
Regularity of BPA-Systems is DecidableSjouke Mauw and Hans MulderDept. of Mathematics and Computing Science,Eindhoven University of Technology,P.O. Box 513, 5600 MB Eindhoven, The Netherlands.sjouke@win.tue.nl, hansm@win.tue.nlAbstract. It is decidable whether a system in Basic Process Algebra(BPA) is regular with respect to bisimulation semantics. Basic operatorsin BPA are alternative composition, sequential composition and guardedrecursion. A system is regular if the interpretations of all process vari-ables de�ned in the system have �nitely many states. We present ane�ective method to transform a BPA speci�cation into a linear speci�-cation whenever possible.1 IntroductionAn important issue in automatic veri�cation of concurrent systems using processalgebra is extending the techniques to systems with an in�nite state space. Thesimplest extension of regular speci�cations is BPA (Basic Process Algebra [3]),which has operators for alternative and sequential composition and allows for theconstruction of in�nite processes by means of guarded recursion. The languagesgenerated by BPA speci�cations are exactly the context-free languages. However,we will not study language equivalence, but bisimulation equivalence ([9]) whichis considered more appropriate for veri�cation purposes.It has already been shown that bisimulation equivalence is decidable for BPAprocesses ([1, 4]). An open problem was the question whether it is decidable ifa BPA speci�cation is regular (i.e. whether it can be interpreted as a graphwhich has �nitely many states). If so, this would enable the application of thewell known algorithms for regular systems to those BPA speci�cations whichare in fact regular. This would help in deciding exactly when to use existinge�cient implementations for deciding bisimulation equivalence (for example forthe PSF-Toolkit [7]).In this paper we prove that it is decidable whether a BPA system is regular,that is, all process variables de�ned by it are regular. Some results for simi-lar speci�cation languages are known. Weakening BPA by replacing the generalmultiplication by action pre�x multiplication will only allow the description ofregular systems, while extending BPA with the communication merge to ACP(the algebra of communicating processes, [3]) yields a language in which regu-larity is not decidable. It is also known that regularity of BPA systems modulolanguage equivalence is not decidable.



The basic observation in this paper is that if a process is not regular this iscaused by stacking a tail of processes: considerX = aXb+ cThis process can execute a and then enter state Xb. From this state the processcan do an a again and enter state Xbb. Executing more a steps leads to in�nitelymany di�erent states.In this paper we will formulate the conditions under which this stacking leadsto an irregular process. Furthermore, we give a method to generate a linearspeci�cation if the BPA speci�cation is known to be regular.This paper is built up as follows. In Sect. 2 we introduce BPA and its inter-pretation in the graph model. Normed processes and the reachability relationplay an important role in the decision procedure. They are de�ned in Sect. 3.Section 4 contains the main theorem of this paper and in Sect. 5 we give a lin-earization procedure.Thanks are due to Felix Croes who was of great help while developing theideas in this paper and to Michel Reniers for proofreading.2 Basic Process AlgebraIn this section we will give the signature of the theory BPA and its interpretationin the graph model. For a more detailed treatment we refer to [2].2.1 Speci�cationsWe consider a �nite set of atomic actions A. Typical elements of A are a, b, : : : .Let V be a countably in�nite set of process variables. Typical elements of V areX , Y , : : : . A BPA term (over A and V ) is a term constructed from A, V and theoperators � and + (sequential and alternative composition). An equation is anexpression of the form X = t, where X 2 V and t is a BPA term. An equationX = t is guarded if every occurrence of a variable in t is in the sub-term q of somesub-term p � q of t (p, q BPA terms). A (BPA) speci�cation is a �nite collectionof guarded equations, such that all variables occurring in the right-hand side ofan equation occur in the left-hand side of some equation and no variable occursin the left-hand side of two equations. The collection of variables occurring inspeci�cation S is denoted by VS . If X is a variable de�ned in S, then Def S(X)is the right-hand side of the equation of which X is the left-hand side.If V is a collection of variables, then V � denotes the set of all �nite sequencesover V . The empty sequence is denoted by �. The length j�j of a sequence �is de�ned in the usual way. Greek letters �, �, : : : range over V �. Every non-empty sequence of variables can be considered as a BPA term by inserting thesequential composition operator. If the meaning of a sequence is clear from thecontext, we will not explicitly apply conversion functions from sequences to BPAterms and back. Furthermore if p is a BPA term, the expressions p �� and p� are



