
MESSAGE SEQUENCE CHARTSIN THE SOFTWARE ENGINEERING PROCESSS. MAUW and M.A. RENIERS and T.A.C. WILLEMSEDepartment of Mathemati
s and Computing S
ien
e, Eindhoven University of Te
hnologyP.O. Box 513, NL-5600 MB Eindhoven, The NetherlandsThe software development pro
ess bene�ts from the use of Message Sequen
e Charts(MSC), whi
h is a graphi
al language for displaying the intera
tion behaviour of a system.We des
ribe 
anoni
al appli
ations of MSC independent of any software developmentmethodology. We illustrate the use of MSC with a 
ase study: the Meeting S
heduler.Keywords: Message Sequen
e Chart, software engineering pro
ess, groupware.1. Introdu
tionThe 
ommon agreement is that software engineering is a diÆ
ult dis
ipline. Despitethe methodologies that des
ribe the partitioning of the software engineering traje
-tory into phases in
luding the deliverables for ea
h phase and te
hniques that 
an beapplied in these phases, a great number of industrial software engineering proje
tsen
ounter unanti
ipated problems. Unfortunately, pinpointing the exa
t 
auses forthese problems is not always possible, but there are a few well known issues thatgive rise to these problems. Among these issues are the shifts between subsequentphases and version-management of do
umentation and software, but also the morebasi
 
ommuni
ation problems between the 
lient and the engineering team.The language Message Sequen
e Chart (MSC) is a graphi
al language, initiallydeveloped to support the SDL methodology for des
ribing possible s
enarios ofsystems and is standardised by the ITU. In the past de
ade, many features havebeen added to the 
ore language. This 
ulminated in the do
umentation for the mostre
ent version, MSC 2000 [1℄, des
ribing its syntax, semanti
s and its 
onventions.Traditionally, MSC has been used in the area of tele
om oriented appli
ations.There, it has earned its medals for visualising and validating dynami
 behaviour(see the SDL Forum pro
eedings [2, 3, 4, 5, 6℄). However, over the past years,alongside the in
reased expressiveness of the language also the spe
ifying of dynami
behaviour has be
ome a major topi
 of resear
h and pra
ti
e. Being a standardised1



2 S. Mauw and M.A. Reniers and T.A.C. Willemselanguage, one of the main advantages of MSC over 
omparable languages is thatis has been formalised. Moreover, the language is understandable both by thespe
ialist and a layman, i.e. it 
an serve as a medium for 
ommuni
ation betweengroups with di�erent ba
kgrounds. This is parti
ularly useful in the setting ofsoftware engineering.In this paper we will give an overview of the 
anoni
al appli
ations of MSC withinthe software engineering traje
tory, without fo
using on one parti
ular methodol-ogy. This is done by identifying the 
ommonly o

urring phases in a number ofsoftware engineering methodologies, and explaining the appli
ations of MSC in andbetween ea
h phase, based upon this identi�
ation. Some of these appli
ations arealready mu
h used, while other appli
ations are not that straightforward. Whereverpossible, referen
es to literature or ongoing resear
h is provided.In order to present more than an abstra
t framework, in this paper a relativelytrivial 
ase study is presented. Using this 
ase study, various of the dis
ussed ap-pli
ations of the language MSC are shown in pra
ti
e, thereby providing a moreprofound understanding of the 
anoni
al appli
ations of MSCs and of the languageitself. The 
ase study we will dis
uss is an appli
ation that is part of an Inter Busi-ness Communi
ation Support System software suite, 
alled the Meeting S
heduler.We will start by introdu
ing the language MSC in a nutshell in Se
tion 2 for the
ommon understanding of the diagrams presented in this paper. The appli
ation ofMSCs in the software engineering traje
tory is subsequently dis
ussed in Se
tion 3.There, the 
anoni
al appli
ations in ea
h phase, and between di�erent phases, arepresented. Using the Meeting S
heduler as a running example, in Se
tion 4, someof the 
anoni
al uses of MSC are presented, thus providing a 
on
rete example ofboth the appli
ations of MSC and the language itself. At the end of this paper, inSe
tion 5, some 
on
luding remarks are made.2. Message Sequen
e ChartsMSC (Message Sequen
e Charts) is a graphi
al spe
i�
ation language standardisedby the ITU (International Tele
ommuni
ation Union). In this se
tion we will give anoverview of the main features of the MSC language. For a more detailed introdu
tionthe reader may 
onsult [7, 8℄.MSC is a member of a large 
lass of similar drawing te
hniques whi
h moreor less independently arose in di�erent appli
ation areas, su
h as obje
t-orienteddesign, real-time design, simulation and testing methodology.The main virtue of these languages is their intuitive nature. Basi
ally, an MSCdes
ribes the 
ommuni
ation behaviour of a number of logi
ally or physi
ally dis-tributed entities, displaying the order in whi
h messages are ex
hanged. Graphi-
ally, the life-line of an entity is represented by a verti
al axis, while the messagesare drawn as arrows 
onne
ting these life-lines. A simple MSC (su
h as the onein Fig. 1), 
an be easily understood by a non-trained user, whi
h makes the MSClanguage very suitable for 
ommuni
ation with e.g. 
lients.The MSC language as used in this paper stems from the tele
ommuni
ation



Message Sequen
e Charts in the Software Engineering Pro
ess 3world. The popularity of MSC in this area is explained by the fa
t that typi
altele
om appli
ations feature distributed rea
tive systems with real-time demands,for whi
h a s
enario based des
ription with MSC is parti
ularly useful. While theappli
ation of MSC in the tele
om world dates ba
k to the seventies, the �rst oÆ
ialITU re
ommendation was issued in 1992. Sin
e then, the language was maintaineda
tively by an international user 
ommunity and supported by 
ommer
ially avail-able design tools (e.g. [9, 10℄).Over the years, the small and informal MSC92 language developed into a pow-erful and formalised language, of whi
h the 
urrent version is 
alled MSC2000 ([1℄).The 
hoi
e for using MSC2000 in this paper is motivated by these fa
tors: MSCis a formal, standardised and well supported language. Although, in the 
ontext ofthe ITU, MSC is embedded in the SDL design methodology for distributed tele
omappli
ations ([11, 12, 13, 14, 15℄), this does not impose any restri
tions on its use ina di�erent methodologi
al 
ontext. We 
onsider MSC as a generally appli
able toolwhi
h 
an be used to strengthen the software development pro
ess independent ofthe adopted methodology.The remainder of this se
tion will be devoted to explaining the main 
onstru
tsfrom the MSC language.2.1. Basi
 Message Sequen
e ChartsAs explained above, a basi
 MSC 
onsists of verti
al axes representing the life-linesof entities and arrows 
onne
ting these lines, whi
h represent messages. MSC Mfrom Fig. 1 
ontains four entities, p, q, r, and s (In this se
tion we will introdu
e MSCwith meaningless ab
-examples. More useful MSCs are given when dis
ussing the
ase study in Se
tion 4). Instan
e p �rst sends message a to instan
e q, whi
h sub-sequently re
eives this message. Messages in an MSC are 
onsidered asyn
hronous,whi
h means that the a
t of sending a message is separate from the re
eption ofa message. Of 
ourse the sending of a message must o

ur before the re
eption ofthis same message, but between these two events, other events may take pla
e. Wesay that the sending and re
eption of a message are 
ausally related events.qda r sb 

ms
 Mp

Fig. 1. A basi
 MSC.After re
eption of message a by instan
e q, instan
e q will send message b. The



