Regularity of BPA-Systems is Decidable

Sjouke Mauw and Hans Mulder

Dept. of Mathematics and Computing Science,
Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

sjouke@win.tue.nl, hansm@win.tue.nl

Abstract. It is decidable whether a system in Basic Process Algebra
(BPA) is regular with respect to bisimulation semantics. Basic operators
in BPA are alternative composition, sequential composition and guarded
recursion. A system is regular if the interpretations of all process vari-
ables defined in the system have finitely many states. We present an
effective method to transform a BPA specification into a linear specifi-
cation whenever possible.

1 Introduction

An important issue in automatic verification of concurrent systems using process
algebra is extending the techniques to systems with an infinite state space. The
simplest extension of regular specifications is BPA (Basic Process Algebra [3]),
which has operators for alternative and sequential composition and allows for the
construction of infinite processes by means of guarded recursion. The languages
generated by BPA specifications are exactly the context-free languages. However,
we will not study language equivalence, but bisimulation equivalence ([9]) which
is considered more appropriate for verification purposes.

It has already been shown that bisimulation equivalence is decidable for BPA
processes ([1, 4]). An open problem was the question whether it is decidable if
a BPA specification is regular (i.e. whether it can be interpreted as a graph
which has finitely many states). If so, this would enable the application of the
well known algorithms for regular systems to those BPA specifications which
are in fact regular. This would help in deciding exactly when to use existing
efficient implementations for deciding bisimulation equivalence (for example for
the PSF-Toolkit [7]).

In this paper we prove that it is decidable whether a BPA system is regular,
that is, all process variables defined by it are regular. Some results for simi-
lar specification languages are known. Weakening BPA by replacing the general
multiplication by action prefix multiplication will only allow the description of
regular systems, while extending BPA with the communication merge to ACP
(the algebra of communicating processes, [3]) yields a language in which regu-
larity is not decidable. It is also known that regularity of BPA systems modulo
language equivalence is not decidable.

The basic observation in this paper is that if a process is not regular this is
caused by stacking a tail of processes: consider

X =aXb+e¢

This process can execute a and then enter state Xb. From this state the process
can do an a again and enter state X bb. Executing more a steps leads to infinitely
many different states.

In this paper we will formulate the conditions under which this stacking leads
to an irregular process. Furthermore, we give a method to generate a linear
specification if the BPA specification is known to be regular.

This paper is built up as follows. In Sect. 2 we introduce BPA and its inter-
pretation in the graph model. Normed processes and the reachability relation
play an important role in the decision procedure. They are defined in Sect. 3.
Section 4 contains the main theorem of this paper and in Sect. 5 we give a lin-
earization procedure.

Thanks are due to Felix Croes who was of great help while developing the
ideas in this paper and to Michel Reniers for proofreading.

2 Basic Process Algebra

In this section we will give the signature of the theory BPA and its interpretation
in the graph model. For a more detailed treatment we refer to [2].

2.1 Specifications

We consider a finite set of atomic actions A. Typical elements of A are a, b,
Let V be a countably infinite set of process variables. Typical elements of V' are
X,Y,.... ABPA term (over A and V) is a term constructed from A, V and the
operators - and + (sequential and alternative composition). An equation is an
expression of the form X = ¢, where X € V and t is a BPA term. An equation
X = tis guarded if every occurrence of a variable in £ is in the sub-term ¢ of some
sub-term p - ¢ of t (p, ¢ BPA terms). A (BPA) specification is a finite collection
of guarded equations, such that all variables occurring in the right-hand side of
an equation occur in the left-hand side of some equation and no variable occurs
in the left-hand side of two equations. The collection of variables occurring in
specification S is denoted by V. If X is a variable defined in S, then Def ¢(X)
is the right-hand side of the equation of which X is the left-hand side.

