- —

A Constructive Version of the
Approximation Induction Principle

S. Mauw

Computer Science Department,
University of Amsterdam,
P.O. Box 41882, 1009 DB Amsterdam, The Netherlands.

A constructive version of the Approximation Induction Principle is formulated,
which states that equality of processes can be decided after observing the initial
behaviour of the processes. This principle is proved correct for the class of
regular processes. The number of states that the processes have, determines the
number of steps that have to be considered. This principle can be used to
formulate a complete inference system for regular processes and algorithms to
decide upon equality.

Note: This work was sponsored in part by ESPRIT contract nr. 432, Meteor.

1. INTRODUCTION

In Mauw [9] an algebraic specification of some topics in process algebra was given. It
wurned out that for some items no operational definition was known, so no algebraic
specification was possible. Some research led to the observation that for the class of
regular processes the Approximation Induction Principle (AIP) could be reformulated
in an effective way. AIP states that two processes are equal if all their projections are
equal. The projection of a process at level n can be viewed as the initial behaviour of
this process up to the first n steps.

The constructive version of this principle (AIP®) states that not all projections have to
be considered, but only some projection at a large enough level. So just by comparing

the initial behaviour of two regular processes, it is possible to decide upon equality.

235

The depth depends only on the number of states both processes have, in fact it is the
sum of these numbers. If the processes are defined by means of linear specifications,
the number of states is equal to the number of equations used.

Furthermore it can be proved that this result is best possible, in the sense that for
every pair of positive integers n and m there are processes with n, respectively m
states, which are equal up to depth n+m-1, but unequal at depth n+m.

Because it states exactly which processes are equal and which are not, AIP® can be
used to give a complete axiomatisation of the class of regular processes. In Milner
[11] and Bergstra & Klop [2] other complete systems were described.

The constructive version of AIP leads us to consider algorithms that can be used to
determine equality of regular processes. At first glance the equality problem for regular
process graphs could be mapped to the equality problem for finite process trees. This
problem has an easy solution, but the number of nodes increases exponentially.
Another possible algorithm has as its origin an operationalisation of the proof of
AIP®. It yields the same complexity as an algorithm in Kanellakis & Smolka [8].

I would like to express my thanks to Jos Baeten, Jan Bergstra, Henk Goeman, Marjan
van Herwijnen, Jan-Willem Klop, and Frits Vaandrager. Special thanks go to Freek
Wiedijk, who suggested an improved version of AIP® to me.

2. PROCESS ALGEBRA

2.1. BPA

In this section some topics in process algebra will be introduced (more on process
algebra can be found in Bergstra & Klop [3], [6]). Process algebra studies the
mathematical abstraction of the physical notion of a process. A process is considercd
as being constructed from a number of atomic actions from some finite set A. Two
major ways in which processes are constructed out of simpler ones are alternative
composition (+) and sequential composition (.). The process x+y can be read as "do
either x or y", and the process x.y as "first do x and then y". The axioms of Basic

Process Algebra (BPA) determine which processes should be identified:

236

(A1) X+y = y+X

(A2) (x+y)+z = x+(y+2)
(A3) X+X =X

(Ad) (x+y)z = xz+yz
(A5) (xy)z=x(yz)

As a convention we shall omit the dot-sign and reduce the number of parentheses by
giving this function a higher priority than addition.
EXAMPLE: If A={a,bc} then

(b+c)ab + bab = bab + cab, while

a(b+c)#ab+ac

2.2. RECURSION
The introduction of guarded recursive specifications enables us to consider also infinite
processes. A recursive specification is a system of recursive equations:

X; = Sp(Xqse0sXp)

Xy = sz(xl....,xn)

Xp = Sp(XpeesXp):
The terms sy,...,5, may contain the variables xy,...x,. A recursive specification is
guarded if all occurences of variables in all terms are guarded by an atom. An
occurrence of variable x in a term ¢ is said to be guarded if some subterm a.s exists
such that a is an atom (the guard) and s is a term containing the occurrence of x. We
also consider a specification guarded if it is possible to transform the specification
into one which is guarded, by use of the axioms and substitution.
EXAMPLE:
The specification
x = a(x + byy)
y =cay + abc + X
is guarded, while

237

X=ax +Xx
is not.
It is consistent to assume that each guarded recursive specification determines a unique
process, called the solution of the specification. This process may be infinite.
EXAMPLE:
The equation
x=ax
determines the process a.a. ..., also denoted by a®.
A linear specification contains only linear equations. This means that every equation
is of the form
X;= Lge 5 8% + Zye T b
The summation symbol is used to denote a (finite) number of additions. Every linear
specification is obviously guarded. If a process is a solution of some linear

specification, it is said to be a regular process.

