Consider a question Q of Class 1, its owner own, an ADTree T and the corresponding
ADTerm t. Furthermore, let Asatown

and βsatown
be defined by equations (2) and (3). The intuitive pruning

procedure presented in Section 4.2 removes a subtree T ′ of T if and only if the evaluation of the satown

attribute on the corresponding subterm t′ of t results in the value 0.

Proof. We need to show that

1. if a subtree is removed by pruning, the evaluation of satown on the corresponding term results in 0.
2. if a subtree is not removed by pruning, evaluation of satown on the corresponding term results in 1.

1) Let u be a leaf of the non-owner, from which we start the current step of the pruning procedure. We
show that if a tree rooted in a node v is removed by pruning, then all subterms corresponding to subtrees
rooted in the nodes on the path from u to v (including u and v) evaluate to 0.

We prove by contraposition. Assume that there exists a node w on the path between u and v, such
that the term corresponding to the tree rooted in w evaluates to 1. Moreover, let w be the first node with
such property encountered when starting from u. Note that w 6= u, because the basic assignment βsatown

assigns the value 0 to every non-refined node of the non-owner. This means that there exists a node w1

which is a child of w lying on the path from u to v. According to our assumptions, the term corresponding
to the tree rooted in w evaluates to 1 while the term corresponding to the subtree rooted in w1 evaluates
to 0. This implies that operator ∨ has been used. According to the attribute domain given by (3), there
are only three situations where the logical disjunction is used:

4 Note that the question “Can the owner of Q succeed in the scenario?” also falls into Class 1, as it is referring
to a specific player. This explains why the corresponding attribute domain conforms to the template deduced
in Section 4.1.

9

– either w is a properly, disjunctively refined node of the owner;
– or w is a properly, conjunctively refined node of the non-owner;
– or w is a refined node of the non-owner and w1 is its countermeasure.

It is now sufficient to notice that in all the three cases, the pruning procedure should have had stopped
at node w1. Contradiction.
2) First, let us remark that the pruning procedure stops at node v if the value of the term corresponding
to the tree rooted in the parent node of v is not uniquely determined by the value of the subterm
corresponding to the tree rooted in v. This is because, in all three cases where pruning stops at v, the
calculation of the satown attribute for the subterm corresponding to the tree rooted in the parent of v uses
operator ∨ which is applied to the value 0 (quantifying the term corresponding to the tree rooted in v)
and another value which cannot be deduced from the currently considered path. The tree rooted in the
parent of v will either be removed by the pruning procedure starting from another leaf of the non-owner
or it will not be removed after all possible steps of the pruning are performed.

Let T be an ADTree and T ′ be its subtree which is not removed by any step of the pruning procedure.
In the remaining part of this proof we show that the evaluation of satown on a term t′ corresponding to T ′

results in value 1. The proof is by induction on the structure of T ′.
If T ′ is a leaf of T , then it needs to represent a basic action of the owner. This is because all leaves of

the non-owner are removed by pruning. According to the basic assignment βsatown
the term t′ is quantified

with 1.
Let us now consider a tree T ′ which has not been removed by any step of the pruning procedure and

which is not a leaf of T . As induction hypothesis, we assume that the evaluation of satown on all subterms
corresponding to the subtrees of T ′ not removed by pruning results in 1. This implies that the evaluation
of satown on t′ yields 1, because the only possible ways of combining the values quantifying the subterms
of the considered term are ∨ or ∧. ⊓⊔

Next, we show how to combine the evaluation of an attribute from Class 1 with pruning, in one
procedure.

4.3 Merging Evaluation of Attributes of Class 1 With Pruning

We have argued that, in order to evaluate an attribute α of Class 1 in a correct way, we first need to
prune a considered ADTree with respect to the owner of the corresponding question. In this section, we
show how the two procedures of attribute evaluation and pruning can be modeled using an extended
attribute domain.

