
Generalizing Multi-party Contract Signing?

Sjouke Mauw1 and Saša Radomirović2

1 CSC/SnT, University of Luxembourg
sjouke.mauw@uni.lu

2 Institute of Information Security, Dept. of Computer Science, ETH Zurich
sasa.radomirovic@inf.ethz.ch

Abstract. Multi-party contract signing (MPCS) protocols allow a group
of signers to exchange signatures on a predefined contract. Previous ap-
proaches considered either completely linear protocols or fully parallel
broadcasting protocols. We introduce the new class of DAG MPCS pro-
tocols which combines parallel and linear execution and allows for paral-
lelism even within a signer role. This generalization is useful in practical
applications where the set of signers has a hierarchical structure, such as
chaining of service level agreements and subcontracting.
Our novel DAG MPCS protocols are represented by directed acyclic
graphs and equipped with a labeled transition system semantics. We
define the notion of abort-chaining sequences and prove that a DAG
MPCS protocol satisfies fairness if and only if it does not have an abort-
chaining sequence. We exhibit several examples of optimistic fair DAG
MPCS protocols. The fairness of these protocols follows from our theory
and has additionally been verified with our automated tool.
We define two complexity measures for DAG MPCS protocols, related
to execution time and total number of messages exchanged. We prove
lower bounds for fair DAG MPCS protocols in terms of these measures.

1 Introduction

A multi-party contract signing (MPCS) protocol is a communication protocol
that allows a number of parties to sign a digital contract. The need for MPCS
protocols arises, for instance, in the context of service level agreements (SLAs)
and in supply chain contracting. In these domains (electronic) contract negotia-
tions and signing are still mainly bilateral. Instead of negotiating and signing one
multi-party contract, in practice, multiple bilateral negotiations are conducted
in parallel [21]. Because negotiations can fail, parties may end up with just a
subset of the pursued bilateral contracts. If a party is missing contracts with
providers or subcontractors, it faces an overcommitment problem. If contracts
with customers are missing, it has an overpurchasing problem [8]. Both problems
can be prevented by using fair multi-party contract signing protocols.

Existing optimistic MPCS protocols come in two flavors. Linear MPCS pro-
tocols require that at any point in time at most one signer has enough infor-
mation to proceed in his role by sending messages to other signers. Broadcast

? This is the extended version of [14].

ar
X

iv
:1

50
1.

03
86

8v
2

 [
cs

.C
R

]
 1

7
Fe

b
20

15

MPCS protocols specify a number of communication rounds in each of which
all signers send or broadcast messages to each other. However, neither of the
two kinds of protocols is suitable for SLAs or supply chain contracting. The rea-
son is that in both domains, the set of contractors typically has a hierarchical
structure, consisting of main contractors and levels of subcontractors. It is unde-
sirable (and perhaps even infeasible) for the main contracting partners and their
subcontractors to directly communicate with another partner’s subcontractors.
This restriction immediately excludes broadcast protocols as potential solutions
and forces linear protocols to be impractically large.

In this paper we introduce MPCS protocol specifications that support arbi-
trary combinations of linear and parallel actions, even within a protocol role.
The message flow of such protocols can be specified as a directed acyclic graph
(DAG) and we therefore refer to them as DAG MPCS protocols.

A central requirement for MPCS protocols is fairness. This means that either
all honest signers get all signatures on the negotiated contract or nobody gets
the honest signers’ signatures. It is well known that in asynchronous communi-
cation networks, a deterministic MPCS protocol requires a trusted third party
(TTP) to achieve fairness [5]. In order to prevent the TTP from becoming a
bottleneck, protocols have been designed in which the TTP is only involved to
resolve conflicts. A conflict may occur if a message gets lost, if an external ad-
versary interferes with the protocol, or if signers do not behave according to the
protocol specification. If no conflicts occur, the TTP does not even have to be
aware of the execution of the protocol. Such protocols are called optimistic [1].
We focus on optimistic protocols in this paper.

DAG MPCS protocols not only allow for better solutions to the subcon-
tracting problem, but also have further advantages over linear and broadcast
MPCS protocols and we design three novel MPCS protocols that demonstrate
this. One such advantage concerns communication complexity. Linear protocols
can reach the minimal number of messages necessary to be exchanged in fair
MPCS protocols at the cost of a high number of protocol “rounds”. We call this
the parallel complexity, which is a generalization of the round complexity mea-
sure for broadcast protocols, and define it in Section 4.3. Conversely, broadcast
protocols can attain the minimal number of protocol rounds necessary for fair
MPCS, but at the cost of a high message complexity. We demonstrate that DAG
MPCS protocols can simultaneously attain best possible order of magnitude for
both complexity measures.

As discussed in our related work section, the design of fair MPCS protocols
has proven to be non-trivial and error-prone. We therefore not only prove our
three novel DAG MPCS protocols to be fair, but we also derive necessary and
sufficient conditions for fairness of any optimistic DAG MPCS protocol. These
conditions can be implemented and verified automatically, but they are still non-
trivial. Therefore, for a slightly restricted class of DAG protocols, we additionally
derive a fairness criterion that is easy to verify.

Contributions. Our main contributions are (i) the definition of a syntax and
interleaving semantics of DAG MPCS protocols (Section 4.1); (ii) the definition

2

of the message complexity and parallel complexity of such protocols (Section 4.3);
(iii) a method to derive a full MPCS specification from a skeletal graph, including
the TTP logic (Section 5); (iv) necessary and sufficient conditions for fairness of
DAG MPCS protocols (Section 5.3); (v) minimal complexity bounds for DAG
MPCS protocols (Section 6.1); (vi) novel fair MPCS protocols (Section 6.2); (vii)
a software tool that verifies whether a given MPCS protocol is fair (described in
Appendix A). 3

2 Related Work

We build on the body of work that has been published in the field of fair opti-
mistic MPCS protocols in asynchronous networks. The first such protocols were
proposed by Baum-Waidner and Waidner [2], viz. a round-based broadcast pro-
tocol and a related round-based linear protocol. They showed subsequently [3]
that these protocols are round-optimal. This is a complexity measure that is re-
lated to, but less general than, parallel complexity defined in the present paper.

Garay et al. [6] introduced the notion of abuse-free contract signing. They
developed the technique of private contract signature and used it to create
abuse-free two-party and three-party contract signing protocols. Garay and Mac-
Kenzie [7] proposed MPCS protocols which were later shown to be unfair using
the model checker Mocha and improved by Chadha et al. [4]. Mukhamedov and
Ryan [17] developed the notion of abort chaining attacks and used such attacks
to show that Chadha et al.’s improved version does not satisfy fairness in cases
where there are more than five signers. They introduced a new optimistic MPCS
protocol and proved fairness for their protocol by hand and used the NuSMV
model checker to verify the case of five signers. Zhang et al. [22] have used Mocha
to analyze the protocols of Mukhamedov and Ryan and of Mauw et al. [15].

Mauw et al. [15] used the notion of abort chaining to establish a lower bound
on the message complexity of linear fair MPCS protocols. This complexity mea-
sure is generalized in the present paper to DAG MPCS protocols. Kordy and
Radomirović [10] have shown an explicit construction for fair linear MPCS proto-
cols. The construction covers in particular the protocols proposed by Mukhame-
dov and Ryan [17] and the linear protocol of Baum-Waidner and Waidner [2],
but not the broadcast protocols. The DAG MPCS protocol model and fairness
results developed in the present paper encompass both types of protocols. They
allow for arbitrary combinations of linear and parallel behaviour (i.e. partial
parallelism), and in addition allow for parallelism within signer roles. MPCS
protocols combining linear and parallel behaviour have not been studied yet.

Apart from new theoretical insights to be gained from designing and studying
DAG MPCS protocols, we anticipate interesting application domains in which
multiple parties establish a number of related contracts, such as SLAs. Emerging
business models like Software as a Service require a negotiation to balance a
customer’s requirements against a service provider’s capabilities. The result of

3 The tool and models of our protocols are available at the following website: http:
//people.inf.ethz.ch/rsasa/mpcs

3

http://people.inf.ethz.ch/rsasa/mpcs
http://people.inf.ethz.ch/rsasa/mpcs

such a negotiation is often complicated by the dependencies between several
contracts [13] and multi-party protocols may serve to mitigate this problem.
Karaenke and Kirn [8] propose a multi-tier negotiation protocol to mitigate
the problems of overcommitment and overpurchasing. They formally verify that
the protocol solves the two observed problems, but do not consider the fairness
problem. SLAs and negotiation protocols have also been studied in the multi-
agent community. An example is the work of Kraus [11] who defines a multi-party
negotiation protocol in which agreement is reached if all agents accept an offer.
If the offer is rejected by at least one agent, a new offer will be negotiated.