interpreted as the BPA term p. Concatenation of sequences � and � is denotedby ��. We have �� = �� = �.A speci�cation is in Greibach Normal Form (GNF) if the right-hand sides ofall equations have the form a0 ��0+ : : :+an ��n (n � 0). Note that �i may be �so ai � �i = ai. Given an equation X = a0 � �0 + : : :+ an � �n, we say that ai � �i(0 � i � n) is a summand of X , notation ai � �i�X .In [1] it is shown that every BPA speci�cation can be transformed into aspeci�cation in GNF. Therefore we can restrict ourselves to speci�cations inGNF.A speci�cation is linear if every summand of every equation in the speci�ca-tion has the form a or a �X .2.2 The Graph ModelWe will interpret BPA speci�cations in the so called graph model. This modelconsists of �nitely branching rooted graphs with labeled edges. This means thatone node is marked as the root and that every edge has a label from a given setA. A node is a termination node if it has no outgoing edges. A node is also calleda state and an edge a transition. If there is an edge with label a from node s tonode t, we denote this by s a!t, or simply s!t. If there is a sequence of edgess0 a0!s1 : : : an�1! sn (n > 0) then we write s0a0:::an�1!! sn, or simply s0!!sn.De�nition 1. A relation R between the nodes of two graphs g and h is a bisim-ulation if the following holds.{ If s a!s0 is an edge in g and R(s; t), then there is an edge t a!t0 in h such thatR(s0; t0).{ If t a!t0 is an edge in h and R(s; t), then there is an edge s a!s0 in g such thatR(s0; t0).Two graphs g and h are bisimilar, notation g${{h, if there is a bisimulationrelating the roots of g and h.The collection of graphs divided out by bisimulation equivalence is denotedby G=${{. This is a model of BPA. The notion of bisimulation can easily beextended to nodes from the same graph. For details see [2].A speci�cation in GNF is interpreted in G=${{ in the following way.De�nition 2. Let S be a speci�cation and � 2 V �S , then grS(�) is the graph withnodes V �S , root node � and edges fX� a!�� j a 2 A; X 2 VS ; �; � 2 V �S ; a��XgFrom this de�nition it follows that � is the only termination node. Thisconstruction is equivalent to the standard interpretation of BPA terms in thegraph model. The above de�nition satis�es our needs in the easiest way. For�; �0 2 V �S we say that � and �0 are bisimilar, notation �${{�0, if grS(�) andgrS(�0) are bisimilar.Proposition 3. Let S be a speci�cation and �; �0; � 2 V �S



1. �!!�0 ) ��!!�0�2. � 6= � ^ � 6= � ^ ��!!� ) �!!� ^ �!!�Proof. 1. From the de�nition of the edges we infer � a!�0 ) �� a!�0�, whichcan be generalized using induction on the number of transitions.2. Proof by induction on the number of transitions in the sequence ��!!�. If��!� in one step, then either � or � equals �. If ��!�1 : : :!� in n + 1steps, either � = �, in which case the implication is trivially true, or � is ofthe form X�, where X has a summand a� and �1 = ���. Now there are twocases. The �rst case is �� = �. Then �!� and � = �1!!� in n transitions.The second case is �� 6= �, then we can apply the induction hypothesis to�� and �. utDe�nition 4. A graph is regular if it is bisimilar to a graph with a �nite setof nodes. Let S be a speci�cation and X 2 VS , then X is regular if grS(X) isregular. A speci�cation is regular if all variables in VS are regular.Two alternative characterizations of regularity follow directly from the de�-nition.Proposition5. (i) A graph is regular if and only if there is no in�nite sequences0!s1!s2! : : : such that si 6${{sj for i 6= j, where s0 is the root of the graph. (ii)A graph is regular if and only if there is no in�nite sequence s0!!s1!!s2!! : : :such that si 6${{sj for i 6= j, where s0 is the root of the graph.Refer to [8] for a proof of the following proposition, which gives a correspon-dence between regular and linear speci�cations.Proposition6. A speci�cation S is regular if and only if there is a linear spec-i�cation T such that VS � VT and for all X 2 VS grS(X)${{grT (X).3 Normed Processes and the Reachability Relation3.1 Normed ProcessesA weakly normed process (or normed process for short) is a process which mayterminate in a �nite number of steps.1De�nition 7. A node s in a graph is normed, notation s#, if s is a terminationnode, or there is a termination node t such that s!!t. A node that is not normedis called (strongly) perpetual2, notation s*. A graph is normed if its root nodeis normed. If S is a speci�cation and � 2 V �S then we say that � is normed ifgrS(�) is normed.1 A strongly normed process is a process which may terminate at any point during itsexecution. We will not use this notion in this paper.2 A process is called weakly perpetual if it is not strongly normed.