Consider a question Q of Class 1, the corresponding attribute domain Aα = (D, ◦, •, •, ◦, •, ◦) and a
basic assignment βα : B → D. For ease of presentation, in this section we assume that the owner of Q is
the proponent, i.e., that ◦ is the at least one operator and • is the all operator. In order to be able to
answer Q without the necessity of first pruning the ADTree, we extend D with an additional Boolean
dimension that represents which actions are relevant for our considerations. Therefore, instead of the
value domain D, we are using the Cartesian product D× {0, 1} denoted by D̂. Furthermore, we define ◦̂

and •̂ as two internal operations on D̂, by setting

◦̂((d1, s1), . . . , (dk, sk)) = (◦(d1 ⊗ s1, . . . , dk ⊗ sk),

k∨

i=1

si)

and

•̂((d1, s1), . . . , (dk, sk)) = (•(d1 ⊗ s1, . . . , dk ⊗ sk),

k∧

i=1

si),

where, for all d ∈ D, we set d⊗1 = d and d⊗0 = e◦, and where e◦ denotes the neutral element with respect

to ◦. In order to define the extended basic assignment β̂α : B → D× {0, 1}, we set β̂α(b) = (βα(b), 1), for

every basic action b of the owner of Q, and β̂α(b) = (βα(b), 0), for every basic action b of the non-owner
of Q. Theorem 2 shows that the attribute domain defined by

Âα = (D̂, ◦̂, •̂, •̂, ◦̂, •̂, ◦̂),

10

constitutes a formal model allowing us to correctly evaluate attribute α, and thus answer Q, without
requiring any prior pruning.

Theorem 2. Let Q, Aα, βα, Âα and β̂α be as defined in this section. For every ADTerm t, we have

– α̂(t) = (d, 0), for some d ∈ D, if the tree corresponding to t is removed by the pruning procedure
related to Q;

– α̂(t) = (α(t), 1), if the tree corresponding to t is not removed by the pruning procedure related to Q.

Proof. First observe that the calculation of the second component of the pair α̂(t) corresponds to the
calculation of attribute satown formalized in Section 4.2. Theorem 1 ensures that the second component
of α̂(t) is 0 if and only if the corresponding ADTerm is removed by the pruning procedure related to Q.
In this case, the first component of α̂(t) does not have any conclusive meaning. This corresponds to the
fact that answering the question Q for the pruned subtrees of an ADTree does not make any sense, since
these subtrees do not contribute to the success of the owner of Q.

Let t be a term corresponding to a subtree which is not removed by pruning related to Q. In order to
prove that α̂(t) = (α(t), 1), it is sufficient to notice that, according to Theorem 1, the evaluation of satown

on all subterms of t results in the value 1. This means that, when calculating α̂(t) we perform operations
of the form

⋄̂((d1, 1), . . . , (dk, 1)) = (⋄(d1 ⊗ 1, . . . , dk ⊗ 1), 1)

= (⋄(d1, . . . , dk), 1),

where ⋄ ∈ {◦, •}. This obviously leads to the desired result. ⊓⊔

We illustrate the use of the extended attribute domain introduced in this section on the following
example.

Example 6. As in Example 7, we would like to answer the question “What are the minimal costs of the
proponent, assuming that reusing tools is infeasible?”, on the tree in the left of Figure 3. From Example 7,
we know that the corresponding attribute domain is Aco = (R,min,+,+,min,+,min). We extend Aco to

the attribute domain Âco = (R̂, m̂in, +̂, +̂, m̂in, +̂, m̂in), as defined in this section. Since +∞ is the neutral
element with respect to min on R, operation ⊗ is defined as x ⊗ 0 = +∞, for every x ∈ R. We evaluate
the minimal costs attribute on the ADTerm corresponding to the non-pruned ADTree from Figure 3, as
follows:

ĉo(∨p(∧p(IC,UC), SS, cp(OA,FW))) =

m̂in(+̂(β̂co(IC), (β̂co(UC))), β̂co(SS), +̂(β̂co(OA), β̂co(FW))) =

m̂in(+̂((βco(IC), 1), (βco(UC), 1)), (βco(SS), 1), +̂((βco(OA), 1), (βco(FW), 0))) =

m̂in((+(βco(IC), βco(UC)), 1), (βco(SS), 1), (+(βco(OA),+∞), 0)) =

m̂in((+(100e, 200e), 1), (400e, 1), (+∞, 0)) =

m̂in((300e, 1), (400e, 1), (+∞, 0)) =

(min{300e, 400e,+∞}, 1) =

(300e, 1).

