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Abstract. Key-updating protocols are a class of communication proto-
col that aim to increase security by having the participants change en-
cryption keys between protocol executions. However, such protocols can
be vulnerable to desynchronisation attacks, a denial of service attack in
which the agents are tricked into updating their keys improperly, so that
they are no longer able to communicate. In this work we introduce a
method that can be used to automatically verify (or falsify) resistance to
desynchronisation attacks for a range of protocols. This approach is then
used to identify previously unreported vulnerabilities in two published
RFID grouping protocols.

1 Introduction

Key-updating protocols form a class of communication protocols in which par-
ticipants change their encryption keys between executions. Such protocols are
used in several domains - the Signal protocol uses the Diffie-Hellman Double
Ratchet algorithm [19], and the Gossamer protocol [18] also uses updating keys.
Many grouping protocols [12, 21], which aim to prove that two or more RFID
tags are simultaneously present, also make use of updating keys.

There are several formally defined security properties which demonstrate
the benefits of key-updating protocols. For example, forward privacy, intro-
duced by Avoine [2], prevents an attacker from learning about past sessions,
even after compromising a participant. Post-compromise security, as defined by
Cohn-Gordon et al. [5], states that if an adversary compromises an agent, their
influence can be reversed if they do not continually monitor communication.

Such goals are typically realised by security protocols which update encryp-
tion keys, for example by using a one-way hash function. This way, if an adversary
learns the encryption keys used in a single session, they cannot reconstruct past
keys. However such methods introduce the problem of requiring the protocol
participants to synchronise their key updates - so that their local states remain
consistent.

The synchronisation requirement of key-updating protocols has created new
attack vectors. If improperly designed or implemented, an attacker can cause
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agents to update their keys in an improper manner, preventing them from cor-
rectly interpreting communications from their partner. This kind of Denial-of-
Service attack is called a desynchronisation attack [7]. Such attacks allow an
adversary to prevent future runs of a communication protocol, stopping the pro-
tocol from achieving its intended purpose.

Security properties for communication protocols can be formally verified us-
ing symbolic analysis. This type of analysis is well-supported by a range of
automated proving tools such as ProVerif [3] and Tamarin [17], which typically
attempt to reduce analysis of the protocol to a bounded case. This is especially
true in the case of stateless protocols, where information between sessions is
never carried forwards to future executions. However, key-updating protocols
are inherently stateful - information must be preserved between sessions. This
can cause problems in analysis due to the explosion of the state space. Indeed,
reachability queries are in general an undecidable problem [10, 4].

Existing formalisms of desynchronisation resistance. Desynchronisation repre-
sents a class of attacks that are not covered by traditional definitions. A protocol
that is impervious to such attacks is said to be desynchronisation resistant, and
while there is a strong intuitive understanding of what this property means,
there are few attempts at formal definitions in the literature.

There exist a variety of works that either claim a form of desynchronisation
resistance [25, 15, 13, 22] or provide a desynchronisation attack on published pro-
tocols [14, 16, 23]. Both types of papers only provide an informal treatment of
the topic, without automated tool support. Only few papers provide a formal
definition of a desynchronisation attack or desynchronisation resistance. We will
briefly discuss two of these approaches, namely the work of Van Deursen et al.
[6] and the work of Radomirović and Dashti [20].

Van Deursen et al. [6] introduce desynchronisation in the context of RFID
protocols. They say an RFID reader owns a tag if it knows a secret key allowing
it to authenticate the tag in absence of the adversary. A protocol is then said
to be desynchronisation resistant if being owned is an invariant property. For
example, if there is a time t such that a tag T is owned by a reader R, then at
time t + 1 there must exist some reader R′ (who may be the same or different
to R) which ‘owns’ T . The authors demonstrate how existing RFID protocols
violate their definition. They do not provide, however, any means for formally
verifying that it holds for an arbitrary protocol.

A second existing approach that relates to desynchronisation resistance is the
work on derailing attacks by Radomirović and Dashti [20]. In a derailing attack,
a protocol is led away from its intended execution by an adversary. Reachable
states in the protocol are labelled as safe, unsafe, or transitional, describing
whether a desirable ‘success’ condition is reachable from the current point. A
protocol is said to be susceptible to derailing attacks if there exists a reachable
state S such that in absence of the adversary, there are no safe states that are
reachable from S.



Automated Identification of Desynchronisation Attacks 3

Contributions. In this paper, a formal definition of desynchronisation resistance
is given in terms of the traces of a security protocol. The definition we provide can
be seen as an extension of the two theories above. Like Radomirović and Dashti,
our definition concerns the reachability of certain states, and an examination of
the transitions between them. Like Deursen et al., the knowledge of secret keys is
an important factor in our definitions. However, we go further by providing a set
of conditions for key-updating protocols that allows for automated verification
(or falsification) of desynchronisation.

Organisation. In Section 2, a detailed introduction to multiset rewriting theory
is given, presenting the language that will be used throughout the paper. In
Section 3, a series of definitions regarding reachability are provided, and used to
create a formal definition of desynchronisation resistance. In Section 4, the model
is refined to focus on sequential key-updating protocols. A set of security prop-
erties are provided that are proved to be sufficient to ensure desynchronisation
resistance in this setting. Section 5 shows the result of applying this analysis
to existing secret-updating protocols by using the automated verification tool
Tamarin. Novel attacks are found on a number of protocols in the literature.
Finally in Section 6, we discuss future work, as well as related concepts.

2 Security Protocol Model

In order to model security protocols in which shared secrets are updated, a
multiset rewriting model will be used. Multiset rewriting is a common basis
for modelling stateful systems. In a stateful system, different sessions can be
dependent on each other, with information that is dynamic between executions.