Another interesting application area concerns supply chain contracting [12].
A supply chain consists of a series of firms involved in the production of a product
or service with potentially complex contractual relationships. Most literature in
this area focuses on economic aspects, like pricing strategies. An exception is the
recent work of Pavlov and Katok [9] in which fairness is studied from a game-
theoretic point of view. The study of multi-party signing protocols and multi-
contract protocols has only recently been identified as an interesting research
topic in this application area [20].

3 Preliminaries

3.1 Multi-party contract signing

The purpose of a multi-party contract signing protocol is to allow a number of
parties to sign a digital contract in a fair way. In this section we recall the basic
notions pertaining to MPCS protocols. We use A to denote the set of signers
involved in a protocol, C to denote the contract, and T to denote the TTP.

A signer is considered honest (cf. Definition 5) if it faithfully executes the
protocol specification. An MPCS protocol is said to be optimistic if its execution
in absence of adversarial behaviour and failures and with all honest signers results
in signed contracts for all participants without any involvement of T. Optimistic
MPCS protocols consist of two subprotocols: the main protocol that specifies
the exchange of promises and signatures by the signers, and the resolve protocol
that describes the interaction between the agents and T in case of a failure in
the main protocol. A promise made by a signer indicates the intent to sign C.
A promise ℘P (m,x,Q,T) can only be generated by signer P ∈ A. The content
(m,x) can be extracted from the promise and the promise can be verified by
signer Q ∈ A and by T. A signature SP (m) can only be generated by P and by
T, if T has a promise ℘P (m,x,Q,T). The content m can be extracted and the
signature can be verified by anybody. Cryptographic schemes that allow for the
above properties are digital signature schemes and private contract signatures [6].

MPCS protocols must satisfy at least two security requirements, namely fair-
ness and timeliness. An optimistic MPCS protocol for contract C is said to be
fair for an honest signer P if whenever some signer Q 6= P obtains a signature
on C from P , then P can obtain a signature on C from all signers participating in
the protocol. An optimistic MPCS protocol is said to satisfy timeliness, if each

4

signer has a recourse to stop endless waiting for expected messages. The fairness
requirement will be the guiding principle for our investigations and timeliness
will be implied by the communication model together with the behaviour of the
TTP. A formal definition of fairness is given in Section 5.3.

A further desirable property for MPCS protocols is abuse-freeness which was
introduced in [6]. An optimistic MPCS protocol is said to be abuse-free, if it
is impossible for any set of signers at any point in the protocol to be able to
prove to an outside party that they have the power to terminate or successfully
complete the contract signing. Abuse-freeness is outside the scope of this paper.

3.2 Graphs

Let G = (V,E) with E ⊆ V × V be a directed acyclic graph. Let v, w ∈ V be
vertices. We say that v causally precedes w, denoted v ≺ w, if there is a directed
path from v to w in the graph. We write v � w for v ≺ w ∨ v = w. We extend
causal precedence to the set V ∪ E as follows. Given two edges (v, w), (v′, w′) ∈
E, we say that (v, w) causally precedes (v′, w′) and write (v, w) ≺ (v′, w′), if
w � v′. Similarly, we write v ≺ (v′, w′) if v � v′ and (v, w) ≺ v′ if w � v′. Let
x, y ∈ V ∪ E. If x causally precedes y we also say that y causally follows x. We
say that a set S ⊆ V ∪ E is causally closed if it contains all causally preceding
vertices and edges of its elements, i.e., ∀x ∈ S, y ∈ V ∪ E : y ≺ x =⇒ y ∈ S.

By in(v) ⊆ E we denote the set of edges incoming to v and by out(v) ⊆ E
the set of edges outgoing from v. Formally, we have in(v) = {(w, v) ∈ E | w ∈ V }
and out(v) = {(v, w) ∈ E | w ∈ V }.

3.3 Assumptions

The communication between signers is asynchronous and messages can get lost
or be delayed arbitrary long. The communication channels between signers and
the TTP T are assumed to be resilient. This means that the messages sent over
these channels are guaranteed to be delivered eventually. In order to simplify
our reasoning, we assume that the channels between protocol participants are
confidential and authentic. We consider the problem of delivering confidential
and authentic messages in a Dolev-Yao intruder model to be orthogonal to the
present problem setting.

We assume that C contains the contract text along with fresh values (con-
tributed by every signer) which prevent different protocol executions from gener-
ating interchangeable protocol messages. Furthermore we assume that C contains
all information that T needs in order to reach a decision regarding the contract
in case it is contacted by a signer. This information contains the protocol spec-
ification, an identifier for T, identifiers for the signers involved in the protocol,
and the assignment of signers to protocol roles in the protocol specification.

We assume the existence of a designated resolution process per signer which
coordinates the various resolution requests of the signer’s parallel threads. It will
ensure that T is contacted at most once by the signer. After having received the
first request from one of the signer’s threads, this resolution process will contact

5

T on behalf of the signer and store T’s reply. This reply will be forwarded to all
of the signer’s threads whenever they request resolution.

4 DAG Protocols

Our DAG protocol model is a multi-party protocol model in an asynchronous
network with a TTP and an adversary that controls a subset of parties.

4.1 Specification and Execution Model

A DAG protocol specification (or simply, a protocol specification) is a directed
acyclic graph in which the vertices represent the state of a signer and the edges
represent either a causal dependency between two states (an ε-edge) or the
sending of a message. A vertex’ outgoing edges can be executed in parallel.
Edges labeled with exit denote that a signer contacts T.

Definition 1. Let R be a set of roles such that T 6∈ R and M a set of messages.
Let ε and exit be two symbols, such that ε, exit /∈M . By Mexit

ε and RT we denote
the sets Mexit

ε = M ∪{ε, exit} and RT = R∪{T}, respectively. A DAG protocol
specification is a labeled directed acyclic graph P = (V,E, r, µ, δ), where

1. (V,E) is a directed acyclic graph;

2. r : V → RT is a labeling function assigning roles to vertices;

3. µ : E →Mexit
ε is an edge-labeling function that satisfies

(a) ∀(v, v′) ∈ E : µ(v, v′) = ε =⇒ r(v) = r(v′),

(b) ∀(v, v′) ∈ E : µ(v, v′) = exit =⇒ r(v′) = T;

4. δ : M∗ →M is a function associated with exit-labeled edges.

A message edge (v, v′) specifies that µ(v, v′) = m is to be sent from role r(v) to
role r(v′). An ε-edge (v, v′) represents internal progress of role r(v) = r(v′) and
allows to specify a causal order in the role’s events. An exit edge denotes that
a role can contact the TTP. The TTP then uses the function δ to determine
a reply to the requesting role, based on the sequence of messages that it has
received. In Section 5 exit messages and the δ function are used to model the
resolve protocol of the TTP.

A B

s

s

A B

ss

A B

ss

Fig. 1: Linear, broadcast, and the novel DAG MPCS protocols.

6

We give three examples of DAG protocols in Figure 1, represented as Message
Sequence Charts (MSCs). The dots denote the vertices, which we group vertically
below their corresponding role names. Vertical lines in the MSCs correspond to
ε-edges and horizontal or diagonal edges represent message edges. We mark edges
labeled with signing messages with an “s” and we leave out the edge labels of
promise messages. We do not display exit edges, they are implied by the MPCS
protocol specification. A box represents the splitting of a role into two parallel
threads, which join again at the end of the box. We revert to a traditional
representation of labeled DAGs if it is more convenient (see, e.g., Figure 2).

The first protocol in Figure 1 is a classical linear 2-party contract signing
protocol. It consists of one round of promises followed by a round of exchanging
signatures. The second protocol is the classical broadcast protocol for two signers.
It consists of two rounds of promises, followed by one round of signatures. The
third protocol is a novel DAG protocol, showing the power of in-role parallelism.
It is derived from the broadcasting protocol by observing that its fairness does
not depend on the causal order of the first two vertices of each of the roles.

Let P = (V,E, r, µ, δ) be a protocol specification. The restriction of P to role
P , denoted by PP , is the protocol specification (VP , EP , rP , µP , δP), where

EP = {(v, v′) ∈ E | r(v) = P ∨ r(v′) = P} , VP = {v, v′ ∈ V | (v, v′) ∈ EP } ,
rP (v) = r(v) for v ∈ VP , µP (e) = µ(e) for e ∈ EP , and δP = δ.

The execution state of a protocol consists of the set of events, connected to
vertices or edges, that have been executed.

