Process Algebra as a Tool for the Specification and
Verification of CIM-architectures

S. Mauw

Programming Research Group, University of Amsterdam
P.O. Box 41882, 1009 DB Amsterdam, The Netherlands

Flexibility of a manufacturing system implies that it must be possible to reorgan-
ize the configuration of the system's components efficiently and correctly. To
avoid costly redesign, we have the need for a formal description technigue for
specifying the (co)operation of the components. Process algebra - a theory for
concurrency - will be shown to be expressive enough to specify, and even ver-
ify, the correct functioning of such a system. This will be demonstrated by for-
mally specifying and verifying two workcells, which can be viewed as units of a
small number of cooperating machines.

1. INTRODUCTION
One can speak of Computer Integrated Manufacturing (CIM) if the computer is
used in all phases of the production of some industrial product. In this paper
we will focus on the design of the product-flow and the information-flow,
which occurs when products are actually produced. Topics like product-
development, marketing and management are beyond the scope of this paper.
The technique used in this paper is based on a theory for concurrency, called
process algebra (see [4] or [5]). It can be used to describe the total phase of
manufacturing, from the ordering of raw materials up to the shipping of the
products which are made from this materials. During this process many
machines are used, which can operate independently, but often depend on the
correct operation of each other. Providing a correct functioning of the total of
all machines, computers and transport-services is not a trivial exercise. Before
actually building such a system (a CIM-architecture) there must be some
design. Such a specification, when validated, describes a properly functioning
system. The current trend towards Flexible Manufacturing Systems (FMS)
introduces the need for a tool, able to validate a new design of a plant, before
implementing it. The possibilities to use methods developed in process algebra
for specification and verification of concurrent systems are described in this
paper.

From a high level of view, a plant can be seen as constructed from several

Partial support received from the European Community under ESPRIT project no. 432, An In-
tegrated Formal Approach to Industrial Software Development (METEOR).

54 S. Mauw

concurrently operating workcells (W1-W5 in Figure 1). Every workcell is
responsible for some well-defined part of the manufacturing process, e.g. filling
and capping a number of milk bottles. The various workcells are connected to
each other via some transport-service, which manages input and output of
goods for the workeells (the /logistics). Of course some supervisor (control)
must keep track of the (co)operation of all workcells. This control has connec-
tions to all other components of the plant, along which commands and status-
reports are transmitted. The components labeled supply and shipping are used
to store raw materials and processed goods.

control

4

shipping out

| W4 l W5
in supply !

FIGURE 1. A sample architecture of a plant

Seen from a lower level, each workeell is constructed from a number of basic
components which can perform one function, e.g. drilling a hole or assembling
two parts. For controlling the communication with the outside and to instruct
the various components of the workcell, each workcell has a workcell-controller.
Also some simple transport-system must be present to transport the products
within the workcell (see Figure 2).

The description of the components of some workeell can be given using pro-
cess algebra. When abstracting from the internal actions of that workcell, it is
possible to determine its external behaviour. At the high level view on the flow
of products, we are only interested in the products which enter the workcell
and the products leaving it. Also at the high level view on the flow of informa-
tion, we only look at the commands we give a workeell to produce or process a
number of products and the status-reports sent back.

The simple two level view on a manufacturing process expressed above, can
be refined into a multi layered model, as is done in e.g. [7].

As an illustration of the technique we specify and verify two workcells in the

Specification and verification of CIM-architectures 55

theory ACP; (see [5]). The first one is a very simple one, able to produce and
process one kind of product. The second one is more involved. It has the pos-
sibility to process some input product either correctly or faultily. Part of the
workeell is a quality-check tool, which decides upon rejecting the product or
not.

One should notice that in process algebra no real-time aspects are captured.
So the important notions of efficiency (maximal productivity of the machines)
and tuning (synchronization of the speed of the machines) cannot be modeled.

Note. This paper is partially based on discussions with F. Biemans, and
inspired by his article [8], who used the specification language LOTOS (see [9])
to describe CIM-architectures. Other applications of theories for concurrency
to CIM can be found in [10] and [11].

2. A SIMPLE WORKCELL
2.1. Specification

2.1.1. General description. In this section a simple workcell will be specified
and verified, which consists of four components (see Figure 2). This workcell is
identical to the one described in Biemans and Blonk [8]. Workstation A (WA)
produces a product (productl) and offers this to the Transport service (7).
Then the product is transported to Workstation B (WB), which processes the
product and outputs it to the environment. The Workcell Controller (WC)
receives a command from the environment to produce a number of products,
then controls the operating of the other components and reports a ready-status
back to the environment. So the total of the four components can be viewed as
one workeell, producing and processing a number of products. The aim is to
specify the components in such a way that the workcell behaves as desired.

1 1

: we|, |

| 2 5 :

I 1

: S :

1 1

I 1

1 1

1 1
1/} S S ok S
: 8 9 10

FIGURE 2. A simple workcell

56 S. Mauw

2.1.2. Definitions. The four components are connected by 11 ports. Some ports
are used to transmit data (the ports 0 through 7), while others are used to
exchange products (the ports 8 through 10). Three ports are connected to the
environment (the ports 0, 1 and 10). The set P of Ports is defined by

P={0,1,..,10).

The set PROD contains all products that are produced and processed within
the workstation (or the complete factory). It contains the products productl
(p1) and the processed productl (proc(p 1)), but could contain other products
as well.

PROD D {p]1, proc(p1)}

Different kinds of data have to be transmitted. Via the ports 1, 2 and 4 a non-
negative integer (n) can be sent to indicate that the receiver has to produce (or
process) n products. We assume that this number has some upper bound N,
which determines the maximum number of products the workcell can deal with
in one drive. One can consider this number as a parameter of the specification.
A ready message (r) is sent back over the ports 0, 3 and 5 to indicate that the
component has fulfilled its task. Over port 6 the Workcell Controller can send
a Transport Command (rc) to the Transport service, indicating that one pro-
duct has to be transported from WA to WB. If this is done, an arrival-
message (ar) is sent back via port 7. The ports 8 and 9 are used to transmit
productl (p1) and port 10 is used to transmit the processed productl
(proc(p 1)). So the set of items that can be transmitted (D) is defined as

D={n|0<n<N}U(r,tc,ar} UPROD.

A component can offer some element d of D at some port p by executing a
send action (sp(d)). If simultaneously another component is able to execute a
read action (rp(d)) at the same port and with the same element of D, this ele-
ment is communicated (cp(d)) via port p. In this way both products and
information will be distributed through the workcell. The atomic action 7 is
used to denote an internal action, which will not be visible to the environment.
The set of all atomic actions that can be performed is defined by

A= {sp(d),rp(d),cp(d)pePrdeD}U (1)
The communication function on the atoms is defined by
rp(d)|sp(d)=sp(d)|rp(d)=cp(d) for peP and deD.