If V is a collection of variables, then V* denotes the set of all finite sequences
over V. The empty sequence is denoted by A. The length |o| of a sequence o
is defined in the usual way. Greek letters o, p, ... range over V*. Every non-
empty sequence of variables can be considered as a BPA term by inserting the
sequential composition operator. If the meaning of a sequence is clear from the
context, we will not explicitly apply conversion functions from sequences to BPA
terms and back. Furthermore if p is a BPA term, the expressions p- A and pA are

interpreted as the BPA term p. Concatenation of sequences o and p is denoted
by op. We have Ao = oA = 0.

A specification is in Greibach Normal Form (GNF) if the right-hand sides of
all equations have the form ag-0g + ...+ an -0, (n > 0). Note that o; may be A
80 a; - 0; = a;. Given an equation X =aq 09 + ...+ a, - 0,, we say that a; - o;
(0 < i< n)isasummand of X, notation a; - 0;,CX.

In [1] it is shown that every BPA specification can be transformed into a
specification in GNF. Therefore we can restrict ourselves to specifications in
GNF.

A specification is linear if every summand of every equation in the specifica-
tion has the form a or a - X.

2.2 The Graph Model

We will interpret BPA specifications in the so called graph model. This model
consists of finitely branching rooted graphs with labeled edges. This means that
one node is marked as the root and that every edge has a label from a given set
A. A node is a termination node if it has no outgoing edges. A node is also called
a state and an edge a transition. If there is an edge with label a from node s to
node t, we denote this by s—5t, or simply s—t. If there is a sequence of edges

ag An_1 . ag...an_1 .
S$0—81... — $p (n > 0) then we write s9 —» ,,, or simply sg—»s,,.

Definition 1. A relation R between the nodes of two graphs g and h is a bisim-
ulation if the following holds.

— If 555" is an edge in g and R(s,t), then there is an edge t-5t' in h such that
R(s',t).

— If t-5t' is an edge in h and R(s,t), then there is an edge s-—s' in g such that
R(s',t).

Two graphs g and h are bisimilar, notation g«h, if there is a bisimulation
relating the roots of g and h.

The collection of graphs divided out by bisimulation equivalence is denoted
by G/<. This is a model of BPA. The notion of bisimulation can easily be
extended to nodes from the same graph. For details see [2].

A specification in GNF is interpreted in G/« in the following way.

Definition 2. Let S be a specification and o € V¢, then grg(o) is the graph with
nodes V&, root node o and edges {X¢5pé|a € A, X € Vs, p,£ € V&, apCX}

From this definition it follows that A is the only termination node. This
construction is equivalent to the standard interpretation of BPA terms in the
graph model. The above definition satisfies our needs in the easiest way. For
o,0' € V& we say that o and o' are bisimilar, notation oo, if grg(o) and
grg(o') are bisimilar.

Proposition 3. Let S be a specification and o,0',p € V¢

1. o—0c' = ogp—a'p
2.0 FANPpEAINTP—A = AN p—A

Proof. 1. From the definition of the edges we infer 050’ = op-50'p, which
can be generalized using induction on the number of transitions.

2. Proof by induction on the number of transitions in the sequence ogp—A. If
op—A in one step, then either o or p equals A. If op—oy...2Ainn+1
steps, either 0 = A, in which case the implication is trivially true, or o is of
the form X¢, where X has a summand an and o; = np. Now there are two
cases. The first case is ¢ = A\. Then 0— A and p = 07—\ in n transitions.
The second case is n€ # A, then we can apply the induction hypothesis to
né and p. ad

Definition 4. A graph is regular if it is bisimilar to a graph with a finite set
of nodes. Let S be a specification and X € Vg, then X is regular if grg(X) is
regular. A specification is regular if all variables in Vg are regular.

Two alternative characterizations of regularity follow directly from the defi-
nition.

Proposition 5. (i) A graph is regular if and only if there is no infinite sequence
So—81—82— ... such that s;#s; for i # j, where sq is the root of the graph. (ii)
A graph is reqular if and only if there is no infinite sequence sg—»81—»Sa— ...
such that s;#s; for @ # j, where sqg is the root of the graph.

