
Post-Collusion Security and Distance Bounding
Sjouke Mauw

University of Luxembourg
sjouke.mauw@uni.lu

Zach Smith
University of Luxembourg

zach.smith@uni.lu

Jorge Toro-Pozo
ETH Zurich

jorge.toro@inf.ethz.ch

Rolando Trujillo-Rasua
Deakin University

rolando.trujillo@deakin.edu.au

ABSTRACT

Verification of cryptographic protocols is traditionally built upon
the assumption that participants have not revealed their long-term
keys. However, in some cases, participants might collude to defeat
some security goals, without revealing their long-term secrets.

We develop a model based on multiset rewriting to reason about
collusion in security protocols. We introduce the notion of post-
collusion security, which verifies security properties claimed in
sessions initiated after collusion occurred. We use post-collusion
security to analyse terrorist fraud on protocols for securing physical
proximity, known as distance-bounding protocols. In a terrorist fraud
attack, agents collude to falsely prove proximity, whilst no further
false proximity proof can be issued without further collusion.

Our definitions and the Tamarin prover are used to develop a
modular framework for verification of distance-bounding protocols
that accounts for all types of attack from literature. We perform a
survey of over 25 protocols, which include industrial protocols such
as Mastercard’s contactless payment PayPass and NXP’s MIFARE
Plus with proximity check. For the industrial protocols we con-
firm attacks, propose fixes, and deliver computer-verifiable security
proofs of the repaired versions.

CCS CONCEPTS

• Security and privacy → Security protocols; Formal security
models; Logic and verification; Mobile and wireless security.

KEYWORDS

security protocols; formal verification; collusion; distance bounding;
terrorist fraud
ACM Reference Format:

Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-Rasua.
2019. Post-Collusion Security and Distance Bounding. In 2019 ACM SIGSAC
Conference on Computer and Communications Security (CCS’19), November
11–15, 2019, London, United Kingdom. ACM, New York, NY, USA, 18 pages.
https://doi.org/10.1145/3319535.3345651

1 INTRODUCTION

Communication protocols are designed with one or more security
goals in mind. These goals, such as authentication or confidentiality,

CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in 2019 ACM SIGSAC
Conference on Computer and Communications Security (CCS’19), November 11–15, 2019,
London, United Kingdom, https://doi.org/10.1145/3319535.3345651.

must be attainable even in the presence of an adversary attempting
to violate them. As such, the capabilities of the adversary is a funda-
mental consideration in security analysis, continuously undergoing
reformations.

In recent years, the adversary model of Dolev and Yao [30] has
become an accepted standard. The Dolev-Yao adversary is capable
of intercepting, blocking or modifying messages on the communi-
cation network, as well as injecting their own messages. Further,
the adversary is assumed to be capable of compromising protocol
participants (a.k.a. users, agents), gaining full control of them for
the entire protocol execution.

Most existing verification frameworks make use of the Dolev-
Yao adversary, which is sufficient to capture non-trivial attacks,
such as Lowe’s man-in-the-middle [42] on the Needham-Schroeder
protocol [49]. Computer-assisted verification approaches typically
consider Dolev-Yao adversaries as well. Such approaches have
proven useful in verifying or discovering attacks on real-world,
complex protocols such as 5G authentication [11], the TLS 1.3 pro-
tocol suite [24], and key-exchange protocols such as Naxos [55].

In some cases, the Dolev-Yao model has been shown to be too
coarse-grained. This is because this model assumes that agents can
be categorised as being either honest: those who precisely follow
their protocol specification; or compromised: those who deviate
from their protocol specification as desired by the adversary. The
concern lies in accounting for agents who cannot be classified in
either group.

For example, covert adversaries [1, 18, 33] are agents who are
willing to cheat by deviating from the protocol specification, as
long as the cheating would not be detected. One might think of an
online gaming platform, in which some players secretly cooperate
to cheat against other players, whilst avoiding being caught, or else
face consequences such as being thrown out of the platform.

Variations of the Dolev-Yao threat model capturing more refined
dishonest behaviour have been studied [1, 9, 10, 12, 23, 33], which
have led to re-thinking the security models to properly account
for such fine-grained adversaries. Such models attribute dishonest
behaviour to the adversary’s compromise capabilities, but in some
scenarios such behaviour might not be ruled by the adversary, but
rather by the protocol’s participants themselves.

For example, a given agent might choose to deviate from the
protocol specification, but only if certain guarantees are met in later
executions of the protocol. Would a university student willingly,
due to certain benefit, lend their campus access card to a university-
external friend? The student’s decision might be conditional on
their assertion that their friend will not be able to later access the
campus, after the card has been returned to its owner. Would a

https://doi.org/10.1145/3319535.3345651
https://doi.org/10.1145/3319535.3345651

CCS ’19, November 11–15, 2019, London, United Kingdom Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-Rasua

user of a video streaming platform utilize a VPN extension to fool
geo-location restrictions? The user’s decision might be based on
whether they are certain that the VPN extension is not malicious
and will not cause irreversible harm.