This result shows that the scenario is satisfiable for the proponent and that his minimal costs are 300e.
It is the same as the result obtained in Example 7.

4.4 From a Question to an Attribute Domain

In this section we analyze how a question of Class 1 should look like, in order to be able to instantiate
the attribute domain template A = (D, ◦, •, •, ◦, •, ◦) with specific value set and operators. To correctly
instantiate A, we need a value domain D, two operators (for all and at least one) and we need to know

11

which of those operators instantiates ◦ and which •. Thus, a well specified question of Class 1 contains
exactly four parts, as illustrated on the following question:

Modality: What are the minimal
Notion: costs
Owner: of the proponent
Execution: assuming that all actions are executed one after another?

Each of the four parts has a specific purpose in determining the attribute domain.
Notion. The notion used by the question influences the choice of the value domain. The notions in
Class 1, identified during our study, are:

– attack potential,
– attack time,
– consequence,
– costs,
– detectability,
– difficulty level,
– elapsed time,

– impact,
– insider required,
– mitigation success,
– outcome,
– penalty,
– profit,
– response time,

– resources,
– severity,
– skill level,
– special equipment

needed,
– special skill needed,
– survivability.

From the notion we determine the value domain, e.g., N, R, R≥0, etc. The choice of the value domain
influences the basic assignments, as well as the operators determined by the modality and the execution
style. The selected value domain needs to include all values that we want to use to quantify the owner’s
actions. It also must contain a neutral element with respect to ◦, if own = p, and with respect to •,
if own = o. This neutral element is assigned to all non-refined nodes of the non-owner, as argued in
Section 4.2.

Modality. The modality of a question clarifies how options are treated. Thus, it determines the charac-
teristic of the at least one operator. Different notions are accompanied with different modalities. In the
case of costs, interesting modalities are minimal, maximal and average.
Execution. The question also needs to specify an execution style. Its value determines the treatment
when all actions need to be executed. Thus, it describes the characteristic of the all operator. Exemplary
execution styles are: simultaneously/sequentially (for time) or with reuse/without reuse (for resources).
Owner. The owner of a question determines how the modality and the execution are mapped to ◦ and •.
In case the owner of the question is the root player, i.e., the proponent, ◦ is instantiated with the at least
one operator and • with the all operator. In case the root player is not the owner, the instantiations are
reciprocal.

Given all four parts, we can then construct the appropriate attribute domain. For the notion of
continuous time, also called duration, possible combinations of the modality, the execution style and the
owner have been determined in Table 1. We instantiate the attribute domain template (D, ◦, •, •, ◦, •, ◦)
with the elements of the algebraic structure (D, ◦, •), and use the value indicated in the last column of
the table as the basic assignment for all non-refined nodes of the non-owner. The table can be used in
the case of other notions as well, as shown in the next example.

Example 7. The question “What are the minimal costs of the proponent, assuming that reusing tools
is infeasible?” can be answered using the attribute domain Aco = (R,min,+,+,min,+,min). Here the
notion is cost, which has the same value domain as duration, i.e., R. The modality is minimum, the owner
is the proponent and the execution style is without reuse, which corresponds to sequential. Hence, we use
the structure (R,min,+), as specified in Line 1 of Table 1. In order to answer the question on the tree in
the left of Figure 3, we first prune it, as shown on the right of Figure 3. The only basic actions that are
left are “Internally connected”, “User Creds” and “Steal Server”. Suppose the costs are 100e, 200e, and
400e, respectively. We use those values as basic assignment βco and apply the bottom-up computation
to the ADTerm ∨p(∧p(IC,UC), SS):

co(∨p(∧p(IC,UC), SS)) = ∨p
co (∧

p
co(βco(IC), βco(UC), βco(SS)) =

min{+(100e, 200e), 400e} = 300e.