Proposition 8. Let S be a speci�cation and �; � 2 V �S then��# , �# ^ �#Proof. If � or � is a termination node, and thus equal to �, the propositionis clearly true. Now suppose �!!� and �!!�, then use Proposition 3.1 to de-rive ��!!�. For proving the other implication, suppose ��!!� then we can useProposition 3.2 to derive �!!� and �!!�. utProposition 9. Let �; � 2 V �S such that �*, then grS(��)${{grS(�).Proof. Construct a bisimulation by relating �� to � for all �; � 2 V �S for which �is perpetual. utIn a given state, we can count the minimal number of transitions needed toterminate. This is called the norm of the state.De�nition 10. The norm of a node s is inductively de�ned bynorm(s) =8<:1 if s*0 if s# and s is a termination node1 +minfnorm(t)js!tg if s# and s is not a termination nodeProposition 11. For all nodes s and t s${{t implies norm(s) = norm(t).Proof. If both s and t are perpetual, then it is clear. Because s and t are bisimilar,it is impossible that s is perpetual and t is normed or vice versa. If s and t arenormed, use induction on the norm. utGiven a speci�cation S we can calculate the normed variables in the followingway. De�ne a sequence of sets of variables Ni inductively byN0 = ;Ni+1 = Ni [ fX j 9a��X;�2V �S 8Y 2� Y 2 NigNow set N = [i�0Ni then N can be computed e�ectively.Theorem12. The set N contains exactly all normed variables of VS. There issome i � 0 such that Ni = Ni+1 and for this value N = Ni.Proof. It is clear from the construction that N contains only normed variables.In order to see that N contains all normed variables, we suppose that X is thevariable such that X#, X 62 N and X!!� with a minimal number of transitions.We consider two cases. If X!�, then X has a summand a for some a 2 A andthus X 2 N1, which is a contradiction. If X!X0 : : : Xn!!�, then (X0 : : :Xn)#and thus X0!!�, : : : Xn!!�. These variables all need at least one less transitionto reach � than X , so they are elements of N . But by the de�nition of N thiswould imply that X 2 N , which again gives a contradiction.Finally, since the Ni are an increasing sequence of subsets of VS and VS is�nite, there are only �nitely many di�erent sets Ni and therefore there exists ani such that Ni = Ni+1, which implies that Ni+k = Ni for all k. ut



If we de�ne n+1 =1+ n =1 we have the following proposition.Proposition13. For �; � 2 V �S norm(��) = norm(�) + norm(�)Proof. Induction on the length of �. If � = � or � = � then it is clearly true. If� = X�0 then norm(X�0�) = norm(X) + norm(�0�) = norm(X) + norm(�0) +norm(�) = norm(X�0) + norm(�). The �rst equality can be proven with induc-tion on the norm of X . utProposition14. Let X 2 VS, �; � 2 V �S , then�# ^X!!��) X!!�Proof. From �# we derive � = � or �!!�. In the �rst case the proposition istrivially true, In the second case we can use Proposition 3.1 to get ��!!�� andby transitivity X!!