In this paper we refine the traditional Dolev-Yao adversary model
in order to capture collusion. Collusion refers to any deviation of the
protocol specification by agents who are not under control of the
adversary. Furthermore, we introduce the notion of post-collusion
security, which refers to security guarantees about claims made in
execution sessions initiated after the collusion. Informally, one can
interpret the relation of these two notions as follows: post-collusion
security allows the potential colluding agents to decide whether
colluding is worth it. After all, what the agents gain out of colluding
must outweigh the collateral effect that such collusion might have
on themselves. On the other hand, a protocol designer might aim
to increase the cost of collusion.

A related notion was introduced by Cohn-Gordon et al. [23],
called post-compromise security, that looks at the timeline of the
compromise actions and their impact in the security of future proto-
col sessions. Asmotivated earlier, collusion differs from compromise
in that compromise is an action performed by the adversary in or-
der to exert control over the protocol, whilst collusion represents a
deliberate choice of the agent involved.

In post-compromise security, the compromise is ruled by the
adversary, regardless of the (future) consequences on the compro-
mised agent. Post-collusion security, instead, allows the agents to
base their choice of collusion on post-collusion guarantees. One can
think of “not getting caught”, in the online gaming example given
earlier, as the post-collusion guarantee. In Section 2 we give further
technical differences between post-compromise and post-collusion
security.

Our notion of post-collusion security finds a straightforward
application in distance-bounding protocols [13, 15], which are se-
curity protocols that aim to guarantee physical proximity. These
protocols are used in RFID and NFC technologies, with numerous
applications in secure systems such as contactless payment and
access control. Post-collusion security allows us to formally analyse
a non-trivial type of attack on distance-bounding protocols known
as terrorist fraud [29]. In this attack, agents collude to falsely prove
proximity for one run of the protocol, whereas no further false
proximity proofs can be issued without further collusion.

Contributions. The contributions of this paper are:

• We provide a formal symbolic model based on multiset
rewriting systems that captures collusion in security proto-
cols, which represents non-compromised agents deviating
from their given protocol specification.

• We introduce the notion of post-collusion security, which
refers to the validity of security claims made in protocol
sessions initiated after the collusion. We provide a concrete
formulation of this notion that can be easily implemented in
protocol verification tools such as Tamarin [47].

• Our definitions are used to provide a formal description
of the sophisticated terrorist fraud on distance-bounding
protocols. Further, we develop a Tamarin-based framework
for verification of such type of protocols that exhaustively
accounts for all classes of attack from literature.

• We conduct a security survey of over 25 protocols, which
include industrial protocols based on the ISO/IEC 14443 stan-
dard. We propose computer-verified fixes for the vulnerabil-
ities encountered in these protocols.

Organisation. In Section 2 we discuss previous work onmodelling
alternative adversary models, with a particular focus on distance-
bounding protocols and terrorist fraud. We introduce our model in
Section 3, which is an extension of the multiset rewriting model
employed by the Tamarin tool. In Section 4, we extend the model
in order to formalise the concepts of collusion and post-collusion
security, and show how these notions apply to authentication anal-
ysis. In Section 5, we use post-collusion security to provide a formal
definition for terrorist fraud on distance-bounding protocols. We re-
port on our Tamarin-supported framework and verification results
in Section 6 and propose fixes for analysed protocols based on the
ISO/IEC 14443 standard. We summarise our findings in Section 7.

2 RELATEDWORK

In this section we describe someworks in which the authors analyse
alternative adversary models that modify the Dolev-Yao capabil-
ities. We pay special attention to existing symbolic verification
frameworks for distance-bounding protocols, which is the main
application field of our findings.

Alternative Adversary Models. In 2010, Basin and Cremers [10]
proposed a model in which they formally defined several extensions
to the Dolev-Yao adversary. These extensions were used to analyse
a variety of protocols against adversaries of varying strength [9].
As a result, they identified new attack vectors in key-exchange
protocols such as KEA+ [41], Naxos [40] and the MQV protocol
family [38].

In [12] the authors provide a formalism to model and reason
about human misbehaviour. A set of rules describe an untrained
human, who is willing to perform arbitrary actions but follows a
set of guidelines, such as “private keys must be kept secret”. The
Tamarin tool is used to automatically analyse security protocols
involving human errors.

Cohn-Gordon et al. introduced post-compromise security in [23],
defined as an agent’s security guarantees about a communication
with their peer, even if their peer has been already compromised.
They analysed two types of compromise: weak and total. Weak
compromise corresponds to temporary adversarial control of an
agent’s long-term keys in form of a cryptographic oracle, which
outputs the result of a crypto-operation , without revealing the
long-term keys. Post-compromise security has been recently used
in [22] to analyse group messaging protocols.