A protocol specification covers a set of rules that govern how a multiset
describing the protocol state is allowed to proceed. This state consists of infor-
mation such as the messages that have been sent by different participants of
the protocol, markers denoting if certain stages of the protocol have been suc-
cessfully reached, and the knowledge and actions of an adversary who seeks to
undermine the protocol’s successful execution.

2.1 Multiset Rewriting

The multisets used in our model are built on terms constructed from an order-
sorted signature, such as those described by by Goguen and Meseguer [11]. An
order-sorted signature is a triple (S,≤, Σ), where ≤ is a partial ordering on a
set of types S, and Σ is a collection of functions between types. For two types s
and t we define Σs,t to be the functions in Σ which map from type s to type t.
Further, we use the standard notation for the Cartesian product of sets, so for
example:

f ∈ ΣR2,N ::= f : R× R→ N.

Our model must track not only the kinds of communications that can be
sent over a network, but also auxiliary information about the state, such as an
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agent’s encryption keys. To do this, we define two top types msg and fact, and
further define subtypes public, nonce < msg, and agent, const < public.

The set of terms over S is defined iteratively, as follows. First, for each type
s ∈ S we build two infinite carrier sets Ns and Vs of names (i.e. known values)
and variables (i.e. unknown or uninstantiated values) of type s. We refer to these
types of terms as atoms. We will often use the following notation for variables:

x, y : nonce, m, k : msg, A,B : agent.

From here, successive terms are built by the application of functions from Σ on
the atoms. Given a term t, we define the set of subterms of t as follows. If t is an
atom, then subterms(t) = {t}. Otherwise, we have t = f(t1, t2, . . . , tn) for some
function symbol f ∈ Σ. In this case, we define

subterms(t) = {t} ∪ {subterms(t1), . . . , subterms(tn)}.

A term t is ground if subterms(t) ∩ Vs = ∅, and we denote the set of all
(ground) terms of type s as Ters (GTers). A (ground) substitution σ is a partial
function from variables to (ground) terms of the same type or supertype. Given
a substitution σ and a term t, we write tσ to denote the application of the
substitution. Given a set S = {t1, . . . , tn}, we write Sσ = {t1σ, . . . , tnσ}. We say
σ is a grounding substitution for S if all terms in Sσ are ground.

The model is extended with an equational theory E, which describes the
semantics of the functions in Σ. Pairs (l, r) in E define an equivalence relation
'E on terms constructed using (S,≤, Σ).

Example 1. We define the pair operator 〈 , 〉 ∈ Σmsg×msg,msg, and the corre-
sponding projection functions fst , snd ∈ Σmsg,msg such that fst(〈x, y〉) = x and
snd(〈x, y〉) = y.
Standard reason applies to equations, for example, fst(〈〈x, y〉, z〉) 'E 〈x, y〉.

A multiset is a set, M , counted with multiplicity - an individual element k
can be represented multiple times, and we write |k|M to denote the number of
occurrences of k in M , with |k|M = 0 if k 6∈ M . Given a set S, we write M(S)
to denote the collection of all multisets that can be written using elements of S.

The multisets we will study are a restricted subset of those constructible
using the order-sorted signature (S,≤, Σ) above. In particular, we define the
universe of states, U(Σ) as:

U(Σ) =M({f(t1, . . . , ti) | i ≥ 0 ∧ f ∈ Σmsgi,fact ∧
∀k ∈ {1 . . . i}. tk ∈ GTermsg}).

Each element S ∈ U(Σ) represents a single valid state of a protocol execution.
We now look at how we can move from one state to the next.

A rule r is defined by a pair (lhs, rhs) of multisets. Suppose σ is a grounding
substitution for lhs. A rule application rσ is a mapping U(Σ)→ U(Σ). It acts on
a state S ∈ U(Σ) by identifying a submultiset of S equal to σ(lhs), and replacing
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it with σ(rhs). Note that multiset rules must respect the equational theory E,
so that S 'E S′ =⇒ rσ(S) 'E rσ(S′). We express protocol rules as labelled
transitions.

Example 2. Consider the protocol rule Combine:

A(x) A(y)

B(x, y)
Combine,

which takes two terms of type fact built with symbol A, and returns a new fact
which contains the subterms of the two previous terms. Let S = {A(a),A(b),A(c)}.
The substitution σ = {x 7→ a, y 7→ b} maps:

{A(a),A(b),A(c)} rσ−→ {B(a, b),A(c)}

Definition 2.1 (Protocol specification) A protocol specification P is de-
fined by a tuple (Σ,E,R, Sstart) where:

– Σ = (F,F ) is a collection of function symbols of signature types Σmsg∗,msg

and Σmsg∗,fact, respectively.
– E is an equational theory over Σmsg∗,msg.
– R is a collection of rules.
– Sstart ⊆ U(Σ) is a collection of potential starting states.

The set of starting states will usually be infinite, as they carry the details of
a specific execution - the number of participating agents, their encryption keys,
and so on.

A trace, τ , on P is a choice of starting state S0 ∈ Sstart and a finite or-
dered list of rule applications (r1σ1 . . . rnσn) such that each successive applica-

tion S0 r1σ1−−−→ . . .
rnσn−−−→ Sn is valid.

The intermediate states in a trace can be reconstructed from the choices of
rule applications. Given a trace τ = (S0, (r1σ1 . . . rnσn)), a second trace τ ′ is an
extension of τ , writing τ v τ ′, if τ ′ = (S0, (r1σ1 · · · rnσn . . . rn+kσn+k)).

Given a trace τ we write firstState(τ) and lastState(τ) to denote the first
state and the (implicit) last state in the trace. We write rules(τ) to denote the
set of rules {r1, . . . , rn} in τ . We write traces(P ) to denote the set of all possible
traces on the protocol P .