Refer to [8] for a proof of the following proposition, which gives a correspon-
dence between regular and linear specifications.

Proposition 6. A specification S is reqular if and only if there is a linear spec-
ification T such that Vs C Vi and for all X € Vg grg(X)egrp(X).

3 Normed Processes and the Reachability Relation

3.1 Normed Processes

A weakly normed process (or normed process for short) is a process which may
terminate in a finite number of steps.!

Definition 7. A node s in a graph is normed, notation s|, if s is a termination
node, or there is a termination node ¢ such that s—¢. A node that is not normed
is called (strongly) perpetual?, notation sff. A graph is normed if its root node
is normed. If S is a specification and ¢ € VJ then we say that o is normed if
grg(o) is normed.

L A strongly normed process is a process which may terminate at any point during its
execution. We will not use this notion in this paper.
2 A process is called weakly perpetual if it is not strongly normed.

Proposition 8. Let S be a specification and o,p € V§ then
opl & ol Apl

Proof. If o or p is a termination node, and thus equal to A, the proposition
is clearly true. Now suppose o—A and p— A, then use Proposition 3.1 to de-
rive op—» \. For proving the other implication, suppose op— A then we can use
Proposition 3.2 to derive c—»\ and p—\. O

Proposition9. Let 0,p € V& such that ofy, then grg(op)—grg(o).

Proof. Construct a bisimulation by relating n¢ to n for all n,{ € V§ for which
is perpetual. O

In a given state, we can count the minimal number of transitions needed to
terminate. This is called the norm of the state.

Definition 10. The norm of a node s is inductively defined by
00 if st

norm(s) = ¢ 0 if s| and s is a termination node
1+ min{norm(t)|s—t} if s| and s is not a termination node

Proposition 11. For all nodes s and t s<t implies norm(s) = norm(t).

Proof. If both s and ¢t are perpetual, then it is clear. Because s and t are bisimilar,
it is impossible that s is perpetual and ¢ is normed or vice versa. If s and ¢ are
normed, use induction on the norm. O

Given a specification S we can calculate the normed variables in the following
way. Define a sequence of sets of variables N; inductively by

No =10
Ni+1 = Nz U {X | Elc:zo’CX,UGVS’,“VYEU Y e NZ}

Now set N = U;>9NN; then N can be computed effectively.

Theorem 12. The set N contains exactly all normed variables of Vs. There is
some t > 0 such that N; = N;41 and for this value N = N;.

Proof. Tt is clear from the construction that N contains only normed variables.
In order to see that N contains all normed variables, we suppose that X is the
variable such that X |, X ¢ N and X—)\ with a minimal number of transitions.
We consider two cases. If X—), then X has a summand a for some a € A and
thus X € Np, which is a contradiction. If X—Xj ... X,,— A, then (Xo...X,)!
and thus Xg—\, ... X,,—» . These variables all need at least one less transition
to reach A than X, so they are elements of N. But by the definition of N this
would imply that X € N, which again gives a contradiction.

Finally, since the N; are an increasing sequence of subsets of Vs and Vg is
finite, there are only finitely many different sets IV; and therefore there exists an
1 such that N; = N;;q, which implies that N;;, = N; for all k. |

If we define n + oo = co + n = oo we have the following proposition.
Proposition 13. For o,p € V& norm(op) = norm(o) + norm(p)
Proof. Induction on the length of . If ¢ = X\ or p = A then it is clearly true. If
o = Xo' then norm(Xo'p) = norm(X) + norm(o'p) = norm(X) + norm(o') +
norm(p) = norm(Xo') + norm(p). The first equality can be proven with induc-
tion on the norm of X. O

Proposition14. Let X € Vg, o,p € V, then
ol ANX—op=>X—p

Proof. From o| we derive ¢ = X or o—\. In the first case the proposition is
trivially true, In the second case we can use Proposition 3.1 to get op—Ap and
by transitivity X —p. a

3.2 Reachability

The reachability relation xSy expresses that variable X can become variable
Y after executing a number of transitions. The sequence o is stacked after Y
and will be executed upon termination of Y.