All other communications yield deadlock.
Now we come to the definition of the four components.

2.1.3. Workstation A. Workstation A receives via port 2 the command to pro-
duce n times product p 1 (2,-r2(n)). Then it executes this command by pro-
ducing n products (XA") and sends a ready-status message at port 3 (s 3(r)).
Then WA starts all over. If WA was commanded to produce zero products,
XA just ends after doing some internal action r. If a positive number of

Specification and verification of CIM-architectures 57

products has to be produced (XA"*'), this is done by producing one product,
followed by the production of n products (XA4").
WA = X (r2(n)XA"s3(r)WA)

n=0
X0 =iy
XA+l = sS(pl)-XA"

2.1.4. Workstation B. Workstation B has almost the same definition as Works-
tation A. It accepts the command to process n products via port 4
(Z,=0r4(n)), processes n products (XB"), sends a ready-status message (s 5(r))
and starts all over. The processing of n products is achieved by repeatedly
receiving an arbitrary product p at port 9 (Z,_propr 9(p)) and sending the pro-
cessed version of this product to port 10 (s 10(proc (p))).

WB = 3 (rd(n)XB"-s5(r)WB)

n=0

XB® = ¢
XB"*' = 3 (r9(p)-s 10(proc(p))-XB")

pePROD

2.1.5. Transport service. The Transport service (T) can be seen as a FIFO-
queue. It is indexed with its contents. Adding an element p to the queue with
contents o, yields the queue with as its contents the concatenation p*o. The
empty queue is denoted by A. The transport system either has an empty queue,
or contains elements. If the queue is empty, T can receive a transport-
command via port 6 (r6(tc)) and then it receives some product via port 8
(Z,-prop” 8(p)). Next the transport service behaves as the transport service
with one element in its queue (77). It is also possible to receive the product
first and then receive the transport-command. If the queue was not empty, the
Transport service has both options as mentioned for the empty queue, but it
also has the option to send an element out of the queue at port 9 (s9(g)).
Then the arrival of this element is reported to the Workcell Controller (s 7(ar))
and the element is deleted from the queue.

™ = ré(tcy 3 (r8(p)TP)+ 3 (r8(p)r6(tc)T?)

pePROD pePROD
T = ré(tc) S (r8(p) TP+
pePROD

+ 3 (r8(p)r6(tc) TP ") +s9(q)-s Nar) T°
pePROD

58 S. Mauw

2.1.6. Workcell Controller. The Workcell Controller (WC) controls the com-
munication with the environment and the interaction of the other components.
It receives via port 1 the command to produce and process n products
(2,=0r 1(n)). Then it commands Workstation B to process n products (s4(n))
and goes into state D" were n times productl is produced and transported.
Then finally it receives a ready-status message from WB via port 5 (r5(r)) and
sends ready to the environment (s0(r)), returning to its initial state. The pro-
duction and transport of n products is done in D". It repeatedly commands
via port 2 Workstation A to produce one single product (s2(1)). If this is done
a ready message is received at port 3 (r3(r)) and a transport command is sent
at port 6 (s6(zc)). If the product has arrived at Workstation B, an arrival mes-
sage is received at port 7 (r 7(ar)).

WC = S (r l(n)ysd(n)-D"r5(r):sO(r)-WC)

n=0
Dt = ¢
D"tV = s2(1)r3(r)s6(tc)r(ar)D"

2.1.7. The workcell. The concurrent operation of these four components can be
considered as the specification of the whole workeell:

WCIITM WA WB.

Notice that the Transport service has to start with an empty queue.
Of course all unsuccessful communications must be encapsulated, so define
the encapsulation set H to contain all internal send and receive actions:

H = {rp(d), sp(d)2<p<9IndeD}.

Furthermore we are only interested in the external behaviour of the system, so
define

I = {p(d)2<p<97deD}U{1}.
Now the complete definition of the Workcell (W) is

W = 1 dy(WCIITMIWA|WB)

SPECIFICATION 2.1

2.2. Correctness

When designing the workcell, we had in mind some idea about its external
behaviour. It receives a command at port 1, which indicates the number of
products that has to be produced, then these products are produced and
offered at port 10 and finally a ready message is offered at port 0 and we
return to the starting state. This intended behaviour can easily be specified:

Specification and verification of CiM-architectures 59

V=S (ln)E"V)

n=0

E® = 50(r)

E"*! = s10(proc(p 1))-E"

SPECIFICATION 2.2

Now, using RDP, let v and w be solutions of the two given specifications, 2.1
and 2.2. A proof that the processes v and w are equal can be seen as a
verification that the specification of W is correct with respect to its intended
external behaviour.

THEOREM 2.3. The specification of the workcell is correct.
ACP,+RDP+RSP+ETrv=w

PrOOF. The proof consists of a series of successive expansions. All atoms that
do not communicate yield deadlock, because they are encapsulated. The
atoms that do communicate are underlined. All actions that are not abstracted
from are boldfaced.

W = 7 0y(WCIITM|WAIIWB)

= 7 0u((Zr U(n)s4(n)-D"-r5(r)ys0(r)- WC)l|
(r 6(18)'2(?‘ 8(p) TP)+ D (r8(p)r6(tc) TP
(Dr2(n)yXA™s3(r)-WA)

(Er 4(n)XB"-s5(r)yWB))

- Erl(n)-ﬁ A ((s4(n)-D"-r5(r)ys0(r) WO)l
(r6(tc)- X (r8(p)-TP)+ D(r8(p)r6(1c)-TP))ll
(Sr2(n)yXA™s3(ryWA)ll
(2?4{”)‘XB"'S 5(r)WB))

= Erl(n)-n(c 4(n)dy((D"-r5(r)ys0(ryWo)ll
(r 6(16)'2(?’ 8(p)T7P)+ E(r 8(p)-r6(1c)TP))ll
(Sr2(n)y-XA"-s3(r) WA)ll
(XB"-55(r)-WB)))