Definition 2. Let P = (V,E, r, µ, δ) be a protocol specification. A state of P is
a set s ⊆ V ∪E. The set of states of P is denoted by SP . The initial state of P
is defined as s0 = ∅.

In order to give DAG protocols a semantics, we first define the transition
relation between states of a protocol.

Definition 3. Let P = (V,E, r, µ, δ) be a protocol specification, L = {ε, send ,
recv , exit} the set of transition labels, and s, s ′ ∈ SP the states of P. We say

that P transitions with label α from state s into s ′, denoted by s
α
 s ′, iff s 6= s ′

and one of the following conditions holds

1. α = recv and ∃v ∈ V , such that in(v) ⊆ s and s ′ = s ∪ {v},
2. α = send and ∃m ∈M, e ∈ E, such that µ(e) = m, and s ′ = s ∪ {e},
3. α = ε and ∃e = (v, v′) ∈ E, such that µ(e) = ε, v ∈ s and s ′ = s ∪ {e},
4. α = exit and ∃e ∈ E, such that µ(e) = exit and s ′ = s ∪ {e}.

In Definition 3, receive events are represented by vertices, all other events by
edges. By the first condition, a receive event can only occur if all events assigned
to the incoming edges have occurred. In contrast, the sending of messages (second
condition) can take place at any time. The third condition states that an ε-edge
can be executed if the event on which it causally depends has been executed.

7

Finally, like send events, an exit event can occur at any time. Every event may
occur at most once, however. This is ensured by the condition s′ 6= s.

The transitions model all possible behavior of the system. The behavior of
honest agents in the system will be restricted as detailed in the following sub-
section. We denote sequences by [a0, a1, . . . , al] and the concatenation of two
sequences σ1, σ2 by σ1 · σ2.

Definition 4. Let P = (V,E, r, µ, δ) be a protocol specification and L = {ε, send ,
recv , exit} a set of labels. The semantics of P is the labeled transition system
(SP , L, ,s0), which is a graph consisting of vertices SP and edges with start
state s0. An execution of P is a finite sequence ρ = [s0, α1, s1, . . . , αl, sl], l ≥ 0,

such that ∀i ∈ {0, . . . , l − 1} : si
αi+1
 si+1. The set of all executions of P is

denoted by Exe(P).

If ρ = [s0, α1, s1, . . . , αl, sl] is an execution of P and PP is the restriction to role
P , then the restricted execution ρP is obtained inductively as follows.

1. [s]P = [s ∩ (VP ∪ EP)] for a state s.

2. ([s, α, s ′] · σ)P =

{
[s]P · σP if [s]P = [s ′]P

[s]P · [α] · ([s ′] · σ)P else.

Commutativity of restriction and execution is asserted by the following lemma.

Lemma 1. Let P be a protocol specification and PP the restriction to role P .
Then every restricted execution ρP is an execution of PP .

4.2 Adversary Model

An honest agent executes the protocol specification faithfully. The following
definition specifies what this entails for a DAG protocol: the agent waits for the
reception of all causally preceding messages before sending causally following
messages, does not execute an exit edge attached to a vertex v if all messages at
v have been received and never executes more than one exit edge (which in the
context of MPCS protocols corresponds to contacting the TTP at most once),
and does not send any messages which causally follow a vertex from which the
exit edge was executed.

Definition 5. Let P be a DAG protocol specification. An agent P is honest in
an execution ρ of P, if all states s of the restricted execution ρP satisfy the
following conditions:

1. s contains at most one exit edge.

2. If s contains no exit edge, then s is causally closed.

3. If s contains an exit edge e = (v, w), µ(e) = exit, then v 6∈ s and s \ {e} is
causally closed.

8

A dishonest agent is only limited by the execution model. Thus a dishonest
agent can send its messages at any time and in any order, regardless of the causal
precedence given in the protocol specification. A dishonest agent can execute
multiple exit edges and may send and receive messages causally following an
exit edge. Dishonest agents are controlled by a single adversary, their knowledge
is shared with the adversary. The adversary can delay or block messages sent
from one agent to another, but the adversary cannot prevent messages between
agents and the TTP from being delivered eventually. All communication channels
are authentic and confidential.

4.3 Communication Complexity

To define measures for expressing the communication complexity of DAG pro-
tocols, we introduce the notion of closed executions. A closed execution is a
complete execution of the protocol by honest agents.

Definition 6. Let P = (V,E, r, µ, δ) be a protocol specification and (SP , L, ,s0)
be the semantics for P. Given ρ = [s0, α1, s1, . . . , αl, sl] ∈ Exe(P), we say that ρ
is closed if the following three conditions are satisfied

1. si is causally closed, for every 0 ≤ i ≤ l,
2. αi 6= exit, for every 1 ≤ i ≤ l,
3. @α ∈ L \ {exit} , s ∈ SP : ρ · [α, s] ∈ Exe(P).

The set of all closed executions of P is denoted by ExeC(P).

Let ρ = [s0, α1, s1, . . . , αl, sl] be an execution of a protocol P. By |ρ|send we
denote the number of labels αi, for 1 ≤ i ≤ l, such that αi = send .

Lemma 2. For any two closed executions ρ and ρ′ of a protocol P we have
|ρ|send = |ρ′|send .

The proof is given in the appendix. The first measure expressing the complexity
of a protocol P is called message complexity. It counts the overall number of
messages that have been sent in a closed execution of a protocol P.

Definition 7. Let P be a protocol specification and let ρ ∈ ExeC(P). The mes-
sage complexity of P, denoted by MCP , is defined as MCP = |ρ|send .

Lemma 2 guarantees that the message complexity of a protocol is well defined.
The second complexity measure is called parallel complexity. It represents

the minimal time of a closed execution assuming that all events which can be
executed in parallel are executed in parallel. The parallel complexity of a protocol
is defined as the length of a maximal chain of causally related send edges.

Definition 8. The parallel complexity of a protocol P, denoted by PCP , is
defined as

PCP = max
n∈N

∃[e1,e2,...,en]∈E∗ : ∀1≤i≤n : µ(ei) = send ∧ ∀1≤i<n : ei ≺ ei+1.

9

Example 1. The message complexity of the first protocol in Figure 1 is 4, which
is known to be optimal for two signers [19]. Its parallel complexity is 4, too. The
message complexity of the other two protocols is 6, but their parallel complexity
is 3, which is optimal for broadcasting protocols with two signers [3].

5 DAG MPCS protocols

We now define a class of optimistic MPCS protocols in the DAG protocol model.

5.1 Main Protocol

The key requirements we want our DAG MPCS protocol specification to satisfy,
stated formally in Definition 9, are as follows. The messages exchanged between
signers in the protocol are of two types, promises, denoted by ℘(), and signatures,
denoted by S(). Every promise contains information about the vertex from which
it is sent. This is done by concatenating the contract C with the vertex v the
promise originates from and is denoted by (C, v). The signers can contact the
TTP at any time. This is modeled with exit edges: Every vertex v ∈ V such
that r(v) ∈ A (the set of all signers) is adjacent to a unique vertex vT ∈ V ,
r(vT) = T. The communication with T is represented by δ. The set of vertices
with outgoing signature messages is denoted by SigSet .

Definition 9. Let P = (V,E, r, µ, δ) be a protocol specification, A ⊂ R be a
finite set of signers, C be a contract, and SigSet ⊆ V . P is called a DAG MPCS
protocol specification for C, if 4

1. ∃! vT ∈ V : r(vT) = T ∧ ∀v ∈ V \ {vT} : (v, vT) ∈ E,

2. ∀v, w ∈ V : v ≺ w ⇒ (v, w) ∈ E ∨ ∃u ∈ V : v ≺ u ≺ w ∧ r(u) ∈ {r(v), r(w)},
3. ∀(v, w) ∈ E : µ(v, w) =

ε, if r(v) = r(w),

exit, if w = vT,

Sr(v)(C), if v ∈ SigSet ∧ r(v) 6= r(w) 6= T,

℘r(v)(C, v, r(w),T), else.

4. δ : M∗ →
{

“abort”, (SP (C))P∈A
}

, where (SP (C))P∈A denotes a list of sig-
natures on C, one by each signer.

We write SigSet(P) for the largest subset of SigSet which satisfies

v ∈ SigSet(P)⇒ ∃w ∈ V : (v, w) ∈ E,µ(v, w) ∈M.

The set SigSet(P) is called the signing set.

10

A4A3

A2

A1 C1 C3

C2

Bq

B1

B2

B3 B4

(a) Skeletal graph.

A4A3

A2

A1 C1 C3

C2

Bq

B1

B2

B3 B4

(b) Full graph.

Fig. 2: Skeletal and full representation of a DAG MPCS protocol.