We define an event fact, E? to be a fact which appears only on the right-
hand side of rules in R. Such facts can never be removed from the state of the
protocol. Intuitively, while standard facts mark the current situation of a state,
event facts form an indelible history of all important occurrences in a trace. As
such, we define the multiplicity of an event fact in a trace without ambiguity as
|E?(t1 . . . tn)|τ := |E?(t1 . . . tn)|lastState(τ),

We define a quasi-order on event facts within traces, <τ , as follows. Given
two event facts E?(t1 . . . tn),F?(s1 . . . sm), we say E?(t1 . . . tn) <τ F?(s1 . . . sm)
if there exists a prefix τ ′ v τ such that:(

|E?(t1 . . . tn)|τ ′ > 0
)
∧
(
|F?(s1 . . . sm)|τ ′ = 0

)
∧
(
|F?(s1 . . . sm)|τ > 0

)
.
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In particular, this means that F? was added to the state at some point after E?. In
addition, we write E?(t1 . . . tn) ≤τ F?(s1 . . . sm) to indicate that E?(t1 . . . tn) <τ
F?(s1 . . . sm) or {E?(t1 . . . tn),F?(s1 . . . sm)} ⊆ firstState(τ).

We reserve several symbols in F for all protocols, with the following inter-
pretations:

– Net(msg) represents a message on the communication network.
– Fr(nonce) represents that the nonce in the argument has been freshly gener-

ated. By convention, we require that freshly generated terms are atomic.
– K(msg) represents that the adversary ‘knows’ the term in the argument.

Additional event facts are introduced as a consequence of the security require-
ments of the protocol being analysed. In Section 4, we will introduce several
more event fact symbols used in order to analyse key-updating protocols.

2.2 The Adversary

An important concept in discussing security properties is an understanding of
the adversary’s capabilities. In this work, the Dolev-Yao adversary model [8] is
used. The Dolev-Yao adversary is assumed to have full control over the commu-
nication network. We make the perfect cryptography assumption: the adversary
is incapable of decrypting messages without the appropriate key.

The adversary knowledge is modelled using facts K. The initial knowledge
of the adversary is defined by the starting states of the protocol specification,
but at a minimum contains all terms of type public. A set of additional protocol
rules describe the capabilities of the adversary. These protocol rules allow the
adversary to eavesdrop, block or modify messages that are sent on the commu-
nication network. We assume that all protocols being studied contain (at least)
the set of adversary rules provided in Figure 1. The set of rules which model the
actions of the adversary is denoted as Adv .

Net(x)

Net(x) K(x)
Eavesdrop

Net(x)

K(x)
Block

K(x)

K(x) Net(x)
Inject

K(x1, . . . , xn)

K(f(x1, . . . , xn))
Function

Fig. 1: The minimal set of adversary rules.

We often also grant the adversary the limited ability to corrupt an agent,
learning the value of any secret keys they hold. This is done through either the
choice of starting states, or additional adversary rules.

2.3 Security Claims

Given a protocol P , a security claim on P is a first-order logic statement about
the existence and ordering of event facts in traces of P . We note that the valid-
ity of security claims is dependent upon a faithful description of the protocol in
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question. For example, in order to make security claims about the secrecy of cer-
tain knowledge, we should expect the protocol specification to contain Secret?(t)
(or similar) facts denoting the terms that are believed to be secret.

3 Desynchronisation Resistance

The intuition behind desynchronisation is that the protocol reaches a state from
which it can no longer proceed in a meaningful way. In order to define precisely
what this means, we must start with a notion of reachability. We refine this
definition to progressively stronger versions, before introducing our definition of
desynchronisation resistance.

Reachability is a property describing the ability of the protocol to transition
from a given state to some desirable situation. We will want to ensure that
in any reasonable conditions, the adversary cannot prevent the protocol from
completing, but rather only delay it.

Definition 3.1 (State Reachability) Given a protocol P = (Σ,E,R, Sstart),
a set of rules W ⊆ R and two states S, S′ ∈ U(Σ), we say that S′ is reachable
from S avoiding W , denoted by S  ¬W S′, if:

∀τ ∈ traces(P ). lastState(τ) = S =⇒
∃τ ′ ∈ traces(P ).τ v τ ′ ∧ lastState(τ ′) = S′ ∧ rules(τ ′ \ τ) ∩W = ∅.

Note that we pay particular attention to the idea of reachability avoiding
certain rules. We wish to show that no matter which actions an adversary takes,
it is possible for the execution of a protocol to continue once the adversary
becomes inactive. As such, we use  ¬Adv to denote reachability in absence of
the adversary, and  for the particular case when no rules are forbidden.

Given a protocol P = (Σ,E,R, Sstart) and a state S ∈ U(Σ) we define the
set of states reachable from S as reachable(S) = {S′ ∈ U(Σ) | S  S′}. Over-
loading notation, we define the set of states reachable by P as reachable(P ) =⋃
S0∈Sstart reachable(S0).

Next, the notion of reachability is extended from the context of states to the
context of event facts.

Definition 3.2 (Event Reachability) Let P be a protocol, S ∈ U(Σ) a state,
W a set of rules and E? an event fact. We say that E? is reachable from S
avoiding W , denoted by S  ¬W E?, if:

∃S′ ∈ U(Σ). (S  ¬W S′) ∧ (|E?|S < |E?|S′).

Intuitively, given a trace τ that contains S, it is possible to extend τ in such
a way that the event fact E? is reached. Like before, we will write S  E? to
indicate S  ¬∅ E?.