60

Now let
K" = 704((D"r5(r)s0(r) WC)|
(r6(tc) X(r8(p)-T?)+ S(r8(p)r6(tc) TPl
(Dr2(n)yXA"s3(ry WA)l
(XB"-s5(r) WB)), then
K =104((1:r 5(r)-s O(r) WC)l
(r6(tc) D(r8(p)T7)+ D)(r8(p)r6(tc) TP))ll
(Sr2(n)-XA"s3(r) WA)|l
(t's5(r)-WB))
= 773u(60(r) WO)ll
 (r6e)y r8(p) T+ Sr8(p)r6(tc) T
(Sr2(ny-XA™s3(ry WA)l
(WB))
= 1s0(r)- W
K"V = 2,85((s2(1)r 3(r)s 6(tc)r Har)-D™r 5(r)-s O(r) WC)||
(ré6(tc) X(r8(p) T?)+ D(r8(p)r6(tc)-TP))|l
(Sr2(n)yXA™ Vs 3(r)y-WA)l
(Zr9(p)s 10(proc(p)) XB"-s 5(r)- WB))
= 7(c2(1)0y((r 3(r)ys6(tc)r(ar)yD"-r5(r)ys0(r) WC)
(ré(rc) X(r8(p)-TP)+ D (r8(p)r6(rc)- TP
(s8(p 1) XA%s3(r) WA)|
(Zr9(p)s 10(proc (p))y XB"s 5(r) WB)))
= 711(c8(p 1)-5((r 3(r)s 6(tc)-r (ar)D™r 5(r)-s O(r)- WC)||
(r6(tc)TPH||
(t-s3(r)y WA
(2r9(p)s 10(proc (p))- XB"s 5(r)- WB)))
= 71(c3(r)04((s 6(tc)rT(aryD"-r5(r)s0(r)y WC)|l
(r6(tc)TPH|
(WA)l
(Zr9(p)s 10(proc (p)y XB" s 5(r)- WB)))

S. Mauw

Specification and verification of CIM-architectures 61

(**) = m1(c6(tc)0y((r(ar)D"-r5(r)ys0(ryWO)ll
(r6(tc)S(r8(p) TP 'Y+ S(r8(p) r6(tc) TPP' Y +59(p 1)-s 1ar) T)||
(WA
(>r9(p)-s 10(proc(p)): XB"-s 5(r)- WB)))

= 71,(c9(p 1)-05((r 1(ar)-D"-r 5(r)-s 0(r)- WC)|l
TaryTHI
(wA)ll
(s 10(proc (p 1))-XB"-s 5(r)- WB)))
= 2((ry(c N(ar)dy((D"r5(r)s0(r)-WC)l|

(Tl
(WA)ll
(s 10(proc (p 1)) XB"s 5(r)- WB))) +
+s10(proc(p1))-K"™)

Now let

L" = 704((D"r5(r)ys0(ryWwWO)ll
(™)
(WA
(s 10(proc (p 1))-XB" s 5(r): WB)), then

L® = 1 0u((t-r5(r)s0(r)-WC)ll
(T
(WA
(s 10(proc(p 1))t-s 5(ry WB))

= s10(proc®1)) 79 (7 5(r)s 0(ry WOl
(Tl
(WA)Il
(rs5(r)WB))+
7s10(proc(p1))7;34((r 5(r)s 0(r) WC)l|

(Tl
(WA)l
(1s5(r) WB))

62 S. Mauw
= ms10(proc(p1))-7;(c 5(r)- 0 ((sO(r)- WC)| [using T2]

(Tl

(WA

(WB)))

= 71-s10(proc(p1))-s0(r)- W
L™ = 58,201)yr3(r)s6(tc)r(ar)y-D™r5(r)s0(r) WOl

(r6(tcy 2(r8(p) TP)+ D(r8(p)r 6(tc) TP
Sr2(nyXA™s3(r) WA)l

(s 10(proc (p 1))-XB" * 1.5 5(r)-WB))

= 11(c2(1)3u((r 3y s 6(tc)r Hary D -r 5(r)sO(r)y- WOl

(ré6(te) D(r8(p) TP)+ S(r8(p)r6(tc)- 7))l

(s8(p 1)- XA s 3(r) WA)

(s 10(proc (p 1)) XB" * V-5 5(r) WB))) +

s10(proc(p1))-7,04((s 2(1)r 3(r)-s 6(tc)-r 1(ar)-D"-r 5(r)-s O(r)- WC)||

(r6(tc) SYr8(p) T7) + S(r8(p)r6(tc) TP))I
(Dr2(n)y-XA"-s3(r)-WA)ll

(XB"*1.55(r) WB))

= 711(c8(p 1):05((r3(r)s 6(tc)rT(ar)y-D"-r5(r)s0(r)- WC)|

(r6(ec)-TP)||

(XA°-s3(ry WA)|

(s 10(proc (p 1))-XB" * -5 5(r)- WB))) +

rs10(proc(pl))-,05((r 3(r)-s 6(tc)r (ar)y D" -r 5(r)s O(r)- WO

(r6(rc) D(r8(p) TP)+ S\(r 8(p)-ro6(1c)1P))ll

(s8(p 1)-XA%53(r)-WA)ll

(XB"+.55(r)y WB))+

s10(proc(pl))-7;(c 2(1)-05((r 3(r)-s 6(tc)r 1(ar)-D"-r 5(r)-s O(r)- WC)||

(r6(tc) X(r8(p) TP)+ D (r 8(p)r 6(tc)- TP))|

(s8(p 1)-XA -5 3(r)- WA)|
(XB"*1.55(r)-WB)))

(The first two summands in this expression come from the first summand in

Specification and verification of CIM-architectures 63
the previous expression. Axiom T2 states that the summation of the second
and third summand equals the second summand.)
= m1i(c8(p 1)-05((r3(r)s6(tc)ri(ar)-D"-r5(r)s0(r)WC)ll
r6(tc)TPHI
(t-s3(r)- WA)|
(s 10(proc(p 1))-XB" *1-55(r): WB)))+
7s10(proc(pl))-; 0y ((r 3(r)-s 6(zc)-r W(ar)-D"-r 5(r)-s O(r)- WC)l
(r6(tc)- D(r8(p) TP+ X (r8(p)-r 6(tc)- TP))I
(s8(p 1) XA s 3(r) WA)I
(XB"*'-s5(r)-WB))
= 777(c3(r)0y((s 6(tc)-r T(ar)-D"-r 5(r)s O(r)-WC)ll
(r6(tc)- TP)|
WA
(s 10(proc (p 1))-XB" *1-s 5(r)- WB))) +
7s10(proc(p1))7;(c 8(p 1)-d(r 3(r)-s 6(tc)r T(ar)-D"-r 5(r)s 0(r)- WC)|
(r6(te) TPVl
(t:s3(ry WA)ll
(XB" t1.55(r) WB)))
= 71i(c6(te)-0((r (ar)-D"-r5(r)ys0(r) W)l
(TP hHl
(WAl
(s 10(proc(p 1)) XB" +L.s5(r)-WB))+
7-s10(proc(p1))-7;(c 3(r)- 94 ((s 6(tc)-r 1(ar)-D"-r 5(r)s0(r)- WC)|l
(r6(ec)- TP H|
(WAl
(XB"* 5 5(r)- WB)))
= 7s10(proc(p1))-7;0,((r 7(ar)-D"-r 5(r)-s O(r)- WC)l|
(17 hHl
(WA
(Sr9(p)-s 10(proc (p))-XB"-s 5(r)- WB))
= 7s10(proc(p1))K" *! [see(**)]

64 S. Mauw

So the process w is a solution of the following system:

W=3rl(nyK"
K'=7s50(ryW

K" =q(mL" +510(proc(p 1))K")
L°=7510(proc(p 1))s O(r) W

L" "' =7510(proc(p 1)) K" *!