We represent DAG MPCS protocols as skeletal graphs as shown in Figure 2a.
The full graph, shown in Figure 2b, is obtained from the skeletal graph by adding
all edges required by condition 2 of Definition 9 and extending µ according to
condition 3. The ε edges are dashed in the graphs. The shaded vertices in the
graphs indicate the vertices that are in the signing set. We define the knowledge
K(v) of a vertex v to be the set of message edges causally preceding v, and
incoming to a vertex of the same role. The knowledge of a vertex represents the
state right after its receive event.

K(v) = {(w, v′) ∈ E | µ(w, v′) ∈M,v′ � v, r(v′) = r(v)}

We define the pre-knowledge K≺(v) of a vertex v to be K≺(v) = {(w, v′) ∈
K(v) | v′ ≺ v}. The pre-knowledge represents the state just before the vertex’
receive event has taken place. We extend both definitions to sets S ⊆ V :

K(S) =
⋃
v∈S

K(v) and K≺(S) =
⋃
v∈S

K≺(v).

We define the initial set of P, denoted InitSet(P) to be the set of vertices of
the protocol specification for which the pre-knowledge of the same role does not
contain an incoming edge by every other role. Formally,

v ∈ InitSet(P)⇐⇒ {r(w) ∈ A | (w, v′) ∈ K≺(v)} ∪ {r(v)} 6= A

4 We write ∃! for unique existential quantification.

11

The end set of P, denoted EndSet(P), is the set of vertices of the protocol
specification at which the corresponding signer possesses all signatures.

v ∈ EndSet(P)⇐⇒ {r(w) ∈ A | (w, v′) ∈ K(v), w ∈ SigSet(P)} ∪ {r(v)} = A

5.2 Resolve Protocol

Let P = (V,E, r, µ, δ) be a DAG MPCS protocol specification. The resolve
protocol is a two-message protocol between a signer and the TTP T, initi-
ated by the signer. The communication channels for this protocol are assumed
to be resilient, confidential, and authentic. T is assumed to respond imme-
diately to the signer. This is modeled in P via an exit edge from a vertex
v ∈ V \ {vT} to the unique vertex vT ∈ V . T’s response is given by the δ
function, δ : M∗ → {“abort”, (SP (C))P∈A}. If m1, . . . ,mn is the sequence of
messages sent by the signers to T, then δ(m1, . . . ,mn) is T’s response for the
last signer in the sequence. The function will be stated formally in Definition 10.

We denote the resolve protocol in the following by Res(C, v). The signer
initiating Res(C, v) is r(v). He sends the list of messages assigned to the ver-
tices in his pre-knowledge K≺(v), prepended by ℘r(v)(C, v, r(v),T), to T. This
demonstrates that r(v) has executed all receive events causally preceding v. We
denote r(v)’s message for T by pv:

pv =
(
℘r(v)(C, v, r(v),T), (µ(w, v′))(w,v′)∈K≺(v)

)
(1)

The promise ℘r(v)(C, v, r(v),T), which is the first element of pv, is used by T
to extract the contract C, to learn at which step in the protocol r(v) claims to
be, and to create a signature on behalf of r(v) when necessary. All messages re-
ceived from the signers are stored. T performs a deterministic decision procedure,
shown in Algorithm 1, on the received message and existing stored messages and
immediately sends back “abort” or the list of signatures (SP (C))P∈A.

Our decision procedure is based on [10,17]. The input to the algorithm con-
sists of a message m received by the T from a signer and state information
which is maintained by T. T extracts the contract and the DAG MPCS proto-
col specification from m. For each contract C, T maintains the following state
information. A list EvidenceC of all messages received from signers, a set IC of
vertices the signers contacted T from, a set DishonestC of signers considered to
be dishonest, and the last decision made decisionC. If T has not been contacted
by any signer regarding contract C, then decisionC = “abort”. Else, decisionC is
equal to “abort” or the list (SQ(C)Q∈A) of signatures on C, one by each signer.

T verifies that the request is legitimate in that the received message m is
valid and the requesting signer P is not already considered to be dishonest. If
these preliminary checks pass, the message is appended to EvidenceC. This is
described in Algorithm 1 in lines 1 through 9. The main part of the algorithm,
starting at line 10, concerns the detection of signers who have continued the main
protocol execution after executing the resolve protocol. If P has not received a
promise from every other signer in the protocol (i.e. the if clause in line 10 is not

12

satisfied), then T sends back the last decision made (line 17). This decision is an
“abort” token unless T has been contacted before and decided to send back a
signed contract. If P has received a promise from every other signer, T computes
the set of dishonest signers (lines 11 through 13) by adding to it every signer
which has carried out the resolve protocol, but can be seen to have continued
the protocol execution (line 12) based on the evidence the TTP has collected.
If P is the only honest signer that has contacted T until this point in time, the
decision is made to henceforth return a signed contract.

Algorithm 1: TTP decision procedure δ0
input : m, r, decisionC,EvidenceC, IC,DishonestC
output: r, decisionC,EvidenceC, IC,DishonestC

1 if m 6= (℘P (C, v, P,T), list) then
2 r = “abort”;
3 return output;

4 if P ∈ DishonestC ∨ ∀w ∈ V : m 6= pw ∨ ∃w′ ∈ IC : P = r(w′) then
5 DishonestC := DishonestC ∪ {P};
6 r = “abort”;
7 return output;

8 IC := IC ∪ {v};
9 EvidenceC := (EvidenceC,m);

10 if v /∈ InitSet(P) then
11 for w ∈ IC do
12 if w ≺ (w′, x) ∈ K≺(IC) ∧ r(w′) = r(w) then
13 DishonestC := DishonestC ∪ {r(w)};

14 if ∀w ∈ IC : r(w) /∈ DishonestC =⇒ r(w) = P then
15 decisionC := (SQ(C))Q∈A;

16 r = decisionC;
17 return output;

Definition 10. Let P = (V,E, r, µ, δ) be a DAG MPCS protocol specification
and δ0 the TTP decision procedure from Algorithm 1. Then δ : M∗ → M is
defined for m1, . . . ,mn ∈M by

δ(m1, . . . ,mn) = π1(δ1(m1, . . . ,mn)),

where π1 is the projection to the first coordinate and δ1 is defined inductively by

δ1() = (“abort”, “abort”, ∅, ∅, ∅)
δ1(m1, . . . ,mn) = δ0(mn, δ1(m1, . . . ,mn−1)).

Thus the δ function represents the response of the TTP in the Res(C, v)
protocol for all executions of P.

13

5.3 Fairness

We say that a DAG MPCS protocol execution is fair for signer P if one of the
following three conditions is true: (i) No signer has received a signature of P ; (ii)
P has received signatures of all other signers; (iii) P has not received an “abort”
token from the TTP. The last condition allows an execution to be fair as long
as there is a possibility for the signer to receive signatures of all other signers.

The key problem in formalizing these conditions is to capture under which
circumstances the TTP responds with an “abort” token to a request by a signer.
The TTP’s response is dependent on the decision procedure which in turn de-
pends on the order in which the TTP is contacted by the signers. Since the deci-
sion procedure is deterministic, it follows that the δ function can be determined
for every execution ρ = [s0, α1, s1, . . . , sn] by considering the pre-knowledge of
the vertices from which the exit transitions are taken. Abusing notation, we will
write δ(ρ) instead of δ(m1, . . . ,mk) where mi are the messages sent to the TTP
at the i-th exit transition in the execution.

Definition 11. Let T be the TTP. An execution ρ = [s0, α1, . . . , sn] of P is fair
for signer P if one of the following conditions is satisfied:

1. P has not sent a signature and no signer has received signatures from T.

δ(ρ) = “abort” ∧ ∀(v, w) ∈ sn : r(v) = P, r(w) 6= P =⇒ v 6∈ SigSet(P)

2. P has received signatures from all other signers.

∃v ∈ s ∩ EndSet(P) : r(v) = P

3. P has not received an “abort” token from T.

∃(v, w) ∈ s : r(v) = P∧r(w) = T⇒ δ([s0, . . . , sk, exit , sk∪{(v, w)}]) 6= “abort”

If none of these conditions are satisfied, the execution is unfair for P .

Definition 12. An MPCS protocol specification P is said to be fair, if every
execution ρ of P is fair for all signers that are honest in ρ.