2.3. PROJECTION

The projection function 7, (n=1) can be used to describe the initial behaviour of a

process.
(PR1) rtn(a) =a
(PR2) m(ax)=a
(PR3) m, . (ax)= am (x)
(PR4) m (x+y) =m (x) + m(y)
EXAMPLE:

1) n3(a(bc+bca)a) = a(bc+bc) = abe
2) If x is the solution of

x=ax+by+a

y =by
then n3(x) = amny(x) + bry(y) +a= a(am (x) + br (y) +a) + bbr,(y) +a
= a(a(a+b) + bb +a) + bbb + a

238

The second example shows that the projection function is also defined for (infinite)
processes which are defined by some guarded recursive specification. In fact, if all
projections of some process are given, the process is completely known. This is
known as the Approximation Induction Principle (see Bergstra & Klop [7]):

(AIP) Vieo X)) =m(y) = x=y.
EXAMPLE:
AIP can be used to prove that the following two systems define the same process

Xo = axg and Yo = ayg + ay;

Y1 =3y,

2.4. GRAPH MODEL
The graph model (see Bergstra & Klop [3]) is often considered to be the most natural
model for the theory of processes. Every graph determines some process, and every
solution of a guarded specification determines some equivalence class of graphs.
We only consider rooted directed finitely branching labeled graphs. This means that in
every graph one node is sclected to be the root of the graph, that every node has
finitely many outgoing edges and that every edge has some atom assigned to it. An
edge from node s to node s', labeled with an atom a€ A will be denoted by s-a->s'.
Two graphs g and h determine the same process if they are bisimilar (notation:
geh). This is the case if there exists a relation R between nodes of g and nodes of h,
such that:

(1) The roots of g and h are in relation R,

(i) For every edge s-a->s' in g and for every node t in h such that R(s,t),

there is an edge t-a->t' in h such that R(s',t").

(ii1) For every edge t-a->t' in h and for some node s in g such that R(s,t),

there is an edge s-a->s' in g such that R(s',t').
The relation R is called a bisimulation between the graphs g and h. The notion of
bisimulation is from Park [12] and is comparable to Milner's observational
congruence [10]. There is a canonical way to associate a graph to each linear
specification. Two processes are called equal in bisimulation semantics if their graphs

are bisimilar.

239

EXAMPLE:

The guarded specification
x=ax+aby
y=¢cy
has a solution which is represented by either of the two following graphs.
They are bisimilar.
L 2" 1b
a a
C
C
o
c
Y
Fig. 1

To define the operators +, . and 7t on graphs the notion of unwinding a graph should
be introduced. If the root of a graph is cyclic, it can be transformed to one with an
acyclic root, which is bisimilar with the original. This is simply done by adding a
new root and new edges from this new root to all nodes which were accessible from
the old root. Then all unaccesible nodes can be deleted. By recursively doing this
operation on all nodes, it is possible to unwind the entire graph.
The operators can now be defined by:
g+h is the graph derived from g and h by unwinding their roots and then
identifying the new roots.
g.h is the graph which is derived by identifying all leaves of g with the root
of h. If g has no leaves, only g remains.
n_(g) is derived by unwinding g completely and deleting all nodes and
associated edges which are not accessible from the root in n "steps”.
The class R of graphs with a finite number of nodes and edges is the class of regular

graphs. R/ is a model for the regular processes.