4 S. Mauw and M.A. Reniers and T.A.C. Willemsere
eption of a and the sending of b are 
ausally related, be
ause they o

ur inthe given order on the same instan
e axis. After sending b, we 
ome into a statewhere two events are enabled: the re
eption of b and the sending of d. Sin
e inthe diagram no 
ausal dependen
y between these two events is expressed there isno implied order of exe
ution. Continuing this line of reasoning, we �nd that abasi
 MSC diagram de�nes a number of exe
ution orders of simple 
ommuni
ationevents.This interpretation is worked out in mathemati
al detail in the oÆ
ial MSCsemanti
s (see [16, 17, 18, 19, 20℄). In this paper we will not pursue the path offormality, but we will restri
t ourselves to intuitive explanations.In Fig. 2, we have extended the simple MSC with additional information. First,we see that the events of sending a and re
eiving d are verti
ally 
onne
ted by atwo-way arrow. This means that we have put a time 
onstraint on the o

urren
eof these two events: the re
eption of d must o

ur within 3 time units after thesending of a. qa sb 
[0; 3) do it
ms
 M'

e d f � 8t
p r

Fig. 2. An extended basi
 MSC.Apart from the expression of relative time requirements, MSC also supportsthe observation of absolute time stamps. This is denoted by the timing attribute
onne
ted to the re
eption of message 
. Therefore, this event o

urs at time 8.Next, observe that the life-line of instan
e q is partly dashed. This means thatthe events on this part of the instan
e axis are not 
ausally ordered. The sendingof b may o

ur before or after the sending of d. This allows to redu
e determina
yof the spe
i�
ation. This 
onstru
t is 
alled a 
oregion.Message e is a spe
ial kind of message, namely a message to the environment.Su
h messages are needed to spe
ify open systems. Message f is added to show thatmessages are allowed to overlap. This means that there is no a priori assumptionabout the type of message bu�ering.At the end of instan
e q we have added an example of the use of timers. Thisexample denotes the setting of a timer with name t, followed by the subsequenttime-out signal of this timer. It is allowed to deta
h the time-out event from the



Message Sequen
e Charts in the Software Engineering Pro
ess 5setting of the timer. In this 
ase, the hour glass symbol and the atta
hed timername must be repeated.Finally, noti
e the small box at the end of instan
e s. This stands for a lo
ala
tion, performed by instan
e s. This is simply an a
tion event of whi
h we knowthe name (do it), whi
h must o

ur after the re
eption of f.2.2. Stru
tured Message Sequen
e ChartsAlthough basi
 MSCs yield quite 
lear des
riptions of simple s
enarios, stru
turingme
hanisms are needed to ni
ely express more 
omplex behaviour. There are threeways of de�ning substru
ture within an MSC: MSC referen
es, instan
e de
ompo-sition and inline expressions (see Fig. 3).
alt

ms
 qp tsrA when n > 0otherwisey z
x uv de
omposedS

Fig. 3. An MSC with sub-stru
ture.This example shows a referen
e to MSC A, whi
h must be de�ned elsewhere.MSC A is simply thought to repla
e the area of the MSC referen
e whi
h 
oversthe instan
es p and q. The diagram also shows that we expe
t that a message xis leaving the MSC referen
e. This implies that within MSC A a message x to theenvironment must be de�ned.Instan
e de
omposition is similar to MSC referen
es. Rather than abstra
tingfrom the internals of a region within an MSC, it serves to abstra
t from the internalsof an instan
e. In the example instan
e t is labelled as a de
omposed instan
e, whi
hmeans that the reader must refer to an MSC named t to �nd the des
ription of theinternal behaviour of this instan
e. MSC t will in general 
ontain a number of



6 S. Mauw and M.A. Reniers and T.A.C. Willemse(new) instan
es, whi
h 
o-operate to obtain the external behaviour of instan
e t.This 
learly implies that MSC t must 
ontain at least a message u sent to theenvironment and a message v re
eived from the environment.The third stru
turing me
hanism in Fig. 3 is the inline expression. An inlineexpression 
onsists of a framed region of the MSC with in the upper left 
orner thename of an operator. The operands to whi
h the operator applies are separatedby a dashed horizontal line. In this 
ase, the operator is the alt operator whi
hstands for alternative. The two operands whi
h are 
onsidered alternatives 
onsist ofmessage y and message z, respe
tively. In its general appearan
e, the 
hoi
e betweenthe alternatives is made non-deterministi
ally. However, by using 
onditions thesele
tion 
riterion 
an be made expli
it. In this 
ase, the alternatives are pre
ededby 
onditions (represented by stret
hed hexagons) testing the value of some variablen. Please noti
e that su
h a 
ondition does not represent a syn
hronisation of theinvolved instan
es. It merely expresses that the instan
es rea
h agreement on the
ontinuation, possibly not exa
tly at the same moment of time.The 
onditions as used in this example also hint at the use of data variables inan MSC. Sin
e we do not need data in our examples, we will not dis
uss this issuein greater detail. A more symboli
 way of using 
onditions is also supported, asshown in Fig. 7. It is allowed to simply label a 
ondition with a symboli
 name,whi
h 
an be asserted and inspe
ted.In its general appearan
e an inline expression may 
ontain other operators thanthe alt operator, su
h as loop to express repetition and par to des
ribe (interleaved)parallelism. The allowed number of operands depends upon the operator used.2.3. High-level Message Sequen
e ChartsA di�erent 
onstru
t whi
h supports modularisation of MSC spe
i�
ations is aHigh-level MSC (HMSC). An HMSC serves as a kind of road-map linking the MSCstogether. In Fig. 4 we see the relation between three MSC referen
es, A, B, and C.The upside down triangle indi
ates the start point. Then, following the arrow wearrive at a 
ondition, whi
h gives a hint about the state the system is in initially(idle). Then, we en
ounter the �rst MSC to be exe
uted, MSC A. After exe
utingA there is a 
hoi
e between 
ontinuation: B, pre
eded by the 
ondition ok, and C,pre
eded by 
ondition retry. After sele
ting the left bran
h, B is exe
uted whi
his followed by another triangle, whi
h indi
ates the end of the HMSC. If we wouldhave sele
ted the right bran
h, MSC C is exe
uted, after whi
h we restart at MSCA.2.4. Additional MSC 
onstru
tsUntil now we have dis
ussed all MSC language 
onstru
ts needed to understand theremainder of this paper. There are some more useful 
onstru
ts, but we will onlymention these brie
y.An MSC do
ument is a drawing whi
h 
an be seen as the de
laration of a 
oher-



Message Sequen
e Charts in the Software Engineering Pro
ess 7ms
 H
B Cretryok Aidle
idleFig. 4. A High-level MSC.ent 
olle
tion of MSCs, instan
es, variables and other obje
ts. In an MSC do
umenta distin
tion is made between publi
 and private MSCs as to 
ontrol visibility tothe outside world. Also, the de
omposition hierar
hy whi
h emerges when usingthe de
omposition 
onstru
t iteratively is re
e
ted in the use of MSC do
uments.Finally, we mention spe
ial syntax for expressing a more rigid order on the
ontained events, for the 
reation and stopping of instan
es, for des
ribing method
alls and replies, and for de�ning messages that do not arrive at their destination.3. The appli
ation of MSCs in software engineeringIn this se
tion we �rst present a simpli�ed view of the software engineering pro
ess.Later this view will be used to 
onne
t the appli
ations of MSC to.3.1. Software engineeringThere are many models that des
ribe the software engineering pro
ess. We mentionthe waterfall model [21℄, the in
remental delivery model [22℄, the spiral model [23℄,the V-model [24℄, and the 
luster model [25℄. In general these models pres
ribe thesame types of a
tivity, but di�er in the way these a
tivities are partitioned intophases, the order in whi
h the phases are exe
uted, and the deliverables. We willnot fo
us on one of these models spe
i�
ally. Instead, we will pay attention to anumber of frequently o

urring phases in these models. These are requirementsengineering, spe
i�
ation, design, and implementation. Summarising, these phases