5.4 Sufficient and necessary conditions

By the TTP decision procedure, T returns an “abort” token if contacted from a
vertex v ∈ InitSet(P). Thus a necessary condition for fairness is that an honest
signer executes all steps of the initial set causally before all steps of the signing
set that are not in the end set:

∀v ∈ InitSet(P), w ∈ SigSet(P) \ EndSet(P) : r(v) = r(w) =⇒ v ≺ w (2)

If P contacts T from a vertex v 6∈ InitSet(P), then T responds with an “abort”
token if it has already issued an “abort” token to another signer who is not in the
set DishonestC. This condition can be exploited by a group of dishonest signers

14

in an abort chaining attack [16]. The following definition states the requirements
for a successful abort chaining attack. For ease of reading, we define the predicate
hon(v, I). The predicate is true if there is no evidence (pre-knowledge) at the
vertices in I that the signer r(v) has sent a message at or causally after v:

hon(v, I) ≡ ¬∃(x, y) ∈ K≺(I) : v ≺ (x, y) ∧ r(v) = r(x)

This is precisely the criterion used by T to verify honesty in Algorithm 1, line 12.

Definition 13. Let C be a contract and l ≤ |A|. A sequence (v1, . . . , vl | s)
over V is called an abort-chaining sequence (AC sequence) for P if the following
conditions hold:

1. Signer r(v1) receives an abort token: v1 ∈ InitSet(P)

2. No signer contacts T more than once: ∀i6=j r(vi) 6= r(vj)

3. The present and previous signer to contact T are considered honest by T:

∀i ≤ l : hon(vi, {v1, . . . , vi}) ∧ hon(vi−1, {v1, . . . , vi})

4. The last signer to contact T has not previously received all signatures:

∀v ≺ vl : r(v) = r(vl) =⇒ v 6∈ EndSet(P)

5. The last signer to contact T has sent a signature before contacting T or in
a parallel thread:

s ∈ SigSet(P) \ EndSet(P) : r(s) = r(vl) ∧ vl 6� s

The AC sequence represents the order in which signers execute the resolve
protocol with T. A vertex vi in the sequence implies an exit transition via the
edge (vi, vT) in the protocol execution. An abort chaining attack must start at a
step in which T has no choice but to respond with an abort token due to lack of
information. Condition 1 covers this. Each signer may run the resolve protocol
at most once. This is covered by Condition 2. To ensure that T continues to issue
“abort” tokens, Condition 3 requires that there must always be a signer which
according to T’s evidence has not continued protocol execution after contacting
T. To complete an abort chaining attack, there needs to be a signer which has
issued a signature (Condition 5), but has not received a signature (Conditions 4
and 5) and will not receive a signed contract from T because there is an honest
signer (by Condition 3) which has received an “abort” token.

It is not surprising (but nevertheless proven in the appendix) that a protocol
with an AC sequence is unfair. However, the converse is true, too.

Theorem 1. Let P be a DAG MPCS protocol. Then P is fair if and only if it
has no AC sequences.

The proof of this and the following theorems is given in the appendix.

15

A4A3A2A1 C1 C3C2B1 B2 B3 B4

(a) A three-party MPCS protocol from a signing sequence [10].

A4A3

A2
A1 C1 C3

C2

Bq

B1

B2
B3 B4

(b) Adding a vertex

A4A3

A2
A1 C1 C3

C2

Bq

B1
B2

B3 B4

(c) Adding an ε edge.

Fig. 3: Skeletal graphs of fair protocols (a, c) and an unfair protocol (b).

5.5 Fairness criteria

Theorem 1 reduces the verification of fairness from analyzing all executions to
verifying that there is no AC-sequence (Definition 13). This, however, is still
difficult to verify in general. The following two results are tools to quickly assess
fairness of DAG MPCS protocols. The first is an unfairness criterion and the
second is a fairness criterion for a large class of DAG MPCS protocols.

The following theorem states that in a fair DAG MPCS protocol, the union
of paths from the initial set to every vertex v ∈ SigSet(P) must contain all
permutations of all signers (other than r(v)) as subsequences. In the class of
linear MPCS protocols, considered in [10], this criterion was both necessary and
sufficient. We show in Example 2 below that this criterion is not sufficient for
fairness of DAG MPCS protocols.

For I ⊆ V , v ∈ V , we denote by path(I, v) = {(v1, . . . , vk) ∈ V ∗ | v1 ∈ I, vk =
v,∀1≤i<k : (vi, vi+1) ∈ E} the set of all directed paths from a vertex in I to v. If
p = (v1, . . . , vk) is a sequence of vertices, we denote by r(p) = (r(v1), . . . , r(vk))
the corresponding sequence of signers. The sequences of signers corresponding
to the paths from I to v is denoted by seq(I, v) = {r(p) ∈ A∗ | p ∈ path(I, v)}.

Theorem 2. Let k = |A|. Let P be an optimistic fair DAG MPCS protocol,

I = {v ∈ InitSet(P) | (v ≺ w ∧ r(v) = r(w))⇒ w 6∈ InitSet(P)} .

If v ∈ SigSet(P), then for every permutation (P1, . . . , Pk−1) of signers in A \
{r(v)}, there exists a sequence in seq(I, v) which contains (P1, . . . , Pk−1) as a
(not necessarily consecutive) subsequence.

The converse of the theorem is not true as the following example shows. In
particular, this example demonstrates that the addition of a vertex to a fair
DAG MPCS protocol does not necessarily preserve fairness.

16

Example 2. The protocol in Figure 3a is fair by the results of [10]. By Theorem 2,
for every vertex v ∈ SigSet(P) every permutation of signers in A \ {P} occurs
as a subsequence of a path in seq(I, v). The protocol in Figure 3b is obtained
by adding the vertex Bq as a parallel thread of signer B. Thus the permutation
property on the set of paths is preserved, yet the protocol is not fair: An AC
sequence is (Bq, C3, A4|A3). The vertex Bq is in InitSet(P), the evidence pre-
sented to the TTP at C3 includes the vertices causally preceding C2, thus B
is considered to be honest. The evidence presented by signer A at A4 are the
vertices causally preceding A3 proving that B is dishonest, but C is honest. Thus
A has sent a signature at A3 but will not receive signatures from B and C.

If a protocol has no in-role parallelism, then the converse of Theorem 2 is
true. Thus we have a simple criterion for the fairness of such protocols.

Theorem 3. Let P be an optimistic DAG MPCS protocol without in-role par-
allelism. Let

I = {v ∈ InitSet(P) | (v ≺ w ∧ r(v) = r(w))⇒ w 6∈ InitSet(P)} .

If all paths from I to v ∈ SigSet(P) contain all permutations of A \ {r(v)} then
P is fair for r(v).

Example 3. By adding a causal edge between vertex Bq and vertex B2 of the
protocol in Figure 3b, as shown in Figure 3c, we obtain again a fair protocol.

6 Protocols

In this section we illustrate the theory and results obtained in the preceding
sections by proving optimality results and constructing a variety of protocols.

6.1 Minimal complexity

We prove lower bounds for the two complexity measures defined in our model,
viz. parallel and message complexity.

Theorem 4. The minimal parallel complexity for an optimistic fair DAG MPCS
protocol is n+ 1, where n is the number of signers in the protocol.

Proof. By Theorem 2, every permutation of signers in the protocol must occur
as a subsequence in the set of paths from a causally last vertex in the initial set
to a vertex in the signing set. Since a last vertex v in the initial set must have a
non-empty knowledge K(v), there must be a message edge causally preceding v.
There are at least n− 1 edges in the path between the vertices associated with
the n signers in a permutation and there is at least one message edge outgoing
from a vertex in the signing set. Thus a minimal length path for such a protocol
must contain n+ 1 edges.

17

A B C D

sss
s ss ss s

ss
s

Fig. 4: A minimal 4-party fair broadcasting protocol.

The minimal parallel complexity is attained by the broadcast protocols of
Baum-Waidner and Waidner [2]. An example is shown in Figure 4.

Theorem 5. The minimal message complexity for an optimistic fair DAG MPCS
protocol is λ(n) + 2n − 3, where n is the number of signers in the protocol and
λ(n) is the length of the shortest sequence which contains all permutations of
elements of an n-element set as subsequences.

The minimal message complexities for 2 < n < 8 are n2 + 1. The minimal
message complexities for n ≥ 10 are smaller or equal to n2.

Note that while broadcasting protocols have a linear parallel complexity,
they have a cubic message complexity, since in each of the n + 1 rounds each
of the n signers sends a message to every other signer. Linear protocols on the
other hand have quadratic minimal message and parallel complexities. In the
following we demonstrate that there are DAG protocols which attain a linear
parallel complexity while maintaining a quadratic message complexity.

6.2 Protocol constructions

Single contractor, multiple subcontractors. A motivation for fair MPCS protocols
given in [10] is a scenario where a single entity, here referred to as a contractor,
would like to sign k contracts with k independent companies, in the following
referred to as subcontractors. The contractor has an interest in either having all
contracts signed or to not be bound by any of the contracts. The subcontrac-
tors have no contractual obligations towards each other. It would therefore be
advantageous if there is no need for the subcontractors to directly communicate
with each other.