The adversary model for post-compromise security is similar to
that of post-collusion security in that they both allow for dishonest
behavior not conceived by the Dolev-Yao adversary. Yet, they differ
in that weak compromise is controlled by the adversary regardless
of the compromised agents’ will, whilst collusion is the agents’ de-
liberate choice. This choice can be based on whether or not certain
post-collusion guarantees are met. Furthermore, Cohn-Gordon et
al.’s post-compromise security focuses on stateful protocols, such
as authenticated key-exchange (AKE) and messaging protocols. Our
post-collusion security notion can be applied, but is not limited

Post-Collusion Security and Distance Bounding CCS ’19, November 11–15, 2019, London, United Kingdom

to this type of protocol. In addition, our approach is oriented to
symbolic security analysis, whereas theirs uses a computational
approach. As a result, our methods can be more smoothly imple-
mented in state-of-the-art verification tools for analysing complex
protocols.

Collusion can also be considered in the context of adveraries
other than Dolev-Yao, or even with no adversary at all. Tompa and
Woll [59] present an attack on Shamir’s secret sharing [56], based
on the principle of colluding agents. In the domain of multiparty
protocols, Hirt and Maurer [35] give a classification of how differ-
ent agents may deviate from their specification (e.g. ‘honest-but-
curious’ participants, or may collude between each other. Syverson
et al. [57] build upon an adversary model (named “Machiavelli”)
which does not directly corrupt agents, but instead manipulates
them through an extensive collection of collusion rules. We build
upon these papers, by looking at the impact on security after col-
lusion occurs, and to make progress towards identifying the key
deviations from the protocol specification that will result in “suc-
cessful” collusion within certain domains.

Distance-Bounding Protocols. A challenge in verifying distance-
bounding protocols is precisely the notion of physical distance.
Physical distance is associated with location, and so the standard
Dolev-Yao model in which the adversary can inject data on the
network does not faithfully apply. This is because the Dolev-Yao
adversary can inject messages on the network without explicitly
annotating the physical location where they have come from.

The first tool-supported framework for symbolic verification of
secure distance-bounding was proposed by Basin et al. [8, 54]. In
this work, the authors restricted the Dolev-Yao network capabilities,
so that adversarial injection of data is done via a compromised
agent. Thus, every message that travels through the network has
an origin location associated (the sender’s location). The authors
use Isabelle/HOL to verify, and find attacks on, a few protocols.

In [44], Mauw et al. propose the first verification framework
for distance-bounding that does not explicitly require handling
the agents’ location. Instead, (co-)location is analysed via a causal
ordering of the agents’ actions. This work provides a considerable
improvement over Basin et al.’s work, as it reduces code complexity
for the protocols’ specification as well as verification time and
automation level. The authors use the verification tool Tamarin to
deliver proofs of the (in)security of a number of protocols.

Both Basin et al.’s and Mauw et al.’s frameworks allow one
to discover traditional distance-bounding attacks such as mafia
fraud [29], distance fraud [28] and distance hijacking [26]. These
frameworks however do not account for terrorist fraud [29] as non-
compromised agents behave precisely as specified by the protocol,
ergo not allowing for collusion.

The first formalisation of terrorist fraud within a symbolic model
appeared in a recent work by Chothia et al. [20]. The authors define
collusion actions in the form of a cryptographic oracle similar to
weak-compromise in [23]. In their model for terrorist fraud, the
adversary queries a distant prover’s oracle to obtain the required
messages to falsely prove that such prover is co-located with the
verifier. In Section 6.2 we discuss differences between Chothia et
al.’s approach and ours, and show that Chothia et al.’s framework
delivers incorrect results for some protocols.

3 MODELLING SECURITY PROTOCOLS

This section describes the security model we use throughout this
paper. It is based on the multiset rewriting theory employed by
the Tamarin verification tool [47, 55]. Protocols are specified as
transition rules, and the associated transition system describes the
protocol executions. The states of the system are composed of facts.
Transition rules model how the protocol participants, as well as the
adversary, behave and interact.

3.1 Preliminaries

Notation. Given a set S , we denote by S♯ the set of finite multi-
sets with elements from S , and by S∗ the set of finite sequences
of elements from S . The power set of S is denoted by P(S). For
any operation on sets, we use the superscript ♯ to refer to the
corresponding operation on multisets.

Given a (multi)set S and a sequence s ∈ S∗, |s | denotes the
length of s , si the i-th element of s with 1 ≤ i ≤ |s |, and λ the
empty sequence. We write s indistinctly as [s1, . . . , sn] or s1 · · · sn
(the choice depends on presentation). The concatenation of the
sequences s and s ′ is denoted by s · s ′. We use set(s) andmultiset(s)
to denote the set and multiset of elements from s , respectively.
Given a ∈ S and s ∈ S∗, we write a ∈ s for ∃i ∈ {1, . . . , |s |}. a = si
and a < s for the opposite.