8 S. Mauw and M.A. Reniers and T.A.C. Willemse
an be 
hara
terised as follows.In the requirements engineering phase it is 
lari�ed what the system is supposedto do and in whi
h way it is dependent on the environment of the system. Thisnot only refers to the fun
tional requirements the system should satisfy, but alsoin
ludes non-fun
tional requirements like timeliness, dependability, fault-toleran
e,et
.In the spe
i�
ation phase the user requirements are analysed and a set of softwarerequirements is produ
ed that is as 
omplete, 
onsistent and 
orre
t as possible. In
ontrast with the user requirements, the software requirements are the developer'sview of the system and not the user's view. The result of this phase is a spe
i�
ationof the system in natural language, a formal spe
i�
ation language, or possibly a
ombination of both.In the design phase de
isions are taken as to the partitioning of the systeminto subsystems and interfa
es with a well-understood and well-spe
i�ed behaviour.Also the intera
tion of the subsystems is 
onsidered 
arefully. The design will serveas a blueprint for the stru
ture of the implementation.In the implementation phase the design from the design phase is realised in termsof software and hardware. Typi
al validation a
tivities are a

eptan
e, 
onforman
eand integration testing.In ea
h of the abovementioned phases veri�
ation and validation a
tivities areperformed. These a
tivities are intended to verify the results of a phase with respe
tto the results of other phases (or with respe
t to requirements not mentioned before).We will not make any assumptions about the order in whi
h phases are exe
uted,the overlapping of phases, or the number of iterations. Based on the distin
tionof phases, dis
ussed in this se
tion, the use of MSC will be des
ribed in the nextse
tion.3.2. MSCs in the software engineering phasesThus far, we have mentioned some frequently o

urring phases in the softwareengineering pro
ess. Next, we will dis
uss the use of MSCs in ea
h of these phasesand in the relation between the phases. An overview is given in Fig. 5. The detailsof this �gure will be explained in the 
ourse of this se
tion.3.2.1. Requirements engineeringIn the requirements engineering phase of the software engineering pro
ess we 
on-sider two tasks in more detail. These are requirements 
apturing and requirementsanalysis.The obje
tive of requirements 
apturing is to obtain a view of the 
lients wishes.Unfortunately, 
lients are not always 
lear in what their wishes are; hen
e, the userrequirements are not straightforwardly obtained. Often employed te
hniques involveinterviews, 
onfrontations with prototypes and 
onversations with the engineeringteam. Although the experien
ed requirements engineer is trained in abstra
tion



Message Sequen
e Charts in the Software Engineering Pro
ess 9
requirements engineering

specification

design

implementation

specification MSCs

requirement MSCs

interaction MSCs

log MSCs

Fig. 5. Overview of the use of MSC in the software engineering pro
ess.and dedu
tion, still, tools are ne
essary for do
umenting requirements in a 
learand 
on
ise manner. Message Sequen
e Charts 
an very mu
h assist the pro
ess of
onverting informal do
umentation into more formal requirements; moreover, MSCeases 
ommuni
ations with 
lients in whi
h harder to understand parts of system'sbehaviour and impli
ations of a 
ombination of requirements are dis
ussed.Basi
ally, in every interview with a 
lient, various 
ausal relations 
an be read.From these relations, one 
an derive s
enarios or use 
ases, des
ribing parts ofthe desired system's behaviour. Su
h a use 
ase des
ribes (part of) the externalbehaviour of the system pla
ed in its environment. The des
riptions 
an in
luderesour
e 
onstraints, timeliness 
onstraints, performan
e 
onstraints, et
. In thispaper, we will assume that the result of the requirements 
apturing phase amongothers 
onsists of a set of use 
ases.The language MSC 
an be used to 
larify use 
ases in whi
h one or more a
torsand the system are involved. The roles that appear in use 
ases are representedby instan
es in MSCs. Also the system is represented by an instan
e. MSCs aresuited for this purpose as they emphasise the intera
tion between instan
es. Theintera
tions between the roles and the system are des
ribed by means of messages.Conditional behaviour 
an be expressed by means of 
onditions and alternatives.Consider the user requirement that the system must rea
t within 15 se
ondson a request from an initiator by means of an a
knowledgement. In Fig. 6 the
orresponding MSC is given.S
enarios are not always 
onsidered to be true requirements, as they des
ribe thesystem's behaviour in a very operational manner, possibly 
ontaining redundan
y.However, the skilled requirements engineer is 
apable of turning these s
enarios intoreal requirements by abstra
tion, dedu
tion and 
ombination. This pro
ess is 
alled



10 S. Mauw and M.A. Reniers and T.A.C. WillemseInitiator Systemreplyrequest [0; 15)ms
 requirement
Fig. 6. A simple user requirement.requirements analysis.MSCs 
an be of use in the requirements analysis phase by aiding 
ommuni
ationbetween the engineering team and the 
lient. By the mere task of 
olle
ting alluser requirements and 
ombining them, system behaviour, foreseen or not foreseenby the 
lient 
an be derived. Being of a more 
omplex nature than simple userrequirements, these 
omposed behaviours are often hard to explain to the 
lient.The 
on
epts of the language MSC 
an be employed to visualise these more 
omplexbehaviours. In this way, 
ommuni
ation between the engineering team and the 
lientis eased.If use 
ases des
ribed by MSCs tend to be large and have overlapping parts,re-o

urring parts 
an be isolated in separate MSCs and be referred to by means ofMSC referen
es. The relation between the auxiliary MSCs obtained in this way 
anbe de�ned in an HMSC. The MSC do
ument allows the separation of de�ning MSCsfrom auxiliary MSCs. Espe
ially in an in
remental or iterative software engineeringpro
ess, the MSC do
ument enables to maintain a good overall view of the MSCsand their relations.Although MSC does not really add new ways to �nding requirements, the bene�tof using MSC may be 
lear: abstra
ting and dedu
ting information is eased by theoverview that is a
hieved by expli
itly fo
using on the 
ausal relationships thatwould otherwise remain hidden in text. Referen
es to the use of MSC for use 
asedes
ription are [26℄, and [27℄.In the veri�
ation and validation part of the implementation phase the MSCsprodu
ed in the requirements engineering phase 
an be used as des
riptions of thetest purposes or test 
ases for a

eptan
e testing.3.2.2. Spe
i�
ationThe spe
i�
ation of the system is not ne
essarily des
ribed by means of formalmethods. Often prototypes are built, only parts of the system are des
ribed bymeans of formal methods, or even only natural language is used. The MSCs derivedin the requirements engineering phase 
an be used to serve as the basis for writinga more 
omplete spe
i�
ation of the system. In theory, MSC 
an also be usedfor writing spe
i�
ations. In the literature several papers deal with the generation