Definition 15. Let S be a specification, then we define the reachability relation
—gon Vs x Vi xVgforall X,Y € Vg,0 € VI by

X‘i)sy p=4 EIPEVs*ﬂeA apYET CcC XA pl
We will write — instead of — g if S is known from the context.

Definition 16. Counsider for n > 0 the reachability sequence XX, 5
U:)le then we define the following properties

. The sequence is normed if (X,,0,_1...00¢)].

. The sequence is a cycle if Xy = X,,.

. A cycle is minimal if Vo<jcj<n X; = X; =i =0Aj=n

. The sequence is stacking if 6,1 ...0¢ # A

N R

Since Vg is finite, we can consider (Vs,<—g) as a finite graph and thus we
have the following proposition.

Proposition 17. For a given specification S, —g has finitely many minimal
cycles.

Reachability implies a transition relation:
Proposition18. For all X,Y € V5,0 € V{
X&LY = X—=Yo

Proof. Suppose X&Y, then apYo CX which gives X-%pYo. Since p is normed,
we can use Proposition 14 and conclude X —Yo. O

Corollary 19. If ng...gngn (n > 0) is a reachability sequence, then
XO_»Xno-nfl ...0p.

4 Deciding Regularity

Theorem 20. A specification S is regular if and only if —g has no normed
stacking minimal cycles.

Proof. First we prove the “only if” part by contradiction. Suppose that —g

has a normed stacking cycle x2Sy (n > 0), then from Corollary 19 we
conclude X—»Xp, where p = 0,,_1...0¢. Since the cycle is stacking, p # A.
Using Proposition 3.1 we can construct a sequence

X—>Xp—>Xpp—>Xppp—....
We calculate the norm of each state using Proposition 13:
norm(X p*) = norm(X) + i - norm(p)

The cycle under consideration is normed, therefore (Xp)|, therefore X | and p|
(Proposition 8). In other words, norm(X) < oo and norm(p) < oo. Moreover,
the cycle is stacking, hence norm(p) > 0. Consequently, for i # j, norm(X p') #
norm (X p?). Using the fact that bisimulation respects the norm (Proposition 11)
we have X picA X p? and thus S is not regular (Proposition 5.ii).

The “if” part of the proof is more elaborate. Assuming that some X € Vs is
not regular, we derive a contradiction. By Proposition 5.i there exists an infinite
sequence (setting og = X)

Og—01—02— ...

such that o;440; for ¢,5 > 0,4 # j. From the absence of normed stacking cycles,
we will derive the existence of i and j (¢ # j) such that o;»0; and thus we will
have a contradiction.

The first step is to make the relation between the individual variables from
o; and 0,4 explicit. For this purpose, we will consider the infinite sequence as
a directed tree with labeled nodes and unlabeled edges. For every variable in o;
(i > 0), we create a node. This node is related to all reachable successors (if any)
of this variable in 0;41. Formally:

Definition 21. For every i > 0 we have nodes (¢,0), ..., (i,|0;| — 1). The label
L({(i,k)) of node (i,k) is the kth variable of o; (if we start counting at 0).
An edge from node (i,p) to node (i + 1,p') is denoted by (i,p)~{i + 1,p).
The edges are defined as follows. Let 7 > 0 and o; = Xq... X, (kK > 0) then,
following Definition 2, the transition o;—0;4; is due to a summand apC Xy. Now
we consider two cases.

1. |p| = 0 and thus p = A. Then ;41 = Xy ... Xy. For 1 < p < k we define
edges from (i,p) to (i +1,p—1).