240

3. A CONSTRUCTIVE VERSION OF AIP

A well known fact about projections is the following (see e.g. Bergstra & Klop [4]):
If two processes are equal (in bisimulation semantics) then their projections
are equal. (or: bisimulation is a congruence relation on R with respect to
the projection function)

The converse of this fact is known as the Approximation Induction Principle (AIP):

If all projections of two processes are equal then the two processes are equal.
(AIP) Vis0 TX) =mly) = x=y.
This principle has been shown to be valid in the model R/€ of finite graphs modulo
bisimulation (see [3]). At first sight it could very well serve to construct a complete
axiomatisation of process algebra with bisimulation semantics, but there is no
effective way to check the infinite number of premises. However, for the class of
regular processes, a constructive version of AIP can be derived (AIPS). This version
states that only a finite number of projections have to be considered, in order to
determine the equality of two regular processes. The upper bound is dependent on the

number of states that both processes have; in fact it is the sum of both numbers.

3.1. THEOREM: If two regular processes, X and y, are defined by the linear recursive
specifications E and E’, having n and m equations respectively, then

(AIF°) m (o) =m (Y = Xg=Yo-
PROOF:
We can suppose that the sets of variables of E and E' are disjoint. Let V be the set of
variables that are used in the definitions of Xy and y,. Then V contains n+m
elements. Consider, for k>0, the relation =, on V, defined by:

X5y e mx)=m(y).
It is easy to prove that this defines an equivalence relation.
Because

T (X =m () = m&x)=m(y),
a non-increasing sequence of relations is defined:

mn

1 =2 522 53 D S

241

CLAIM 1. Initially this sequence is strictly decreasing, while the rest of the sequence
is constant:
(= 54) = (5= 5
PROOF OF CLAIM 1:
Let =, and =, ; be equal. Since the sequence is non-increasing, we only have to
prove:
Skl & Sk
Supposing this is false, there are x and y in V, such that
_ M1 () = Ty, (y) and T 42(X) # Ty 2 (y)-
Now let x and y be defined by the linear equations
x=Zpepap*p + ZqeQPq
Y= R Yy + Lses s _
Then the k+2" projections look like
Ty 42(X) =):pe p a1 (Xp) + ZqEQ by
T2 = Zre R 61 0 + Zges A
If these are unequal it is easy to see that at least one of the following expressions is

true:
(1) HqEQVSES bq#ds v HSESVqEqu#dS
@ 3pe PVre R (ap #C v Kk+1(xp) * Kk+1(yr)) M

EIre RVpE P (ap Tl T[k+1(xp) ¥ Tfk+1(}'r))
Now we can use the equality of =, and =, to obtain an expression which is
cquivalent to the second one:
(2 Elpe PYreR (ap #C V rrk(xp) #m(y,) v
= RVpe p (ap #C oV Ttk(xp) #m,(y,)
So at least one of the expressions (1) and (2") is true. From this we can conclude:
Ty (X) = EPE P apnk(xp) + zqu bq #
Yer &MY + Leesds =M ()
This is in contradiction with the assumptions.

242

CLAIM 2. The sequence is constant from = at the latest:

Zn+m ~ Sn+m+l
PROOF OF CLAIM 2:

Note that for two equivalence relations R and R, if RCR' and R#R', the number of
equivalence classes generated by R is strictly greater then the number of equivalence
classes generated by R'. Now, since the sequence of equivalence relations we defined is
initially strictly decreasing, and since the maximum number of equivalence classes of
V is n+m, we can conclude that at most the first n+m relations in the sequence can be

uncqual. Therefore

Zn+m = Znem+l
Now we come to the final part of the proof. The two claims can now be used to infer
from
Trem®0) = Tnym(Yo)
the equality of all projections:
Vk>0 m (xg) = m(ye)-
Now, using AIP, we can conclude

X0=yO.

NOTE: The equivalence relation = is discussed in Kanellakis & Smolka [8], where it
is called k-limited observation equivalence. Congruence on observable processes there
is defined by:

== hk)(} Ek.
This formula is equivalent to AIP. In this setting =, coincides with Milner's k-string

equivalence.

4, TIGHTNESS

The question whether the result derived in the previous section is tight, in the sense

that the bound n+m cannot be reduced, can be answered affirmatively.

243

4.1. THEOREM: For every pair of positive integers n and m there are regular processes
x and y, defined by n and m linear equations respectively, such that:
Toem1(X) = T A O0 A Y
PROOF:
Let n and m be positive integers, and let a be some arbitrary atom. Without loss of
generality it may be assumed that m = n. Let r be the remainder of m divided by n (r=
m mod n). Now define the process x using the following system of n linear
equations (0<k<n-1):
Xy +1(mod n) if k # r-2 (mod n)
Xy =
aXy 1(mod n) ¥ 2 if k = r-2 (mod n)
The graph associated with this system consists of a cycle with one "handle” attached
to it (see the example below). Define the process yy, using the following system of m

linear equations (0<k<m-1):

aYpy1 if k #r-2 (mod n) and k # m-1
Yk = ay,+a ifk = r-2 (mod n) and k # m-1
aYm-1 if k =m-1.

