
MESSAGE SEQUENCE CHARTSIN THE SOFTWARE ENGINEERING PROCESSS. MAUW and M.A. RENIERS and T.A.C. WILLEMSEDepartment of Mathematis and Computing Siene, Eindhoven University of TehnologyP.O. Box 513, NL-5600 MB Eindhoven, The NetherlandsThe software development proess bene�ts from the use of Message Sequene Charts(MSC), whih is a graphial language for displaying the interation behaviour of a system.We desribe anonial appliations of MSC independent of any software developmentmethodology. We illustrate the use of MSC with a ase study: the Meeting Sheduler.Keywords: Message Sequene Chart, software engineering proess, groupware.1. IntrodutionThe ommon agreement is that software engineering is a diÆult disipline. Despitethe methodologies that desribe the partitioning of the software engineering traje-tory into phases inluding the deliverables for eah phase and tehniques that an beapplied in these phases, a great number of industrial software engineering projetsenounter unantiipated problems. Unfortunately, pinpointing the exat auses forthese problems is not always possible, but there are a few well known issues thatgive rise to these problems. Among these issues are the shifts between subsequentphases and version-management of doumentation and software, but also the morebasi ommuniation problems between the lient and the engineering team.The language Message Sequene Chart (MSC) is a graphial language, initiallydeveloped to support the SDL methodology for desribing possible senarios ofsystems and is standardised by the ITU. In the past deade, many features havebeen added to the ore language. This ulminated in the doumentation for the mostreent version, MSC 2000 [1℄, desribing its syntax, semantis and its onventions.Traditionally, MSC has been used in the area of teleom oriented appliations.There, it has earned its medals for visualising and validating dynami behaviour(see the SDL Forum proeedings [2, 3, 4, 5, 6℄). However, over the past years,alongside the inreased expressiveness of the language also the speifying of dynamibehaviour has beome a major topi of researh and pratie. Being a standardised1



2 S. Mauw and M.A. Reniers and T.A.C. Willemselanguage, one of the main advantages of MSC over omparable languages is thatis has been formalised. Moreover, the language is understandable both by thespeialist and a layman, i.e. it an serve as a medium for ommuniation betweengroups with di�erent bakgrounds. This is partiularly useful in the setting ofsoftware engineering.In this paper we will give an overview of the anonial appliations of MSC withinthe software engineering trajetory, without fousing on one partiular methodol-ogy. This is done by identifying the ommonly ourring phases in a number ofsoftware engineering methodologies, and explaining the appliations of MSC in andbetween eah phase, based upon this identi�ation. Some of these appliations arealready muh used, while other appliations are not that straightforward. Whereverpossible, referenes to literature or ongoing researh is provided.In order to present more than an abstrat framework, in this paper a relativelytrivial ase study is presented. Using this ase study, various of the disussed ap-pliations of the language MSC are shown in pratie, thereby providing a moreprofound understanding of the anonial appliations of MSCs and of the languageitself. The ase study we will disuss is an appliation that is part of an Inter Busi-ness Communiation Support System software suite, alled the Meeting Sheduler.We will start by introduing the language MSC in a nutshell in Setion 2 for theommon understanding of the diagrams presented in this paper. The appliation ofMSCs in the software engineering trajetory is subsequently disussed in Setion 3.There, the anonial appliations in eah phase, and between di�erent phases, arepresented. Using the Meeting Sheduler as a running example, in Setion 4, someof the anonial uses of MSC are presented, thus providing a onrete example ofboth the appliations of MSC and the language itself. At the end of this paper, inSetion 5, some onluding remarks are made.2. Message Sequene ChartsMSC (Message Sequene Charts) is a graphial spei�ation language standardisedby the ITU (International Teleommuniation Union). In this setion we will give anoverview of the main features of the MSC language. For a more detailed introdutionthe reader may onsult [7, 8℄.MSC is a member of a large lass of similar drawing tehniques whih moreor less independently arose in di�erent appliation areas, suh as objet-orienteddesign, real-time design, simulation and testing methodology.The main virtue of these languages is their intuitive nature. Basially, an MSCdesribes the ommuniation behaviour of a number of logially or physially dis-tributed entities, displaying the order in whih messages are exhanged. Graphi-ally, the life-line of an entity is represented by a vertial axis, while the messagesare drawn as arrows onneting these life-lines. A simple MSC (suh as the onein Fig. 1), an be easily understood by a non-trained user, whih makes the MSClanguage very suitable for ommuniation with e.g. lients.The MSC language as used in this paper stems from the teleommuniation



Message Sequene Charts in the Software Engineering Proess 3world. The popularity of MSC in this area is explained by the fat that typialteleom appliations feature distributed reative systems with real-time demands,for whih a senario based desription with MSC is partiularly useful. While theappliation of MSC in the teleom world dates bak to the seventies, the �rst oÆialITU reommendation was issued in 1992. Sine then, the language was maintainedatively by an international user ommunity and supported by ommerially avail-able design tools (e.g. [9, 10℄).Over the years, the small and informal MSC92 language developed into a pow-erful and formalised language, of whih the urrent version is alled MSC2000 ([1℄).The hoie for using MSC2000 in this paper is motivated by these fators: MSCis a formal, standardised and well supported language. Although, in the ontext ofthe ITU, MSC is embedded in the SDL design methodology for distributed teleomappliations ([11, 12, 13, 14, 15℄), this does not impose any restritions on its use ina di�erent methodologial ontext. We onsider MSC as a generally appliable toolwhih an be used to strengthen the software development proess independent ofthe adopted methodology.The remainder of this setion will be devoted to explaining the main onstrutsfrom the MSC language.2.1. Basi Message Sequene ChartsAs explained above, a basi MSC onsists of vertial axes representing the life-linesof entities and arrows onneting these lines, whih represent messages. MSC Mfrom Fig. 1 ontains four entities, p, q, r, and s (In this setion we will introdue MSCwith meaningless ab-examples. More useful MSCs are given when disussing thease study in Setion 4). Instane p �rst sends message a to instane q, whih sub-sequently reeives this message. Messages in an MSC are onsidered asynhronous,whih means that the at of sending a message is separate from the reeption ofa message. Of ourse the sending of a message must our before the reeption ofthis same message, but between these two events, other events may take plae. Wesay that the sending and reeption of a message are ausally related events.qda r sb 
ms Mp

Fig. 1. A basi MSC.After reeption of message a by instane q, instane q will send message b. The