2. |p| > 0 and thus p = Y;y...Y,, (h > 0). Then 0,47 = Yo... Y3 X1 ... X}.
There are two sub-cases.
(a) If p| then we define edges from (7, 0) to all nodes (i+1,0), ..., (i+1,h).

(b) If pft then there is an m > 0 such that Y7t and Yy ...Y,,_1|. Then we

define edges from (i,0) only to the nodes (i +1,0), ..., (i + 1,m).
Moreover in both sub-cases we define edges from (i,p) to (i + 1,h + p) for
1<p<k.

This construction implies that the sequence of labels at level i, namely
L({(i,0))...L({(i,|o;] — 1)) is exactly o;. Furthermore, a node (i, p) has exactly
one successor if p > 0, while if p = 0 then (i, p) may have more than one successor
or none at all.

Ezample 1. Figure 1 below shows a specification and a fragment of the graph
corresponding to the sequence

S—>TUV-WXYUV—-XYUV—....

A node (i, k) is represented by its label L((i, k)) appearing as the kth letter on
the ith line in the figure (counting from 0); arrows denote ~» relationships. Note
that the graph is almost a tree; it would be a tree if there were an edge from
(1,0) (with label T') to (2,2) (with label V). This edge is omitted because X is
perpetual.

S
S =aTUV ﬁ&\
T =bWXY +5b
U =¢ T UV
vV =d
W=e i\\\
X =fzZX W XY UV
Y =g
SAA S
XY UV

NN

Z XY UV

73

XY UV

N \ \ \
I\
|

AR W W W

Fig. 1. Sample specification and successor graph

Before completing the proof of Theorem 20, we will formulate a few lemmas
relating ~ to <.

Lemma22. If there is an edge (i,p)~(i + 1,q) such that p > 0, then
L((i,p)) - L((z,|oi| = 1)) = L((i + 1,) ... L((i + 1, |oiq1 | — 1))

Proof. This follows directly from the definition. O

Lemma23. Let n > 0, i > 0 and (i,0)~(+ 1,p1)~ ...~ (i + n,p,) be a
sequence of edges such that p; > 0, ..., p,—1 > 0, then there exists p € V&

such that for all 0 < k < n, L((i,O))&L((i + k,px)) and L((i + k,px + 1))
L{(i+k,pr+2)...L((i + k,|oixr| — 1)) is equal to pL({i,1)) ... L((i, |os| — 1)).

Proof. Induction on n.
If n = 1 then we consider the edge (i,0)~(i + 1,p1). Then we have o; =
Xo... Xg, 0601 = Yo ... Y Xy ... X} such that 0 < p; < h and aYy ... Y, CXy.

Yp, 41-.-Y]
Because Yy ...Y),, —1/|, this gives a reachability step X, e hYp17 and thus

Yp1+1...

L3, 00) 5 (i +1,p1)). T we take p = Yy 41 ... Ve then L((i +1,p1 +1))
L{(i+1,p14+2)...L({i +1,]0;41] — 1)) is equal to pL({z,1)) ... L({Z, |o:| — 1)),
because both sequences are Y, 11 ... Y, Xy ... X.

If n = m + 1, then by the induction hypothesis there is a p such that for
all 0 < k < m, L((i,O))&L((i + k,pr)) and L((i + k,pr. + 1))L((i + k, pr. + 2))
. L({i+k,|oivk] — 1)) is equal to pL((i,1)) ... L({7, |o;] — 1)). We have an edge
(i + m, pm)~{i + m~+1,pmy1), and py, # 0, so Lemma 22 applies. This yields

L(Gi+m+1,pmt1)) ... L(GE+m+ 1, |oi4my1| — 1)) =
L((i +m,pm))L((i + m,pm + 1)) ... L({ + m,|oipm| — 1)) =
L({i +m, pm))pL((i,1)) ... L({i, |oi — 1))

The second equality follows from the induction hypothesis with k& substituted by
m.
The first equality implies that L((i + m + 1, pp41)) = L({{ +m, pm)). By the

induction hypothesis L({i,0))5L((i +m, pn)) and thus L({i,0))SL((i +m+1,
Pm+1))- O