Cryptographic Messages. To model cryptographic messages, we
use an order-sorted term algebra (S, ≤,TΣ(V)) where S is a set of
sorts, ≤ a partial order on S, Σ is a signature, andV is a countably
infinite set of variables.We consider three sorts:msg, fresh, pub ∈ S,
where fresh ≤ msg and pub ≤ msg. That is, msg is the super sort
of two incomparable sub-sorts fresh and pub, denoting fresh and
public names, respectively. We use Vs ⊆ V to denote the set of
term variables of sort s and write x : s to indicate that x is a variable
of sort s .

Each function symbol f ∈ Σ has a type (w, s) ∈ S∗ × S, where
w is the arity and s the sort. Ifw is the empty sequence λ, then f
denotes a constant of sort s . We use Σw ,s ⊆ Σ to denote the family
of function symbols of type (w, s). Special function families are
Σλ,fresh and Σλ,pub , denoting fresh names (a.k.a. nonces) and public
names, respectively. Public names include constants (often written
in between quotations, e.g. ‘hello’), and agents’ names.

We provide next a list of reserved function symbols:

• ⟨ , ⟩ ∈ Σmsg×msg,msg to pair two terms.
• fst, snd ∈ Σmsg,msg to extract the first and second term from
a pair, respectively.

• senc, sdec ∈ Σmsg×msg,msg for symmetric encryption and
decryption, respectively. The second argument is the key.

• aenc, adec ∈ Σmsg×msg,msg for asymmetric encryption and
decryption, respectively.

• pk ∈ Σmsg,msg to indicate the asymmetric public key of the
argument.

• sign ∈ Σmsg×msg,msg and verify ∈ Σmsg×msg×msg,pub to cre-
ate and verify signatures, respectively.

The semantics of the function symbols above is formalised by
an equational theory E, which is in turn defined by the following

CCS ’19, November 11–15, 2019, London, United Kingdom Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-Rasua

set of equations over Σ, where true ∈ Σλ,msg :{
fst(⟨x,y⟩) = x, snd(⟨x,y⟩) = y,
sdec(senc(x,y),y) = x,

adec(aenc(x, pk(y)),y) = x,

verify(sign(x,y), x, pk(y)) = true
}
.

We use t =E t ′ to indicate that terms t and t ′ are equal modulo E.
Terms in our term algebra without free variables are called ground
terms. A substitution is a well-sorted function σ : V → TΣ(V), i.e.
(σ (x) = y ∧ x : s) =⇒ y : s , from variables to terms. We use tσ to
denote the application of the substitution σ to the term t .

Multiset Rewriting System. We model the execution of a proto-
col as a labelled transition system. A state in the system is a multiset
of facts, and a fact is a term of the form F (t1, . . . , tn) where F is
a symbol from an unsorted signature Γ and t1, . . . , tn are terms
in TΣ(V). For n ≥ 0 we denote by Γn ⊆ Γ the set of fact sym-
bols with n arguments. The application of a substitution function
σ to a fact F (t1, . . . , tn), denoted F (t1, . . . , tn)σ , results in the fact
F (t1σ , . . . , tnσ). The set of all facts is denoted F and the set G ⊆ F

denotes the set of ground facts, which are facts with only ground
terms as arguments.

We extend equality modulo E from terms to facts as follows:
F (t1, . . . , tn) =E G(t ′1, . . . , t

′
m) if and only if F = G, and n =m, and

ti =E t ′i for all i ∈ {1, . . . ,n}. Substitution and equality modulo E
are extended to sequences of facts in the trivial way.

A fact symbol is either linear or persistent. Linear fact symbols
model resources that are exhaustible, such as a message sent to the
network. Persistent fact symbols model inexhaustible resources,
such as the adversary knowledge or long-term encryption keys.

We reserve the linear fact symbols In,Out, Fr ∈ Γ1. The facts
In(m) and Out(m) denote the reception and sending ofm, respec-
tively. Fr(m) indicates thatm is a fresh name.

The persistent fact symbols K ∈ Γ1, Ltk ∈ Γ2, Shk ∈ Γ3 and
Compromise ∈ Γ1 are also reserved. K(m) indicates that the mes-
sagem is known to the adversary. Facts with symbols Shk and Ltk
are used to associate agents to their long-term cryptographic keys.
Shk(A,B,k) indicates that k is the long-term symmetric key shared
by A and B, and Ltk(A, sk) indicates that A holds the long-term
asymmetric private key sk . We say that an agent A is compromised
if the agent has revealed at least one of their long-term keys; and
we use the fact Compromise(A) to indicate so.

Given a sequence of facts s ∈ F ∗, wewrite linear(s) and persist(s)
to denote themultiset of linear facts from s , and the set of persistent
facts from s , respectively.

The execution of a protocol starts with the empty multiset of
facts, and evolves throughmultiset rewriting rules. A multiset rewrit-
ing rule is a tuple (p,a, c), written as

[
p
] a
−→

[
c
]
, where p, a and c are

sequences of facts called the premises, the actions, and the conclu-
sions of the rule, respectively. Each term in a multiset rewriting
rule is assumed to be of sort msg, unless otherwise indicated.