4 S. Mauw and M.A. Reniers and T.A.C. Willemsereeption of a and the sending of b are ausally related, beause they our inthe given order on the same instane axis. After sending b, we ome into a statewhere two events are enabled: the reeption of b and the sending of d. Sine inthe diagram no ausal dependeny between these two events is expressed there isno implied order of exeution. Continuing this line of reasoning, we �nd that abasi MSC diagram de�nes a number of exeution orders of simple ommuniationevents.This interpretation is worked out in mathematial detail in the oÆial MSCsemantis (see [16, 17, 18, 19, 20℄). In this paper we will not pursue the path offormality, but we will restrit ourselves to intuitive explanations.In Fig. 2, we have extended the simple MSC with additional information. First,we see that the events of sending a and reeiving d are vertially onneted by atwo-way arrow. This means that we have put a time onstraint on the ourreneof these two events: the reeption of d must our within 3 time units after thesending of a. qa sb [0; 3) do it
ms M'

e d f � 8t
p r

Fig. 2. An extended basi MSC.Apart from the expression of relative time requirements, MSC also supportsthe observation of absolute time stamps. This is denoted by the timing attributeonneted to the reeption of message . Therefore, this event ours at time 8.Next, observe that the life-line of instane q is partly dashed. This means thatthe events on this part of the instane axis are not ausally ordered. The sendingof b may our before or after the sending of d. This allows to redue determinayof the spei�ation. This onstrut is alled a oregion.Message e is a speial kind of message, namely a message to the environment.Suh messages are needed to speify open systems. Message f is added to show thatmessages are allowed to overlap. This means that there is no a priori assumptionabout the type of message bu�ering.At the end of instane q we have added an example of the use of timers. Thisexample denotes the setting of a timer with name t, followed by the subsequenttime-out signal of this timer. It is allowed to detah the time-out event from the



Message Sequene Charts in the Software Engineering Proess 5setting of the timer. In this ase, the hour glass symbol and the attahed timername must be repeated.Finally, notie the small box at the end of instane s. This stands for a loalation, performed by instane s. This is simply an ation event of whih we knowthe name (do it), whih must our after the reeption of f.2.2. Strutured Message Sequene ChartsAlthough basi MSCs yield quite lear desriptions of simple senarios, struturingmehanisms are needed to niely express more omplex behaviour. There are threeways of de�ning substruture within an MSC: MSC referenes, instane deompo-sition and inline expressions (see Fig. 3).
alt

ms qp tsrA when n > 0otherwisey z
x uv deomposedS

Fig. 3. An MSC with sub-struture.This example shows a referene to MSC A, whih must be de�ned elsewhere.MSC A is simply thought to replae the area of the MSC referene whih oversthe instanes p and q. The diagram also shows that we expet that a message xis leaving the MSC referene. This implies that within MSC A a message x to theenvironment must be de�ned.Instane deomposition is similar to MSC referenes. Rather than abstratingfrom the internals of a region within an MSC, it serves to abstrat from the internalsof an instane. In the example instane t is labelled as a deomposed instane, whihmeans that the reader must refer to an MSC named t to �nd the desription of theinternal behaviour of this instane. MSC t will in general ontain a number of



6 S. Mauw and M.A. Reniers and T.A.C. Willemse(new) instanes, whih o-operate to obtain the external behaviour of instane t.This learly implies that MSC t must ontain at least a message u sent to theenvironment and a message v reeived from the environment.The third struturing mehanism in Fig. 3 is the inline expression. An inlineexpression onsists of a framed region of the MSC with in the upper left orner thename of an operator. The operands to whih the operator applies are separatedby a dashed horizontal line. In this ase, the operator is the alt operator whihstands for alternative. The two operands whih are onsidered alternatives onsist ofmessage y and message z, respetively. In its general appearane, the hoie betweenthe alternatives is made non-deterministially. However, by using onditions theseletion riterion an be made expliit. In this ase, the alternatives are preededby onditions (represented by strethed hexagons) testing the value of some variablen. Please notie that suh a ondition does not represent a synhronisation of theinvolved instanes. It merely expresses that the instanes reah agreement on theontinuation, possibly not exatly at the same moment of time.The onditions as used in this example also hint at the use of data variables inan MSC. Sine we do not need data in our examples, we will not disuss this issuein greater detail. A more symboli way of using onditions is also supported, asshown in Fig. 7. It is allowed to simply label a ondition with a symboli name,whih an be asserted and inspeted.In its general appearane an inline expression may ontain other operators thanthe alt operator, suh as loop to express repetition and par to desribe (interleaved)parallelism. The allowed number of operands depends upon the operator used.2.3. High-level Message Sequene ChartsA di�erent onstrut whih supports modularisation of MSC spei�ations is aHigh-level MSC (HMSC). An HMSC serves as a kind of road-map linking the MSCstogether. In Fig. 4 we see the relation between three MSC referenes, A, B, and C.The upside down triangle indiates the start point. Then, following the arrow wearrive at a ondition, whih gives a hint about the state the system is in initially(idle). Then, we enounter the �rst MSC to be exeuted, MSC A. After exeutingA there is a hoie between ontinuation: B, preeded by the ondition ok, and C,preeded by ondition retry. After seleting the left branh, B is exeuted whihis followed by another triangle, whih indiates the end of the HMSC. If we wouldhave seleted the right branh, MSC C is exeuted, after whih we restart at MSCA.2.4. Additional MSC onstrutsUntil now we have disussed all MSC language onstruts needed to understand theremainder of this paper. There are some more useful onstruts, but we will onlymention these briey.An MSC doument is a drawing whih an be seen as the delaration of a oher-



Message Sequene Charts in the Software Engineering Proess 7ms H
B Cretryok Aidle
idleFig. 4. A High-level MSC.ent olletion of MSCs, instanes, variables and other objets. In an MSC doumenta distintion is made between publi and private MSCs as to ontrol visibility tothe outside world. Also, the deomposition hierarhy whih emerges when usingthe deomposition onstrut iteratively is reeted in the use of MSC douments.Finally, we mention speial syntax for expressing a more rigid order on theontained events, for the reation and stopping of instanes, for desribing methodalls and replies, and for de�ning messages that do not arrive at their destination.3. The appliation of MSCs in software engineeringIn this setion we �rst present a simpli�ed view of the software engineering proess.Later this view will be used to onnet the appliations of MSC to.3.1. Software engineeringThere are many models that desribe the software engineering proess. We mentionthe waterfall model [21℄, the inremental delivery model [22℄, the spiral model [23℄,the V-model [24℄, and the luster model [25℄. In general these models presribe thesame types of ativity, but di�er in the way these ativities are partitioned intophases, the order in whih the phases are exeuted, and the deliverables. We willnot fous on one of these models spei�ally. Instead, we will pay attention to anumber of frequently ourring phases in these models. These are requirementsengineering, spei�ation, design, and implementation. Summarising, these phases