Corollary 24. Let n > 0,7 > 0 and (1,0)~(i + 1,p1)~ ...~ + n,pn) be a

sequence of edges such that p, = 0 only for the values vg, ...v, of v, then there

exists a reachability sequence L({i,0))E5L((i +vo,0))& . .. gL((i +,,0)), such

that L((i + v;,1))... L((i + v, |0iyo;| — 1)). is equal to p,...p1poL((i,1))...
L((i, oi| = 1))

We will say that (j,q) is a descendant of (i,p) if there is a sequence of ~»
edges from (i, p) to (j,q).

Lemma 25. All nodes (n,0) (n > 0) are descendents of node (0,0).

Proof. Suppose (i,p) is not a descendent of (0,0), then let j be the smallest
number such that for some g, (i, p) is a descendant of (j, ¢). The only sub-case
of Definition 21 where a node does not have a predecessor is the last one, so
L({j,m))f for some m < gq. Therefore there is some r < p such that L(({i,r)) is

a descendant of L({j,m)). Hence, p > 0. O

Now we complete the proof of Theorem 20. Let T" be the subtree formed by all
descendants of node (0,0). T' must be infinite because it contains all nodes (n, 0)
(Lemma 25). T is finitely branching, therefore by Konig’s Lemma it contains an
infinite branch. Let B be the lowest infinite branch, that is, the infinite branch
with nodes (i, p;) such that for all 7 if (i, ¢) is on an infinite branch, then ¢ > p;.

Since for every i there is a unique p; such that (i,p;) € B, we may consider
B as a function mapping i to p;.

We claim that for infinitely many ¢ > 0 we have (i,0) € B. Suppose that this
is not the case, then for all n greater than some value k the nodes (n,0) are not
in B.

Such a node (n,0) is a descendant of a node (k + 1, j) with j < |o;|. Since
there are infinitely many such n and finitely many such j, at least one node
(k +1,7) must have infinitely many descendants (n,0). That node is therefore
the root of an infinite subtree and we apply Konig’s Lemma to find an infinite
branch B’ in this subtree. B’ can be extended to an infinite branch in 7', which
contradicts the fact that B is the lowest infinite branch.

Now find the first j such that there is an i < j with L({i,0)) = L((j,0)) and

(7,0),(4,0) € B. By Corollary 24 there is a reachability sequence L({7, 0))‘p—u>

&)L((j,())). Since j is minimal, this sequence is a minimal cycle. Moreover,
LG, ONL(G.) - L 3] — 1)) is eaual to L((5,0))pq-pol((i, 1)) ..
L({iL o) 1).

We can repeat this construction, finding the first j° > 7 such that there is
an i’ satisfying j < ¢’ < j' and L({i’,0)) = L((j',0)), giving us another occur-

0

&y
rence of a minimal cycle L({(¢' 0))& .—=L({3',0)), with L({5',0))L({5',1))...
L((j", oy | — 1)) is equal to L',), ... &L, 1)) .. L 70| — 1)),
Repeating this construction infinitely often produces infinitely many occur-
rences of minimal cycles. Since there are only finitely many minimal cycles

oL .. . P
(Proposition 17), some minimal cycle occurs at least twice. Say x& .. 8x
Po

with occurrences L((i,0))& ... & L((5,0)) and L((i",00)& ... E5L((5",0)). Set-
ting p = pq - .. po, we know

L((i,0)) = L(
L((3,0)) L((
L((3", 0))L(

(4, >) L((#",0)) = L((y',0)) = X,

30 LG, 5] = 1)) = L((3, 0) PL((i,1)). ((|oi| —1)), and
(7 1)) - L((G" o | = 1)) = L({#', 0))p L((7", 1) L((o] =1))
We consider two cases. First let p = A, then

L((5,0)) - L({3; |oj| = 1)) = L((3, 0)) ... L({i, |ori| = 1))

and thus o; = o; which implies g;<0;. Thus we have found 4 and j as promised
at the start of the proof.
The second case is p # A. Since there are no normed stacking cycles and

cycle X2 8% s stacking, it must be a perpetual cycle. This means that pf}.