SPECIFICATION 2.3

Now look at the specification of the process ¥, which specifies the intended
behaviour. From RDP it follows that a solution (v, ") exists. Now, if v is also
a solution of the specification for W, RSP can be used to infer that v equals w.

Define k" and /" by:
k™ = 1e"y
I" = re" 'y, then |

v = Drinye™v=rl(n)yk" ‘

k° = me%v=rs0(r)v

k"t = pet iy =a(re" Py +e" M) =a(r1" +510(proc (p 1)-e"v)

= 7(r1" +s10(proc(p 1))yk")

I =relv=rs 10(proc (p)e’v=rs 10(proc(p 1)):s 0(r)-v

"t = rently =r510(proc(p))e" v =75 10(proc (p 1))1"

So (v,k",I") is a solution of specification 2.3.

2.4. Redundancy

Note that the specification of the workcell contains some redundancy. Al-
though the transport service has the capability to store any number of pro-
ducts in the queue, this feature is not used in the workcell. At any moment
not more than one product is stored in the buffer. So a one-item buffer would
have functioned in the same way. Also, the option of receiving first a transport
command and then a product is not used.

The capability of workstation A to receive a command to produce more
than one product is also not used.

Specification and verification of CIM-architectures 65
3. A WORKCELL WITH QUALITY CHECK
3.1. Specification

3.1.1. Global description. 1In this section a more complex workcell will be
defined, having the possibility of checking the quality of the produced goods.
Again we assume that some upper bound N is given which is the maximum
number of products the workcell can produce in one drive. The workcell con-
sists of four components. (1) Workstation A (WA) accepts a product,
processes it and returns either a good product or a faulty product. (2) The
Transport service (T) is a queue, at the one end accepting and at the other end
sending products. After receiving a product, the (3) Quality check (Q) deter-
mines whether it is a good product or not. A good product will be passed
along, while a rejected product will be removed. The latter occurrence is sig-
naled to the (4) Workcell Controller (WC). This part controls the workcell. It
receives the number of products that have to be processed, and instructs the
workcell to do so. While the processing is going on, it will count the number of
rejected products. At the end the workcell is instructed to process again an
amount of products, equal to the number of rejections.
The workcell is graphically depicted in Figure 3.

— WA — T Qb —
8 1 9 10 Q i

FIGURE 3. A workcell with quality check

3.1.2. Definitions. The four components are connected to each other by 12
ports. The ports 0 through 7 are used to transmit data and the ports 8 through
11 are used to exchange products. The ports 0, 1, 8 and 11 are connected to
the environment. The set P of Ports is defined by

P={0,1,...,11}.

The set PROD contains all products that are produced and processed within
the workstation. It contains productl (p1) and the product p1 after either
good or faulty processing (proc(p 1,0k) and proc(p 1, fault)).

66 S. Mauw

PROD D (p 1, proc(p 1,0k), proc(p 1, faulr)}

A partial function qual can determine whether the processing of a product has
been good or faulty.

qual (proc (p 1,0k))= ok

qual(proc(p 1, fault))= fault

Note that the information about the quality of a processed product is attached
to the product itself, and one can only become aware of it by explicitly using
the qual function. As an example consider drilling a hole in some product.
After drilling, the hole is in the right position or not, but one can only become
aware of this after applying some measuring tool, which reveals the quality.
Along ports 1, 2, 4 and 6 a non-negative integer (1) can be sent to indicate
that the receiver has to cope with n products. A ready message (r) is sent back
over the ports 0, 3, 5 and 7 to indicate that the component has fulfilled its
task. Port 5 is also used to indicate that a product has been rejected (rej). So
the set D, of items that can be transmitted is defined as

D={n|0<n<N}U{r,rej} UPROD.
Thus the set of atomic actions can be defined by:

A ={sp(d),rp(d),cp(d)pePrdeD}U (i}.

The atom i is used to indicate an internal action. The communication function
on atoms is defined by

rp(d)|sp(d)=sp(d)|rp(d)=cp(d) for peP and deD.

All other communications yield deadlock.
After these preliminary definitions we come to the specification of the four
components.

3.1.3. Workstation A. Workstation A is a machine able to process a specified
number of products. This number is received over port 2 (2,50r2(n)). Then
it executes its function n times (XA"). The process XA simply sends a ready
message (s 3(r)) and starts the workstation all over. The process X4A” *! is able
to receive some product (2, propr 8(p)), which has to be processed. The possi-
bility of either doing a good job or making an error while processing, is
modeled by using the nondeterministic choice operator. By prefixing the
actions with the internal atom i, a choice is made which cannot be influenced
by the environment.

WA= 3 r2(n)XA"
n=0
XA =53(r)WA
XA" T =3 (r8(p) (s proc (p,0k))+i-s proc (p, fault))))-XA"

pePROD

Specification and verification of CIM-architectures 67

3.1.4. Transport service. The transport service can best be seen as a bounded
FIFO-queue. First it receives the number of products that have to be trans-
ported (2, 59r6(n)). Then it behaves like the empty queue with bound n (T}).
After transporting n products (T)) a ready message is sent to the controller
(s7(r)) and it starts all over. The process T}, is intended to model a queue with
contents o, where n denotes the number of products that still have to be read
in to the queue. T% ;) has an empty buffer, so it can only read in products
(2,cpropr9(p)). T§'? can only output the contents of its buffer. The process
754, can either accept some product (EPC_ rrop? 9(p)) or it can send a queued
item (5 10(g)). This transport service differs from the one defined in the previ-
ous section in the sense that it needs less external control and that the capabil-
ity of buffering more than one product is being used. Also, its specification has
less redundancy.