Message Sequen
e Charts in the Software Engineering Pro
ess 11of a formal spe
i�
ation from a set of (requirement) MSCs: in [28, 29, 30℄ SDLdes
riptions are generated, in [31℄ state
harts are generated, and in [32℄ ROOMmodels are generated.However, here we will fo
us on the use of MSC for visualising tra
es, or runsof the system. If a spe
i�
ation is developed without using the requirement MSCsand the formalism used for the spe
i�
ation is exe
utable, then the spe
i�
ation
an be used to generate spe
i�
ation MSCs. If the language used is less formal,still, it might be possible to extra
t MSCs based on informal reasoning and a goodunderstanding of the spe
i�
ation. If a prototype of the system is developed, MSCs
an be obtained from logging and interpreting exe
ution tra
es of the prototype.In [33℄, MSCs are used to visualise the exe
ution sequen
es that result from par-tial order simulations of SDL des
riptions. In several 
ommer
ially available SDLtools [9, 10℄, simulation runs of SDL des
riptions are represented by MSCs.MSCs that result from the spe
i�
ation in the ways des
ribed above are usefulfor 
omparing the spe
i�
ation with the user requirements. At the right level ofabstra
tion ea
h of the MSCs representing a user requirement should be 
ontained inthe MSCs obtained from the spe
i�
ation. Alternatively, the MSCs that representthe user requirements 
an be used as a monitor for exe
utable spe
i�
ations su
has Promela programs in the Spin tool [34℄ and SDL spe
i�
ations in the SDT tool[9℄. The spe
i�
ation MSCs 
an also be used for 
onforman
e testing in the veri�
a-tion and validation part of the implementation phase. More details about this useof MSC are given later.3.2.3. DesignThe a
tivities 
arried out in the design phase must lead to a physi
al and/or logi
alde
omposition of the system into intera
ting subsystems in su
h a way that theexternal behaviour of this 
olle
tion of subsystems \implements" the spe
i�
ation.As a 
onsequen
e, the intera
tion between the subsystems must be spe
i�ed in a
lear and unambiguous way. Message Sequen
e Charts are espe
ially useful in thedes
ription of the intera
tions in the form of 
ommuni
ation proto
ols, method 
allsand pro
edure invo
ations.If a physi
al de
omposition of the system is envisioned, the relation between thesystem and the subsystems is represented in MSC by means of instan
e re�nement(de
omposition). In logi
al de
ompositions the relation between the di�erent MSCs
an be made 
lear in an HMSC.As in the spe
i�
ation phase, based on the spe
i�
ation of the subsystems andthe intera
tions between these, MSCs 
an be generated. These MSCs then alsodisplay the internal events. After abstra
tion from these internal events the resultingMSC must be 
onsistent with the spe
i�
ation MSCs. Hen
e, the MSCs from thespe
i�
ation phase and the design phase 
an be 
ompared in order to validate thedesign with respe
t to the spe
i�
ation. Sin
e the language MSC is formal, this
omparison 
an also be formalised.



12 S. Mauw and M.A. Reniers and T.A.C. WillemseMSCs des
ribing forms of intera
tion 
an later be used for integration testing.If the intera
tion between system 
omponents is based on bu�ering messages, it ispossible to determine if this intera
tion 
an be realised with a given 
ommuni
ationmodel [35℄.3.2.4. ImplementationThe implementation phase amounts to the realisation of the design in terms ofhardware and exe
utable software. Message Sequen
e Charts 
an be used in thisphase to log exe
ution tra
es of the implementation. If performan
e is of relevan
e,typi
ally all events in su
h MSCs have a time stamp. In Fig. 12 an example of su
han exe
ution MSC is given.These tra
es 
an be inspe
ted manually for unexpe
ted situations or 
an be
ompared with Message Sequen
e Charts de�ned earlier in the software engineeringpro
ess. For example, after applying the appropriate abstra
tions it is useful to
ompare the tra
es to MSCs generated by the spe
i�
ation (if any), or to the MSCsissued in the requirements engineering phase.If errors are dete
ted in the implementation the MSC that logs the tra
e leadingto the error 
an be used to lo
ate the error in the implementation.In the veri�
ation and validation part of the implementation phase, by meansof a

eptan
e, 
onforman
e and integration testing the 
on�den
e in the systemsperforman
e (both fun
tional and non-fun
tional) is validated against the user re-quirements, the spe
i�
ation and the design, respe
tively. We explain the use ofMSC in 
onforman
e testing in some detail. The use of MSC in a

eptan
e andintegration testing is similar.In 
onforman
e testing, the behaviour of the implementation is validated againstthe expe
ted behaviour as des
ribed in the spe
i�
ation. In the literature sev-eral authors have indi
ated that the use of MSCs in 
onforman
e testing is valu-able [36, 37, 38, 39, 40℄. In 
onforman
e testing the expe
ted behaviour, in termsof observable events of the implementation, is des
ribed in a test suite, i.e. a set oftest 
ases. A test 
ase des
ribes a tree of observable events and to ea
h path in thetree it assigns a verdi
t whi
h spe
i�es whether the des
ribed behaviour is 
orre
t orin
orre
t. Exe
ution of a test 
ase results in feeding the implementation with inputsand observing the generated observable events. This exe
ution sequen
e of the im-plementation is then 
ompared with the test 
ase. The verdi
t of the 
orrespondingpath in the test tree is the out
ome of the test exe
ution.The use of MSC for the identi�
ation of test purposes is advo
ated by themethod SaMsTaG [41, 42, 43, 44℄. In the SaMsTaG method a 
omplete test 
ase
an be generated from a system spe
i�
ation in SDL and a test purpose des
riptionin MSC. The test 
ase is des
ribed in the Tree and Tabular Combined Notation(TTCN) [45℄. A similar approa
h is followed by the HARPO toolkit [46, 47℄.Among others the papers [48, 49, 50℄ use MSC for the des
ription of test 
ases.In [51℄ syn
hronous sequen
e 
harts, i.e. Interworkings [52℄, are used for this pur-pose.



Message Sequen
e Charts in the Software Engineering Pro
ess 134. Case: The Meeting S
hedulerWe will illustrate the use of Message Sequen
e Charts with a simple 
ase study,baptised The Meeting S
heduler. This is an internet appli
ation whi
h supportsthe s
heduling of a meeting. In this se
tion we give an explanation of the MeetingS
heduler, but before doing so, we will give the 
ontext of its use.4.1. Communi
ation supportThe Meeting S
heduler is part of a software suite that supports the 
ommuni
ationbetween people of di�erent enterprises (an Inter Business Communi
ation SupportSystem, IBCSS). The main di�eren
e with existing pa
kages, su
h as ERP (Enter-prise Resour
e Planning) pa
kages and business support systems su
h as Outlook,is that IBCSS fo
uses on the 
ommuni
ation between di�erent enterprises. Thisre
e
ts 
urrent trends in business operation, su
h as lean produ
tion and 
on
en-tration on 
ore business. The 
onsequen
e of this development is that produ
tionis no longer performed mainly within one enterprise, but within a 
ooperation ofseveral independent enterprises. Ea
h of these enterprises 
ontribute their shareto the �nal produ
t. The 
lear 
ut distin
tion between 
ustomer and produ
erbe
omes ever more blurred; both 
onsumer and produ
er 
ooperate to a
hieve a
ommon goal. As a 
onsequen
e, the spe
trum of 
ommuni
ation shifts from theintra-business perspe
tive to the inter-business perspe
tive.Current 
ommuni
ation support tools are often not suited to support the inter-business 
ommuni
ation pro
ess. For instan
e, these tools assume that every userhas the same software environment. It is evident that inter-business support toolsmust be based on established internet te
hnology, su
h as web browsers.An example of su
h an internet based appli
ation is a bla
kboard system whereusers 
an share and manipulate ele
troni
 do
uments (su
h as the BSCW server[53℄, whi
h allows a