�. ut3.2 ReachabilityThe reachability relation X �,!Y expresses that variable X can become variableY after executing a number of transitions. The sequence � is stacked after Yand will be executed upon termination of Y .De�nition 15. Let S be a speci�cation, then we de�ne the reachability relation,!S on VS � V �S � VS for all X;Y 2 VS ; � 2 V �S byX �,!SY , 9�2V �S ;a2A a�Y� � X ^ �#We will write ,! instead of ,!S if S is known from the context.De�nition 16. Consider for n > 0 the reachability sequence X0 �0,!X1 �1,! : : :�n�1,! Xn, then we de�ne the following properties1. The sequence is normed if (Xn�n�1 : : : �0)#.2. The sequence is a cycle if X0 = Xn.3. A cycle is minimal if 80�i<j�nXi = Xj ) i = 0 ^ j = n4. The sequence is stacking if �n�1 : : : �0 6= �.Since VS is �nite, we can consider (VS ; ,!S) as a �nite graph and thus wehave the following proposition.Proposition17. For a given speci�cation S, ,!S has �nitely many minimalcycles.Reachability implies a transition relation:Proposition18. For all X;Y 2 VS ; � 2 V �SX �,!Y ) X!!Y �Proof. Suppose X �,!Y , then a�Y��X which gives X a!�Y�. Since � is normed,we can use Proposition 14 and conclude X!!Y�. utCorollary 19. If X0 �0,! : : : �n�1,! Xn (n > 0) is a reachability sequence, thenX0!!Xn�n�1 : : : �0.



4 Deciding RegularityTheorem20. A speci�cation S is regular if and only if ,!S has no normedstacking minimal cycles.Proof. First we prove the \only if" part by contradiction. Suppose that ,!Shas a normed stacking cycle X �0,! : : : �n�1,! X (n > 0), then from Corollary 19 weconclude X!!X�, where � = �n�1 : : : �0. Since the cycle is stacking, � 6= �.Using Proposition 3.1 we can construct a sequenceX!!X�!!X��!!X���!! : : : :We calculate the norm of each state using Proposition 13:norm(X�i) = norm(X) + i � norm(�)The cycle under consideration is normed, therefore (X�)#, therefore X# and �#(Proposition 8). In other words, norm(X) < 1 and norm(�) < 1. Moreover,the cycle is stacking, hence norm(�) > 0. Consequently, for i 6= j, norm(X�i) 6=norm(X�j). Using the fact that bisimulation respects the norm (Proposition 11)we have X�i 6${{X�j and thus S is not regular (Proposition 5.ii).The \if" part of the proof is more elaborate. Assuming that some X 2 VS isnot regular, we derive a contradiction. By Proposition 5.i there exists an in�nitesequence (setting �0 = X) �0!�1!�2! : : :such that �i 6${{�j for i; j � 0, i 6= j. From the absence of normed stacking cycles,we will derive the existence of i and j (i 6= j) such that �i${{�j and thus we willhave a contradiction.The �rst step is to make the relation between the individual variables from�i and �i+1 explicit. For this purpose, we will consider the in�nite sequence asa directed tree with labeled nodes and unlabeled edges. For every variable in �i(i � 0), we create a node. This node is related to all reachable successors (if any)of this variable in �i+1. Formally:De�nition 21. For every i � 0 we have nodes hi; 0i, : : : , hi; j�ij � 1i. The labelL(hi; ki) of node hi; ki is the kth variable of �i (if we start counting at 0).An edge from node hi; pi to node hi + 1; p0i is denoted by hi; pi;hi + 1; p0i.The edges are de�ned as follows. Let i � 0 and �i = X0 : : : Xk (k � 0) then,following De�nition 2, the transition �i!�i+1 is due to a summand a��X0. Nowwe consider two cases.1. j�j = 0 and thus � = �. Then �i+1 = X1 : : : Xk. For 1 � p � k we de�needges from hi; pi to hi+ 1; p� 1i.2. j�j > 0 and thus � = Y0 : : : Yh (h � 0). Then �i+1 = Y0 : : : YhX1 : : :Xk.There are two sub-cases.(a) If �# then we de�ne edges from hi; 0i to all nodes hi+1; 0i, : : : , hi+1; hi.