T = Sré6n)T)
n=0
N = s7(0r)T
Tha = 3 (r%p)Th)
pePROD

T3 = 510(9) T
TS = 3 (9p)yTEe) +s10(g)Th

pePROD

3.1.5. Quality check. The quality of the processed product is tested by the pro-
cess Q. It receives the command to test n products (Z,=or4(n)). Then the n
tests are performed (XQ"). If there are no tests left to do (XQ") a ready mes-
sage is sent back (s5(r)) and the quality check returns to its initial state. The
checks are done by accepting some product (2, propr 10(p)) and determining
the quality of that product (XQ} suau())- If the quality is ok then the product
can continue on its way (s 11(p)). If the quality is fault then a rejection mes-
sage is sent to the workcell controller (s 5(rej)) and the product is rejected (i.e.
discarded).

Q= X rd(n)yXQ"

n=0
XQO =55(r)Q
Xo1 = E r IO(p)'XQ;.qM;(p)

pePROD
XQpok=s11(p)XQ"
XQ;,fauﬂ . S(re])XQ”

68 S. Mauw

3.1.6. Workcell Controller. The workeell is controlled by the Workcell Con-
troller. It receives the message to process n products (2, or 1(n)). When this is
done (DY), a ready message is reported (sO(r)) and the controller starts all
over. The process D"*! handles the processing of n + 1 products. It sends the
number of products that have to be processed to Workstation A (s 2(n +1)),
the Transport service (s6(n +1)) and the Quality check (s4(n +1)). Then it
starts to count the number of rejections, starting with 0 (RCy). The Rejection
Counter will be incremented when it receives a rejection message (r5(rej)).
When the Quality check, the Transport service and Workstation A respectively
send their ready messages (r5(r)-r7(r)-r3(r)), the controller again commands
the workeell to process some number of products (D). This new number of
products is equal to the number of rejections encountered up to that moment.
WC= X rl(n)D"

n=0
D°=50(r)WC
D"l =54(n +1)s6(n +1)s2(n +1)-RC,
RC,=r5(ryri(r)r3(ryD" +r5(rej)RC,

Note that the order in which the ready messages are received is of importance.
If e.g. the ready message of WA can be received first, it is still possible for Q
to contain faulty products. But then, since WC is not able to receive any rejec-
tion messages from Q, a deadlock would occur.

3.1.7. The workcell. Now we are interested in the parallel operation of the four
components as described above:
WCITIWAIQ.

To filter out all unsuccessful communications we use the encapsulation opera-
tor. All unsuccessful communications are gathered in the set H:

H={rp(d),sp(d)|(pe{2,3,4,5,6,7,9,10} AdeD).

Because we are only interested in the external behaviour of the system, we
abstract from the internal actions and communications, and define

I={cep(d)llpe(2,3,4,5,6,7,9,10)AdeD} U {i)}.
Thus the final definition of the workcell W becomes

W=r04(WCITIWAIIQ)

SPECIFICATION 3.1

Specification and verification of CiM-architectures 69

3.2. Correctness

Now we have to define some criterion for correctness of the specification. It is
not enough to require that for any command n along port 1 the workcell
processes n products correctly and reports a ready message. The problem is
that if there is not enough supply of products along port 8, the workcell can
reach a deadlock situation, waiting for more products. So we will only consider
the behaviour of the workcell in an environment, supplying an unlimited
number of products. The supplier is repeatedly sending product p 1 along port
8, and is defined by

S =s8(pl)S.

Of course we have to encapsulate unsuccessful communications over port 8
and abstract from successful communications over this port.

H'={rp(d),sp(d)lp =8"deD}
I'={cp(d)lp =8AdeD}

So we will consider the behaviour of the following specification (See also Fig-
ure 4).

W =rp84(SIIW)

SPECIFICATION 3.2.1

FIGURE 4. Adding a supplier to the workeell

The intended behaviour can be specified by the following specification 3.2.2. A
command to process n products correctly will be received, then the n processed
products will be delivered and a ready message will be reported.

70 S. Mauw

V=3 (rl(nyE"V)

n=0
E%=50(r)

En+1 =s1l(proc(p1,0k))-E"

SPECIFICATION 3.2.2

Now a verification of the correctness of the specification of the workcell will
consist of a proof that specification 3.2.1. and specification 3.2.2. define the
same process. So if w” and v are solutions of the two specifications, we have to
prove v =w’.

THEOREM 3.3. The specification of the workcell is correct.
ACP.+RDP+RSP+ETH+CFAR+CA + v=w'

PrROOF

3.3.1. Step 1. First we reduce the number of components by aggregating the

supplier S and workstation A. The resulting process (K) can be seen as being a
supplier of either good or bad products (Figure 5).

FIGURE 5. Aggregating S and WA

Let the process K be specified by
K=3r2(n)XK"
XK' =s53(r)K
XK+ =(r5 I(proc (p,ok))+1s9(proc (p, fault)))-XK".

Specification and verification of CIM-architectures 71

And let the encapsulation set and the abstraction set be defined by
H1={rp(d),sp(d) | p=81deD},
I1={cp(d) | p=8ndeD}U({i},

then the following proposition holds:
PROPOSITION 3.3.1.1. K=1;,04,(S||WA).

PrOOF. Let the process L be defined by
L=1,04(SIIWA)

=110 (SIZ, _ r2n)yXA")

=2 2o 2n) T du 1 (SIIXA")
Let L" be defined by
L"=17,0y4,(SIIXA"), then
LY=7718y(Slls3(r)- WA)

=s3(r)L

L7+ =1, 0, (s8(p 1):Sl
EFEPROD(:' 8(p)(i-s proc (p,0k))+i-s Nproc (p, fault)))) XA")
=171(c8(p 1)051(SI(i-s O(proc (p 1,0k))+i-s Yproc (p 1, fault))))- XA")
=7(r-59(proc(p 1,0k))+ 75 proc(p |, fault)))-L"

Thus we have

L= > r2(n)yL"
n=0
LO=53(r)-L

L+ =x(75Yproc(p 1,0k))+ 15 Nproc(p 1, fault))yL"

Now it is easy to see that K and L define the same process. Use RSP to prove
that a solution of K is also a solution of system L.

As a consequence of this proposition we can replace the two components S
and WA by one simpler component K. This technique is called local replace-
ment and was introduced in [12]. In order to actually replace the two com-
ponents in the specification of the workcell, we need the conditional axioms

(see [1]).
W' =r1p0y(SIIW)
=10 (ST 0y (WAITIIQIWC))

72 S. Mauw

=1ru8un(SIIWAITIQIWC)
=108 (TN g (SIIWA)TIQIWC)
=100 un(KITIQIWC)

=7 05(KITIQIWC)

3.3.2. Step 2. In the second step we will remove the parallelism in the specifi-
cation by expanding the merges. This will result in a complex process, which
describes all states that the workcell has.