Consequently (Proposition 9),

L({3,0)L((3,1)) - .. L({(3, 0] = 1)) =
' ;1)) - LG ol = 1))

(", 1)) ... L((&', |owr| = 1)) =
3 0) - LG oy = 1))

and thus o;<0;, and again we have found ¢ and j as promised. This concludes
the proof of Theorem 20. O

5 Linearization

A specification in GNF can be transformed into a linear specification if the con-
ditions from the main theorem in the previous section are met. In this section we
will give an effective linearization method. The idea behind the method is simply
to get rid of anything following a perpetual variable and introduce new process
variables corresponding to sequences of old ones. If this procedure converges, it
yields a linear BPA-specification equivalent to the original one.

First we need some additional definitions.

Definition 26.

1. If o is a non empty sequence of variables, then [o] denotes a fresh process
variable.

2. If S is a specification, then [S] is the collection of equations derived from S
by replacing every summand aXYo by a[XYo].

3. The operator * concatenates a sequence of variables to a process definition.
It is defined as follows.

(agoo + ...+ anoy) * Xo = agoq * Xo+ ...+ ano, x Xo

_ JapXoifp|
ap*Xa—{ap if pf

Definition 27. A specification S is reduced if for every summand aXg... X,

(n>0) (Xo...Xn 1)l

Definition 28. The reduction red(S) of a specification S is derived from S by
replacing all summands aXy ... X, (n > 0) for which there exists 0 < i < n with
(Xo...X;.1)] and X;ft by aXyp ... X;.

A specification S can be linearized by calculating a sequence of equivalent
specifications S; (i > 0). If S is regular, only a finite number of specifications
must be calculated in order to reach a linear S;. The specifications are defined
as follows.

So = red(S)

Sit1 = [Si] U A{[XY0] = Def, q(5)(X) * Yo |

X, Y eVs,oeVg, ElaEA,ZEVsiaXYU C Z, [XYO'] =4 VS,-}

We will not present a detailed proof of the correctness of this method. We
will only give the main steps of the proof.

It is easy to verify that every S; is a reduced specification. Furthermore, by
constructing a bisimulation, we have for all X € Vs and i > 0, grg(X)egrg (X).

Finally we have that S is regular if and only if for some i > 0 S; = S;11. We
will only sketch the proof. Suppose that S; = S;41, then S; = [S;], so there are
no summands aX Yo and thus S; is linear, which implies that S is regular. For
the other implication, suppose that all S; are different, then there is an infinite
sequence

X—sg[o1]=s,[02] =5, - -

such that [o;41] € Vs,
transformed into an infinite sequence

and [o;41] € Vs, for ¢ > 0. This sequence can be

X—>501—>50é—>5...

of which infinitely many sequences o} are not bisimilar. This contradicts regu-
larity of S.

6 Example

We will apply the results from the previous sections to a simple example. Con-
sider the following specification.

A =aBCD
B =bB+5b
C =cAC + ¢
D=d

Clearly the variables B, C and D are normed and since aBC'D is a summand
of A, A is normed too. Next we derive a reachability sequence. Since B], we

have A£>C and since A], we have C’&A. Thus we have a reachability cycle

D C
A—C—A. This cycle is clearly stacking, and because ACD| it is a normed
cycle. Now we may conclude that the specification is not regular. Indeed we
have an infinite sequence

A—-»ACD—-ACDCD— ...

Now consider a slightly modified system, which is derived from the previous
system by deleting summand ¢ of C. This makes C perpetual.