Reachability captures the idea that a desired state or event can be achieved
once. However, we desire that our protocol not only be able to successfully
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complete once, but arbitrarily many times. To do this, we need a definition
stronger than standard reachability.

Desynchronisation occurs when two agents who were originally able to finish
a protocol execution lose this ability.

Definition 3.3 (Desynchronisation Resistance) A protocol P is desynchro-
nisation resistant if:

∀A,B : agent, S0 ∈ Sstart . S0  ¬Adv Complete?(A,B) =⇒(
∀τ ∈ traces(P ). firstState(τ) = S0 =⇒

lastState(τ) ¬Adv Complete?(A,B) ∨
Corrupt?(A) ∈ τ ∨ Corrupt?(B) ∈ τ

)
.

Intuitively, if A and B are able to complete the protocol once without any actions
being performed by the adversary, then they will always be able to do this, except
in the case that one of the participants been corrupted, willingly giving secret
data to the adversary.

4 Verifying Desynchronisation Resistance

In this section we look at a specific instantiation of the theory in the previous
sections, and show that it can be used to verify desynchronisation resistance.
We also provide a ‘lower bound’ to desynchronisation resistance, proving that
violating this combination of properties results in an attack.

4.1 A Sequential Key Updating Environment

We will model a common synchronous authentication environment. In this sce-
nario, a pair of agents each store a number of secret communication keys to be
used with their intended partner. In an ideal execution, the keys stored by one
agent will always correspond to those stored by their partner, regardless of the
state of execution or the actions of the adversary.

Recall that a protocol specification is defined by a tuple (Σ,E,R, Sstart),
where Σ is further divided into the collections F and F of functions on terms
and fact symbols. We provide next a framework composed of F , E, and F .
Depending on the protocol, it may be necessary to extend the equational theory.
The set of rules R is a consequence of the protocol being examined.

F = {senc : msg ×msg→ msg, sdec : msg ×msg→ msg,

aenc : msg ×msg→ msg, adec : msg ×msg→ msg,

pk : msg→ msg, h : msg→ msg}.
E = {sdec(senc(msg, key), key) = msg,

adec(aenc(msg, pk(ltk)), ltk) = msg}.
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The function symbols in F represent the standard symmetric and asymmetric
encryption and decryption functions, and E defines their semantics.

F = { ShKeys(agent, agent, 〈nonce, . . .〉), Session(agent, agent, 〈msg, . . .〉),
AddKey?(agent, agent,msg), DropKey?(agent, agent,msg),

Complete?(agent, agent)}.

The facts ShKeys and Session provide information about the knowledge of
an agent. ShKeys facts represent their long term knowledge, in the form of
communication keys for use with a named partner. Session facts are used to store
session data for a single execution of the protocol. The AddKey? and DropKey?

event facts mark changes to the stored keys of an agent. Further semantics to
reinforce this intent are provided later.

Definition 4.1 (Starting States) The set of starting states Sstart is the set
composed of all S0 ∈ U(Σ) that satisfy the following conditions:

(i) @x : msg.Net(x) ∈ S0,

(ii) @A,B : agent, y : msg. Session(A,B, y) ∈ S0,

(iii) ∀A,B : agent, k1, . . . , kn : msg. ShKeys(A,B, 〈k1, . . . , kn〉) ∈ S0 =⇒
@l1, . . . , lm : msg, 〈k1, . . . , kn〉 6= 〈l1, . . . , lm〉. ShKeys(A,B, 〈l1, . . . , lm〉) ∈ S0,

(iv) ∀A,B : agent, ki : msg.

ShKeys(A,B, 〈. . . ki . . .〉) ∈ S0 =⇒ AddKey?(A,B, ki) ∈ S0,

(v) ∀A,B : agent, k : msg. AddKey?(A,B, k) ∈ S0 ⇐⇒
∃k1 . . . kn : msg. ShKeys(A,B, 〈. . . k . . .〉) ∈ S0 ∨ DropKey?(A,B, k) ∈ S0

(vi) ∀A,B : agent, k : nonce.
(
ShKeys(A,B, 〈. . . k . . .〉) ∈ S0 ∧K(k) ∈ S0

)
=⇒

Corrupt?(A) ∈ S0 ∨ Corrupt?(B) ∈ S0.

We note the following intuitions behind the above requirements:

(i) A starting state may not contain messages.
(ii) A starting state may not contain session data.

(iii) An agent stores only one set of keys for use with each potential communi-
cation partner.

(iv) If a starting state contains an agent A who stores a secret key ki for com-
municating with an agent B, then there is a corresponding AddKey? fact
showing that A has added this key.

(v) If a starting state contains an AddKey? fact, then either the corresponding
agent has that key in their knowledge, or there is also a corresponding
DropKey? fact.

(vi) If a starting state contains an agent A who stores a secret key ki for com-
municating with an agent B, and the adversary knows the value ki, then
either A or B is corrupt.
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We point out that a starting state does allow for instances of the Complete?

event fact. This does not interfere with any reachability claims, as these describe
the ability to add new instances of these event facts to the trace.

In addition, we grant the adversary two capabilities. Firstly, the adversary is
able to “corrupt” an agent, learning any secret keys they are holding. Second,
we allow the adversary to “cancel” the session of an agent, causing them to lose
any stored session data. For example, this models the ability of an adversary
to block messages sent on the network until an agent assumes their partner has
halted communication. We do this by requiring that the set of rules R contains
the rules Corrupt and Sess Cancel, defined below.

ShKeys(A,B, 〈k1 . . . kn〉)
K(〈k1 . . . kn〉)

Corrupt
Session(A,B, y)

Sess Cancel

4.2 Satisfying Desynchronisation Resistance

Given a protocol constructed in the model above, we provide a set of conditions
that are sufficient to satisfy desynchronisation resistance.