A ground instance of a rule r :=
[
p
] a
−→

[
c
]
is obtained via appli-

cation of a substitution function σ to result in rσ :=
[
pσ

] aσ
−−→

[
cσ

]
where pσ , aσ and cσ consist of ground facts only. Given a set of
rules R, we denote ginsts(R) the set of ground instances of the rules

from R. We write д ∈E G , where д is a (possibly ground) rule andG
is a set of (possibly ground) rules, to indicate that ∃д′ ∈ G . д =E д′.

A set R of multiset rewriting rules defines a multiset rewriting
system: an LTS whose set of states is G♯ and whose transition
relation→R ⊆ G♯ × P(G) × G♯ is defined by:

S
l
−→R S ′ ⇐⇒

∃(p,a, c) ∈E ginsts(R).

l = set(a) ∧ linear(p) ⊆♯ S ∧ persist(p) ⊆ set(S) ∧

S ′ =
(
S \♯ linear(p)

)
∪♯ multiset(c). (1)

A transition is performed by applying a ground instance of a
transition rule. The rule is applicable if the current system state
contains all facts in the premises of the rule. The rule application
removes the linear facts from the state, keeps the persistent facts,
and adds the facts from the conclusions.

An execution of R is a finite sequence [S0, l1, S1, . . . , ln, Sn] alter-
nating states and labels such that:

• S0 = ∅♯ ,
• Si−1

li
−→R Si for 1 ≤ i ≤ n, and

• if Si+1 \♯ Si = {Fr(x)}♯ for some i and x , then j , i does not
exist such that Sj+1 \♯ Sj = {Fr(x)}♯ .

The third condition guarantees that fresh names are generated
once. The set of all executions of R is denoted JRK.

3.2 Protocol Specification

A protocol is specified as a set of multiset rewriting rules, called
protocol rules, with the following restrictions: (1) fresh names and K
facts are not used, (2) In and Fr facts do not occur in the conclusions,
and (3) every variable occurring in the actions or conclusions either
occurs in the premises or is of sort pub. The universe of all rules
that satisfy these conditions is denoted R.

Example 1 (The Toy protocol). Figure 1 shows a message se-
quence chart (MSC) [25] of the Toy protocol, an example protocol
which we will use for illustration throughout the paper. The initiator
I creates a nonce1 ni , and sends it to the responder agent R, encrypted
with their shared long-term symmetric key. Upon reception, R de-
crypts the received message to learn ni . Then, R creates his own nonce
nr , encrypts it using the nonce ni as a key, and sends that encrypted
message to I . Upon reception of senc(nr ,ni), I learns nr and sends
back to R a hash of nr . Such a value allows R to be convinced that I
has executed the protocol with R and agrees on the nonces nr and ni .
The protocol rules are depicted in Figure 2.

The specification of the Toy protocol uses fact symbols that are
reserved, such as Shk. Indeed, we assume that all protocol specifi-
cations use reserved fact symbols with the intended meaning. The
remaining facts are used to enrich execution traces with informa-
tion that will be later used to analyze trace properties.

For example, RState1(I ,R,ni,nr) appears in the conclusion of R1
and in the premises of R2, allowing to establish an order between R1
and R2. The facts of the form Start(x) and End(x) denote the start
and the end of a protocol run by an agent, respectively. The term
1We will indistinctly use “nonce” and “fresh name”, though they mean the same thing:
a number generated once.

Post-Collusion Security and Distance Bounding CCS ’19, November 11–15, 2019, London, United Kingdom

shared k

I

shared k

R

fresh ni fresh nr

senc(ni, k)

senc(nr, ni)

h(nr)

agree ni, nr

Figure 1: The Toy protocol.

KeyGen :=
[
Fr(k)

]
−→

[
Shk(I ,R,k)

]
ShkCompI :=

[
Shk(I ,R,k)

] Compromise(I)
−−−−−−−−−−−−→

[
Out(k)

]
ShkCompR :=

[
Shk(I ,R,k)

] Compromise(R)
−−−−−−−−−−−−−→

[
Out(k)

]
I1 :=

[
Fr(ni), Shk(I ,R,k)

] Start(ni)
−−−−−−−→

[
Out(senc(ni,k)),
IState1(I ,R,ni)

]
R1 :=

[
Fr(nr), In(senc(ni,k)),

Shk(I ,R,k)

]
Start(nr)
−−−−−−−→

[
Out(senc(nr ,ni)),
RState1(I ,R,ni,nr)

]
I2 :=

[
IState1(I ,R,ni),
In(senc(nr ,ni))

] Running(I ,R, ⟨‘I’,‘R’,ni ,nr ⟩),
End(ni)

−−−−−−−−−−−−−−−−−−−−−−−−→
[
Out (h(nr))

]
R2 :=

[
RState1(I ,R,ni,nr),

In (h(nr))

] Commit(R,I , ⟨‘I’,‘R’,ni ,nr ⟩),
End(nr)

−−−−−−−−−−−−−−−−−−−−−−−−→
[]

Figure 2: Specification rules of the Toy protocol.

x denotes the run identifier. We delay the discussion of the fact
symbols Commit and Running until the introduction of security
properties in Section 3.4.