(b) If �* then there is an m � 0 such that Ym* and Y0 : : : Ym�1#. Then wede�ne edges from hi; 0i only to the nodes hi+ 1; 0i, : : : , hi+ 1;mi.Moreover in both sub-cases we de�ne edges from hi; pi to hi + 1; h + pi for1 � p � k.This construction implies that the sequence of labels at level i, namelyL(hi; 0i) : : : L(hi; j�ij � 1i) is exactly �i. Furthermore, a node hi; pi has exactlyone successor if p > 0, while if p = 0 then hi; pimay have more than one successoror none at all.Example 1. Figure 1 below shows a speci�cation and a fragment of the graphcorresponding to the sequenceS!TUV!WXYUV!XY UV! : : : :A node hi; ki is represented by its label L(hi; ki) appearing as the kth letter onthe ith line in the �gure (counting from 0); arrows denote ; relationships. Notethat the graph is almost a tree; it would be a tree if there were an edge fromh1; 0i (with label T ) to h2; 2i (with label Y ). This edge is omitted because X isperpetual. S = aTUVT = bWXY + bU = cV = dW = eX = fZXY = gZ = h
STW XXZ XX

YY YY
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V VV VVFig. 1. Sample speci�cation and successor graphBefore completing the proof of Theorem 20, we will formulate a few lemmasrelating ; to ,!.Lemma22. If there is an edge hi; pi;hi + 1; qi such that p > 0, thenL(hi; pi) : : : L(hi; j�ij � 1i) = L(hi+ 1; qi) : : : L(hi+ 1; j�i+1j � 1i)



Proof. This follows directly from the de�nition. utLemma23. Let n > 0, i � 0 and hi; 0i;hi + 1; p1i; : : :;hi + n; pni be asequence of edges such that p1 > 0, : : : , pn�1 > 0, then there exists � 2 V �Ssuch that for all 0 < k � n, L(hi; 0i) �,!L(hi + k; pki) and L(hi + k; pk + 1i)L(hi+ k; pk+2i) : : : L(hi+ k; j�i+k j � 1i) is equal to �L(hi; 1i) : : : L(hi; j�ij � 1i).Proof. Induction on n.If n = 1 then we consider the edge hi; 0i;hi + 1; p1i. Then we have �i =X0 : : : Xk, �i+1 = Y0 : : : YhX1 : : : Xk such that 0 � p1 � h and aY0 : : : Yh�X0.Because Y0 : : : Yp1�1#, this gives a reachability step X0Yp1+1:::Yh,! Yp1 , and thusL(hi; 0i)Yp1+1:::Yh,! L(hi+1; p1i). If we take � = Yp1+1 : : : Yh then L(hi+1; p1+1i)L(hi+1; p1+2i) : : : L(hi+1; j�i+1j � 1i) is equal to �L(hi; 1i) : : : L(hi; j�ij � 1i),because both sequences are Yp1+1 : : : YhX1 : : :Xk.If n = m + 1, then by the induction hypothesis there is a � such that forall 0 < k � m, L(hi; 0i) �,!L(hi + k; pki) and L(hi+ k; pk + 1i)L(hi + k; pk + 2i): : : L(hi+ k; j�i+kj � 1i) is equal to �L(hi; 1i) : : : L(hi; j�ij � 1i). We have an edgehi+m; pmi;hi+m+ 1; pm+1i, and pm 6= 0, so Lemma 22 applies. This yieldsL(hi+m+ 1; pm+1i) : : : L(hi+m+ 1; j�i+m+1j � 1i) =L(hi+m; pmi)L(hi+m; pm + 1i) : : : L(hi+m; j�i+mj � 1i) =L(hi+m; pmi)�L(hi; 1i) : : : L(hi; j�ij � 1i)The second equality follows from the induction hypothesis with k substituted bym. The �rst equality implies that L(hi+m+1; pm+1i) = L(hi+m; pmi). By theinduction hypothesis L(hi; 0i) �,!L(hi+m; pmi) and thus L(hi; 0i) �,!L(hi+m+1;pm+1i). utCorollary 24. Let n > 0, i � 0 and hi; 0i;hi + 1; p1i; : : :;hi + n; pni be asequence of edges such that pv = 0 only for the values v0, : : : vq of v, then thereexists a reachability sequence L(hi; 0i) �0,!L(hi+v0; 0i) �1,! : : : �q,!L(hi+vq ; 0i), suchthat L(hi + vj ; 1i) : : : L(hi + vj ; j�i+vj j � 1i). is equal to �q : : : �1�0L(hi; 1i) : : :L(hi; j�ij � 1i)We