We start with a predicate stating whether two agents share a common key
in a given state. Let P be a protocol and S ∈ reachable(P ). We say that two
agents A and B have a common key in S, denoted CommonKeyA,B(S), if and
only if:

∃k1, . . . , kn, l1, . . . , lm : msg.
(
{k1, . . . , kn} ∩ {l1, . . . , lm} 6= ∅ ∧

ShKeys(A,B, 〈k1, . . . , kn〉) ∈ S ∧ ShKeys(B,A, 〈l1, . . . , lm〉) ∈ S
)

.

Now we define reachability conditional on a common key as the property of
a protocol that two agents are able to complete the protocol with each other in
absence of the adversary if and only if they have a common key.

Property 4.2 (Reachable Conditional on Common Key) We say that P
satisfies completion conditional on a common key if:

∀S0 ∈ Sstart , A,B : agent :

S0  ¬Adv Complete(A,B) ⇐⇒ CommonKeyA,B(S0).

With these in mind, we now define several other properties describing the
nature in which the shared keys used by agents in a protocol are updated. Prop-
erty 4.3 and Property 4.4 give syntactic requirements on protocols. In particular,
we require that a protocol’s specification is consistent in the way that ShKeys lin-
ear facts are modified with respect to the addition of the AddKey? and DropKey?

event facts. We also make the assumption that an agent always stores the same
number of encryption keys for communicating with their partner.

Property 4.3 (Well-Formed Key Updates) A protocol P = (Σ,E,R, Sstart)
satisfies Well-Formed Key Updates if the following two conditions hold for all
rules r ∈ R:
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AddKey?(A,B, k) ∈ rhs(r) ⇐⇒(
∃ k1 . . . kn, l1 . . . lm . ShKeys(A,B, 〈k1 . . . k . . . kn〉) ∈ rhs(r) ∧

ShKeys(A,B, 〈l1 . . . lm〉) ∈ lhs(r) ∧ ∀ i . li 6= k
)

,

DropKey?(A,B, k) ∈ rhs(r) ⇐⇒(
∃ k1 . . . kn, l1 . . . lm . ShKeys(A,B, 〈k1 . . . k . . . kn〉) ∈ lhs(r) ∧

ShKeys(A,B, 〈l1 . . . lm〉) ∈ rhs(r) ∧ ∀ i . li 6= k
)

.

Next we define the Key Conservation property. It states that every agent
must keep the same number of keys during the execution of the protocol. We
also require each rule to consider at most a single shared key fact.

Property 4.4 (Key Conservation) A protocol P = (Σ,E,R, Sstart) satisfies
Key Conservation if for every rule r ∈ R, and every A,B : agent, k1, . . . , kn : msg,
there exists an instance of ShKeys(A,B, 〈k1, . . . , kn〉) on the left-hand side of r
if and only if there is some l1, . . . , ln : msg such that the right-hand side of r
contains ShKeys(A,B, 〈l1, . . . , ln〉).

Next we define Key Uniqueness as the notion that a given encryption key will
only be generated at most once. Once discarded by an agent they will never re-
use it, nor can a different pair of agents ever (intentionally or otherwise) generate
the same encryption key.

Definition 4.5 (Key Uniqueness) A protocol P satisfies Key Uniqueness if
for every τ ∈ traces(P ) and every A,B,A′, B′ : agent and every k : msg with
{A,B} 6= {A′, B′} it holds that:

AddKey?(A,B, k) ∈ τ =⇒
|AddKey?(A,B, k)|τ = 1 ∧ |AddKey?(A′, B′, k)|τ = 0.

We next describe the properties of Key Preparedness and Key Resilience.
Together with Key Uniqueness, these are the main security requirements that
are to be verified. Intuitively, they provide a semi-strict ordering on the key
updates of paired agents.

Definition 4.6 (Key Preparedness for agents A and B) A protocol P sat-
isfies Key Preparedness for agents A and B if

∀τ ∈ traces(P ),∀k : msg

AddKey?(A,B, k) ∈ τ =⇒ AddKey?(B,A, k) ≤τ AddKey?(A,B, k).

Definition 4.7 (Key Resilience for agents A and B) A protocol P satis-
fies Key Resilience for agents A and B if

∀τ = (S0, (riσi)) ∈ traces(P ),∀k : msg

DropKey?(A,B, k) ∈ τ =⇒
DropKey?(B,A, k) ≤τ DropKey?(A,B, k) ∨ DropKey?(A,B, k) ∈ S0.
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The second case in the Key Resilience claim accounts for the trivial case of
a starting state containing DropKey? facts for which we cannot be sure of the
source.

We note that the above properties are verifiable, either by examination of the
protocol specification (4.2, 4.3, 4.4), or through verification of traces in an auto-
mated prover tool (4.5, 4.6, 4.7) . We denote the properties as WF, KC, KU, KP
and KR respectively for Well Formedness, Key Conservation, Key Uniqueness,
Key Preparedness and Key Resilience.

Theorem 4.8 (Sufficiency) Let P = (Σ,E,R, Sstart) be a protocol that sat-
isfies Properties 4.2, 4.3, 4.4 and Definition 4.5. P satisfies desyncronisation
resistance if for all S0 ∈ Sstart and all agents A,B such that
CommonKeyA,B(S0), one of the following conditions holds:

– Key Preparedness (Definition 4.6) for agents A and B holds, and Key Re-
silience (Definition 4.7) for agents B and A holds, or

– Key Preparedness (Definition 4.6) for agents B and A holds, and Key Re-
silience (Definition 4.7) for agents A and B holds.