This system determines a linear graph, with a cycle at the end. At every n™ node a
"handle" is attached, such that the last handle is attached to the penultimate node (see
the example below). Now, if d is the integer division of m by n (d = m div n), the
projections can be calculated as:
T m-13X0) = T(d+1)n 1) = r-2(mod n) (5,40 (a+a" (...(a+a"(a+a))...))).
T e 1V0) = Taetmsr-100) = 87200 M. ava” (ava" (.. (a+a" @)
The repeating part is repeated d+1 times if r#0 and r#1, and d times if r=0 or r=1. The
atom a with superscript n denotes a repetition of n times the atom a. These two
projections are obviously equal, while the following two are not:
Tosm®0) = T(d+1)n wXg) = af-2(mod ").(a+a“.(a+a“.(...(a+a“(a+a?'))...))).
T em(Y0) = T(d+1)n w0 = af-2(mod ").(a+a“.(a+a“.(...(a+a“(a?‘))...))).

So xq and yj, are not equal, while projections at level n+m-1 are.

244

EXAMPLE: Let n=5, m=13, r = 13(mod 5) = 3, d = 13(div 5) = 2.

Ry = Yo=3ay Ys=2aYys Y10 =2aY11
Xj=axy+a yij=ay,+a yg=ay;+a Yipj=aypp+a
Ry =ady Y2=2Y3 y7=2Yg Yi2=2¥12

X =Ax Y3 =¥y Yg =Yg

X4 = 12X Y4 =2Yys Y9 =2a¥10

The projections at level 17 are equal, while the projections at level 18 are not:
T g(xg) = a(a+a5(a+a5 (a+a5(a+a2))))
n8(Yp) = a(a+a5(a+a5(a+as(a2))))

The graphs associated with x and y,, are:

‘,&g Yio Y2 Y3 Y4 Ys Y¢ Y7 ¥Yg Yo Y0 YnYn2
?FO?O?O?O?FN?O?O?O?P’
a a
d

a

Fig.2

5. A COMPLETE INFERENCE SYSTEM FOR REGULAR PROCESSES

5.1. REGULAR PROCESSES

In [11] Milner studied the notion of regular behaviours (or regular processes) and gave
a complete inference system. Bergstra & Klop [2] gave an alternative axiomatisation
of regular processes, in order to expand it with the silent step 1. In essence this
inference system was the same as the one proposed by Milner, only phrased in terms
of process algebra. Now, using the constructive version of the Approximation

Induction Principle, yet another axiomatisation can be given. To do so, the following

245

B S—

definitions will be needed:

Let Var be a denumerable infinite set of variables, which will be denoted by X, Y, ...
Let A be the finite set of atomic actions, denoted by a, b, Some extra symbols
are used: <, I, >, .,, and +.

The class RHS of linear right hand sides is inductively defined by:

a eRHS ifac A
a.X eRHS if ac A and Xe Var
r;+ro €RHS if ;e RHS and rye RHS
The class SYS of systems of lincar equations, separated by commas, is defined by:
' XerhseSYS if Xe Varand rhse RHS
s,LeSYS if se SYS, te SYS and Ivar(s)nlvar()=D

The function Ivar: SYS—P(VAR) determines which variables are involved on the
lefthand side of a system. It is defined by::

Ivar(X=rhs) = (X)

lvar(s,t) = lvar(s)ulvar(t).
Also two functions rvar:RHS—P(VAR) and rvar:SYS—P(VAR) can be defined,
which determine the variables involved on the righthand side:

rvar(a) =@

rvar'(aX) = (X)

rvar'(x+y) = rvar'(x)urvar'(y)

rvar(X=rhs) = rvar'(rhs)

rvar(s,) = rvar(s)urvar(t)
The class R of regular processes can now be defined to be the least class containing all
atoms and well formed linear systems, which is closed under the operations

multiplication (.) and addition (+):

aeR ifacA

<Xls> eR if Xe Var, se SYS, Xe Ivar(s) and rvar(s)Clvar(s)
(x.y) eR if xeR and yeR

(x+y) €R if xeR and yeR

Given some system se SYS and a variable Xe Ivar(s), the righthand side of the

definition for X is denoted by (s)x. This expression can be transformed to a regular

246

—«

process by replacing the symbols + and . by the binary functions + and . and

substituting for each variable Yervar'((s)y) the corresponding process <Yls>.