ess via normal web browser software). Other tools one 
ouldimagine are proje
t management tools taking 
are of e.g. resour
e planning andde
ision support systems.A very simple example of su
h a 
ommuni
ation support system is the aforemen-tioned Meeting S
heduler, whi
h we have 
hosen to demonstrate the use of MSCson.4.2. Informal des
riptionS
heduling a meeting 
an be a rather time 
onsuming a
tivity. Dependent on howmany people are involved, a number of telephone 
alls or e-mails are ne
essaryin order to 
ome to a date and time that is 
onvenient to all, or at least to themajority of the parti
ipants. The Meeting S
heduler is tailor-made to supportthe administration of relevant information and 
ommuni
ation with the intendedparti
ipants.The Meeting S
heduler runs on some internet server and people 
ommuni
atewith the server via e-mail, simple web pages and web forms. The working of the



14 S. Mauw and M.A. Reniers and T.A.C. WillemseMeeting S
heduler is best explained by giving the basi
 s
enario of usage.Two roles 
an be distinguished: the initiator of the meeting and the invitees.The initiator takes the initiative of setting up the meeting. He provides the systemwith the initial information, su
h as purpose of the meeting, the list of invitees andthe list of possible dates and times. Next, the Meeting S
heduler informs the inviteesabout the meeting and 
olle
ts information from the parti
ipants with respe
t to thesuitability of the proposed dates. If all parti
ipants have provided their information(or if some deadline is met), the system reports ba
k to the initiator and suggeststhe best possible date. After 
on�rmation by the initiator, the �nal invitation issent to the parti
ipants.This very basi
 des
ription 
an be easily extended with many features. In fa
t,very advan
ed tools whi
h support the s
heduling of meetings already exist, butthese are often platform dependent, and require parti
ipants to maintain an on-lineagenda.In the subsequent se
tion some of the uses that are mentioned in Se
tion 3.2are explained using the Meeting S
heduler. Note that this is not done extensivelyfor all phases. Most notably, no examples are given for the implementation phase.Sin
e the use of MSC for validation is dis
ussed extensively in the literature, onlybrief remarks are added wherever possible.4.3. User requirementsThe te
hniques for requirements 
apturing mentioned in Se
tion 3.2.1 
an very wellbe applied to the Meeting S
heduler. For instan
e, the use of MSC in an interview
an be illustrated by transforming the following phrases, taken from an interview,into MSC: \... the initiator feeds the system with the ne
essary information tosend out meeting requests to all potential parti
ipants of a 
ertain meeting. Theseparti
ipants should be allowed ample time to respond to these invitations. Even-tually, the system will send the 
urrent information about potential dates to theinitiator who will then de
ide on a date for the meeting to take pla
e. The systemwill subsequently inform all parti
ipants of the de
ision of the initiator. Finally, a
on�rmation of this operation is sent to the initiator..."The s
enario obtained by proje
ting on the behaviour of the intera
tions be-tween the initiator and the system is rather straightforwardly dedu
ed from theabove senten
e (see Fig. 7). Here, the initiator is represented by an instan
e initia-tor and the system is represented by a single instan
e system, thereby portrayingthe bla
k-box approa
h. The meeting info message is used by the initiator to sendinformation vital for the s
heduling of the meeting by the system. The message
olle
ted info represents the 
olle
ted information for the meeting that is 
ommuni-
ated between the system and the initiator; the messages de
ision and 
on�rmationare self-explanatory. The 
onditions that are introdu
ed 
an be read as 
omments,denoting the (required) state of the system.One 
an imagine that various s
enarios for the Meeting S
heduler des
ribe the
ausal relationship between the re
eption of information for a meeting to be s
hed-



Message Sequen
e Charts in the Software Engineering Pro
ess 15
ms
 initiatormeeting infode
ision
on�rmation

interview

olle
ted info

system
State: Colle
tState: Idle

Fig. 7. S
enario dedu
ed from a part of an interview.
ms
 initiatorinform invitees system invitee inviteemeeting infoinform invitee inform invitee inform inviteeFig. 8. Requirement dedu
ed from interviews.



16 S. Mauw and M.A. Reniers and T.A.C. Willemseuled (denoted by a message meeting info) and the sending of meeting requests topotential parti
ipants of this meeting (denoted by a message inform invitee). Thetrue (fun
tional) requirement that 
an be distilled from these s
enarios would beone that fo
uses on exa
tly that 
ausal relationship (see Fig. 8).Note that this still is a s
enario, and therefore portrays only parts of a system'sbehaviour. The fa
t that in this s
enario the initiator is also informed about themeeting means that in this 
ase the initiator is himself 
onsidered as an invitee, butthis is not ne
essarily always the 
ase.ms
 (0; d)send warning
warn emailNo response inviteeinvitee systeminform invitee

Fig. 9. Requirement dedu
ed from a s
enario.As the dis
ussion in Se
tion 3.1 pointed out, not all requirements 
an be 
lassi�edas fun
tional requirements; hen
e, a language supporting only fun
tional require-ments would not suÆ
e. Using MSC, also non-fun
tional requirements, su
h as theneed for time-outs under 
ertain 
onditions 
an be illustrated. For example, a non-fun
tional requirement in the Meeting S
heduler would be the sending of a warningmessage to parti
ipants that did not yet respond to the meeting 
all (denoted bya message warn email) before a deadline (d) is rea
hed. Su
h a requirement 
an beelegantly formulated in MSC as Fig. 9 shows.Thus far, we have fo
ussed on the more trivial user requirements and the s
e-narios belonging to them. As already mentioned in Se
tion 3.2.1, the 
ombinationof requirements may lead to an intri
ate interplay of 
ausal relations. Finding outthese relations already is part of the requirements analysis phase. As an example, aless basi
 intera
tion s
heme between the initiator and the system for the MeetingS
heduler is 
onsidered (see Fig. 10). Overview diagrams su
h as these assist the
ommuni
ation between the engineering team and the 
lient.Basi
ally, in Fig. 10 a blueprint for the logi
al stru
ture for distinguishing be-tween the two options the initiator is 
onfronted with 
an be read. The informationreturned by the Meeting S
heduler may or may not be a

ording to the wishes ofthe initiator. Worst 
ase information may even mean that the invitees for a meeting
ould not agree on a date for the meeting. Hen
e, the initiator is 
onfronted withthe dilemma of having to de
ide to 
an
el the meeting altogether or de
ide on adate, represented by the MSC referen
e 
on
lude, or retry to s
hedule the meeting



Message Sequen
e Charts in the Software Engineering Pro
ess 17ms
 meeting organisation
retry 
on
ludeinitialisation