Before we begin the proof of Theorem 4.8, we provide some helper lemmas.
We define the strip() function, which allows us to transform a state into a starting
state.

Definition 4.9 (Strip Function) We define the function strip(), which maps
from states to states. We define strip(S) to be the multiset that is equal to S,
but with all instances of Session, K and Net removed.

Lemma 4.10 Let P be a protocol which satisfies Key Conservation (Property 4.4)
and Well-Formed Key Updates (Property 4.3). Suppose S ∈ reachable(P ). Then
strip(S) is a starting state of this protocol, as per the requirements of starting
states in Definition 4.1.

Proof. Points (i), (ii) and (vi) are immediate from the absence of corresponding
facts. (iii) is a consequence of Key Conservation, (iv) and (v) from Well-Formed
Key Updates. ut

Lemma 4.11 Let P be a protocol which satisfies Key Conservation (Property 4.4)
and Well-Formed Key Updates (Property 4.3), and τ a trace of P with final state
S. Suppose γ is a trace of P with starting state strip(S) that contains no adver-
sary rules. Then γ · τ ∈ traces(P ) is a trace extension of τ .

Proof. Suppose γ = (strip(S), r1σ1 . . . rnσn). We claim that the series of rule
applications r1σ1 . . . rnσn are valid from the state S. Indeed, the rule application
r1σ1 can be dependent only on ShKeys facts, as these are the only linear facts
which can be in a starting state. These facts exist in both S and strip(S). By
the same logic, the rest of the series of applications are also valid. ut
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Proof (Theorem 4.8 ). Assume that the agents A and B are not corrupt. Without
loss of generality, we assume the first case holds - that we have Key Preparedness
for A and B, and Key Resilience for B and A. Our proof proceeds in two steps.
First, we show that the common key predicate is sufficient to ensure completion
from any state, not just the starting states:

∀S ∈ reachable(P ) :

CommonKeyA,B(S) =⇒ S  ¬Adv Complete(A,B).

Secondly, we show that the common key property is invariant :

∀S ∈ reachable(P ), r ∈ R,
(CommonKeyA,B(S) ∧ S rσ−→ S′) =⇒ CommonKeyA,B(S′).

From these two claims, the result will immediately follow. To show the first
point, we use the strip() function from Definition 4.9. Note that if A and B
have a common key in S, then they have a common key in strip(S). Then, by
Lemma 4.11, the claim follows.

For the second point, we must show that for any rule application rσ in which
a DropKey? event fact is added, the common key predicate is preserved. Indeed,
the well-formedness properties of Property 4.3 ensure that these are the only
possible rule applications which can affect the predicate.

Suppose we have S ∈ reachable(P ) such that CommonKeyA,B(S), and a rule
application rnσn. We split into the cases when DropKey?(A,B, k) is added, or
when DropKey?(B,A, k) is added. Suppose now rnσn adds DropKey?(A,B, k),
then:

KC
=⇒ ∃k′ : msg . rnσn adds AddKey?(A,B, k′)
KP
=⇒ ∃i < n . riσi adds AddKey?(B,A, k′)
KU
=⇒ @j . rjσj adds DropKey?(A,B, k′)
KDR
=⇒ @m . rmσm adds DropKey?(B,A, k′)

=⇒ ShKeys(B,A, 〈. . . , k′, . . .〉) ∈ S
and so now k′ is a common key after the rule application. Therefore the Common
Key predicate is preserved.

Suppose instead rnσn adds DropKey?(B,A, k), then:

KDR
=⇒ ∃i < n . riσi adds DropKey?(A,B, k)

WF
=⇒ ∃j < i . rjσj adds AddKey?(A,B, k)

KU
=⇒ @l 6= i . rlσi adds AddKey?(A,B, k)

=⇒ ShKeys(A,B, 〈. . . , k, . . .〉) 6∈ S
and so k was not a common key before the rule application. Therefore since S
contained some key k′ that was a common key, so does the state after the rule
application, and so the common key predicate is preserved. ut
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Theorem 4.8 provides a set of sufficient conditions to ensure that a protocol
in our model satisfies desynchronisation resistance. We provide one example of
a necessary condition to satisfy desynchronisation resistance: any protocol that
fails to meet this condition also fails to provide resistance against desynchroni-
sation attacks.

Theorem 4.12 (Necessity) Let P = (Σ,E,R, Sstart) be a protocol that satis-
fies Properties 4.2, 4.3, and 4.4. Let S0 ∈ Sstart and ShKeys(A,B, k) ∈ S0 (i.e.
A stores exactly one key for B) and assume P does not satisfy Key Preparedness
(Definition 4.6) for A and B. Then P either contains no reachable key update
rule applications for A, or it does not satisfy desynchronisation resistance.

Proof. Suppose P contains at least one key update rule for A. We will construct
a trace from which the Complete?(A,B) is no longer reachable without adversary
interference.

Let τ = (S0, r1σ1, . . . , rnσn) be a trace such that rnσn is a key update rule
application for A that violates the Key Preparedness property. Consider the
state strip(lastState(τ)). Note this state is reachable from lastState(τ) through
the rules Sh Cancel and Block.

By Reachability Conditional on a Common Key (Property 4.2), there exist
no traces starting from strip(lastState(τ)) that lead to the Complete?(A,B)
event fact without adversary interference. Thus desynchronisation resistance is
violated. ut

5 Automated Verification

In this section we discuss the automated verification of the security properties
from the previous section in the proving tool Tamarin. Tamarin uses multiset
rewriting theory at its core, allowing for our model to be naturally implemented.
We discuss the basic details of the implementation of the properties from Sec-
tion 4 in Tamarin, before discussing two protocols that were analysed and shown
to have attacks by using the Tamarin prover. In Appendix A we discuss some of
the obstacles overcome in the implementation. The full implementations, along
with diagrams and full descriptions of the attack traces can be found on our git
repository 4, along with several other demonstrations of the security properties
defined in this paper.