8 S. Mauw and M.A. Reniers and T.A.C. Willemsean be haraterised as follows.In the requirements engineering phase it is lari�ed what the system is supposedto do and in whih way it is dependent on the environment of the system. Thisnot only refers to the funtional requirements the system should satisfy, but alsoinludes non-funtional requirements like timeliness, dependability, fault-tolerane,et.In the spei�ation phase the user requirements are analysed and a set of softwarerequirements is produed that is as omplete, onsistent and orret as possible. Inontrast with the user requirements, the software requirements are the developer'sview of the system and not the user's view. The result of this phase is a spei�ationof the system in natural language, a formal spei�ation language, or possibly aombination of both.In the design phase deisions are taken as to the partitioning of the systeminto subsystems and interfaes with a well-understood and well-spei�ed behaviour.Also the interation of the subsystems is onsidered arefully. The design will serveas a blueprint for the struture of the implementation.In the implementation phase the design from the design phase is realised in termsof software and hardware. Typial validation ativities are aeptane, onformaneand integration testing.In eah of the abovementioned phases veri�ation and validation ativities areperformed. These ativities are intended to verify the results of a phase with respetto the results of other phases (or with respet to requirements not mentioned before).We will not make any assumptions about the order in whih phases are exeuted,the overlapping of phases, or the number of iterations. Based on the distintionof phases, disussed in this setion, the use of MSC will be desribed in the nextsetion.3.2. MSCs in the software engineering phasesThus far, we have mentioned some frequently ourring phases in the softwareengineering proess. Next, we will disuss the use of MSCs in eah of these phasesand in the relation between the phases. An overview is given in Fig. 5. The detailsof this �gure will be explained in the ourse of this setion.3.2.1. Requirements engineeringIn the requirements engineering phase of the software engineering proess we on-sider two tasks in more detail. These are requirements apturing and requirementsanalysis.The objetive of requirements apturing is to obtain a view of the lients wishes.Unfortunately, lients are not always lear in what their wishes are; hene, the userrequirements are not straightforwardly obtained. Often employed tehniques involveinterviews, onfrontations with prototypes and onversations with the engineeringteam. Although the experiened requirements engineer is trained in abstration



Message Sequene Charts in the Software Engineering Proess 9
requirements engineering

specification

design

implementation

specification MSCs

requirement MSCs

interaction MSCs

log MSCs

Fig. 5. Overview of the use of MSC in the software engineering proess.and dedution, still, tools are neessary for doumenting requirements in a learand onise manner. Message Sequene Charts an very muh assist the proess ofonverting informal doumentation into more formal requirements; moreover, MSCeases ommuniations with lients in whih harder to understand parts of system'sbehaviour and impliations of a ombination of requirements are disussed.Basially, in every interview with a lient, various ausal relations an be read.From these relations, one an derive senarios or use ases, desribing parts ofthe desired system's behaviour. Suh a use ase desribes (part of) the externalbehaviour of the system plaed in its environment. The desriptions an inluderesoure onstraints, timeliness onstraints, performane onstraints, et. In thispaper, we will assume that the result of the requirements apturing phase amongothers onsists of a set of use ases.The language MSC an be used to larify use ases in whih one or more atorsand the system are involved. The roles that appear in use ases are representedby instanes in MSCs. Also the system is represented by an instane. MSCs aresuited for this purpose as they emphasise the interation between instanes. Theinterations between the roles and the system are desribed by means of messages.Conditional behaviour an be expressed by means of onditions and alternatives.Consider the user requirement that the system must reat within 15 seondson a request from an initiator by means of an aknowledgement. In Fig. 6 theorresponding MSC is given.Senarios are not always onsidered to be true requirements, as they desribe thesystem's behaviour in a very operational manner, possibly ontaining redundany.However, the skilled requirements engineer is apable of turning these senarios intoreal requirements by abstration, dedution and ombination. This proess is alled



10 S. Mauw and M.A. Reniers and T.A.C. WillemseInitiator Systemreplyrequest [0; 15)ms requirement
Fig. 6. A simple user requirement.requirements analysis.MSCs an be of use in the requirements analysis phase by aiding ommuniationbetween the engineering team and the lient. By the mere task of olleting alluser requirements and ombining them, system behaviour, foreseen or not foreseenby the lient an be derived. Being of a more omplex nature than simple userrequirements, these omposed behaviours are often hard to explain to the lient.The onepts of the language MSC an be employed to visualise these more omplexbehaviours. In this way, ommuniation between the engineering team and the lientis eased.If use ases desribed by MSCs tend to be large and have overlapping parts,re-ourring parts an be isolated in separate MSCs and be referred to by means ofMSC referenes. The relation between the auxiliary MSCs obtained in this way anbe de�ned in an HMSC. The MSC doument allows the separation of de�ning MSCsfrom auxiliary MSCs. Espeially in an inremental or iterative software engineeringproess, the MSC doument enables to maintain a good overall view of the MSCsand their relations.Although MSC does not really add new ways to �nding requirements, the bene�tof using MSC may be lear: abstrating and deduting information is eased by theoverview that is ahieved by expliitly fousing on the ausal relationships thatwould otherwise remain hidden in text. Referenes to the use of MSC for use asedesription are [26℄, and [27℄.In the veri�ation and validation part of the implementation phase the MSCsprodued in the requirements engineering phase an be used as desriptions of thetest purposes or test ases for aeptane testing.3.2.2. Spei�ationThe spei�ation of the system is not neessarily desribed by means of formalmethods. Often prototypes are built, only parts of the system are desribed bymeans of formal methods, or even only natural language is used. The MSCs derivedin the requirements engineering phase an be used to serve as the basis for writinga more omplete spei�ation of the system. In theory, MSC an also be usedfor writing spei�ations. In the literature several papers deal with the generation