Fig. 10. Combination of user requirements may lead to more 
omplex behaviour.(possibly using di�erent dates), represented by the MSC referen
e retry.The MSC 
on
lude is depi
ted in Fig. 11; if the invitees 
ould not agree ona date and the initiator de
ides to 
an
el the meeting, a 
an
el message is sentto the system; the system then subsequently responds with a 
on�rmation, usinga 
on�rmation message. In 
ase a date is found for the meeting, the system isinformed by the initiator about this using a 
onvo
ate message, and again, thesystem responds with a 
on�rmation. A similar MSC 
an be written for the MSCreferen
e retry (not shown here).Careful 
omparison of MSC interview (Fig. 7) and the HMSCmeeting organisation(Fig. 10) learns that the MSC interview is one of the possible s
enarios des
ribed bythe HMSC meeting organisation.4.4. Spe
i�
ationAlthough the language MSC 
an even be utilised for spe
ifying systems, (see Se
tion3.2.2), we will adopt the language only for validation and visualisation purposes inthis phase. Sin
e MSC was also devised for this purpose, we feel it is strongest in thisrespe
t. As already mentioned in Se
tion 3.2.2, the ways in whi
h one 
an obtains
enarios in this phase are plenty; the size and 
omplexity of the Meeting S
hedulerwould allow for a formal spe
i�
ation, and hen
e, the generation of tra
es, or runsfrom this spe
i�
ation is, dependent on the method used, rather straightforward.It would be outside the s
ope of this paper to give a spe
i�
ation for the MeetingS
heduler, hen
e, we adopt the operational des
ription of Se
tion 4.2 as a referen
efor a possible spe
i�
ation for this system.As an example tra
e for the Meeting S
heduler, one 
an think of the s
enariodepi
ted in Fig. 12. Basi
ally, this s
enario is a 
ombination of various user require-



18 S. Mauw and M.A. Reniers and T.A.C. Willemsems
 initiatoralt
on
ludeno date foundsystem
an
el meetingdate found
onvo
ate meeting
on�rmationFig. 11. Part of the 
omplex behaviour.ms
 initiatorsample s
enario invitee inviteemeeting infoinform invitee inform inviteeinform inviteepersonal infopersonal info warn email
olle
ted info sorry email
onvo
ate meeting
on�rmation
onvo
ate email

system � 2.3� 0.2 � 2.2
� 82� 78
� 1.5 � 12 � 36.1� 73 � 74.5 � 76� 78

� 1.6� 1.7 � 6.6� 6 � 36 � 72.5� 77� 80

� 0 � 1.4� 7� 74 
onvo
ate email� 76� 75
Fig. 12. A typi
al s
enario obtained by a spe
i�
ation.



Message Sequen
e Charts in the Software Engineering Pro
ess 19ments listed in the previous se
tion.The MSC depi
ted in Fig. 12 
an be validated against the user requirements.For instan
e, one 
an observe that the fun
tional and non-fun
tional requirementsof Se
tion 4.3 are met. As already mentioned in Se
tion 3.2.2, the s
enarios gener-ated in the spe
i�
ation phase are again needed for validating the produ
ts of theimplementation phase.4.5. DesignThe design phase pres
ribes as one of its main a
tivities the de
omposition of thesystem into subsystems. More 
on
retely, this means that 
hoi
es have to be madewith respe
t to the desired properties of the system under 
onstru
tion. For theMeeting S
heduler, this boils down to �nding logi
al and/or physi
al de
ompositionsof the bla
k-box whi
h are 
hosen in su
h a way that the requirements of Se
tion4.2 are ful�lled. Note that the (part of the) design that is dis
ussed here is basedon the operational des
ription of the Meeting S
heduler.The obvious 
hoi
e for a physi
al de
omposition for the Meeting S
heduler isto 
onsider a de
omposition in two subsystems, a front-end and a database. Thefront-end is a system that deals with the intera
tions between users of the MeetingS
heduler and as su
h is the intermediate between the users and the database,whereas the database primarily stores the information posted by users 
on
erningpossible dates and times for the meeting.The intera
tions between all subsystems involved for the Meeting S
heduler 
anbe grouped, based on a logi
al de
omposition of the global state of the system.The 
hange of state is again, like in Se
tion 4.3, a more 
omplex 
on
ept, typi
allyexpressed in HMSC (see Fig. 13). Closer observation of Fig. 13 reveals the expe
tedstru
ture of an initialising, a 
olle
ting and a de
iding phase. In ea
h of these phases,basi
 MSCs 
an be used to explain the intera
tions between various subsystems.To highlight some of the intera
tions between the subsystems for the MeetingS
heduler, the MSC referen
es initialise, 
olle
t and warn invitees are highlighted.The basi
 MSC initialise (see Fig. 14) des
ribes the essen
e of whi
h intera
tions
an typi
ally be expe
ted in the initialising phase. Most notably, parts of the in-tera
tions identi�ed in the requirements engineering phase (see Figs. 8, 9, 10, 11)reappear in this s
enario. Basi
ally, the s
enario des
ribes the intera
tion betweenthe initiator and the front-end of the Meeting S
heduler, in whi
h information forthe s
heduling of a meeting is 
ommuni
ated using a message meeting info. Subse-quently, the front-end updates the database, and only then it starts sending 
alls toall invitees for this meeting in random order, (using inform invitee messages). In or-der to meet the non-fun
tional requirements (see Fig. 9), two timers are initialised,one for sending a warning message and one for keeping tra
k of the deadline forresponding to the invitation.Colle
ting information of the invitees is illustrative for typi
al update inter-a
tions o

urring between the front-end system and the database, as a rea
tion tomessages from the users of the system (see Fig. 15). Using the message personal info,



20 S. Mauw and M.A. Reniers and T.A.C. Willemse

all replied warning
olle
t
initialise

warn inviteesall replied deadline
lose 
olle
t
report 
on
luderetry

ms
 logi
al de
omposition

Fig. 13. The global 
hange of state for the Meeting S
heduler.



Message Sequen
e Charts in the Software Engineering Pro
ess 21
ms
 initiator databasefront-endinitialise

inform inviteemeeting info meeting infoinform inviteewarning timerinform invitee
invitee invitee

deadline timer
Fig. 14. The initialisation of the Meeting S
heduler.

ms
 initiator databasefront-end invitee invitee
olle
t
updatepersonal info personal infoupdate

Fig. 15. Colle
ting of information.



22 S. Mauw and M.A. Reniers and T.A.C. Willemsethe invitees inform the Meeting S
heduler of their preferred dates and times for themeeting to take pla
e. The front-end of the system uses this information to updatethe database via an update message.ms
 initiator databasefront-end invitee inviteewarn invitees
updatepersonal infowarn email warn emailinforetrieve infowarning timer

Fig. 16. Warning of invitees.As an example of how non-fun
tional requirements are 
aptured in this phase,the MSC warn 
olle
t is illustrated in Fig. 16. When a warning timeout is reportedto the front-end system, the front-end system 
onsults the database for informationabout who responded and who did not yet respond to the meeting announ
ement.Those invitees that did not yet respond, are warned (expressed by the messagewarn email) by the front-end subsystem.Validation in this phase boils down to 
he
king whether the MSC s
enariosdes
ribed in this phase re�ne the MSC s
enarios generated in the spe
i�
ationphase. For the Meeting S
heduler, the intera
tions left after abstra
ting from theintera
tions between the di�erent subsystems of the Meeting S
heduler should alsobe allowed s
enarios of the spe
i�
ation.5. Con
luding remarksThis paper presented an overview of the 
anoni
al appli
ations of the languageMessage Sequen
e Chart (MSC) in the area of software engineering. These appli-
ations have been sket
hed independently of any parti
ular software engineeringmethodology (e.g. ESA PSS 5 Software Engineering standard) or model (e.g. thein
remental delivery model, the waterfall model). Alongside a more abstra
t frame-work, des
ribing these appli
ations, a more 
on
rete example, in the form of a 
asestudy has been dis
ussed. This allowed for relating the more pra
ti
al aspe
ts tothe abstra
t framework.