12

Notion Modality Owner Execution Structure (D, ◦, •) Basic assignment for own

1 duration min p sequential (R,min,+) +∞

2 duration avg p sequential (R, avg,+) eavg

3 duration max p sequential (R,max,+) −∞

4 duration min o sequential (R,+,min) 0

5 duration avg o sequential (R,+, avg) 0

6 duration max o sequential (R,+,max) 0

7 duration min p parallel (R,min,max) +∞

8 duration avg p parallel (R, avg,max) eavg

9 duration max p parallel (R,max,max) −∞

10 duration min o parallel (R,max,min) −∞

11 duration avg o parallel (R,max, avg) −∞

12 duration max o parallel (R,max,max) −∞

Table 1. Determining instantiation of the structure in Class 1, where eavg denotes the neutral element with
respect to avg.

We would like to remark that if the structure (D, ◦, •) forms a semi-ring, it is not necessary to prune
the ADTree to correctly answer a question Q of Class 1. This is due to the fact that in a semi-ring
the neutral element5 for the first operator is at the same time absorbing for the second operator. Such
element can then be assigned to all subtrees which do not yield a successful scenario for the owner of Q,
in particular to the uncountered basic actions of the non-owner.

5 Questions Where Answers for Both Players Can Be Deduced From Each

Other

We illustrate the construction of the attribute domain for Class 2 using the question “What is the success
probability of a scenario, assuming that all actions are independent?” In case of questions of Class 2,
values assigned to a subtree quantify the considered property from the point of view of the root player
of the subtree. This means that, if a subtree rooted in an attack node is assigned the value 0.2, the
corresponding attack is successful with probability 0.2. If a subtree rooted in a defense node is assigned
the value 0.2, the corresponding defensive measure is successful with probability 0.2. Thus, in Class 2,
conjunctive and disjunctive refinements for the proponent and the opponent have to be treated in the
same way: in both cases, they refer to the at least one option (here modeled with ◦) and the all options
(modeled with •), of the player whose node is currently considered.

Questions in Class 2 have the property that, given a value for one player, we can immediately deduce
a corresponding value for the other player. For example, if the attacker succeeds with probability 0.2 the
defender succeeds with probability 0.8. This property is modeled using a value domain with a predefined
unary negation operation . Negation allows us to express the operators for both countermeasures using
the all operator where the second argument is negated, which we represent by •. Formally, •(x, y) = x•y.
Hence attribute domains of Class 2 follow the template (D, ◦, •, ◦, •, •, •).

Below we discuss three aspects that questions in Class 2 need to address.
Notion. Questions of Class 2 refer to notions for which the value domains contain a unary negation
operation. This allows us to transform values of one player into values of the other player. Identified
notions for Class 2 are:

– feasibility,
– satisfiability,

– probability of success,
– probability of occurrence,

– needs electricity.

Modality. Modality specifies the operator for at least one option. For the notions enumerated above,
this will either be the logical OR (∨) or the probabilistic addition of independent events P∪(A,B) =
P (A) + P (B)− P (A)P (B), for a given probability distribution P and events A and B.

5 Such an element is usually called zero of the semi-ring. For instance, +∞ is the zero element of the semi-ring
(R,min,+).

13

Execution. Finally, we need to know what is the execution style, so that we can specify the operator for
all options. In the above notions, this will either be the logical AND (∧) or the probabilistic multiplication
of independent events P∩(A,B) = P (A)P (B).