Message Sequene Charts in the Software Engineering Proess 11of a formal spei�ation from a set of (requirement) MSCs: in [28, 29, 30℄ SDLdesriptions are generated, in [31℄ stateharts are generated, and in [32℄ ROOMmodels are generated.However, here we will fous on the use of MSC for visualising traes, or runsof the system. If a spei�ation is developed without using the requirement MSCsand the formalism used for the spei�ation is exeutable, then the spei�ationan be used to generate spei�ation MSCs. If the language used is less formal,still, it might be possible to extrat MSCs based on informal reasoning and a goodunderstanding of the spei�ation. If a prototype of the system is developed, MSCsan be obtained from logging and interpreting exeution traes of the prototype.In [33℄, MSCs are used to visualise the exeution sequenes that result from par-tial order simulations of SDL desriptions. In several ommerially available SDLtools [9, 10℄, simulation runs of SDL desriptions are represented by MSCs.MSCs that result from the spei�ation in the ways desribed above are usefulfor omparing the spei�ation with the user requirements. At the right level ofabstration eah of the MSCs representing a user requirement should be ontained inthe MSCs obtained from the spei�ation. Alternatively, the MSCs that representthe user requirements an be used as a monitor for exeutable spei�ations suhas Promela programs in the Spin tool [34℄ and SDL spei�ations in the SDT tool[9℄. The spei�ation MSCs an also be used for onformane testing in the veri�a-tion and validation part of the implementation phase. More details about this useof MSC are given later.3.2.3. DesignThe ativities arried out in the design phase must lead to a physial and/or logialdeomposition of the system into interating subsystems in suh a way that theexternal behaviour of this olletion of subsystems \implements" the spei�ation.As a onsequene, the interation between the subsystems must be spei�ed in alear and unambiguous way. Message Sequene Charts are espeially useful in thedesription of the interations in the form of ommuniation protools, method allsand proedure invoations.If a physial deomposition of the system is envisioned, the relation between thesystem and the subsystems is represented in MSC by means of instane re�nement(deomposition). In logial deompositions the relation between the di�erent MSCsan be made lear in an HMSC.As in the spei�ation phase, based on the spei�ation of the subsystems andthe interations between these, MSCs an be generated. These MSCs then alsodisplay the internal events. After abstration from these internal events the resultingMSC must be onsistent with the spei�ation MSCs. Hene, the MSCs from thespei�ation phase and the design phase an be ompared in order to validate thedesign with respet to the spei�ation. Sine the language MSC is formal, thisomparison an also be formalised.



12 S. Mauw and M.A. Reniers and T.A.C. WillemseMSCs desribing forms of interation an later be used for integration testing.If the interation between system omponents is based on bu�ering messages, it ispossible to determine if this interation an be realised with a given ommuniationmodel [35℄.3.2.4. ImplementationThe implementation phase amounts to the realisation of the design in terms ofhardware and exeutable software. Message Sequene Charts an be used in thisphase to log exeution traes of the implementation. If performane is of relevane,typially all events in suh MSCs have a time stamp. In Fig. 12 an example of suhan exeution MSC is given.These traes an be inspeted manually for unexpeted situations or an beompared with Message Sequene Charts de�ned earlier in the software engineeringproess. For example, after applying the appropriate abstrations it is useful toompare the traes to MSCs generated by the spei�ation (if any), or to the MSCsissued in the requirements engineering phase.If errors are deteted in the implementation the MSC that logs the trae leadingto the error an be used to loate the error in the implementation.In the veri�ation and validation part of the implementation phase, by meansof aeptane, onformane and integration testing the on�dene in the systemsperformane (both funtional and non-funtional) is validated against the user re-quirements, the spei�ation and the design, respetively. We explain the use ofMSC in onformane testing in some detail. The use of MSC in aeptane andintegration testing is similar.In onformane testing, the behaviour of the implementation is validated againstthe expeted behaviour as desribed in the spei�ation. In the literature sev-eral authors have indiated that the use of MSCs in onformane testing is valu-able [36, 37, 38, 39, 40℄. In onformane testing the expeted behaviour, in termsof observable events of the implementation, is desribed in a test suite, i.e. a set oftest ases. A test ase desribes a tree of observable events and to eah path in thetree it assigns a verdit whih spei�es whether the desribed behaviour is orret orinorret. Exeution of a test ase results in feeding the implementation with inputsand observing the generated observable events. This exeution sequene of the im-plementation is then ompared with the test ase. The verdit of the orrespondingpath in the test tree is the outome of the test exeution.The use of MSC for the identi�ation of test purposes is advoated by themethod SaMsTaG [41, 42, 43, 44℄. In the SaMsTaG method a omplete test asean be generated from a system spei�ation in SDL and a test purpose desriptionin MSC. The test ase is desribed in the Tree and Tabular Combined Notation(TTCN) [45℄. A similar approah is followed by the HARPO toolkit [46, 47℄.Among others the papers [48, 49, 50℄ use MSC for the desription of test ases.In [51℄ synhronous sequene harts, i.e. Interworkings [52℄, are used for this pur-pose.



Message Sequene Charts in the Software Engineering Proess 134. Case: The Meeting ShedulerWe will illustrate the use of Message Sequene Charts with a simple ase study,baptised The Meeting Sheduler. This is an internet appliation whih supportsthe sheduling of a meeting. In this setion we give an explanation of the MeetingSheduler, but before doing so, we will give the ontext of its use.4.1. Communiation supportThe Meeting Sheduler is part of a software suite that supports the ommuniationbetween people of di�erent enterprises (an Inter Business Communiation SupportSystem, IBCSS). The main di�erene with existing pakages, suh as ERP (Enter-prise Resoure Planning) pakages and business support systems suh as Outlook,is that IBCSS fouses on the ommuniation between di�erent enterprises. Thisreets urrent trends in business operation, suh as lean prodution and onen-tration on ore business. The onsequene of this development is that produtionis no longer performed mainly within one enterprise, but within a ooperation ofseveral independent enterprises. Eah of these enterprises ontribute their shareto the �nal produt. The lear ut distintion between ustomer and produerbeomes ever more blurred; both onsumer and produer ooperate to ahieve aommon goal. As a onsequene, the spetrum of ommuniation shifts from theintra-business perspetive to the inter-business perspetive.Current ommuniation support tools are often not suited to support the inter-business ommuniation proess. For instane, these tools assume that every userhas the same software environment. It is evident that inter-business support toolsmust be based on established internet tehnology, suh as web browsers.An example of suh an internet based appliation is a blakboard system whereusers an share and manipulate eletroni douments (suh as the BSCW server[53℄, whih allows aess via normal web browser software). Other tools one ouldimagine are projet management tools taking are of e.g. resoure planning anddeision support systems.A very simple example of suh a ommuniation support system is the aforemen-tioned Meeting Sheduler, whih we have hosen to demonstrate the use of MSCson.4.2. Informal desriptionSheduling a meeting an be a rather time onsuming ativity. Dependent on howmany people are involved, a number of telephone alls or e-mails are neessaryin order to ome to a date and time that is onvenient to all, or at least to themajority of the partiipants. The Meeting Sheduler is tailor-made to supportthe administration of relevant information and ommuniation with the intendedpartiipants.The Meeting Sheduler runs on some internet server and people ommuniatewith the server via e-mail, simple web pages and web forms. The working of the