Message Sequen
e Charts in the Software Engineering Pro
ess 23The MSC language 
onstru
ts used and indi
ated in this paper are but a list ofthe more 
ommon 
onstru
ts. In parti
ular, the 
ase study is of a simple nature;hardly any need for stru
turing me
hanisms exists nor does data play a role inthis 
ase study. Yet, for illustrating some of the 
anoni
al appli
ations of MSC aneasy to understand example is vital. In general, the full set of language 
onstru
tsdoes allow for dealing with substantially more 
omplex appli
ations than the onessket
hed in this paper. In dealing with su
h appli
ations, it is re
ommended (andoften ne
essary) to 
hoose those language 
onstru
ts ne
essary for des
ribing exa
tlywhat is relevant for the parti
ular appli
ation.Some aspe
ts of the appli
ations mentioned in the pre
eding se
tions are quiteorthogonal with respe
t to others, e.g. in simulating an exe
utable spe
i�
ationabsolute time stamps are 
ommonly used, whereas in writing requirements for asystem, relative time is often employed. This illustrates the broad spe
trum ofappli
ations for MSC we have sket
hed in this paper. Given this broad spe
trum, itis 
ommon sense to make a sele
tion of whi
h purposes are best served using MSC(e.g. using MSC only during the requirements engineering phase and validation ofthese requirements).As mentioned before, the formal semanti
s of the language MSC allows for per-forming validation and veri�
ation. These a
tivities have been des
ribed withoutgoing into too mu
h detail. Wherever possible, referen
es to illustrative works onthis area have been added.A
knowledgementsWe like to thank Vi
tor Bos and Andr�e Engels for their e�orts and we thank LiesKwikkers and Jan Roelof de Pijper for their work on the 
ase study.Referen
es1. ITU-T. Re
ommendation Z.120: Message Sequen
e Chart (MSC). ITU-T, Geneva,2000.2. O. F�rgemand and R. Reed, editors. SDL'91 - Evolving Methods. North-Holland,1991.3. O. F�rgemand and A. Sarma, editors. SDL'93 - Using Obje
ts. North-Holland, 1993.4. R. Br�k and A. Sarma, editors. SDL'95 - with MSC in CASE. North-Holland, 1995.5. A. Cavalli and A. Sarma, editors. SDL'97: Time for Testing - SDL, MSC andTrends. North-Holland, 1997.6. R. Dssouli, G. von Bo
hmann, and Y. Lahav, editors. SDL'99: Pro
eedings of theNinth SDL Forum. North-Holland, 1999.7. E. Rudolph, P. Graubmann, and J. Grabowski. Tutorial on Message Sequen
e Charts.Computer Networks and ISDN Systems, 28(12):1629{1641, 1996. Spe
ial issue onSDL and MSC, guest editor �. Haugen.8. � Haugen. Ms
-2000 intera
tion diagrams for the new millenium. To appear in Com-puter Networks and ISDN Systems, 2000, 2000.9. Telelogi
 AB. SDT 3.1 Referen
e Manual. Malm�o, Sweden, 1996.10. Verilog. Obje
tGEODE Toolset Do
umentation, 1996.



24 S. Mauw and M.A. Reniers and T.A.C. Willemse11. ITU-T. Re
ommendation Z.100: Spe
i�
ation and Des
ription Language (SDL).ITU-T, Geneva, June 1994.12. R. Sara

o, R. Reed, and J.R.W. Smith. Tele
ommuni
ations Systems EngeneeringUsing SDL. North-Holland, Amsterdam, 1989.13. F. Belina, D. Hogrefe, and A. Sarma. SDL - with appli
ations from proto
ol spe
i�-
ation. The BCS Pra
titioners Series. Prenti
e-Hall International, London/EnglewoodCli�s, 1991.14. R. Br�k and Haugen �. Engineering Real-time Systems with an Obje
t-orientedMethodology based on SDL. Prenti
e-Hall International, London, 1993.15. A. Olsen, O. F�rgemand, B. M�ller-Pedersen, R. Reed, and J.R.W. Smith. SystemsEngineering Using SDL-92. Elsevier S
ien
e Publishers B.V., Amsterdam, 1994.16. ITU-T. Re
ommendation Z.120 Annex B: Algebrai
 semanti
s of Message Se-quen
e Charts. ITU-T, Geneva, 1998.17. S. Mauw and M.A. Reniers. An algebrai
 semanti
s of Basi
 Message Sequen
e Charts.The Computer Journal, 37(4):269{277, 1994.18. S. Mauw. The formalization of Message Sequen
e Charts. Computer Networks andISDN Systems, 28(12):1643{1657, 1996. Spe
ial issue on SDL and MSC, guest editor�. Haugen.19. S. Mauw and M.A. Reniers. High-level Message Sequen
e Charts. In A. Cavalli andA. Sarma, editors, SDL'97: Time for Testing - SDL, MSC and Trends, Pro
eed-ings of the Eighth SDL Forum, pages 291{306, Evry, Fran
e, 23-26 September 1997.Amsterdam, North-Holland.20. M.A. Reniers. Message Sequen
e Chart: Syntax and Semanti
s. PhD thesis, Eind-hoven University of Te
hnology, June 1999.21. W.W. Roy
e. Managing the development of large software systems. In Pro
eedings ofthe IEEE WESCON, 1970.22. R.T. Yeh. An alternate paradigm for software evolution. In P.A. In Ng and R.T. Yeh,editors, Modern Software Engineering: Foundations and Perspe
tives, New York,NY, 1990. Van Nostrand Reinhold.23. B.W. Boehm. A spiral model of software development and enhan
ement. IEEE Com-puter, 21(5):61{72, 1988.24. Ministry of the Futenon, Ottobrun, Germany. Software life-
y
le pro
ess model (V-model), 1992.25. C. Gindre and F. Sada. A development in Ei�el: Design and implementation of anetwork simulator. Journal of Obje
t-Oriented Programming, 2(2):27{33, May 1989.26. M. Andersson and J. Bergstrand. Formalizing Use Cases with Message Sequen
e Charts.Master's thesis, Lund Institute of Te
hnology, 1995.27. E. Rudolph, J. Grabowski, and P. Graubmann. Towards a harmonization of UML-sequen
e diagrams and MSC. In R. Dssouli, G. von Bo
hmann, and Y. Lahav, editors,SDL'99: Pro
eedings of the Ninth SDL Forum. North-Holland, 1999.28. G. Robert, F. Khendek, and P. Grogono. Deriving an SDL spe
i�
ation with a givenar
hite
ture from a set of MSCs. In A. Cavalli and A. Sarma, editors, SDL'97: Timefor Testing - SDL, MSC and Trends, pages 197{212, Evry, Fran
e, 1997. ElsevierS
ien
e Publishers B.V.29. S. Som�e and R. Dssouli. Using a logi
al approa
h for spe
i�
ation generation from mes-sage sequen
e 
harts. Te
hni
al Report Publi
ation d�epartementale 1064, D�epartementIRO, Universit�e de Montr�eal, April 1997.30. L.M.G. Feijs. Generating FSMs from Interworkings. Distributed Computing, 12(1):31{40, 1999.31. I. Kr�uger, R. Grosu, P. S
holz, and M. Broy. From MSCs to State
harts. KluwerBedrijfswetens
happen B.V., 1999.