Example 8. We calculate the success probability of the scenario given in Figure 1, assuming that all
actions are independent. First we set the success probability of all basic actions to βpb = 0.4 and then we
use the attribute domain Apb = ([0, 1], P∪, P∩, P∪, P∩, P∩, P∩), where P∩(A,B) = P∩(A,B) to compute

P∪(P∩(βpb(IC), βpb(UC)), β(SS), P∩(βpb(OA), 1 − βpb(FW))) =

P∪(P∩(0.4, 0.4), 0.4, P∩(0.4, 1− 0.4)) = P∪(0.16, 0.4, 0.24) = 0.61696.

6 Questions Relating to an Outside Third Party

Suppose an outsider is interested in the overall maximal power consumption of the scenario. As in the pre-
vious section, disjunctive refinements of both players should be treated with one operator and conjunctive
refinements of both players with another operator. Indeed, for a third party the important information
is whether all or at least one option need to be executed and not who performs the actions. Also coun-
termeasures lose their opposing aspect and their values are aggregated in the same way as conjunctive
refinements. Regarding the question, this is plausible since both the countered and the countering action
contribute to the overall power consumption. These observations result in the following template for an
attribute domain in Class 3: (D, ◦, •, ◦, •, •, •).

We specify relevant parts of the questions in Class 3 on the following example.

Modality: What is the maximal
Notion: energy consumption
Execution: knowing that sharing of power is impossible?

Notion. In Class 3, we use notions that express universal properties covering both players. Found exam-
ples are:

– social costs,
– global costs,
– third party costs,

– environmental costs,
– environmental damage,
– information flow,

– combined execution time,
– required network traffic,
– energy consumption.

Modality. The question should also contain enough information to allow us to specify how to deal with
at least one option. In general, modalities used in Class 3 are the same as those in Class 1, e.g., minimal,
maximal and average.
Execution. Finally, we need to know what is the execution style, so that we can define the correct
operator for all options. The choices for execution style in Class 3 are again the same as in Class 1.

These three parts now straightforwardly define an algebraic structure (D, ◦, •) that we use to construct
the attribute domain (D, ◦, •, ◦, •, •, •).

Example 9. Consider the question “What is the maximal energy consumption for the scenario depicted
in Figure 1, knowing that sharing of power is impossible?” Both, the proponent’s as well as the oppo-
nent’s actions may require energy. We assume that being “Internally Connected”, performing an “Outsider
Attack” and running a “Firewall” all consume 20kWh. Obtaining “User Creds” requires 1kWh, whereas
“Stealing Server” does not require any energy. These numbers constitute the basic assignment for the
considered attribute. From the question we know that, when we have a choice, we should consider the
option which consumes the most energy. Furthermore, since sharing of power is impossible, values for
actions which require execution of several subactions should be added. Thus, we use the attribute do-
main Aerg

max

= (R,max,+,max,+,+,+) and compute the maximal possible energy consumption in the
scenario as

ergmax((∨
p(∧p(IC,UC), SS)) =

max{+(20kWh, 1kWh), 0kWh,+(20kWh, 20kWh)} = 40kWh.

Due to similarities for modality and execution style for questions of Class 1 and Class 3, we can make
use of Table 1, to choose the structure (D, ◦, •) that determines an attribute domain for a question of
Class 3. The table corresponds to the case where the owner is the proponent.

14

7 Methodological Advancements for Attack Trees

ADTrees extend the well-known formalism of attack trees [26] by incorporating defensive measures to
the model. Hence, every attack tree is in particular an ADTree. As visible in Example 4, underspecified
questions are not a new phenomenon of ADTrees, but already occur in the case of pure attack trees. Thus,
the formalization of quantitative questions, proposed in this paper, is not only useful in the attack–defense
tree methodology but, more importantly, it helps users of the more widely spread formalism of attack
trees.

Given a well specified question on ADTrees and the corresponding attribute domain, we can answer the
question on attack trees as well. Formally, attack trees are represented with terms involving only operators
∨p and ∧p. If Aα = (Dα,∨

p
α
,∧p

α
,∨o

α
,∧o

α
, cp

α
, co

α
) is an attribute domain for ADTerms, the corresponding

attribute domain for attack trees is Aα = (Dα,∨
p
α,∧

p
α), which corresponds to the formalization introduced

in [21]. Furthermore, due to the fact that attack trees involve only one player (the attacker), the notions
of attacker, proponent, and question’s owner coincide in this simplified model. This in turn implies that,
in the case of attack trees, the three classes of questions considered in this paper form in fact one class.