Notation: (s)y [Y—<YIs>]. This operation is defined by:

(s)x =rhs

if s= s;.X=rhs,s, where s, s, may be not present

a[Y—o<YIs>]=a

a.Z[Y—o<YIs>] = a.<Zls>

(ry+1)[Y<Yls>] = 1) [Yo<YIs>] + 1y [Yo<Yls>]

The following axioms are defined for x,ye R, ae A, s,te SYS, Xe lvar(s) and

Ye lvar(t):

(A1)
(A2)
(A3)
(A4)
(A5)

(RT)

(PR1)
(PR2)
(PR3)
(PR4)

(ATP%)

X+y = y+x
(x+y)+z = x+(y+2)
X+X = X
(x+y)z=xzZ+yz

(x.y):z =x.(y.z)

<Xls> = (s)x [Y—<Yls>]

n(a)=a

T (ax)=a

To41(@x) =am (x)

T (x+y) =1 (x) + 7 (y)

(<Xls>)=m_

if n=llvar(s)l and m=Ilvar(t)l

, S (<Yl>) = <Xls>=<YI>

BPAR,

Axioms (A1)-(R1) are identical to the axioms stated in [2]. Axiom (R1) is needed to

define the projection function on systems. It also enables us to consider every finite

process as a system, so AIP® can be formulated in an easy way.

247

5.2. COMPLETENESS AND SOUNDNESS
As the semantics of the class R we take the class of finite rooted process graphs
modulo bisimulation equivalence R/e (see paragraph 2.4.). Let the interpretation
[<Xls>] of a term <XIs>eR be the graph with nodes N=lvar(s) u (V), edges
E=(X-a->Y | (s)x has a summand a.Y} U [X-a->V 1 (s)x has a summand a) and root
X.If +,. and n are defined on graphs as in paragraph 2.4., we define:

[S.T] = [S].[T]

[S+T] = [SI+[T]

7, (S)] = 7 (IS])

It is easy to check that [.] is a surjective function on R/&

- EXAMPLE:
Let <Xls> be
X =aX+aY+a
Y =bY+aZ+a+b
Z=b

Then the interpretation of <Xls> is the graph:

Fig. 3

5.2.1. THEOREM:
The axiom system BPAReg is sound and complete with respect to the model of
regular process graphs modulo bisimulation. For closed terms S, TeR:

BPAR.‘eg F S=T < R/e k [S]=[T]

248

PROOF:

Soundness of (A1)-(A5) and (PR1)-(PR4) is easy to verify. Soundness of (R1) is
verified in [2]. Soundness of (AIP®) follows directly from the theorem stated in
paragraph 3.

AIP® also provides the completeness of the system. Suppose [S]=[T]. In presence of
(R1), S and T may be thought to be of the form <Xls> and <YIt>. Let n=llvar(s)| and
m=llvar(t)l and let the graphs g and h be representations in R of the classes [S] and
[T]. Because g and h are bisimilar in R, the n+mt projections of g and h are also
bisimilar. These projections are finite processes, which can be represented by closed
terms without recursion parts <Xls>. Now, because the axioms (A1)-(A5) form a
- complete axiomatisation of finite processes without silent moves (see Bergstra &
Klop [5]), the following is provable:

(<Xls>)=m_, (<YI>)

Rn+m n+m

Hence <Xls> = <Ylt>.

6. IMPLEMENTATION

In Kanellakis & Smolka [8] an algorithm is described which decides upon equality of
regular processes. It is possible to use AIP® for the construction of an algorithm,
which has the same complexity. Several approaches are possible to transform AIP®
into a computer program.