14 S. Mauw and M.A. Reniers and T.A.C. WillemseMeeting Sheduler is best explained by giving the basi senario of usage.Two roles an be distinguished: the initiator of the meeting and the invitees.The initiator takes the initiative of setting up the meeting. He provides the systemwith the initial information, suh as purpose of the meeting, the list of invitees andthe list of possible dates and times. Next, the Meeting Sheduler informs the inviteesabout the meeting and ollets information from the partiipants with respet to thesuitability of the proposed dates. If all partiipants have provided their information(or if some deadline is met), the system reports bak to the initiator and suggeststhe best possible date. After on�rmation by the initiator, the �nal invitation issent to the partiipants.This very basi desription an be easily extended with many features. In fat,very advaned tools whih support the sheduling of meetings already exist, butthese are often platform dependent, and require partiipants to maintain an on-lineagenda.In the subsequent setion some of the uses that are mentioned in Setion 3.2are explained using the Meeting Sheduler. Note that this is not done extensivelyfor all phases. Most notably, no examples are given for the implementation phase.Sine the use of MSC for validation is disussed extensively in the literature, onlybrief remarks are added wherever possible.4.3. User requirementsThe tehniques for requirements apturing mentioned in Setion 3.2.1 an very wellbe applied to the Meeting Sheduler. For instane, the use of MSC in an interviewan be illustrated by transforming the following phrases, taken from an interview,into MSC: \... the initiator feeds the system with the neessary information tosend out meeting requests to all potential partiipants of a ertain meeting. Thesepartiipants should be allowed ample time to respond to these invitations. Even-tually, the system will send the urrent information about potential dates to theinitiator who will then deide on a date for the meeting to take plae. The systemwill subsequently inform all partiipants of the deision of the initiator. Finally, aon�rmation of this operation is sent to the initiator..."The senario obtained by projeting on the behaviour of the interations be-tween the initiator and the system is rather straightforwardly dedued from theabove sentene (see Fig. 7). Here, the initiator is represented by an instane initia-tor and the system is represented by a single instane system, thereby portrayingthe blak-box approah. The meeting info message is used by the initiator to sendinformation vital for the sheduling of the meeting by the system. The messageolleted info represents the olleted information for the meeting that is ommuni-ated between the system and the initiator; the messages deision and on�rmationare self-explanatory. The onditions that are introdued an be read as omments,denoting the (required) state of the system.One an imagine that various senarios for the Meeting Sheduler desribe theausal relationship between the reeption of information for a meeting to be shed-



Message Sequene Charts in the Software Engineering Proess 15
ms initiatormeeting infodeisionon�rmation

interview
olleted info

system
State: ColletState: Idle

Fig. 7. Senario dedued from a part of an interview.
ms initiatorinform invitees system invitee inviteemeeting infoinform invitee inform invitee inform inviteeFig. 8. Requirement dedued from interviews.



16 S. Mauw and M.A. Reniers and T.A.C. Willemseuled (denoted by a message meeting info) and the sending of meeting requests topotential partiipants of this meeting (denoted by a message inform invitee). Thetrue (funtional) requirement that an be distilled from these senarios would beone that fouses on exatly that ausal relationship (see Fig. 8).Note that this still is a senario, and therefore portrays only parts of a system'sbehaviour. The fat that in this senario the initiator is also informed about themeeting means that in this ase the initiator is himself onsidered as an invitee, butthis is not neessarily always the ase.ms (0; d)send warning
warn emailNo response inviteeinvitee systeminform invitee

Fig. 9. Requirement dedued from a senario.As the disussion in Setion 3.1 pointed out, not all requirements an be lassi�edas funtional requirements; hene, a language supporting only funtional require-ments would not suÆe. Using MSC, also non-funtional requirements, suh as theneed for time-outs under ertain onditions an be illustrated. For example, a non-funtional requirement in the Meeting Sheduler would be the sending of a warningmessage to partiipants that did not yet respond to the meeting all (denoted bya message warn email) before a deadline (d) is reahed. Suh a requirement an beelegantly formulated in MSC as Fig. 9 shows.Thus far, we have foussed on the more trivial user requirements and the se-narios belonging to them. As already mentioned in Setion 3.2.1, the ombinationof requirements may lead to an intriate interplay of ausal relations. Finding outthese relations already is part of the requirements analysis phase. As an example, aless basi interation sheme between the initiator and the system for the MeetingSheduler is onsidered (see Fig. 10). Overview diagrams suh as these assist theommuniation between the engineering team and the lient.Basially, in Fig. 10 a blueprint for the logial struture for distinguishing be-tween the two options the initiator is onfronted with an be read. The informationreturned by the Meeting Sheduler may or may not be aording to the wishes ofthe initiator. Worst ase information may even mean that the invitees for a meetingould not agree on a date for the meeting. Hene, the initiator is onfronted withthe dilemma of having to deide to anel the meeting altogether or deide on adate, represented by the MSC referene onlude, or retry to shedule the meeting



Message Sequene Charts in the Software Engineering Proess 17ms meeting organisation
retry onludeinitialisation

Fig. 10. Combination of user requirements may lead to more omplex behaviour.(possibly using di�erent dates), represented by the MSC referene retry.The MSC onlude is depited in Fig. 11; if the invitees ould not agree ona date and the initiator deides to anel the meeting, a anel message is sentto the system; the system then subsequently responds with a on�rmation, usinga on�rmation message. In ase a date is found for the meeting, the system isinformed by the initiator about this using a onvoate message, and again, thesystem responds with a on�rmation. A similar MSC an be written for the MSCreferene retry (not shown here).Careful omparison of MSC interview (Fig. 7) and the HMSCmeeting organisation(Fig. 10) learns that the MSC interview is one of the possible senarios desribed bythe HMSC meeting organisation.4.4. Spei�ationAlthough the language MSC an even be utilised for speifying systems, (see Setion3.2.2), we will adopt the language only for validation and visualisation purposes inthis phase. Sine MSC was also devised for this purpose, we feel it is strongest in thisrespet. As already mentioned in Setion 3.2.2, the ways in whih one an obtainsenarios in this phase are plenty; the size and omplexity of the Meeting Shedulerwould allow for a formal spei�ation, and hene, the generation of traes, or runsfrom this spei�ation is, dependent on the method used, rather straightforward.It would be outside the sope of this paper to give a spei�ation for the MeetingSheduler, hene, we adopt the operational desription of Setion 4.2 as a referenefor a possible spei�ation for this system.As an example trae for the Meeting Sheduler, one an think of the senariodepited in Fig. 12. Basially, this senario is a ombination of various user require-