8 Prototype Tool

In order to automate the analysis of security scenarios using the attack–defense methodology, we have
developed a prototype software tool, called ADTool. It is written in Java and is compatible with multiple
platforms (Windows, Linux, MAC OS). ADTool is publicly available [18]. Its main functionalities include
the possibility of creation and modification of ADTree and ADTerm models as well as attributes evaluation
on ADTrees.

ADTool combines the features offered by graphical tree representations with mathematical functional-
ities provided by ADTerms and attributes. The user can choose whether to work with intuitive ADTrees
or with formal ADTerms. When one of these models is created or modified, the other one is generated au-
tomatically. The possibility of modular display of ADTrees makes ADTool suitable for dealing with large
industrial case studies which may correspond to very complex scenarios and may require large models.

The software supports attribute evaluation on ADTrees, as presented in this paper. A number of
predefined attribute domains allow the user to answer questions of Classes 1, 2 and 3. Implemented
attributes include: costs, satisfiability, time and skill level, for various owners, modalities and execution
styles; scenario’s satisfiability and success probability; reachability of the root goal in less than x minutes,
where x can be customized by the user; and the maximal energy consumption.

9 Conclusions

A useful feature of the attack–defense tree methodology is that it combines an intuitive representation
and algorithms with formal mathematical modeling. In practice we model attack–defense scenarios in a
graphical way and we ask intuitive questions about aspects and properties that we are interested in. To
formally analyze the scenarios, we employ attack–defense terms and attribute domains. In this paper,
we have guided the user in how to properly formulate a quantitative question on an ADTree and how to
then construct the corresponding attribute domain. Since attack trees are a subclass of attack–defense
trees, our results also advance the practical use of quantitative analysis of attack trees.

We are currently applying the approach presented in this paper to analyze socio-technical weaknesses
of real-life scenarios, such as Internet web filtering, which involve trade offs between security and usability.
In the future, we also plan to investigate the relation between attribute domains of all three classes and
the problem of equivalent representations of the same scenario, formalized in [16].

Acknowledgments: We would like to thank Piotr Kordy for his contributions to the development of
ADTool. This work was supported by the Fonds National de la Recherche Luxembourg under the grants
C08/IS/26 and PHD-09-167.

15

References

1. Abdulla, P.A., Cederberg, J., Kaati, L.: Analyzing the Security in the GSM Radio Network Using Attack
Jungles. In: Margaria, T., Steffen, B. (eds.) ISoLA (1). LNCS, vol. 6415, pp. 60–74. Springer (2010)

2. Amenaza: SecurITree. http://www.amenaza.com/, accessed October 5, 2012

3. Amoroso, E.G.: Fundamentals of Computer Security Technology. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA (1994), http://portal.acm.org/citation.cfm?id=179237#

4. Baca, D., Petersen, K.: Prioritizing Countermeasures through the Countermeasure Method for Software Se-
curity (CM-Sec). In: Babar, M.A., Vierimaa, M., Oivo, M. (eds.) PROFES. LNIBP, vol. 6156, pp. 176–190.
Springer (2010)

5. Bagnato, A., Kordy, B., Meland, P.H., Schweitzer, P.: Attribute Decoration of Attack–Defense Trees. Inter-
national Journal of Secure Software Engineering (IJSSE) 3(2), 1–35 (2012)

6. Bistarelli, S., Dall’Aglio, M., Peretti, P.: Strategic Games on Defense Trees. In: Dimitrakos, T., Martinelli,
F., Ryan, P.Y.A., Schneider, S.A. (eds.) FAST. LNCS, vol. 4691, pp. 1–15. Springer (2006), http://www.