The most naive way is to determine the n+mt projection of both processes and decide
whether they are equal. The algorithm in Aho, Hopcroft & Ullman [1] for determining
equivalence of finite trees can be modified so that it determines bisimulation
equivalence of finite trees in time linearly proportional to the number of nodes.
Unfortunately, when unwinding a graph to a tree, the number of nodes increases
exponentially. So this algorithm takes time exponential to the total number of states.
By keeping track of all comparisons of projections at a lower level, this could be
improved to an algorithm which takes polynomial time.

The second approach is derived from the proof of AIP®. It is possible to determine the

249

equivalence relations =; until = _ and then check whether the two processes are in
the same equivalence class. Determining the equivalence relations can be done by the
following algorithm. By using the lexicographic sort algorithm of Aho, Hopcroft &
Ullman [1] it is possible to determine Sy Sort all atoms in every righthand side and
then, considering the righthand sides as strings, sort these strings. This can be done in
time linearly proportional to the number of states (S=n+m) plus the number of
outgoing edges (T). When =, is known, = +1 can be calculated by assigning to each
cquivalence class of =, a unique number and substituting for each variable at each
righthand side the number of its class. Then again sorting the righthand sides
individually and sorting all righthand sides considered as strings results in =, ;. This
operation takes also O(T+S) time. Repeating this operation S times results in a total
of O(S(T+S)). This can be reduced to O(S.T) because only processes are considered

with at least one outgoing edge per state.

7. FINAL REMARKS

Some questions whether the results in this paper could be extended arise. Firstly, there
is the question whether some AIPC-like principle could be formulated in the presence
of the silent step t. This is important, because all significant applications of process
algebra make use of this special process. Automatic verification of protocols then
comes into sight.

The question whether the class of processes for which AIP® holds could be extended
beyond the class of regular processes is also of interest. Enlarging this class would add
to a solution of the decidability problem for BPA-processes.

It can be expected that the bound n+m is not tight for all regular processes. For
example if the states of a process are not ordered linearly, but e.g. in "clusters”, not
the total number of states has to be considered, but the number of states in the largest

cluster.

250

e ra T TR

8. REFERENCES

(1]

(2]

3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

A.V. Aho, J.E. Hopcroft & J.D. Ullman, The design and analysis of
computer algorithms, Addison-Wesley, 1974.

J.A. Bergstra & J.W Klop, A complete inference system for regular processes
with silent moves, Report CS-R8420, Centre for Math. and Comp. Sci.,
Amsterdam, 1984,

J.A. Bergstra & J.W. Klop, Algebra of communicating processes, Proc. CWI
Symp. Math. & Comp. Sci. (J.W. de Bukker, M. Hazewinkel & J.K.
Lenstra, eds.), pp. 89-138, North-Holland, 1986.

J.A. Bergstra & J.W. Klop, Process algebra: Specification and Verification in
Bisimulation Semantics, Proc. CWI Symp. Math. & Comp. Sci. II, (M.
Hazewinkel, J.K. Lenstra & L.G.L.T. Meertens, eds.), pp. 61-94,
North-Holland, 1986.

J.A. Bergstra & J.W.Klop, Algebra of communicating processes with
abstraction, TCS 37 (1), pp. 77-121, 1985.

J.A. Bergstra & J.W Klop, Process algebra for synchronous communication,
Inf. & Control 60 (1/3), pp. 109-137, 1984.

J.A. Bergstra & J.W Klop, Verification of an alternating bit protocol by
means of process algebra, Report CS-R8404, Centre for Math. and Comp.
Sci., Amsterdam, 1984.

P.C. Kanellakis & S.A. Smolka, CCS Expressions, Finite State Processes
and Three Problems of Equivalence, Proc. 2nd. Ann. ACM Symp. Principles
of Distributed Computing, Montreal, Canada, pp. 228-240, Aug. 1983,

S. Mauw, An Algebraic Specification of Process Algebra, including two
examples, FVI report 87-06, University of Amsterdam, 1987.

R. Milner, A calculus of communicating systems, Springer LNCS 92, 1980.
R. Milner, A complete inference system for a class of regular behaviours,
Journal of Computer and Systems Sciences, Vol. 28, Nr. 3, June 1984, pp.
439-466.

D.M.R. Park, Concurrency and automata on infinite sequences, Proc. 5th GI
Conference, Springer LNCS 104, 1981.

251