Message Sequen
e Charts in the Software Engineering Pro
ess 2532. S. Leue, L. Mehrmann, and M. Rezai. Synthesizing room models from Message Se-quen
e Chart spe
i�
ations. Te
hni
al Report Te
hni
al Report 98-06, Department ofEle
tri
al and Computer Engineering, University of Waterloo, April 1998.33. D. Toggweiler, J. Grabowski, and D. Hogrefe. Partial order simulation of SDL spe
i�
a-tions. In R. Br�k and A. Sarma, editors, SDL'95 - with MSC in CASE, Pro
eedingsof the Seventh SDL Forum, pages 293{306, Oslo, 1995. Amsterdam, North-Holland.34. G.J. Holzmann. The model 
ha
ker Spin. IEEE Transa
tions on Software Engi-neering, 23(5):279{295, 1997.35. A. Engels, S. Mauw, and M.A. Reniers. A hierar
hy of 
ommuni
ation models forMessage Sequen
e Charts. In T. Mizuno, N. Shiratori, T. Higashino, and A. Togashi,editors, Formal Des
ription Te
hniques and Proto
ol Spe
i�
ation, Testing andVeri�
ation, Pro
eedings of FORTE X and PSTV XVII '97, pages 75{90, Osaka,Japan, November 1997. Chapman & Hall.36. B. Taka
s. Use of SDL in an Obje
t Oriented Design Pro
ess during the developmentof a prototype swit
hing system. In O. F�rgemand and A. Sarma, editors, SDL'93 -Using Obje
ts, Pro
eedings of the Sixth SDL Forum, pages 79{88, Darmstadt, 1993.Amsterdam, North-Holland.37. � Haugen, R. Br�k, and G. Melby. The SISU proje
t. In O. F�rgemand and A. Sarma,editors, SDL'93 - Using Obje
ts, Pro
eedings of the Sixth SDL Forum, pages 479{489,Darmstadt, 1993. Amsterdam, North-Holland.38. �. Haugen. Using MSC-92 e�e
tively. In R. Br�k and A. Sarma, editors, SDL'95 -with MSC in CASE, Pro
eedings of the Seventh SDL Forum, pages 37{49, Oslo, 1995.Amsterdam, North-Holland.39. G. Amsj� and A. Nyeng. SDL-based software development in Siemens A/S { experien
eof introdu
ing rigorous use of SDL and MSC. In R. Br�k and A. Sarma, editors, SDL'95- with MSC in CASE, Pro
eedings of the Seventh SDL Forum, pages 339{348, Oslo,1995. Amsterdam, North-Holland.40. L.M.G. Feijs, F.A.C. Meijs, J.R. Moonen, and J.J. van Wamel. Conforman
e testing ofa multimedia 
hip using PHACT. In A. Petrenko and N. Yevtushenko, editors, Testingof Communi
ating Systems, pages 193{210, 1998.41. J. Grabowski, D. Hogrefe, and R. Nahm. Test 
ase generation with test purpose spe
i-�
ation by MSCs. In O. F�rgemand and A. Sarma, editors, SDL'93 - Using Obje
ts,Pro
eedings of the Sixth SDL Forum, pages 253{265, Darmstadt, 1993. Amsterdam,North-Holland.42. J. Grabowski. Test Case Generation and Test Case Spe
i�
ation with MessageSequen
e Charts. PhD thesis, Universit�at Bern, 1994.43. R. Nahm. Conforman
e Testing Based on Formal Des
ription Te
hniques andMessage Sequen
e Charts. PhD thesis, Universit�at Bern, 1994.44. J. Grabowski, R. S
heuer, Z.R. Dai, and D. Hogrefe. Applying SaMsTaG to the B-ISDNproto
ol SSCOP. In M. Kim, S. Kang, and K. Hong, editors, Testing of Communi
at-ing Systems, IFIP TC6 Tenth International Workshop on Testing of Communi
atingSystems, pages 397{415, Cheju Island, Korea, September 1997. Chapman & Hall.45. ISO. TTCN: ISO/IEC JTC 1/SC 21: Information Te
hnolgy - Open SystemsInter
onne
tion - Conforman
e Testing Methodology and Framework - Part 3:The Tree and Tabular Combined Notation, volume ISO 9646-3. ISO/IEC, 1991.46. E. Algaba, M. Monedero, E. P�erez, and O. Val
�arel. HARPO: Testing tools develop-ment. In M. Kim, S. Kang, and K. Hong, editors, Testing of Communi
ating Systems,IFIP TC6 Tenth International Workshop on Testing of Communi
ating Systems, pages318{323, Cheju Island, Korea, September 1997. Chapman & Hall.47. E. P�erez, E. Algaba, and M. Monedero. A pragmati
 approa
h to test generation.In M. Kim, S. Kang, and K. Hong, editors, Testing of Communi
ating Systems,



26 S. Mauw and M.A. Reniers and T.A.C. WillemseIFIP TC6 Tenth International Workshop on Testing of Communi
ating Systems, pages365{380, Cheju Island, Korea, September 1997. Chapman & Hall.48. J. Grabowski, D. Hogrefe, I. Nussbaumer, and A. Spi
higer. Test 
ase spe
i�
ationbased on MSCs and ASN.1. In R. Br�k and A. Sarma, editors, SDL'95 - with MSC inCASE, Pro
eedings of the Seventh SDL Forum, pages 307{322, Oslo, 1995. Amsterdam,North-Holland.49. L.M.G. Feijs and M. Jumelet. A rigorous and pra
ti
al approa
h to servi
e testing.In B. Baumgarten, H. Burkhardt, and A. Giessler, editors, Testing of Communi
at-ing Systems, IFIP TC6 Nineth International Workshop on Testing of Communi
atingSystems, pages 175{190. Chapman & Hall, 1996.50. A. Cavalli, B. Lee, and T. Ma
avei. Test generation for the SSCOP-ATM networksproto
ol. In A. Cavalli and A. Sarma, editors, SDL'97: Time for Testing - SDL,MSC and Trends, Pro
eedings of the Eighth SDL Forum, pages 277{288, Evry, 1997.Amsterdam, North-Holland.51. A. Engels, L.M.G. Feijs, and S. Mauw. Test generation for intelligent networks usingmodel 
he
king. In E. Brinksma, editor, Pro
eedings of the Third InternationalWorkshop on Tools and Algorithms for the Constru
tion and Analysis of Systems,volume 1217 of Le
ture Notes in Computer S
ien
e, pages 384{398. Springer-Verlag,1997.52. S. Mauw and M.A. Reniers. A pro
ess algebra for interworkings. Te
hni
al ReportCSR 00/03, Eindhoven University of Te
hnology, Department of Computing S
ien
e,2000. To appear as a 
hapter in Handbook of Pro
ess Algebra, editors A. Ponse andS. Smolka, Elsevier S
ien
e B.V., 2000.53. R. Bentley, W. Appelt, U. Busba
h, E. Hinri
hs, D. Kerr, S. Sikkel, J. Trevor, andG. Woetzel. Basi
 support for 
ooperative work on the world wide web. InternationalJournal of Human-Computer Studies, 46(6):827{846, 1997.