springerlink.com/content/83115122h9007685/

7. Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational Choice of Security Measures Via
Multi-parameter Attack Trees. In: López, J. (ed.) CRITIS. LNCS, vol. 4347, pp. 235–248. Springer (2006)

8. Byres, E.J., Franz, M., Miller, D.: The Use of Attack Trees in Assessing Vulnerabilities in SCADA Systems.
In: International Infrastructure Survivability Workshop (IISW’04), Institute of Electrical and Electronics
Engineers, Lisbon (Dec 2004)

9. Dacier, M., Deswarte, Y.: Privilege graph: An extension to the typed access matrix model. In: Gollmann, D.
(ed.) ESORICS’94, LNCS, vol. 875, pp. 319–334. Springer Berlin / Heidelberg (1994), http://dx.doi.org/
10.1007/3-540-58618-0_72

10. Edge, K.S., Dalton II, G.C., Raines, R.A., Mills, R.F.: Using Attack and Protection Trees to Analyze Threats
and Defenses to Homeland Security. In: MILCOM. pp. 1–7. IEEE (2006)

11. Fung, C., Chen, Y.L., Wang, X., Lee, J., Tarquini, R., Anderson, M., Linger, R.: Survivability analysis of dis-
tributed systems using attack tree methodology. In: Proceedings of the 2005 IEEE Military Communications
Conference. vol. 1, pp. 583–589 (Oct 2005)

12. Henniger, O., Apvrille, L., Fuchs, A., Roudier, Y., Ruddle, A., Weyl, B.: Security requirements for automotive
on-board networks. In: 9th International Conference on Intelligent Transport Systems Telecommunications
(ITST’09). pp. 641–646. Lille (Oct 2009)

13. Jürgenson, A., Willemson, J.: Computing Exact Outcomes of Multi-parameter Attack Trees. In: Meersman,
R., Tari, Z. (eds.) OTM Conferences (2). LNCS, vol. 5332, pp. 1036–1051. Springer (2008)

14. Kordy, B., Mauw, S., Melissen, M., Schweitzer, P.: Attack–Defense Trees and Two-Player Binary Zero-Sum
Extensive Form Games Are Equivalent. In: Alpcan, T., Buttyán, L., Baras, J.S. (eds.) GameSec. LNCS, vol.
6442, pp. 245–256. Springer (Nov 2010)

15. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of Attack–Defense Trees. In: Degano, P.,
Etalle, S., Guttman, J.D. (eds.) FAST. LNCS, vol. 6561, pp. 80–95. Springer (Sep 2010)

16. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack–Defense Trees. Journal of Logic and Compu-
tation pp. 1–33 (2012), available online http://logcom.oxfordjournals.org/content/early/2012/06/21/

logcom.exs029.short?rss=1

17. Kordy, B., Pouly, M., Schweitzer, P.: Computational Aspects of Attack–Defense Trees. In: Security & Intelli-
gent Information Systems. LNCS, vol. 7053, pp. 103–116. Springer (2011)

18. Kordy, P., Schweitzer, P.: The ADTool. http://satoss.uni.lu/members/piotr/adtool/index.php (2012),
accessed October 12, 2012

19. Li, X., Liu, R., Feng, Z., He, K.: Threat modeling-oriented attack path evaluating algorithm. Transactions of
Tianjin University 15(3), 162–167 (2009), http://www.springerlink.com/content/v76g872558787214/

20. Manikas, T.W., Thornton, M.A., Feinstein, D.Y.: Using Multiple-Valued Logic Decision Diagrams to Model
System Threat Probabilities. In: 41st IEEE International Symposium on Multiple-Valued Logic (ISMVL-11).
pp. 263 –267 (2011)

21. Mauw, S., Oostdijk, M.: Foundations of Attack Trees. In: Won, D., Kim, S. (eds.) ICISC. LNCS, vol. 3935,
pp. 186–198. Springer (2005), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.97.1056

22. Piètre-Cambacédès, L., Bouissou, M.: Beyond Attack Trees: Dynamic Security Modeling with Boolean Logic
Driven Markov Processes (BDMP). In: European Dependable Computing Conference. pp. 199–208. IEEE
Computer Society, Los Alamitos, CA, USA (2010)