Definitions 4.5, 4.6, and 4.7 can be readily implemented in Tamarin. The
remaining definitions used in our results can be verified syntactically from a
protocol specification. With these considerations, our security properties can be
analysed.

We note that the environment introduced in Section 4 is applicable to a
large majority of key updating protocols. For example, many modern messag-
ing applications make use of variations of the Diffie-Hellman Double Ratchet

4 https://github.com/DesynchTamarin/desynch
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algorithm, which satisfies Common-Key Reachability (Property 4.2), Key Con-
servation (Property 4.4), and Key Uniqueness (Property 4.5). Note that Well-
Formedness is a consequence of the specification of the protocol, not the protocol
itself. The Gossamer protocol in the RFID domain also satisfies these properties.
As a consequence, the verification of these protocols is limited only by the power
of the analysis tools involved.

5.1 Identified Attacks

Our analysis identified novel attacks in two papers from the domain of RFID
grouping protocols. In particular, these protocols were shown to violate the con-
ditions of Theorem 4.12.

A desynchronisation attack was found on the grouping protocol of Sundare-
san, Doss, and Zhou [26]. The attack consists of a modified replay message,
taking advantage of the algebraic properties of the exclusive-OR function, which
is used to mask data. This replay causes an RFID tag to incorrectly authenticate
the adversary as a valid reader, updating their key past a safe threshold. The in-
tended execution of the protocol, and a trace which leads to a desynchronisation
attack, can be found in Figure 2. A very similar attack can be found on another
RFID grouping protocol, by Sundaresan, Doss, Piramuthu and Zhou [24].

Reader Tag
IDR, k

t
R, k

t+1
R IDR, ktag

Fetch TS , Data from server
Generate nR
D ← Data ⊕ nR
I ← IDR ⊕ h(TS ⊕ nR)
δ1 ← h(IDR ⊕ ktR)⊕ nR
δ2 ← h(IDR ⊕ kt+1

R )⊕ nR
TS ,D,I,δ1,δ2−−−−−−−−−−−−−→

n′ ← δ1 ⊕ h(IDR ⊕ ktag)
if IDR = I ⊕ h(TS ⊕ n′):

if n′ = (n′)t−1: abort
else: ktag ← h(ktag)

else:
n′ ← δ2 ⊕ h(IDR ⊕ ktag)
if IDR 6= I ⊕ h(TS ⊕ n′) or
n′ = (n′)t−1: abort

D ← f(D ⊕ n′)
D⊕n′

←−−−−−−−−−−−−−−

Reader

IDR, k
t
R, k

t+1
R

Tag

IDR, ktag

Adversary

(TS , D, I, δ1, δ2)

n′ ← δ1 ⊕ h(IDR ⊕ ktag )

ktag ← h(ktag )

Generate nA

DA ← D ⊕ nA

δA ← δ2 ⊕ nA

x← (TS ⊕ nA, DA, I, δ, ∗)

f(D)⊕ n′

x

n′ ← δ ⊕ h(IDR ⊕ ktag )

ktag ← h(ktag )

f(D)⊕ n′

Fig. 2: The grouping protocol of Sundaresan et al. (left), and attack trace (right)

An attack was also found on the ‘two-round grouping proof’ of Abughazalah,
Markantonakis and Mayes[1]. This protocol consists of a single message-response
round which allows multiple tags to authenticate to a single RFID reader. How-
ever, a modified replay attack abuses a built-in measure that allows a tag to
‘reset’ its group key. In this instance, the adversary can launch countless replay
messages, causing a tag to update its personal encryption key arbitrarily many
times. Further information about the attack can be found in Appendix B.



16 Mauw S., Smith Z., Toro-Pozo J., Trujullo-Rasua R.

6 Conclusion

Denial-of-Service attacks are often not considered in the analysis of security pro-
tocols, mainly because such attacks are hard to distinguish from regular omis-
sions in the underlying communication channel. However, some types of DoS
attacks are aimed at vulnerabilities at the protocol level. A typical example is
formed by the class of desynchronisation attacks, which aim to disrupt all future
communications between the protocol agents by desynchronising their commu-
nication keys.

Even though such desynchronisation attacks have been known for over a
decade, formal analysis tools have been lacking. In this paper we have addressed
this issue by developing a formal definition of desynchronisation resistance using
a protocol model based on multiset rewriting. This definition has been opera-
tionalised by defining a set of sufficient conditions that can be easily validated by
current state-of-the-art verification tools, such as Tamarin. We showed the ap-
plicability of our methodology by deriving two novel desynchronisation attacks
on published RFID protocols.
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A Tamarin Implementation Details

In Tamarin, executions always begin from the empty trace. The adversary knowl-
edge is assumed to contain all public terms (such as the names of agents). To
model this, we add a set of additional rules describing the establishment of shared
keys between agents, as well as corruption rules where agents reveal their secret
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information to the adversary. Such rules are commonplace, and are comparable
to those found in the Tamarin User Manual [27].

Tamarin allows for the implementation of user-defined equational theories.
However, it requires that they be subterm convergent. We note that progress has
been made on implementing more permissive equational theories, such as the
work by Dreier et al., which provides an extension allowing for AC-convergent [9]
equational theories.

Because of this, in some cases we are required to under-approximate the
equational theory of a protocol. The most notable example of this is with the
exclusive-or (XOR) operator. This under-approximation means that any identi-
fied attack traces are still valid, but it is possible that Tamarin will incorrectly
report that a property holds. This is a limitation of the implementation, not of
the model itself.