will say that hj; qi is a descendant of hi; pi if there is a sequence of ;edges from hi; pi to hj; qi.Lemma25. All nodes hn; 0i (n > 0) are descendents of node h0; 0i.Proof. Suppose hi; pi is not a descendent of h0; 0i, then let j be the smallestnumber such that for some q, hi; pi is a descendant of hj; qi. The only sub-caseof De�nition 21 where a node does not have a predecessor is the last one, soL(hj;mi)* for some m < q. Therefore there is some r < p such that L(hi; ri) isa descendant of L(hj;mi). Hence, p > 0. ut



Now we complete the proof of Theorem 20. Let T be the subtree formed by alldescendants of node h0; 0i. T must be in�nite because it contains all nodes hn; 0i(Lemma 25). T is �nitely branching, therefore by K�onig's Lemma it contains anin�nite branch. Let B be the lowest in�nite branch, that is, the in�nite branchwith nodes hi; pii such that for all i if hi; qi is on an in�nite branch, then q � pi.Since for every i there is a unique pi such that hi; pii 2 B, we may considerB as a function mapping i to pi.We claim that for in�nitely many i � 0 we have hi; 0i 2 B. Suppose that thisis not the case, then for all n greater than some value k the nodes hn; 0i are notin B.Such a node hn; 0i is a descendant of a node hk + 1; ji with j < j�j j. Sincethere are in�nitely many such n and �nitely many such j, at least one nodehk + 1; ji must have in�nitely many descendants hn; 0i. That node is thereforethe root of an in�nite subtree and we apply K�onig's Lemma to �nd an in�nitebranch B0 in this subtree. B0 can be extended to an in�nite branch in T , whichcontradicts the fact that B is the lowest in�nite branch.Now �nd the �rst j such that there is an i < j with L(hi; 0i) = L(hj; 0i) andhi; 0i,hj; 0i 2 B. By Corollary 24 there is a reachability sequence L(hi; 0i) �0,! : : :�q,!L(hj; 0i). Since j is minimal, this sequence is a minimal cycle. Moreover,L(hj; 0i)L(hj; 1i) : : : L(hj; j�j j � 1i) is equal to L(hi; 0i)�q : : : �0L(hi; 1i) : : :L(hi; j�ij � 1i).We can repeat this construction, �nding the �rst j0 > j such that there isan i0 satisfying j < i0 < j0 and L(hi0; 0i) = L(hj0; 0i), giving us another occur-rence of a minimal cycle L(hi0; 0i) �0,! : : : �q0,!L(hj0; 0i), with L(hj0; 0i)L(hj0; 1i) : : :L(hj0; j�j0 j � 1i) is equal to L(hi0; 0i)�q0 : : : �0L(hi0; 1i) : : : L(hi0; j�i0 j � 1i).Repeating this construction in�nitely often produces in�nitely many occur-rences of minimal cycles. Since there are only �nitely many minimal cycles(Proposition 17), some minimal cycle occurs at least twice. Say X �0,! : : : �q,!Xwith occurrences L(hi; 0i) �0,! : : : �q,!L(hj; 0i) and L(hi0; 0i) �0,! : : : �q,!L(hj0; 0i). Set-ting � = �q : : : �0, we knowL(hi; 0i) = L(hj; 0i) = L(hi0; 0i) = L(hj0; 0i) = X ,L(hj; 0i)L(hj; 1i) : : : L(hj; j�j j � 1i) = L(hi; 0i)�L(hi; 1i) : : :L(hi; j�ij � 1i), andL(hj0; 0i)L(hj0; 1i) : : : L(hj0; j�j0 j � 1i) = L(hi0; 0i)�L(hi0; 1i) : : : L(hi0; j�i0 j � 1i)We consider two cases. First let � = �, thenL(hj; 0i) : : : L(hj; j�j j � 1i) = L(hi; 0i) : : : L(hi; j�ij � 1i)and thus �i = �j which implies �i${{�j . Thus we have found i and j as promisedat the start of the proof.The second case is � 6= �. Since there are no normed stacking cycles andcycle X �0,! : : : �q,!X is stacking, it must be a perpetual cycle. This means that �*.