23. Roy, A., Kim, D.S., Trivedi, K.S.: Cyber security analysis using attack countermeasure trees. In: Proceedings of
the Sixth Annual Workshop on Cyber Security and Information Intelligence Research. pp. 28:1–28:4. CSIIRW
’10, ACM, New York, NY, USA (2010), http://doi.acm.org.proxy.bnl.lu/10.1145/1852666.1852698

16

http://www.amenaza.com/
http://portal.acm.org/citation.cfm?id=179237#
http://www.springerlink.com/content/83115122h9007685/
http://www.springerlink.com/content/83115122h9007685/
http://dx.doi.org/10.1007/3-540-58618-0_72
http://dx.doi.org/10.1007/3-540-58618-0_72
http://logcom.oxfordjournals.org/content/early/2012/06/21/logcom.exs029.short?rss=1
http://logcom.oxfordjournals.org/content/early/2012/06/21/logcom.exs029.short?rss=1
http://satoss.uni.lu/members/piotr/adtool/index.php
http://www.springerlink.com/content/v76g872558787214/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.97.1056
http://doi.acm.org.proxy.bnl.lu/10.1145/1852666.1852698

24. Roy, A., Kim, D.S., Trivedi, K.S.: Attack countermeasure trees (ACT): towards unifying the constructs of
attack and defense trees. Security and Communication Networks 5(8), 929–943 (2012), http://dx.doi.org/
10.1002/sec.299

25. Saini, V., Duan, Q., Paruchuri, V.: Threat Modeling Using Attack Trees. J. Computing Small Colleges 23(4),
124–131 (2008), http://portal.acm.org/citation.cfm?id=1352100

26. Schneier, B.: Attack Trees. Dr. Dobb’s Journal of Software Tools 24(12), 21–29 (1999), http://www.ddj.com/
security/184414879

27. Tanu, E., Arreymbi, J.: An examination of the security implications of the supervisory control and data ac-
quisition (SCADA) system in a mobile networked environment: An augmented vulnerability tree approach.
In: Proceedings of Advances in Computing and Technology, (AC&T) The School of Computing and Tech-
nology 5th Annual Conference. pp. 228–242. University of East London, School of Computing, Information
Technology and Engineering (2010), http://hdl.handle.net/10552/994

28. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault Tree Handbook. Tech. Rep. NUREG-0492,
U.S. Regulatory Commission (1981), http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/

sr0492/sr0492.pdf

29. Wang, J., Whitley, J.N., Phan, R.C.W., Parish, D.J.: Unified Parametrizable Attack Tree. International
Journal for Information Security Research 1(1), 20–26 (2011), http://www.infonomics-society.org/IJISR/
Unified%20Parametrizable%20Attack%20Tree.pdf

30. Willemson, J., Jürgenson, A.: Serial Model for Attack Tree Computations. In: Lee, D., Hong, S. (eds.) ICISC.
LNCS, vol. 5984, pp. 118–128. Springer (2010), http://research.cyber.ee/~jan/publ/serialattack.pdf

31. Yager, R.R.: OWA trees and their role in security modeling using attack trees. Inf. Sci. 176(20), 2933–2959
(2006)

17

http://dx.doi.org/10.1002/sec.299
http://dx.doi.org/10.1002/sec.299
http://portal.acm.org/citation.cfm?id=1352100
http://www.ddj.com/security/184414879
http://www.ddj.com/security/184414879
http://hdl.handle.net/10552/994
http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/sr0492.pdf
http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/sr0492.pdf
http://www.infonomics-society.org/IJISR/Unified%20Parametrizable%20Attack%20Tree.pdf
http://www.infonomics-society.org/IJISR/Unified%20Parametrizable%20Attack%20Tree.pdf
http://research.cyber.ee/~jan/publ/serialattack.pdf

	Quantitative Questions on Attack–Defense Trees