The solutions proposed in [10] are linear protocols. Their message and parallel
complexities are thus quadratic. Linear protocols can satisfy the requirement
that subcontractors do not directly communicate with each other only by greatly
increasing the message and parallel complexities.

The protocol we propose here is a DAG, its message complexity is 2(n +
1)(n−1) and its parallel complexity is 2n+2 for n signers. It therefore combines

18

A S1 S2 S3

s s s

s s s

(a) A single contractor and
three subcontractors.

L A B R

s s
s

s
s s

(b) Two joint subcontractors.

Fig. 5: Two examples of novel, fair DAG MPCS protocols.

the low parallel complexity typically attained by broadcasting protocols with the
low message complexity of linear protocols. Additionally, the protocol proposed
does not require any direct communication between subcontractors.

Figure 5a shows a single contractor with three subcontractors. The protocol
can be subdivided into five rounds, one round consisting of the subcontractors
sending a message to the contractor followed by the contractor sending a message
to the subcontractors. In the first four rounds promises are sent, in the final round
signatures are sent. The protocol can be easily generalized to more than three
subcontractors. For every subcontractor added, one extra round of promises
needs to be included in the protocol specification.

The protocol is fair by Theorem 3. The MSC shown in Figure 5a resembles the
skeletal graph from which it was built. The message contents can be derived by
computing the full graph according to Condition 2 of Definition 9. The result is
as follows. In each round of the protocol, each of the subcontractors sends to the
contractor a promise for the contractor and for each of the other subcontractors.
The contractor then sends to each of the subcontractors all of the promises
received and his own promise. The final round is performed in the same manner,
except that promises are replaced by signatures.

Two contractors with joint subcontractors. Figure 5b shows a protocol where
two contractors want to sign a contract involving two subcontractors. The sub-
contractors are independent of each other.

After the initial step, where all signers send a promise to the first contractor
A, there are three protocol rounds, one round consisting of the contractor A
sending promises to the two subcontractors L and R in parallel which in turn
send promises to the second contractor B. A new round is started with the second
contractor sending the promises received with his own promise to contractor A.

19

This protocol, too, can be generalized to several independent subcontractors.
For every subcontractor added, one extra protocol round needs to be included in
the protocol specification and each protocol step of the subcontractors executed
analogously.

L A R

s s
s s

ss

Fig. 6: In-role parallelism.

Parallelism within a role. Figure 6 shows an example of a subcontracting pro-
tocol with in-role parallelism for the contractor role. The contractor initiates
the protocol. In the indicated parallel phase, the contractor may immediately
forward a promise by one of the subcontractors along with his own promise to
the other subcontractor without waiting for the latter subcontractor’s promise.
The same is true in the signing phase. The fairness property for this protocol
has been verified with a tool (described in Appendix A) which tested fairness
for each signer in all possible executions.

7 Conclusion

We have identified fair subcontracting as a challenging new problem in the area
of multi-party contract signing. We have made first steps towards solving this
problem by introducing DAG MPCS protocols and extending existing fairness
results from linear protocols to DAG protocols. For three typical subcontracting
configurations we propose novel DAG MPCS protocols that perform well in
terms of message complexity and parallel complexity. Fairness of our protocol
schemes follows directly from our theoretical results and we have verified it for
concrete protocols with our automatic tool.

There are a number of open research questions related to fair subcontracting
that we haven’t addressed. We mention two. The first concerns the implemen-
tation of multi-contracts. In our current approach we consider a single abstract
contract shared by all parties. However, in practice such a contract may con-
sist of a number of subcontracts that are accessible to the relevant signers only.
How to cryptographically construct such contracts and what information these
contracts should share is not evident. Second, a step needs to be made towards
putting our results into practice. Given the application domains identified in

20

this paper, we must identify the relevant signing scenarios and topical boundary
conditions in order to develop dedicated protocols for each application area.

Acknowledgement

We thank Barbara Kordy for her many helpful comments on this paper.

References

1. N. Asokan. Fairness in electronic commerce. PhD thesis, Univ. of Waterloo, 1998.

2. B. Baum-Waidner and M. Waidner. Optimistic asynchronous multi-party contract
signing. Research Report RZ 3078 (#93124), IBM Zurich Research Laboratory,
Zurich, Switzerland, November 1998.

3. B. Baum-Waidner and M. Waidner. Round-optimal and abuse free optimistic
multi-party contract signing. In Automata, Languages and Programming — ICALP
2000, volume 1853 of LNCS, pages 524–535. Springer, July 2000.

4. R. Chadha, S. Kremer, and A. Scedrov. Formal analysis of multi-party contract
signing. In CSFW’04, page 266, Washington, DC, USA, 2004. IEEE.

5. S. Even and Y. Yacobi. Relations among public key signature systems. Technical
Report 175, Computer Science Dept., Technion, Haifa, Isreal, March 1980.

6. J. Garay, M. Jakobsson, and P. MacKenzie. Abuse-free optimistic contract signing.
In CRYPTO’99, volume 1666 of LNCS, pages 449–466. Springer, Aug. 1999.

7. J. A. Garay and P. D. MacKenzie. Abuse-free multi-party contract signing. In 13th
Int. Symp. Distr. Computing, volume 1693 of LNCS, pages 151–165. Springer, 1999.

8. P. Karaenke and S. Kirn. Towards model checking & simulation of a multi-tier
negotiation protocol for service chains. In AAMAS 2010, pages 1559–1560. Int.
Found. for Autonomous Agents and Multiagent Systems, 2010.

9. E. Katok and V. Pavlov. Fairness in supply chain contracts: a laboratory study.
J. of Operations Management, 31:129–137, 2013.

10. B. Kordy and S. Radomirović. Constructing optimistic multi-party contract signing
protocols. In CSF 2012, pages 215–229. IEEE Computer Society, 2012.

11. S. Kraus. Automated negotiation and decision making in multi-agent environ-
ments. In ACM multi-agent systems and applications, pages 150–172, 2001.

12. H. Krishnan and R. Winter. The economic foundations of supply chain contracting.
Foundations and Trends in Technology, Information and Operations Management,
5(3-4):147–309, 2012.

13. K. Lu, R. Yahyapour, E. Yaqub, and C. Kotsokalis. Structural optimisation of
reduced ordered binary decision diagrams for SLA negotiation in IaaS of cloud
computing. In ICSOC 2012, volume 7636 of LNCS, pages 268–282. Springer, 2012.

14. S. Mauw and S. Radomirović. Generalizing Multi-party Contract Signing. In
POST 2015, 2015.

15. S. Mauw, S. Radomirović, and M. T. Dashti. Minimal message complexity of
asynchronous multi-party contract signing. In CSF’09, pages 13–25. IEEE, 2009.

16. A. Mukhamedov and M. Ryan. Improved multi-party contract signing. In Financial
Cryptography, volume 4886 of LNCS, pages 179–191. Springer, 2007.

17. A. Mukhamedov and M. D. Ryan. Fair multi-party contract signing using private
contract signatures. Inf. Comput., 206(2-4):272–290, 2008.

21

18. S. Radomirović. A construction of short sequences containing all permutations of a
set as subsequences. Electronic J. of Combinatorics, 19(4):Paper 31, 11 pp., 2012.

19. M. Schunter. Optimistic Fair Exchange. Phd thesis, Universität des Saarlandes,
2000.

20. R. Seifert, R. Zequiera, and S. Liao. A three-echelon supply chain with price-only
contracts and sub-supply chain coordination. Int. J. of Production Economics,
138:345–353, 2012.

21. E. Yaqub, P. Wieder, C. Kotsokalis, V. Mazza, L. Pasquale, J. Rueda, S.G.Gómez,
and A. Chimeno. A generic platform for conducting SLA negotiations. In Service
Level Agreements for Cloud Computing, pages 187–206. Springer, 2011.

22. Y. Zhang, C. Zhang, J. Pang, and S. Mauw. Game-based verification of contract
signing protocols with minimal messages. Innovations in Systems and Software
Engineering, 8(2):111–124, 2012.

A DAG MPCS Verification Tool

We have developed a prototype tool in Python 2 that model checks a skeletal
protocol graph for the fairness property (Definition 11) in the execution model
defined in Section 4.1. The tool, along with specifications for the protocols pre-
sented in this paper, is available at http://people.inf.ethz.ch/rsasa/mpcs.

The tool’s verification procedure works directly on the execution model and
the TTP decision procedure (Algorithm 1). It therefore provides evidence for
the correctness of the protocols shown in Section 6, independent of the fairness
proofs given in this paper.