18 S. Mauw and M.A. Reniers and T.A.C. Willemsems initiatoraltonludeno date foundsystemanel meetingdate foundonvoate meetingon�rmationFig. 11. Part of the omplex behaviour.ms initiatorsample senario invitee inviteemeeting infoinform invitee inform inviteeinform inviteepersonal infopersonal info warn emailolleted info sorry emailonvoate meetingon�rmationonvoate email

system � 2.3� 0.2 � 2.2
� 82� 78
� 1.5 � 12 � 36.1� 73 � 74.5 � 76� 78

� 1.6� 1.7 � 6.6� 6 � 36 � 72.5� 77� 80

� 0 � 1.4� 7� 74 onvoate email� 76� 75
Fig. 12. A typial senario obtained by a spei�ation.



Message Sequene Charts in the Software Engineering Proess 19ments listed in the previous setion.The MSC depited in Fig. 12 an be validated against the user requirements.For instane, one an observe that the funtional and non-funtional requirementsof Setion 4.3 are met. As already mentioned in Setion 3.2.2, the senarios gener-ated in the spei�ation phase are again needed for validating the produts of theimplementation phase.4.5. DesignThe design phase presribes as one of its main ativities the deomposition of thesystem into subsystems. More onretely, this means that hoies have to be madewith respet to the desired properties of the system under onstrution. For theMeeting Sheduler, this boils down to �nding logial and/or physial deompositionsof the blak-box whih are hosen in suh a way that the requirements of Setion4.2 are ful�lled. Note that the (part of the) design that is disussed here is basedon the operational desription of the Meeting Sheduler.The obvious hoie for a physial deomposition for the Meeting Sheduler isto onsider a deomposition in two subsystems, a front-end and a database. Thefront-end is a system that deals with the interations between users of the MeetingSheduler and as suh is the intermediate between the users and the database,whereas the database primarily stores the information posted by users onerningpossible dates and times for the meeting.The interations between all subsystems involved for the Meeting Sheduler anbe grouped, based on a logial deomposition of the global state of the system.The hange of state is again, like in Setion 4.3, a more omplex onept, typiallyexpressed in HMSC (see Fig. 13). Closer observation of Fig. 13 reveals the expetedstruture of an initialising, a olleting and a deiding phase. In eah of these phases,basi MSCs an be used to explain the interations between various subsystems.To highlight some of the interations between the subsystems for the MeetingSheduler, the MSC referenes initialise, ollet and warn invitees are highlighted.The basi MSC initialise (see Fig. 14) desribes the essene of whih interationsan typially be expeted in the initialising phase. Most notably, parts of the in-terations identi�ed in the requirements engineering phase (see Figs. 8, 9, 10, 11)reappear in this senario. Basially, the senario desribes the interation betweenthe initiator and the front-end of the Meeting Sheduler, in whih information forthe sheduling of a meeting is ommuniated using a message meeting info. Subse-quently, the front-end updates the database, and only then it starts sending alls toall invitees for this meeting in random order, (using inform invitee messages). In or-der to meet the non-funtional requirements (see Fig. 9), two timers are initialised,one for sending a warning message and one for keeping trak of the deadline forresponding to the invitation.Colleting information of the invitees is illustrative for typial update inter-ations ourring between the front-end system and the database, as a reation tomessages from the users of the system (see Fig. 15). Using the message personal info,



20 S. Mauw and M.A. Reniers and T.A.C. Willemse

all replied warningollet
initialise

warn inviteesall replied deadlinelose ollet
report onluderetry

ms logial deomposition

Fig. 13. The global hange of state for the Meeting Sheduler.



Message Sequene Charts in the Software Engineering Proess 21
ms initiator databasefront-endinitialise

inform inviteemeeting info meeting infoinform inviteewarning timerinform invitee
invitee invitee

deadline timer
Fig. 14. The initialisation of the Meeting Sheduler.

ms initiator databasefront-end invitee inviteeollet
updatepersonal info personal infoupdate

Fig. 15. Colleting of information.



22 S. Mauw and M.A. Reniers and T.A.C. Willemsethe invitees inform the Meeting Sheduler of their preferred dates and times for themeeting to take plae. The front-end of the system uses this information to updatethe database via an update message.ms initiator databasefront-end invitee inviteewarn invitees
updatepersonal infowarn email warn emailinforetrieve infowarning timer

Fig. 16. Warning of invitees.As an example of how non-funtional requirements are aptured in this phase,the MSC warn ollet is illustrated in Fig. 16. When a warning timeout is reportedto the front-end system, the front-end system onsults the database for informationabout who responded and who did not yet respond to the meeting announement.Those invitees that did not yet respond, are warned (expressed by the messagewarn email) by the front-end subsystem.Validation in this phase boils down to heking whether the MSC senariosdesribed in this phase re�ne the MSC senarios generated in the spei�ationphase. For the Meeting Sheduler, the interations left after abstrating from theinterations between the di�erent subsystems of the Meeting Sheduler should alsobe allowed senarios of the spei�ation.5. Conluding remarksThis paper presented an overview of the anonial appliations of the languageMessage Sequene Chart (MSC) in the area of software engineering. These appli-ations have been skethed independently of any partiular software engineeringmethodology (e.g. ESA PSS 5 Software Engineering standard) or model (e.g. theinremental delivery model, the waterfall model). Alongside a more abstrat frame-work, desribing these appliations, a more onrete example, in the form of a asestudy has been disussed. This allowed for relating the more pratial aspets tothe abstrat framework.