Consequently (Proposition 9),L(hj; 0i)L(hj; 1i) : : : L(hj; j�j j � 1i) =L(hi; 0i)�L(hi; 1i) : : : L(hi; j�ij � 1i)${{L(hi; 0i)� =L(hi0; 0i)�${{L(hi0; 0i)�L(hi0; 1i) : : : L(hi0; j�i0 j � 1i) =L(hj0; 0i)L(hj0; 1i) : : : L(hj0; j�j0 j � 1i)and thus �j${{�j0 , and again we have found i and j as promised. This concludesthe proof of Theorem 20. ut5 LinearizationA speci�cation in GNF can be transformed into a linear speci�cation if the con-ditions from the main theorem in the previous section are met. In this section wewill give an e�ective linearization method. The idea behind the method is simplyto get rid of anything following a perpetual variable and introduce new processvariables corresponding to sequences of old ones. If this procedure converges, ityields a linear BPA-speci�cation equivalent to the original one.First we need some additional de�nitions.De�nition 26.1. If � is a non empty sequence of variables, then [�] denotes a fresh processvariable.2. If S is a speci�cation, then [S] is the collection of equations derived from Sby replacing every summand aXY � by a[XY �].3. The operator � concatenates a sequence of variables to a process de�nition.It is de�ned as follows.(a0�0 + : : :+ an�n) �X� = a0�0 �X� + : : :+ an�n �X�a� �X� = �a�X� if �#a� if �*De�nition 27. A speci�cation S is reduced if for every summand aX0 : : :Xn(n > 0) (X0 : : :Xn�1)#.De�nition 28. The reduction red(S) of a speci�cation S is derived from S byreplacing all summands aX0 : : : Xn (n > 0) for which there exists 0 � i < n with(X0 : : : Xi�1)# and Xi* by aX0 : : : Xi.A speci�cation S can be linearized by calculating a sequence of equivalentspeci�cations Si (i � 0). If S is regular, only a �nite number of speci�cationsmust be calculated in order to reach a linear Si. The speci�cations are de�nedas follows.S0 = red(S)Si+1 = [Si] [ f[XY �] = Def red(S)(X) � Y � jX;Y 2 VS ; � 2 V �S ; 9a2A;Z2VSiaXY � � Z; [XY �] 62 VSig



We will not present a detailed proof of the correctness of this method. Wewill only give the main steps of the proof.It is easy to verify that every Si is a reduced speci�cation. Furthermore, byconstructing a bisimulation, we have for allX 2 VS and i � 0, grS(X)${{grSi(X).Finally we have that S is regular if and only if for some i � 0 Si = Si+1. Wewill only sketch the proof. Suppose that Si = Si+1, then Si = [Si], so there areno summands aXY � and thus Si is linear, which implies that S is regular. Forthe other implication, suppose that all Si are di�erent, then there is an in�nitesequence X!S1 [�1]!S2 [�2]!S3 : : :such that [�i+1] 2 VSi+1 and [�i+1] 62 VSi for i � 0. This sequence can betransformed into an in�nite sequenceX!S�01!S�02!S : : :of which in�nitely many sequences �0i are not bisimilar. This contradicts regu-larity of S.6 ExampleWe will apply the results from the previous sections to a simple example. Con-sider the following speci�cation. A = aBCDB = bB + bC = cAC + cD = dClearly the variables B, C and D are normed and since aBCD is a summandof A, A is normed too. Next we derive a reachability sequence. Since B#, wehave A D,!C and since A#, we have C C,!A. Thus we have a reachability cycleA D,!C C,!A. This cycle is clearly stacking, and because ACD# it is a normedcycle. Now we may conclude that the speci�cation is not regular. Indeed wehave an in�nite sequence A!!ACD!!ACDCD!! : : :Now consider a slightly modi�ed system, which is derived from the previoussystem by deleting summand c of C. This makes C perpetual.A = aBCDB = bB + bC = cACD = d