First we define a new abstraction set, /2, obtained by deleting the communi-
cation of the rejection message from the old one. This will be useful when
applying CFAR in step 3.

I2=1\ {c5(rej)}
If we define
U=7,04(K|ITIIQIIWC),then we have

W =1 (c5(rey) (U).
For U we can derive
U=T;28H(K"T“Q” WC): 2 r I(H)TﬂaH(K”T”QHD")

n=0

Let U" be defined by 7,,0(KIITIIQIID"), then
U°=11,85(KIITIIQIID®)=50(r)-U
U =1,0,(KITIQID™ 1)

=7r5(c4(n +1)c6(n +1)c2(n+ 1)y (XK" I T L, 1IXQ" TV IRCY))

The process U" denotes the total workcell, which has just received a command
to produce a certain number of products. After distributing this command, the
workeell enters the state in which the products will be produced. In the process
of producing the products, there are several intermediate states. These states
are determined by e.g. the number of products that still have to be produced,
and the contents of the buffer of the transport service. The quality-check can
also contain some product, i.e. the product which is read in and will be chec-
ked. All values that determine the actual state the workcell is in, are listed
below:
choice The choice made in K about processing correctly or faulty. The
choice can be ok or fault. If no choice has been made yet, the value
of this variable is X.

count The number of products that still have to be produced (not consid-
ering the number of rejected products).
buffer The contents of the buffer in the transport service. The value is A if

the buffer is empty.

Specification and verification of CIM-architectures 73

QOcont The contents of the quality-check part. The value is A if Q contains
no product.
re The rejection counter, counting the number of rejected products.
All states can be described using these five variables. Now it is possible to
define the process U, indexed by these five variables, which describes the
behaviour of the workeell during the production of the products.
Define

Uchoice, count, buffer, Qcont,rc

as the composition of the four components K, T, Q and WC, where the super-
scripts determine the state of the four components as follows:

If choice =X then K is in state XK®" otherwise K is in state
s9(proc(p 1,choice))- XK™ ! T'is in state T0uTer,

If Qcont =X then Q is in state XQ«unt*bufferl otherwise Q is in state

count + |buffe
X QQc%ni.qluali{fsﬂonl)'

WC is in state RC,ypp-

For every combination of values we can calculate the behaviour of the system.
Note that the choice can only be unequal to X if the count is positive. Let ch
be some quality (i.e. either ok or faulf), let n and rc be natural numbers, let o
be a series of processed products and let ¢ be a processed product.

yehn +1.0,proc(p 1,0k)re
=710u(s Yproc(p 1,ch))- XK"IT;, 11 1XQp 5! *PlIRC,)
=7/(cHproc(p 1,ch)ydp(XK" || TH>@ M| XQp S+ Pl RC,) +
s 1(p)- 3y (s Yproc(p 1,ch))y XK"IT;, 1, I XQ" *11FI|IRC,,))
= ¢ [J % mproc(p l.ch)*o,proc(p 1,0k),rc +51 I(P"OC(P l,ok))' ychn+ La.Arc
ek + 1ia,proc(p 1, fault),re
=7,95(s Nproc(p 1,ch)) XK" | T, 11 | XQh Ll P IRC,.)
=1/(c(proc(p 1,ch)) 3y (XK" | TR @ Leb*e | xon 1l | RC,.) +
¢ 5(rej) (s Oproc (p 1,ch)y XK" I T; 1 IXQ" T+ PUIRC,c 41))
= [J X mproc(p,ch)* a,proc(p), fault)re 4 5(rej)- yehn +1,0Arc+1

Uch.n +1,0%q,Arc
=71,0u(sYproc(p 1,ch))- XK"||T3'4, | XQ" *2*1l|RC,.)
=1,(c9(proc(p 1,ch))ydp(XK" || TR @10 "] xQn +2+bl|| RC,) +

¢ 10(g) 3y (s proc (p 1,ch)) XK™ | T3 1 | XQL 5§ RC,))
=r-U X, nproc(pl,ch)® a*q, A rc + 7 Ut‘n‘l.n +1,0,9.rc

74 S. Mauw
Urﬁ.n + LA A re

=719(s proc(p 1,ch)y XK"IT) 1, | XQ" +1|IRC,,)

=71(cproc(p 1,ch)) (XK | T3 Lm || xon +1||RC,)

=g X mproc(pl,ch) A re

Uxn+ La,proc(p1,0k),rc

=7 0u(XK" T 4 1 XQ5 5171 IRC,,)

=710k (s proc (p 1,0k) XK" || T5 1+, I1XQp 51+l | RC,) +
O (s Nproc(p 1. faul)XK" I T5 1, 1 XQp 51+l |RC,) +
SUPY3u(XK" P ITy 4y 1XQ" +1 41l |RC,,))

=g [Jok:n +Loproe(p,0k),rc + 7 deu.*f.n + Loproc(p1,0k),re +

s L(proc(p 1,0k))-U*n +1o.Are
U Xn+Laproc(p, fault),rc
=Tu(XK" N IT;) IXQp i P IRC,)
=7(1 9y (s 9(pr0(,‘(p 1,0k))XK"||T® 45 “XQ;,};L; lo IRC,.)+
05 (s Nproc (p 1, fault) XK" || T° . | || X ;‘}"hl‘;[of IRC,.)+

¢3(rej) 0y (XK" T I Tg 4y I1IXQ" + 1l |RC,. 4 1))
= Uok,n +Lo,proc(p 1, fault),rc + Ufau..':.n +Lo,proc(p 1, fault),rc +

CS(Fej)'UX‘" +lLoAre+1
UX.n +10%g A re
:T;aH(XK" +1 ”T:'-Iq—l “XQ” +2+|o] ”RC,C)
=71(79u(s Nproc (p 1,0k))XK" | T34, 1| XQ" +2+ 1| RC,)+
704 (s Nproc (p 1, fault) XK™ IS4, | XQ" * 2+l | RC,,.)+

c10(@) 0 (XK" T Ty 4y 1 XQ0 2L IIRC,)
=g [Jo%k.n +1o%q\re 4o Ufaufr.n +lotghre | 7 %n Logre