Message Sequene Charts in the Software Engineering Proess 23The MSC language onstruts used and indiated in this paper are but a list ofthe more ommon onstruts. In partiular, the ase study is of a simple nature;hardly any need for struturing mehanisms exists nor does data play a role inthis ase study. Yet, for illustrating some of the anonial appliations of MSC aneasy to understand example is vital. In general, the full set of language onstrutsdoes allow for dealing with substantially more omplex appliations than the onesskethed in this paper. In dealing with suh appliations, it is reommended (andoften neessary) to hoose those language onstruts neessary for desribing exatlywhat is relevant for the partiular appliation.Some aspets of the appliations mentioned in the preeding setions are quiteorthogonal with respet to others, e.g. in simulating an exeutable spei�ationabsolute time stamps are ommonly used, whereas in writing requirements for asystem, relative time is often employed. This illustrates the broad spetrum ofappliations for MSC we have skethed in this paper. Given this broad spetrum, itis ommon sense to make a seletion of whih purposes are best served using MSC(e.g. using MSC only during the requirements engineering phase and validation ofthese requirements).As mentioned before, the formal semantis of the language MSC allows for per-forming validation and veri�ation. These ativities have been desribed withoutgoing into too muh detail. Wherever possible, referenes to illustrative works onthis area have been added.AknowledgementsWe like to thank Vitor Bos and Andr�e Engels for their e�orts and we thank LiesKwikkers and Jan Roelof de Pijper for their work on the ase study.Referenes1. ITU-T. Reommendation Z.120: Message Sequene Chart (MSC). ITU-T, Geneva,2000.2. O. F�rgemand and R. Reed, editors. SDL'91 - Evolving Methods. North-Holland,1991.3. O. F�rgemand and A. Sarma, editors. SDL'93 - Using Objets. North-Holland, 1993.4. R. Br�k and A. Sarma, editors. SDL'95 - with MSC in CASE. North-Holland, 1995.5. A. Cavalli and A. Sarma, editors. SDL'97: Time for Testing - SDL, MSC andTrends. North-Holland, 1997.6. R. Dssouli, G. von Bohmann, and Y. Lahav, editors. SDL'99: Proeedings of theNinth SDL Forum. North-Holland, 1999.7. E. Rudolph, P. Graubmann, and J. Grabowski. Tutorial on Message Sequene Charts.Computer Networks and ISDN Systems, 28(12):1629{1641, 1996. Speial issue onSDL and MSC, guest editor �. Haugen.8. � Haugen. Ms-2000 interation diagrams for the new millenium. To appear in Com-puter Networks and ISDN Systems, 2000, 2000.9. Telelogi AB. SDT 3.1 Referene Manual. Malm�o, Sweden, 1996.10. Verilog. ObjetGEODE Toolset Doumentation, 1996.



24 S. Mauw and M.A. Reniers and T.A.C. Willemse11. ITU-T. Reommendation Z.100: Spei�ation and Desription Language (SDL).ITU-T, Geneva, June 1994.12. R. Sarao, R. Reed, and J.R.W. Smith. Teleommuniations Systems EngeneeringUsing SDL. North-Holland, Amsterdam, 1989.13. F. Belina, D. Hogrefe, and A. Sarma. SDL - with appliations from protool spei�-ation. The BCS Pratitioners Series. Prentie-Hall International, London/EnglewoodCli�s, 1991.14. R. Br�k and Haugen �. Engineering Real-time Systems with an Objet-orientedMethodology based on SDL. Prentie-Hall International, London, 1993.15. A. Olsen, O. F�rgemand, B. M�ller-Pedersen, R. Reed, and J.R.W. Smith. SystemsEngineering Using SDL-92. Elsevier Siene Publishers B.V., Amsterdam, 1994.16. ITU-T. Reommendation Z.120 Annex B: Algebrai semantis of Message Se-quene Charts. ITU-T, Geneva, 1998.17. S. Mauw and M.A. Reniers. An algebrai semantis of Basi Message Sequene Charts.The Computer Journal, 37(4):269{277, 1994.18. S. Mauw. The formalization of Message Sequene Charts. Computer Networks andISDN Systems, 28(12):1643{1657, 1996. Speial issue on SDL and MSC, guest editor�. Haugen.19. S. Mauw and M.A. Reniers. High-level Message Sequene Charts. In A. Cavalli andA. Sarma, editors, SDL'97: Time for Testing - SDL, MSC and Trends, Proeed-ings of the Eighth SDL Forum, pages 291{306, Evry, Frane, 23-26 September 1997.Amsterdam, North-Holland.20. M.A. Reniers. Message Sequene Chart: Syntax and Semantis. PhD thesis, Eind-hoven University of Tehnology, June 1999.21. W.W. Roye. Managing the development of large software systems. In Proeedings ofthe IEEE WESCON, 1970.22. R.T. Yeh. An alternate paradigm for software evolution. In P.A. In Ng and R.T. Yeh,editors, Modern Software Engineering: Foundations and Perspetives, New York,NY, 1990. Van Nostrand Reinhold.23. B.W. Boehm. A spiral model of software development and enhanement. IEEE Com-puter, 21(5):61{72, 1988.24. Ministry of the Futenon, Ottobrun, Germany. Software life-yle proess model (V-model), 1992.25. C. Gindre and F. Sada. A development in Ei�el: Design and implementation of anetwork simulator. Journal of Objet-Oriented Programming, 2(2):27{33, May 1989.26. M. Andersson and J. Bergstrand. Formalizing Use Cases with Message Sequene Charts.Master's thesis, Lund Institute of Tehnology, 1995.27. E. Rudolph, J. Grabowski, and P. Graubmann. Towards a harmonization of UML-sequene diagrams and MSC. In R. Dssouli, G. von Bohmann, and Y. Lahav, editors,SDL'99: Proeedings of the Ninth SDL Forum. North-Holland, 1999.28. G. Robert, F. Khendek, and P. Grogono. Deriving an SDL spei�ation with a givenarhiteture from a set of MSCs. In A. Cavalli and A. Sarma, editors, SDL'97: Timefor Testing - SDL, MSC and Trends, pages 197{212, Evry, Frane, 1997. ElsevierSiene Publishers B.V.29. S. Som�e and R. Dssouli. Using a logial approah for spei�ation generation from mes-sage sequene harts. Tehnial Report Publiation d�epartementale 1064, D�epartementIRO, Universit�e de Montr�eal, April 1997.30. L.M.G. Feijs. Generating FSMs from Interworkings. Distributed Computing, 12(1):31{40, 1999.31. I. Kr�uger, R. Grosu, P. Sholz, and M. Broy. From MSCs to Stateharts. KluwerBedrijfswetenshappen B.V., 1999.