The verification is performed as follows. For each specified signer, the tool
analyzes a set of executions in which the signer is honest and all other signers
dishonest. The tool does not analyze all possible executions. It starts the analysis
from the state where all promises of dishonest signers have been sent, but no
protocol step has been performed by the honest signer. By analyzing this type of
executions only, we do not miss any attacks, because the honest signers’ fairness
is not invalidated until he has sent a signature. In this reduced set of executions,
the dishonest signers retain the possibility to contact the TTP from any of their
vertices and all these possibilities are explored by the tool.

We note that the same type of verification could be achieved with an off-
the-shelf model checker and we would expect better performance in such a case.
However, the code complexity and room for error when encoding a given protocol
and TTP decision procedure in a model checker’s input language is comparable
to the code complexity of this self-contained tool.

B Technical Details and Proofs

B.1 Technical Details

Parallelism within a role The MPCS protocols designed in this work allow
for parallelism during the execution of the protocol. The specification language
allows even for parallel threads to occur within a signer role. This allows us

22

http://people.inf.ethz.ch/rsasa/mpcs

to model the case where a signer role represents multiple branches of the same
entity. A signature issued by any branch represents the signature of the entire
entity. We expect that the signing processes across branches are not easily syn-
chronizeable with each other. Such parallelism can be implemented in multiple
ways. We discuss the various options and explain the choices made for this paper.

The first decision to be made is whether parallel threads of a signer role
should be assumed to have shared knowledge. In this paper, we choose the weaker
assumption: memory for a signer’s parallel threads is local to the threads. This is
in accordance with our expectation that parallel-threads are not easily synchro-
nizeable and allows us, for instance, to specify and analyze protocols in which
representatives of a signing entity can independently carry out parallel protocol
steps without the need to communicate and synchronize their combined knowl-
edge. Causal dependence between two actions of a signer is explicitly indicated
in the protocol specification.

This design decision leads to three options for handling protocol failures.

1. All threads of a signer immediately synchronize and stop executing whenever
any of the threads intends to issue a resolve request to the TTP. A designated
resolution process per signer will be required to continuously schedule all
threads and take care of the interaction with the TTP.

2. Threads of a signer contact the signer’s designated resolution process only
when they intend to issue a resolve request. The resolution process will take
of contacting the TTP (only once per signer) and distributing the TTP’s
reply upon request of the threads.

3. Threads of a signer are considered fully independent. A signer’s threads are
not orchestrated. The TTP may take into account that two requests can
originate from the same signer, but from different (causally not related)
threads.

In this paper we adopt the second option, which keeps the middle between
the fully synchronized and fully desynchronized model. This will on the one
hand allow for independent parallel execution of the threads and on the other
hand minimize the impact of the signer’s threading on the TTP’s logic. From an
abstract point of view, one could even argue that the second and third option
are equivalent if we consider the signer’s designated resolution processes just as
part of a distributed TTP. We assume that the communication between a thread
and the designated resolution process is resilient.

The class of DAG MPCS protocols The class of DAG MPCS protocols
defined in Section 5 is restricted by condition 2 of Definition 9. It requires that
every signer P sends a message to all subsequent, causally following signers
occurring before signer P ’s next step. While there are fair DAG MPCS protocols
which do not belong to this restricted class, such protocols are not going to have
a lower communication complexity. The reason for this is that each message
received by a signer serves as evidence for the TTP that the sender has executed
the protocol up to a certain step. Skipping such a message thus lengthens the
protocol, because the evidence is available only at a later vertex.

23

Furthermore, the restriction simplifies the reasoning about fairness in that
causal precedence v ≺ w between vertices v, w is enough to guarantee that
there is a message sent from signer r(v) to signer r(w) at some point between
the execution of v and the execution of w. Finally, it also permits one to design,
characterize, and represent protocols using skeletal graphs rather than full graphs
as displayed in Figure 2.

B.2 Proofs

The set maxset(S) = {v ∈ S | ∀w ∈ V : v ≺ w ⇒ w 6∈ S} is the set of vertices
in S which do not have any causally following vertices in S and we will refer
to it as the set of maximal vertices of S. Similarly, minset(S) = {v ∈ S | ∀w ∈
V : w ≺ v ⇒ w 6∈ S} is the set of vertices in S which do not have any causally
preceding vertices in S and will be referred to as the set of minimal vertices of
S.
Theorem. If there exists an AC sequence for a DAG MPCS protocol, then the
protocol is not fair.

Proof. Conditions 1 through 3 imply that the TTP decision procedure leads to
an “abort” token for the last signer to contact the TTP. The remaining two
conditions imply that the last signer has sent a signature, but not received a
signature.

To complete the proof, we need to construct an execution in which the exit
transitions occur in the order indicated by the AC sequence and signer r(vl) is
honest. Let (v1, . . . , vl | v) be an AC sequence. For each vertex vi in the AC
sequence, let Vi be the causal closure of {v, vi} in V ∪ E. Note that the union
of causally closed sets is causally closed. Let ρi be the sequence of transitions⋃
j<i Vj

α
 . . .

α′

⋃
j≤i Vj without exit transitions and such that all states are

causally closed.
For 1 ≤ i ≤ l and ρi = [s0, α1, . . . , sk], let ρ′i = [s0∪{(v1, vT), . . . , (vi−1, vT)},

α1, . . . , sk ∪ {(v1, vT), . . . , (vi−1, vT)}, exit]. That is, ρ′i is equal to ρi, except for

an additional exit transition s
exit
 s ∪ {(vi, vT)} and additional exit edges in all

states which stem from exit transitions added to ρ′1, . . . , ρ
′
i−1. Finally, for ρ′l =

[s0, α1, . . . , sk, exit], let ρ′′l = [s0\{vl} , α1, . . . , sk\{vl} , exit , sk∪{(vl, vT)}\{vl}].
Then ρ = ρ′1 · · · ρ′l−1 · ρ′′l is an execution in which signer r(vl) is honest, since

the restricted execution is by construction causally closed in all states before the
last state and the single exit transition occurs in the last transition.

Unfairness for r(vl) follows since r(vl) has sent a signature at v, not received
all signatures from the other signers and received an “abort” from the TTP.

Proof (of Lemma 2). Let ρ = [s0, α1, s1, . . . , αl, sl] be an execution of P. It is
sufficient to show that if ρ is closed, it contains all send events exactly once.
According to Definition 3, we know that for every i ∈ {0, . . . , l − 1} we have

si
αi+1
 si+1 =⇒ si 6= si+1. This implies that, in any execution, each step

of the protocol (in particular every send event) can be executed at most once.

24

Furthermore, if ρ is closed, the third condition from Definition 6 implies that,
every send event has already occurred in ρ. Otherwise, there exists e ∈ E such
that µ(e) = send and ρ can be extended to ρ · [send , sl ∪ {e}] ∈ Exe(P), which
contradicts the closedness of ρ.

Lemma 3. Let P be an optimistic fair DAG MPCS protocol. Let v, v′, v′′ be
pairwise distinct vertices assigned to the same signer such that

1. v ∈ SigSet(P) \ EndSet(P),

2. v′′ is a maximal common ancestor of v and v′, i.e., v′′ ≺ w ≺ v, v′ ⇒ r(w) 6=
r(v), and

3. for every signer P 6= r(v) there exists a vertex w � v′′ with r(w) = P .

Then for every permutation (P1, . . . , Pk−1) of signers in A \ {r(v)}, there ex-
ists a sequence in seq(I, v′′) which contains (P1, . . . , Pk−1) as a (not necessarily
consecutive) subsequence.

Proof. Suppose there exists a permutation (P1, . . . , Pk−1) of signers in A\{r(v)}
which is not a subsequence of any sequence in seq(I, v′′). We construct an AC
sequence as follows. Let V1 be the set of all vertices of P1 in I. For i > 1, let Vi
be the minset of all vertices of Pi which causally follow a vertex of Vi−1, i.e. Vi =
minset({w ∈ V | r(w) = Pi ∧ ∃w′ ∈ Vi−1 : w′ ≺ w}). Since for every signer there
exists a vertex which causally follows v′′, it follows that for some j, there exists
a vertex vj ∈ Vj with v′′ ≺ vj . (Else we have contradiction to the assumption
that (P1, . . . , Pk−1) is a missing permutation in seq(I, v′′).) Thus we obtain a
sequence (v1, . . . , vj , w|v), where v′′ ≺ w � v′, r(w) = r(v), which is an AC
sequence.