For the remainder of this article, the fact symbols Start and End
are reserved to mark the start and end of the protocol execution.
Also we assume that the protocol specification is consistent with
the usage of Start and End. In particular, we assume that all End
facts are reachable from the empty state.

3.3 Execution and Adversary Model

Given that protocol rules cannot generate fresh names, i.e. protocol
rules are not allowed to use Fr facts in their conclusion, we add
a special rule Fresh, independent of the protocol specification, to
model generation of fresh names:

Fresh :=
[]

−→
[
Fr(x)

]
where x : fresh.

To model the adversary’s actions we use the standard Dolev-
Yao network adversary, modelled by the rules depicted in Figure 3,
which we will explain in the next paragraph. We remark that the
compromise capabilities of the adversary are part of the protocol

Learn :=
[
Out(x)

]
−→
[
K(x)

]
Inject :=

[
K(x)

] K(x)
−−−−→

[
In(x)

]
AdvFresh :=

[
Fr(x)

]
−→
[
K(x)

]
Public :=

[]
−→
[
K(x)

]
where x : pub

Funct :=
[
K(x1), . . . ,K(xn)

]
−→
[
K (f (x1, . . . , xn))

]
Figure 3: Dolev-Yao rules.

specification (e.g. KeyCompI and KeyCompR in the Toy protocol). We
will extend this model with collusion actions in the next section.

The rules Learn and Inject model the adversary’s ability to
learn messages being sent and to inject any of their known mes-
sages, respectively. The rule AdvFresh declares that the adversary
can generate their own fresh names. The rule Public states that the
adversary knows all public messages and the rule Funct indicates
that the adversary can evaluate any function, provided that they
know the inputs.

We denote byI the set of intruder rules in Figure 3 together with
the rule Fresh, which will form part of every protocol specification.
Hence, the set of all executions of a set Proto of protocol rules is
JProto ∪ IK. Moreover, given an execution [S0, l1, S1, . . . , ln, Sn] of
Proto, the sequence l1 · · · ln is called the trace. The set of all traces
of Proto is denoted Traces(Proto).

3.4 Security Properties

Security properties are verified on execution traces. Certain facts
on the traces indicate a security claim, e.g. the Commit fact in the
Toy protocol. A security claim denotes a belief (traditionally of an
agent) about the protocol execution that led to the claim. Formally,
we define a security property φ as a relation on traces and integer
numbers such that φ(t1 · · · tn, i)means that security claims in ti are
valid. Recall that a trace is a sequence of labels, which in turn are
sets of ground facts.

For illustration purposes, let us instantiate φ with the authenti-
cation property non-injective agreement, as defined by Lowe in [43].
Following Lowe’s notation, we use the fact symbols Running and
Commit as markers in the traces to indicate those execution steps
where agreement is expected to be satisfied, e.g. as used by rules
I2 and R2 in Figure 2.

Non-injective agreement on a messagem is guaranteed to an
agent A, if whenever A completes a run apparently with B, denoted
by the claim Commit(A,B,m), then B has previously performing a
run apparently with A and they both agree onm, denoted by the
fact Running(A,B,m):

ni_agreement(t, i) ⇐⇒ (2)
∀A,B,m. Commit(A,B,m) ∈ ti =⇒(

∃j . Running(B,A,m) ∈ tj
)
∨(

∃j . Compromise(A) ∈ tj ∨ Compromise(B) ∈ tj
)
.

On the one hand, the prefix-closure of traces imposes an implicit
order j < i in Equation 2, which is suggested by the word “previ-
ously” in the description of the property. On the other hand, the

CCS ’19, November 11–15, 2019, London, United Kingdom Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-Rasua

last line of Equation 2 indicates that the property is conditional on
A and B not being compromised.

Definition 1 (Security). A set Proto of protocol rules satisfies a
security property φ, denoted Proto |= φ, if:

∀t ∈ Traces(Proto), i ∈ {1, . . . , |t |}. φ(t, i).

The Toy protocol satisfies2 non-injective agreement, i.e.

Toy |= ni_agreement.

We write Proto ̸ |= φ to indicate that Proto |= φ does not hold.

4 COLLUSION

The security model introduced in the previous section can be used
to model and verify standard security properties, e.g. secrecy and
agreement. This section is dedicated to providing a formal descrip-
tion of the notions of collusion, which is an extension to the adver-
sary model, and post-collusion security, which is a security model
under the extended adversary.