Message Sequene Charts in the Software Engineering Proess 2532. S. Leue, L. Mehrmann, and M. Rezai. Synthesizing room models from Message Se-quene Chart spei�ations. Tehnial Report Tehnial Report 98-06, Department ofEletrial and Computer Engineering, University of Waterloo, April 1998.33. D. Toggweiler, J. Grabowski, and D. Hogrefe. Partial order simulation of SDL spei�a-tions. In R. Br�k and A. Sarma, editors, SDL'95 - with MSC in CASE, Proeedingsof the Seventh SDL Forum, pages 293{306, Oslo, 1995. Amsterdam, North-Holland.34. G.J. Holzmann. The model haker Spin. IEEE Transations on Software Engi-neering, 23(5):279{295, 1997.35. A. Engels, S. Mauw, and M.A. Reniers. A hierarhy of ommuniation models forMessage Sequene Charts. In T. Mizuno, N. Shiratori, T. Higashino, and A. Togashi,editors, Formal Desription Tehniques and Protool Spei�ation, Testing andVeri�ation, Proeedings of FORTE X and PSTV XVII '97, pages 75{90, Osaka,Japan, November 1997. Chapman & Hall.36. B. Takas. Use of SDL in an Objet Oriented Design Proess during the developmentof a prototype swithing system. In O. F�rgemand and A. Sarma, editors, SDL'93 -Using Objets, Proeedings of the Sixth SDL Forum, pages 79{88, Darmstadt, 1993.Amsterdam, North-Holland.37. � Haugen, R. Br�k, and G. Melby. The SISU projet. In O. F�rgemand and A. Sarma,editors, SDL'93 - Using Objets, Proeedings of the Sixth SDL Forum, pages 479{489,Darmstadt, 1993. Amsterdam, North-Holland.38. �. Haugen. Using MSC-92 e�etively. In R. Br�k and A. Sarma, editors, SDL'95 -with MSC in CASE, Proeedings of the Seventh SDL Forum, pages 37{49, Oslo, 1995.Amsterdam, North-Holland.39. G. Amsj� and A. Nyeng. SDL-based software development in Siemens A/S { experieneof introduing rigorous use of SDL and MSC. In R. Br�k and A. Sarma, editors, SDL'95- with MSC in CASE, Proeedings of the Seventh SDL Forum, pages 339{348, Oslo,1995. Amsterdam, North-Holland.40. L.M.G. Feijs, F.A.C. Meijs, J.R. Moonen, and J.J. van Wamel. Conformane testing ofa multimedia hip using PHACT. In A. Petrenko and N. Yevtushenko, editors, Testingof Communiating Systems, pages 193{210, 1998.41. J. Grabowski, D. Hogrefe, and R. Nahm. Test ase generation with test purpose spei-�ation by MSCs. In O. F�rgemand and A. Sarma, editors, SDL'93 - Using Objets,Proeedings of the Sixth SDL Forum, pages 253{265, Darmstadt, 1993. Amsterdam,North-Holland.42. J. Grabowski. Test Case Generation and Test Case Spei�ation with MessageSequene Charts. PhD thesis, Universit�at Bern, 1994.43. R. Nahm. Conformane Testing Based on Formal Desription Tehniques andMessage Sequene Charts. PhD thesis, Universit�at Bern, 1994.44. J. Grabowski, R. Sheuer, Z.R. Dai, and D. Hogrefe. Applying SaMsTaG to the B-ISDNprotool SSCOP. In M. Kim, S. Kang, and K. Hong, editors, Testing of Communiat-ing Systems, IFIP TC6 Tenth International Workshop on Testing of CommuniatingSystems, pages 397{415, Cheju Island, Korea, September 1997. Chapman & Hall.45. ISO. TTCN: ISO/IEC JTC 1/SC 21: Information Tehnolgy - Open SystemsInteronnetion - Conformane Testing Methodology and Framework - Part 3:The Tree and Tabular Combined Notation, volume ISO 9646-3. ISO/IEC, 1991.46. E. Algaba, M. Monedero, E. P�erez, and O. Val�arel. HARPO: Testing tools develop-ment. In M. Kim, S. Kang, and K. Hong, editors, Testing of Communiating Systems,IFIP TC6 Tenth International Workshop on Testing of Communiating Systems, pages318{323, Cheju Island, Korea, September 1997. Chapman & Hall.47. E. P�erez, E. Algaba, and M. Monedero. A pragmati approah to test generation.In M. Kim, S. Kang, and K. Hong, editors, Testing of Communiating Systems,



26 S. Mauw and M.A. Reniers and T.A.C. WillemseIFIP TC6 Tenth International Workshop on Testing of Communiating Systems, pages365{380, Cheju Island, Korea, September 1997. Chapman & Hall.48. J. Grabowski, D. Hogrefe, I. Nussbaumer, and A. Spihiger. Test ase spei�ationbased on MSCs and ASN.1. In R. Br�k and A. Sarma, editors, SDL'95 - with MSC inCASE, Proeedings of the Seventh SDL Forum, pages 307{322, Oslo, 1995. Amsterdam,North-Holland.49. L.M.G. Feijs and M. Jumelet. A rigorous and pratial approah to servie testing.In B. Baumgarten, H. Burkhardt, and A. Giessler, editors, Testing of Communiat-ing Systems, IFIP TC6 Nineth International Workshop on Testing of CommuniatingSystems, pages 175{190. Chapman & Hall, 1996.50. A. Cavalli, B. Lee, and T. Maavei. Test generation for the SSCOP-ATM networksprotool. In A. Cavalli and A. Sarma, editors, SDL'97: Time for Testing - SDL,MSC and Trends, Proeedings of the Eighth SDL Forum, pages 277{288, Evry, 1997.Amsterdam, North-Holland.51. A. Engels, L.M.G. Feijs, and S. Mauw. Test generation for intelligent networks usingmodel heking. In E. Brinksma, editor, Proeedings of the Third InternationalWorkshop on Tools and Algorithms for the Constrution and Analysis of Systems,volume 1217 of Leture Notes in Computer Siene, pages 384{398. Springer-Verlag,1997.52. S. Mauw and M.A. Reniers. A proess algebra for interworkings. Tehnial ReportCSR 00/03, Eindhoven University of Tehnology, Department of Computing Siene,2000. To appear as a hapter in Handbook of Proess Algebra, editors A. Ponse andS. Smolka, Elsevier Siene B.V., 2000.53. R. Bentley, W. Appelt, U. Busbah, E. Hinrihs, D. Kerr, S. Sikkel, J. Trevor, andG. Woetzel. Basi support for ooperative work on the world wide web. InternationalJournal of Human-Computer Studies, 46(6):827{846, 1997.