Proof (of Theorem 2). It suffices to verify the statement for a subset of all
vertices in SigSet(P) by the following two facts: Fact 1: Let v ∈ SigSet(P)
be a causally earliest vertex of a signer from which a signature is sent, i.e.
∀w ∈ SigSet(P) : w ≺ v ⇒ r(w) 6= r(v). If seq(I, v) contains all permutations
of signers in A \ {r(v)}, then seq(I, w) contains all such permutations of signers
for all w � v with r(w) = r(v). Fact 2: If v ∈ SigSet(P) such that for every
signer P ∈ A \ {r(v)} there is a vertex w ≺ v for which seq(I, w) contains all
permutations of signers in A \ {r(w)}, then seq(I, v) contains all permutations
of signers in A \ {r(v)}.

Thus, we may assume that v ∈ SigSet(P) is a causally earliest vertex of
a signer from which a signature is sent (by Fact 1) and that v 6∈ SigSet(P) \
EndSet(P) (by Fact 2).

Since v is a causally earliest vertex of a signer from which a signature is
sent, it follows by the fact that the protocol is optimistic that for every signer
other than r(v) there exists a vertex which causally follows v or that there exists
another vertex v′′ of signer r(v) from which a signature is sent such that v′′ � v
and v � v′′. We consider these two cases separately.

1. For every signer other than r(v), there exists a vertex which causally follows
v.

25

We split this case into two separate subcases depending on whether there
exists a vertex v′ of signer r(v) which causally follows v.
(a) ∃v′ � v : r(v′) = r(v). Let (P1, . . . , Pk−1) be a permutation of signers in

A\{r(v)} and suppose towards a contradiction that the permutation does
not appear as a subsequence of any sequence in seq(I, v). We construct
an AC sequence as follows. Let V1 be the set of all vertices of P1 in I.
For i > 1, let Vi be the minset of all vertices of Pi which causally follow
a vertex of Vi−1, i.e. Vi = minset({w ∈ V | r(w) = Pi ∧ ∃w′ ∈ Vi−1 :
w′ ≺ w}).
Since for every signer there exists a vertex which causally follows v, it fol-
lows that for some j there exists a vertex vj ∈ Vj with v ≺ vj , else we have
contradiction to the assumption that the permutation (P1, . . . , Pk−1) is
not a subsequence of any sequence in seq(I, v).
By construction, there exists a vertex in Vj−1 which causally precedes vj
and thus we obtain a sequence (v1, . . . , vj , v

′|v) which is an AC sequence.
(b) ¬∃v′ � v : r(v′) = r(v).

Since the protocol is optimistic, there exists a vertex assigned to signer
r(v) such that v′ ∈ EndSet(P). Since v 6∈ EndSet(P), it follows that v′ is
not causally related to v. By the remark preceding Lemma 3, there exists
a common ancestor v′′ or v and v′ and v, v′, v′′ satisfy the hypothesis of
the Lemma. Thus there exists a vertex w causally preceding v such that
seq(I, w) contains all permutations of signers in A\{r(v)} and therefore
seq(I, v) contains all such permutations.

2. There are causally unrelated vertices of signer r(v) from which signatures
are sent.
Let v′ 6= v be such a vertex. By Equation (2) in Section 5.4, there is a vertex
w assigned to signer r(v) which causally precedes all vertices of r(v) which
are in SigSet(P). Let v′′ be a maximal such vertex, i.e. for any vertex w′

assigned to signer r(v), there exists a vertex in SigSet(P) of signer r(v) which
does not causally follow v′′.
Since the protocol is optimistic, for every signer P in the protocol, there
exists a vertex w′′, r(w′′) = P which causally follows v′′.
Then the vertices v, v′, v′′ satisfy the hypothesis of Lemma 3, thus there exists
a vertex w causally preceding v such that seq(I, w) contains all permutations
of signers in A\{r(v)} and therefore seq(I, v) contains all such permutations.

Proof (of Theorem 3). Suppose that the protocol is not fair. Consider a short-
est AC sequence, (v1, . . . , vl|), r(vl) = r(v). Since the sequence is a shortest
sequence, we have that v2 6∈ InitSet(P), else (v2, . . . , vl|) would be a shorter AC
sequence. Consider the permutation of signers (P1, . . . , Pl) corresponding to the
AC sequence, i.e. Pi = r(vi).

Let wl be the unique vertex in

minset({w ∈ SigSet(P) | r(w) = r(vl)}).

Existence of a vertex in the set follows from the fact that the protocol is opti-
mistic, uniqueness follows from the fact that there is no in-role parallelism, i.e.

26

the vertices assigned to a particular signer are totally ordered. By hypothesis,
the set of paths from I to wl contains all permutations of signers A \ {r(v)}. Let
u1, . . . , ul be the vertices associated with one such permutation. Note that either
u1 ∈ I or we can find u′1 ∈ I, u′1 ≺ u1 and r(u′1) = u1. Thus we may assume
u1 ∈ I. We have ul � wl ≺ vl. We also have wl ≺ vl−1 ≺ vl, else condition 3 for
(v1, . . . , vl|) being an AC sequence (Definition 13) would be violated.

Thus we have ul � wl ≺ vl−1 ≺ vl. This forms the basis for the inductively
constructed sequence w1, . . . , wl: Given wi+1, . . . , wl, satisfying ui+1 � wi+1 ≺
vi ≺ vi+1, let wi be the unique vertex in maxset({w ≺ wi+1 | r(w) = r(vi)}).
Existence of a vertex in the set follows from ui ≺ ui+1 � wi+1 and uniqueness
follows from the lack of in-role parallelism. By construction, ui � wi ≺ vi. If
i > 1, then we also have ui � wi ≺ vi−1 ≺ vi, else condition 3 for (v1, . . . , vl|)
being an AC sequence (Definition 13) would be violated.

Thus, we have constructed a sequence w1, . . . , wl satisfying u1 � w1 ≺ w2 ≺
v1 ≺ v2. This is not possible, since r(u1) = r(v1) and u1 ≺ v1 ∈ InitSet(P),
contradicting u1 ∈ I.

Lemma 4. Let G = (V,E) be the DAG of a fair optimistic DAG MPCS protocol
for two or more signers. Let G′ = (V ′, E′), where V ′ = V \ {vT} and E′ =
E \ {(v, w) ∈ E | v = vT ∨ w = vT}, be the DAG obtained by removing the TTP
vertex and corresponding edges. Then G′ is a single connected component.

Proof. Suppose there are more than one connected components in G′. Let v ∈
SigSet(P) be a causally earliest vertex from which a signature is sent, i.e. ∀w ∈
V : w ≺ v ⇒ w 6∈ SigSet(P).

Let w be a vertex in the InitSet(P) of a different connected component than
v. We have two cases:

– r(w) = r(v). Then (w|v) is an AC sequence.
– r(w) 6= r(v). Let v′ be a vertex such that r(v) = r(v′) and v′ � v. Such a

vertex exists, because the protocol is optimistic, thus there must be a vertex
of signer r(v) receiving a signature. But such a vertex cannot precede v,
because v is a causally earliest vertex from which a signature is sent.
Consider two cases:
• w ⊀ v′: Then (w, v′|v) is an AC sequence.
• w ≺ v′: Then w and v′ are in the same connected component and v is

in another connected component. If v′ 6∈ InitSet(P), then let v′′ ≺ v′ be
such that r(v′) = r(v′′) and v′′ ∈ InitSet(P). Else let v′′ = v′.
Then (v′′|v) is an AC sequence.

Proof (of Theorem 5). The minimal message complexity has been derived for
optimistic fair linear protocols in [10, 15]. Since these protocols are a subset of
DAG MPCS protocols we see that the same message complexity can be attained.
We need to show that there are no optimistic DAG MPCS protocols with lower
message complexity. By Theorem 2, every permutation of signers in the protocol
must occur as a subsequence in the set of paths from a maximal vertex of the
set of vertices of a signer in the initial set to a vertex in the signing set.

27

Consider any fair optimistic DAG MPCS protocol P = (V,E, r, µ, δ). Con-
struct a linear DAG (V,E′) by choosing any topologically sorted list (v1, . . . , vk)
of the vertices in (V,E) and setting E′ = {(vi, vi+1)|1 ≤ i ≤ k}. Since all permu-
tations of signers occur along the paths in the DAG (V,E) under the labelling
r : V → A, they also occur in the topologically sorted list (v1, . . . , vk) under the
same labelling. Since the DAG is a single connected component by Lemma 4,
the number of edges in E′ is smaller or equal to the number of edges in E. Thus
the message complexity of P is greater than or equal to the message complexity
of a protocol based on the linear DAG (V,E′).

The specific numbers for message complexity follow from [10,18].

28

	Generalizing Multi-party Contract Signing