Tamarin supports unbounded analysis, using induction arguments to suc-
cessfully limit the search space in its backwards search approach. However, for
stateful protocols, it is not uncommon for Tamarin to require assistance in find-
ing proofs, sometimes failing to terminate. This means that at times we have
aided the tool by manually identifying minor ‘helper’ lemmas which identify the
key induction steps needed.

For ease of readability, we have assumed that the participants of a protocol
can be assigned to roles. For example, in the RFID case, an agent may be a tag
or a reader. As such, the event fact AddKey? is divided into the two event facts
TagAddsKey? and ReaderAddsKey?.

B Attack on the two-round grouping proof of
Abughazalah, Markantonakis and Mayes

Abughazalah, Markantonakis and Mayes provide a two-round RFID grouping
proof protocol [1], which uses updating keys. An RFID tag stores two updating
keys, for authenticating itself as well as identifying the group that it is a part of.

A system is in place to allow a tag to re-synchronise its group key if it is absent
for a run of the protocol, and does not receive the needed message to cause it to
update its key naturally. However, this system allows for replay attacks to cause
a tag to desynchronise its personal key with that stored by the verifier.

The analysis of the protocol in Tamarin revealed that it fails to satisfy the
conditions of Theorem 4.12, resulting in an attack.

Protocol Description The protocol is described in detail in the original pa-
per. Here, we provide a simplified description of the protocol for the sake of
conciseness. For example, the attack involves communication only between the
reader and a single tag, so we focus on only looking at one tag. We also adopt
the slightly adapted notation from Table 1. A diagram of the intended execution
of the protocol is provided in Figure 3.
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Table 1: Notation used in the protocol by Abughazalah et al.
IDG The identity of the reader, a secret value
IDT The identity of the tag, a secret value
kG A secret key for the group being tested
kT A secret key for the specific tag being tested
TS t An encrypted timestamp, used in construction

of the proof

nR A fresh (random) nonce generated by the reader
nT A fresh (random) nonce generated by the tag

h(·) A cryptographic hash function

Server

IDG, IDT , kG, kT

Reader

IDT

Tag

IDG, IDT , kG, kT

Generate TS t

TS t, IDG, kG

Generate nR

MR
G ← h(IDG, nR, kG)

K ← kG ⊕ h(IDG ⊕ nR)

nR,TS t,MR
G ,K

nR 6= nt−1
R

If MR
G 6= h(IDG, nR, kG)

kG ← K ⊕ h(IDG ⊕ nR)

Generate nT

MG ← h(IDG, nT , nR, kG, IDT )
MT ← h(IDT , nT , nR, kT ,TS t)

kG ← h(kG)
kT ← h(kT )

nT ,MT ,MG

MG = h(IDG, nT , nR, kG, IDT )

nt,MT ,MG

kG ← h(kG)
kT ← h(kT )

Reader

IDT

Tag

IDG, IDT , kG, kT

Adversary

Receive TSt1 , IDg , kG1

Generate nR1

MR
G1
← h(IDG, nR1

, kG1
)

K1 ← kG1
⊕h(IDG⊕nR1

)

nR1 ,TS t1 ,MR
G1

,K1

Generate nT

MG1
← h(IDG, nT , nR1

, kG1
, IDT )

MT1
← h(IDT , nT , nR1

, kT ,TS t1 )

kG ← h(kG)
kT ← h(kT )

nT ,MT ,MG

Receive TSt2 , IDg , kG2

Generate nR2

MR
G2
← h(IDG, nR2 , kG2 )

K ← kG2 ⊕ h(IDG ⊕ nR2 )

nR2
,TS t2 ,MR

G2
,K2

kG ← K ⊕ h(IDG ⊕ nR2
)

kG ← h(kG)
kT ← h(kT )

nT ,MT ,MG

nR1 ,TS t1 ,MR
G1

,K1

kG ← K ⊕ h(IDG ⊕ nR1
)

kG ← h(kG)
kT ← h(kT )

nR2 ,TS t2 ,MR
G2

,K2

kG ← K ⊕ h(IDG ⊕ nR2
)

kG ← h(kG)
kT ← h(kT )

Fig. 3: Two-rounds grouping proof protocol (left) and attack trace (right).
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Attack Trace Description The grouping protocol has the advantage of requir-
ing only two exchanged messages during its main execution between the reader
and tag. However, this results in a vulnerability which leads to a desynchronisa-
tion attacks. The protocol was analysed in Tamarin, with the server role merged
into the reader role. This is because the reader and server are assumed to have
a secure communications channel.

Note that blocking the tag’s message to the reader during a run of the pro-
tocol leads to a situation where the tag updates its secret, but the reader will
not. The next time the protocol runs, the tag will receive the first message from
the reader. Regardless of whether the reader updated the group key kG (which
it may have, because of the presence of other tags in the group completing the
protocol), the tag will authenticate to this message and update its key a further
time.

The authors seem aware of this problem, and suggest that it is possible
for the server to calculate future values of the tag’s key in order to prevent
desynchronisation. However, there exists the capability to perform replay former
messages, causing the tag to update its personal key arbitrarily many times.

As mentioned in the protocol paper, each tag stores previous nonces that
they successfully authenticated to. However, an RFID tag has limited memory
capacity - a typical EPC Generation 2 tag (such as those mentioned in the paper)
has around 512 bits of storage space, meaning that there is very little space to
store previously received nonces.

As such, if an adversary is able to eavesdrop at least two runs of the protocol,
a tag will readily accept a replay of a message from a previous execution. At
this point, the tag will update its key. The adversary can then replay a different
message, and repeat this cycle as long as desired.