More precisely, in Section 4.1 we extend the adversary model
with collusion rules, which expressways inwhich non-compromised
agents can deviate from the protocol specification. In an illustra-
tive example, we show how such extension invalidates, under the
traditional security verification model (Definition 1), the agreement-
based authentication property given earlier (Section 3.4). Later, in
Section 4.2 we provide the formulation of post-collusion security.

4.1 Collusion Rules

In the traditional Dolev-Yao compromise model, agents are as-
sumed to be either compromised (a.k.a. corrupt, dishonest) or non-
compromised (a.k.a. honest). Non-compromised agents follow pre-
cisely the protocol specification, whilst compromised agents deviate
from it as pleased by the adversary.

We refine the traditional Dolev-Yao compromise model so that
agents can collude in order to provide false proof to their com-
munication partners of a certain claim’s validity. Collusion refers
to non-compromised agents’ deviation from their protocol spec-
ification. The basic deviation consists of leakage of session data,
cryptographic oracles, reuse of nonces, or state reveals.

For example, assume Alice is running an authentication protocol
(supposedly) with Bob. Consider also a third party Charlie who, in
cooperation with Bob, impersonates Bobwhen communicating with
Alice. Bob could trivially achieve this by giving all his secret keys
to Charlie. But, does Bob really have to do so in order to deceive
Alice? Not necessarily. Indeed, Bob can provide Charlie (possibly in
advance) with all the messages that Charlie needs to successfully
complete a protocol session with Alice, posing as Bob. Such aid by
Bob is what we call collusion, and we call Bob a colluding agent.

Collusion ismodelled by extending the protocol specification. For
example, in the Toy protocol, I might collude with a compromised
agent, say Eve, by leaking ni . This can be modelled with the rule:

Leak_ni :=
[
IState1(I ,R,ni)

] Collusion()
−−−−−−−−−→

[
IState1(I ,R,ni),

Out(ni)

]
. (3)

2All Tamarin models and proofs used for this paper can be found in our repository
https://github.com/jorgetp/dbverify.

Such rule leads to the following statement:

Toy ∪ {Leak_ni} ̸|= ni_agreement. (4)

Another example of a deviation is an encryption oracle, which
can be modelled as follows:

EncOracle :=
[

In(m),

Shk(I ,R,k)

]
Collusion()
−−−−−−−−−→

[
Out(senc(m,k))

]
. (5)

The rule EncOracle models the reveal of the encryption of a
message (possibly adversary-chosen) with a shared symmetric key.
This leads to:

Toy ∪ {EncOracle} ̸|= ni_agreement. (6)

The rules that extend the protocol specification to model collu-
sion are called collusion rules. By convention, and also to syntac-
tically distinguish legitimate protocol rules from collusion rules,
we will assume that all collusion rules have an action fact of the
form Collusion(). We denote by C ⊆ R the universe of all collusion
rules. We restrict the set of collusion rules by requiring them to not
prevent agents from completing legitimate protocol runs.

Definition 2 (Valid Extension). Let Proto ⊆ R\C be a protocol
and C ⊆ C be a set of collusion rules, we say that Proto′ = Proto ∪C
is a valid extension of Proto if:

∀α ∈ Traces(Proto′), i, x .

(Start(x) ∈ αi ∧ ∄j . End(x) ∈ α j) =⇒

∃β . α · β ∈ Traces(Proto′) ∧ End(x) ∈ β |β | .

Definition 2 states that collusion rules do not create points of
no-return during execution. That is to say, agents must always be
able to complete their runs even if they have colluded. For example,
Toy ∪ {Leak_ni} is a valid extension of Toy because, even if I leaks
ni in some execution, I can still continue with the intended protocol
execution.

An example of a rule that leads to a non-valid extension of Toy
is the following:

NonValidRule :=
[
IState1(I ,R,ni)

] Collusion()
−−−−−−−−−→

[]
.

Toy ∪ {NonValidRule} is not a valid extension of Toy because
if this rule is applied, it will consume the fact IState1(I ,R,ni) from
the system state, and so I will never be able to continue with the
current run (identified by ni).

Other than this requirement of not preventing termination, we
place no other restrictions on collusion rules. Besides leakage rules
or function oracles (as demonstrated), we also allow for more eso-
teric deviations, such as re-use of fresh values, or passing of mes-
sages between multiple colluding protocol participants (and not an
adversary or fully compromised agent).

4.2 Post-Collusion Security

In this section we introduce the notion of post-collusion security.
We informally define it as follows.

Definition 3 (Informal). Post-collusion security is the guarantee
of security claims made in sessions initiated after collusion occurs.

The remainder of this section is intended to formalise the above
informal definition of post-collusion security. Moreover, we will

https://github.com/jorgetp/dbverify

Post-Collusion Security and Distance Bounding CCS ’19, November 11–15, 2019, London, United Kingdom

1 ne i

complete runs post-collusion

Figure 4: A trace t = t1 · · · te · · · ti · · · tn can be broken down

into a pre-collusion trace consisting of completed runs (e.g.

before e), and a second subtrace containing post-collusion

claims (e.g. a claim made in ti).

use the Toy protocol and the agreement property from the previous
sections to illustrate our definitions and intuitions.