UX,ﬂ +1LAMre

:TIaH(XKﬂ e Il ﬂ +1 "XQ" *d ”RCrc)
=1(T 3y (s Nproc (p 1,0k)XK" I TH 1, |1 XQ" *1|RC,.) +

T3y (s Wproc(p 1, fault) XK | T} . | 1 XQ" *1||RC,,))
— T,Uok.ﬂ +1LAArc + Ufau.’-‘.u + LA rc

Specification and verification of CIM-architectures
UX \0,0,proc(p 1,0k),re

=7 9u(XK I T3 I XQLk IRC,.)
=7,(s 11(p)- 0 (XK I TF I XQ |RC,.))
=s 1(proc(p 1,0k))-U* 0ohre

UX,U,o,proc(p 1, fault),rc

=70 (XK I T 1| XQp Y IRC,e)

P

=71(c5(rej)-du(XK ITFIXQINIRC,. 1))
=c S(Ff.?j) UX,U,U,A,N +1

UX.O.a'q..\.rc
=1 0u(XKIIT3 7 I XQ I |IRC,,.)
=71(c 10(¢) 9 (XK I T3 1| XQlfuat gy I RCe)
=rU* 0,0,9,rc

UX.U.K.;\.H:

=70u(XK° I TS 1XQ IRC,.)
=7(c5(ryeT(r)yec3(r)oy(KITIQID™))
=5 [re

Thus we have the following system:

75

76 5. Mauw

n U=3 _ rinyU"
2) U=s50(r)U
3) Untl =X LA
4) ychn +1a,proc(p,0k),re —
= [J %mprocip Lchy*o,proc(p 1,0k),rc +51 l(proc(p I,Ok))'bgd"" +1,0,A,rc

5) Udr,n +La,procip 1, fault),re —
=7+U X, nproc(p l,ch)*o,proc(p 1, fault),rc +e S(rej-)_Urh.n + 10 rc+1

6) [jchn +1lo%g Are — o, U Xmproc(p lich)y*atq Are 4 pehn +Lo.g.re
chon + LA Mre — 77X, nprocip 1 ch),\ re
) U =gy Xomprocp

8) [y %+ e.proc(pl.ok)rc —
= Uak.rx + L,a,proc(p 1,0k),rc 47 Ufau.‘r,n + La,proc(p 1,0k),rc +

s W(proc(p 1,0k))-U>:n +1odre

9) it lLoproc(p 1, fault),re —
=1 Uok.n + La,proc(p |, fault),rc +q Ufau.’:.n + La,proc(p 1, fault),rc +

cS(rej)-Ux‘" + oM rc+1

10) U)(,n +],a“q,.\,rc:
= Uﬂk‘ﬂ' +1,0%q, A re + Ufam'.f,n +1,0%g, A re - %n +Logre

1 1) yxn+t LAA e = Uok,n + 1AM rc Jos Ufau.’r.n + 1AM\, rc
12) UX 0,0,proc(p 1,0k),rc =51 I(Pro(. (P l,Ok)) U *,0,a,\,rc
13) UX,U,a,pmr(p 1, fault),re — c 5(1’6_}') U X000, rc +1

]4) U><,D,a'q, Are =T,U><.0,a.q.rc

15) UX OMA e — U

SPECIFICATION 3.3.2

3.3.3. Step 3. In the final part of the proof we use CFAR (see [12]) and RSP
(see [2]) to prove that the system derived in step 2 (specification 3.3.2) can be
reduced to the desired specification V (specification 3.2.2).

Some observations about the specification above can be made. The number
of products that still have to be produced correctly (m) can be determined
from the values of the superscripts of the process:

count + |buffer| +|Qcont| +re.

So we must prove the equality
rEMm= ‘T'T{ stref)) (Uchoice,count,buﬁer,anl,rC)
€ 3(ref

for m = count + |buffer| +|Qcont|+rc. We must also prove

Specification and verification of CIM-architectures 77

TE™ =TT 50y (U™).

Comparing the two processes one easily notes that U™ has the possibility to
produce only faulty products, hence it can loop forever, sending rejection mes-
sages. The process E™ however does not have this possibility. Thus we must
make the assumption that workstation W4 is not completely broken. It now
and then must process some product correctly. This fairness assumption can be
modeled in process algebra with the Cluster Fair Abstraction Rule.

The only cases in which it is possible to never process a product correctly
are the processes which are indexed such that (i) choices%ok, (ii) the buffer
contains no correctly processed products and (iii) Qconts&proc(p 1,0k). This
observation leads us to consider clusters of processes which satisfy these condi-
tions and have to produce the same number of products. Thus cluster m (for
m >0) is defined by:

CL(M): { um } U { Uchoicc.coum.bufl'cr,Qcont,rcl
choices=ok Nproc (p 1,0k) & buffer AQconts£proc (p 1,0k) A
count + |buffer|+|Qcont|+rc=m}.

This defines a conservative cluster from {c5(rej)} in specification 3.3.2 (using
terminology of [12]). The workeell can choose to loop forever in such a cluster,
or it can choose to process some product correctly. This will be indicated by
setting the choice-index to ok. After some time, this choice leads to a correctly
processed product leaving the workcell. In the meantime the workcell has to
make new choices. If they are all negative, we again enter a cluster that per-
mits infinite loops. If a choice was made to produce one or more correct pro-
ducts, we are still in a state in which progress can be made.

Now we can determine the exits of such a cluster. These are all states which
can be reached from the cluster, but are no member of it. Thus there are no
correctly processed products in the buffers and the choice has been made to
process the next product correctly.

EXITS (m)={Uokn +loprocpl.fault)re|py 4 | 4 |o|+ 1+rc=mAproc(p 1,0k)&o} U
{ Uoknt 1""“"""‘h} +1+|o|+1+rc=mAproc(p1,0k)&o*q} U
{Uak.n+l)t.&.rc]n +l+rc:m}

Applying CFAR to the specification derived in step 2 leads to a new
specification. This specification is equal to the old one for states which contain
some correctly processed products and is modified for states which only con-
tain faulty products.

Now set

W' =T 50¢ (U)

W =1(c5(rejy) (U")
W:hciue.oount.huﬁer.Qcom.rc — T(eStrej)) (Uchoice,coum. buffer,Qcont,rc)

78 S. Mauw

In the first part of the following specification we assume that there are
correctly processed products in the buffer o, or in Qcont, or ch =ok. The
numbers correspond to the numbers in the specification of U.