The variables B and D are normed, while A and C are perpetual. We can �ndthree minimal cycles B �,!BA D,!C C,!AC C,!A D,!CThe �rst cycle is not stacking. The second and third cycle (which are in factequal) are not normed, because (ACD)* and (CDA)*. Following the main the-orem, we conclude that the speci�cation is regular. Now we can apply the lin-earization procedure and get for S0 the reduction of S:A = aBCB = bB + bC = cAD = dFor S1 we obtain: A = a[BC]B = bB + bC = cAD = d[BC] = bBC + bCAlready S2 is a linear speci�cation:A = a[BC]B = bB + bC = cAD = d[BC] = b[BC] + bC7 ConclusionsWe have proved that regularity of BPA systems is decidable. The questionwhether it is decidable that a single process variable de�nes a regular processis still open. We conjecture that it is decidable. A simple example shows thatthis question is more complicated than regularity of a complete BPA system.Consider the speci�cation X = aY ZY = bY c+ dZ = eZThen it is easy to show that X and Y are irregular, so the speci�cation as awhole is irregular. If we would change the de�nition of Z intoZ = cZ



then the complete speci�cation is still irregular (since Y is still irregular), butnow X is regular. The reason is clearly that the normed stacking tail cn of Y isreduced to a regular perpetual process c1 by appending Z.From this example we conclude that it is necessary to take the actual valuesof the atomic actions into account when deciding regularity of a single processvariable. This probably leads to a more complex decision procedure than theone presented in this paper. Since the reachability relation and normedness arecompletely independent of the actual atomic actions, only the presence of anyatomic action plays a role in the decision prodedure presented here.We do not think that the restriction to complete systems is a problem inpractical applications. In most cases one is interested in the linearization ofa complete system. Speci�cations in languages such as PSF [6] only considercomplete systems, without singling out a speci�c variable.We claim that the techniques described in this paper easily extend to BPA�(which results from BPA by adding the special process constant � for unsuc-cessful termination). A more interesting topic for future research is the questionwhether there are extensions of BPA with some operator for parallelism, onwhich regularity is also decidable.References1. J.C.M. Baeten, J.A. Bergstra & J.W. Klop, Decidability of bisimulation equiva-lence for processes generating context-free languages, Proc. PARLE 87 (J.W. deBakker, A.J. Nijman, P.C. Treleaven, eds.), LNCS 259, pp. 93-114, 1987.2. J.C.M. Baeten & W.P. Weijland, Process algebra, Cambridge Tracts in Theoret-ical Computer Science 18, Cambridge University Press, 1990.3. J.A. Bergstra & J.W. Klop, Process theory based on bisimulation semantics,Linear time, branching time and partial order in logics and models for concurrency(J.W. de Bakker, W.P. de Roever, G. Rozenberg, eds.), LNCS 354, pp. 50-122,1989.4. S. Christensen, H. H�uttel & C. Stirling, Bisimulation equivalence is decidable forall context-free processes, Proc. CONCUR'92 (W.R. Cleaveland, ed.), LNCS 630,pp. 138-147, 1992.5. S. Christensen, Y. Hirschfeld & F. Moller, Bisimulation equivalence is decidablefor basic parallel processes, Proc. CONCUR'93 (E. Best, ed.), LNCS 715, pp.143-157, 1993.6. S. Mauw & G.J. Veltink, A process speci�cation formalism, Fundamenta Infor-matic� XIII, pp. 85-139, 1990.7. S. Mauw & G.J. Veltink, Algebraic speci�cation of communication protocols,Cambridge Tracts in Theoretical Computer Science 36, Cambridge UniversityPress, 1993.8. R. Milner, A complete inference system for a class of regular behaviours, JCSS28, pp. 439{466, 1984.9. D.M.R. Park, Concurrency and automata on in�nite sequences, Proc. 5th GIConf. (P. Duessen, ed.), LNCS 104, pp. 167-183, 1981.This article was processed using the LaTEX macro package with LLNCS style