A =aBCD
B =bB+b
C =cAC

D=d

The variables B and D are normed, while A and C are perpetual. We can find
three minimal cycles

BB

48084

cSale
The first cycle is not stacking. The second and third cycle (which are in fact
equal) are not normed, because (ACD){ and (CDA){}. Following the main the-

orem, we conclude that the specification is regular. Now we can apply the lin-
earization procedure and get for Sy the reduction of S:

A =aBC
B=bB+b
C =cA
D=d
For S; we obtain:

A =a|BC]

B =bB+b

C =cA

D =d

[BC] = bBC + bC'

Already Ss is a linear specification:

A =a|[BC(C]
B =bB+b
C =cA
D =d

[BC] = b[BC] + bC

7 Conclusions

We have proved that regularity of BPA systems is decidable. The question
whether it is decidable that a single process variable defines a regular process
is still open. We conjecture that it is decidable. A simple example shows that
this question is more complicated than regularity of a complete BPA system.
Consider the specification

X =aYZ
Y =bYc+d
7 =eZ

Then it is easy to show that X and Y are irregular, so the specification as a
whole is irregular. If we would change the definition of Z into

Z =c/

then the complete specification is still irregular (since Y is still irregular), but
now X is regular. The reason is clearly that the normed stacking tail ¢” of YV is
reduced to a regular perpetual process ¢> by appending Z.

From this example we conclude that it is necessary to take the actual values
of the atomic actions into account when deciding regularity of a single process
variable. This probably leads to a more complex decision procedure than the
one presented in this paper. Since the reachability relation and normedness are
completely independent of the actual atomic actions, only the presence of any
atomic action plays a role in the decision prodedure presented here.

We do not think that the restriction to complete systems is a problem in
practical applications. In most cases one is interested in the linearization of
a complete system. Specifications in languages such as PSF [6] only consider
complete systems, without singling out a specific variable.

We claim that the techniques described in this paper easily extend to BPAj
(which results from BPA by adding the special process constant § for unsuc-
cessful termination). A more interesting topic for future research is the question
whether there are extensions of BPA with some operator for parallelism, on
which regularity is also decidable.

References

1. J.C.M. Baeten, J.A. Bergstra & J.W. Klop, Decidability of bisimulation equiva-
lence for processes generating context-free languages, Proc. PARLE 87 (J.W. de
Bakker, A.J. Nijman, P.C. Treleaven, eds.), LNCS 259, pp. 93-114, 1987.

2. J.C.M. Baeten & W.P. Weijland, Process algebra, Cambridge Tracts in Theoret-
ical Computer Science 18, Cambridge University Press, 1990.

3. J.A. Bergstra & J.W. Klop, Process theory based on bisimulation semantics,
Linear time, branching time and partial order in logics and models for concurrency
(J.W. de Bakker, W.P. de Roever, G. Rozenberg, eds.), LNCS 354, pp. 50-122,
1989.

4. S. Christensen, H. Hiittel & C. Stirling, Bisimulation equivalence is decidable for
all context-free processes, Proc. CONCUR’92 (W.R. Cleaveland, ed.), LNCS 630,
pp. 138-147, 1992.

5. S. Christensen, Y. Hirschfeld & F. Moller, Bisimulation equivalence is decidable
for basic parallel processes, Proc. CONCUR’'93 (E. Best, ed.), LNCS 715, pp.
143-157, 1993.

6. S. Mauw & G.J. Veltink, A process specification formalism, Fundamenta Infor-
matice XIII, pp. 85-139, 1990.

7. S. Mauw & G.J. Veltink, Algebraic specification of communication protocols,
Cambridge Tracts in Theoretical Computer Science 36, Cambridge University
Press, 1993.

8. R. Milner, A complete inference system for a class of regular behaviours, JCSS
28, pp. 439-466, 1984.

9. D.M.R. Park, Concurrency and automata on infinite sequences, Proc. 5th GI
Conf. (P. Duessen, ed.), LNCS 104, pp. 167-183, 1981.

This article was processed using the IATRX macro package with LLNCS style