) W=3,.0rl(n)W"
2) WO9=s0(r)w’
4) Wehn +o.proc(p | ,0k),re —
=g WX nproc(pl.ch)*a,proc(p 1,0k),re +51 I(PFOC(p l,Ok)}' Wehin + e re

5) Wehn +Loprocip 1, fault),re —
=r WX.n,proc(p Lchy*a,proc(p 1, fault),rc + 7 Wr.ﬁ.n +10Arc+1

6) Wehan +1,a%q, Are =g WX mproc(pl.ch)*a*q, A re + Wch.n +1,0,q,rc
7) Wekin + LA e — 7 WX nproc(p 1,ch) A re

8) W %n +Loproc(pl,ok),re —
=g Wok.n +1Lo,proc(p1,0k),re + 7 WSault,n +1,0.proc(p 1,0k),re +
s1 l(proc(p l,Ok))' WX n+1e A re

9) WX -+ Loproc(p |, fault),re —
= Wokin +10,proc(p, fault),rc + - W/ault,n + 10,proc(p 1, fault),re +
T WX,n +1,0,A,rc +1

10) Wx.n +1,0%q, Arc —
=7 Wokin+1,0%,Are + 7 Wfauft.n +1,0%g, A, re + WX tlLagre

12) wXOepreclploire = 1 1(proc (p 1,0k))- W X ,0,0,, re
]3) W *.0.a.proc(p 1, fault),rc =7 WX,D.O.K.!: +1

14) WX'O‘G-Q' Are = WX,I},r.l,q,rc

SPECIFICATION 3.4.3, PART 1|

In the second part we assume that there are no correct products in the
workeell, so we are in a cluster. The expression SEXITS (m) is shorthand for

Epesx,*m(m)'r[f‘-‘f"f)}(p)'

Specification and verification of CiM-architectures 79

3) Wt =+ S EXITS (n +1)

5a) Wekntleprocplfultre = o SEXITS (n +1+|o|+1+rc)
6a) WehntLOG A = S EXITS (n +1+|o|+1+rc)

Ta) Wehn LA = S EXITS (n +1+rc)

9a) wxntloprocllfadtire = S EXTTS (n +14|o|+ 1+ rc)
10a) WX Hlo'a e = SEXITS (n +1+|o|+1+rc)

1) WX A = S EXITS (n +1+rc)

13a) WX Deproclplofoulthre — 7. P EXITS (o] + 1+ rc)

142) W04 e = SEXITS (|o] + 1+ rc)

15) WX0AAe = S EXITS (rc)

SPECIFICATION 3.4.3, PART 2

This specification now describes exactly the same process as specification 3.2.2.
This can be easily verified by substituting ¥ for W', E%for W°, -E"*! for
wntl and 7 Ecount + |buffer|+|Qcont| +rc for th.caum,buﬁ'er.Qcom,rc' Note that the 0111)’
equation not starting with a 7 is equation 12. So we must substitute £1°*! for
wxDeprocpl.ok) o we see that V is a solution of the system defining W, and
thus we can use RSP to conclude that V equals W".

Note that RSP is only applicable if the specifications are guarded. A proof
of the guardedness of specification 3.4.3 is straightforward.

4. FINAL REMARKS

The techniques introduced in this paper seem to be powerful enough to aid in
the specification and verification of CIM-architectures. Although two workeells
were considered of low complexity, the basic concepts of the technique are well
illustrated. Now, due to the compositionality of the specifications, one can
build a large plant consisting of a number of workcells which are already
proved to function correctly. Thus, increasing the scale of the system will be
possible.

It is also possible to add new features to the workcell and model them in
process algebra. Possible features are: interrupts (modeled by the priority-
operator, see [3]), detailed reports on the functioning of a machine, changing
the tools of a machine, etc. Most of these features are not more complex than
adding quality checks to a workcell.

Since a wide range of proof-rules and proof-techniques are developed in pro-
cess algebra, the specification of a CIM-architecture in process algebra has
advantages over specification in e.g. LOTOS. To name one, in LOTOS there is
no equivalent of the fairness assumption.

80

ACKNOWLEDGEMENTS

I would like to express my thanks to Frank Biemans and Pieter Blonk of the
Philips CAM centre for the fruitful discussions on this subject. I would also
like to thank Jos Baeten, Jan Bergstra, Frits Vaandrager and Freek Wiedijk for
proof reading and commenting on this paper.

REFERENCES

l. J.CM. BAETEN, J.A. BERGSTRA, J.W. KLoP (1987). Conditional axioms
and a/B calculus in process algebra. M. WIRSING (ed.). Proc. IFIP Conf.
on Formal Description of Programming Concepts - II1, Ebberup 1986,
North-Holland, Amsterdam, 53-75.

2. J.CM. BAETEN, J.A. BERGSTRA, J.W. KLOP (1987). On the consistency of
Koomen'’s Fair Abstraction Rule. Theoretical Computer Science 51 (1/2),
129-176.

3. J.CM. BAETEN, J.A. BERGSTRA, J.W. KLOP (1986). Syntax and defining
equations for an interrupt mechanism in process algebra. Fundamenta
Informaticae 1X(2), 127-168.

4. J.A. BERGSTRA, J.W. K1oP (1986). Algebra of communicating processes.
J.W. DE BAKKER, M. HAZEWINKEL, J.K. LENSTRA (eds.). Mathematics and
Computer Science, CWI Monograph 1, North-Holland, Amsterdam, 89-
138.

5. J.A. BERGSTRA, J.W. KroP (1985). Algebra of communicating processes
with abstraction. Theoretical Computer Science 37(1), 77-121.

6. J.A. BERGSTRA, J.W. KLOP (1984). Process algebra for synchronous com-
munication. Information and Control 60(1/3), 109-137.

7. F. BIEMANs (1986). Reference model of production control systems.
Proc. of the IECON 86, Milwaukee.

8. F. BieMans, P. BLonk (1986). On the formal specification and
verification of CIM architectures using LOTOS. Computers in Industry
7(6), 491-504.

9. E. BRINKSMA (ed.) (1987). LOTOS - A Formal Description Technique
Based on the Temporal Ordering of Observational Behaviour, Report ISO
DIS 8807.

10. H. Kopatg, K. Fum, K. YAMANoI (1987). Representation of FMS with
petrinet graph and its application to simulation of system operation.
Robotics and Computer-Integrated Manufacturing 3(3), 275-283.

11. N. Komopa, K. Kera, T. Kuso (1984). An autonomous, decentralized
control system for factory automation. IEEE Trans, Comput 17(12), 73-
83.

12. F.W. VAANDRAGER (1984). Verification of Two Communication Protocols
by means of Process Algebra, CWI Report CS-R8608, Centre for
Mathematics and Computer Science, Amsterdam.