To identify claims made in sessions initiated after the collusion,
which we call post-collusion claims, we must make sure that all
sessions before or while the (last) collusion occurred are complete.
The reason for this is that an agent who makes a security claim
cannot always decide whether their communication partner is still
acting on a run initiated before or during the collusion. That is, a
claim byAlice about her communicationwith Bob is a post-collusion
claim if both Alice and Bob have completed their runs that started
before or while Bob performed the collusion action(s). That way,
we make sure that Alice makes her claim in a session initiated after
Bob’s collusion action.

Consider a trace t = t1 · · · te · · · ti · · · tn , and an index e such that
all collusion actions (if any) occurred before e . If all runs initiated be-
fore e were completed before e too, then we call the security claims
made after e post-collusion claims. See Figure 4 for a graphical rep-
resentation. Note that every claim that occurs after a post-collusion
claim is also a post-collusion claim.

Below, in Definition 4 we formulate post-collusion security, in
which we use the following helper predicates on sequences of sets
of ground facts:

complete(l) ⇐⇒ ∀i, x . (Start(x) ∈ li =⇒ ∃j . End(x) ∈ lj),
nocollusion(l) ⇐⇒ ∄j . Collusion() ∈ lj .

In words, complete(l) holds if all runs initiated in l are also com-
pleted in l ; nocollusion(l) means that no collusion actions occurred
in l . We note that the complete() predicate gives a strong divide be-
tween the complete runs and the post-collusion runs. However, we
assert that for interleaved traces (i.e. those in which there is always
an active session), there is an equivalent trace which satisfies the
predicate. Intuitively, sessions between unrelated agents have no
causal dependence and so can be reordered. This leaves only series
of sessions by the same agents. In the case that an agent may be
participating in multiple sessions simultaneously, we must require
that all of them are finished before we can make post-collusion
claims. This is because we cannot guarantee that a collusion action
taken in one session will necessarily only lead to attacks in that
session - for example, an agent may collude by acting as a function
oracle that can be used in any one of their active sessions.

Definition 4 (Post-collusion Security). Given a protocol
Proto, a valid extension Proto′ of Proto, and a security property φ,
we say that Proto′ is post-collusion secure with respect to φ, de-
noted Proto′ |=⋆ φ, if:

∀t ∈ Traces(Proto′), e ∈ {1, . . . , |t |}.
(complete(t1 · · · te) ∧ nocollusion(te+1 · · · t |t |))

=⇒ ∀i > e . φ(t, i). (7)

shared k with I

R

shared k with R

I Eve

fresh nifresh nr

senc(ni, k) ni

senc(nr, ni)

h(nr)

agree ni, nr

fresh nr′

senc(ni, k)

senc(nr′, ni)

h(nr′)

agree ni, nr′

Figure 5: An MSC showing that the Toy protocol with collu-

sion, represented by the dashed arrow, is not post-collusion

secure with respect to non-injective agreement.

Wewrite Proto′ ̸ |=⋆ φ to indicate that Proto′ |=⋆ φ does not hold.
As Figure 5 shows, Toy ∪ {Leak_ni} is not post-collusion secure
with respect to non-injective agreement, i.e.

Toy ∪ {Leak_ni} ̸|=⋆ ni_agreement. (8)

The attack works with two consecutive sessions, in which a
compromised agent Eve can re-use the messages senc(ni,k) and
ni from the first session to impersonate I in the second session.
Observe that the second claim is a post-collusion claim, as the first
session is complete and no collusion occurred in the second session.

The impact of post-collusion security can depend on the circum-
stances in which a given protocol is deployed. We see from the
Toy protocol that the effects of collusion can cause an irreversible
change to the truth value of future authentication claims. Thus, a
legitimate agent playing the initiator role would not want to col-
lude with a “friend” by giving them their nonce ni , as this would
lead to impersonation. On the contrary, suppose a given protocol
is post-collusion secure with respect to a desirable authentication
property. Then, an agent can issue their one-time keys to their
friends if desired, confident that these friends will not be able to
re-use this information for later authentication.

5 DISTANCE BOUNDING AND TERRORIST

FRAUD

In this section we use post-collusion security to develop a symbolic
formulation of (resistance to) terrorist fraud in distance-bounding
protocols. First, in Section 5.1, we describe how to model such
protocols by using the multiset rewriting model from Section 3.
We pay particular attention to restrictions to the Dolev-Yao model

CCS ’19, November 11–15, 2019, London, United Kingdom Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-Rasua

shared k

V

shared k

P

fresh n fresh m

senc(m, k)

n

RTT f(n,m, P)

P is close

Figure 6: The DBToy protocol.

that are necessary to model physical limitations of the communi-
cation channel. Later on, in Section 5.2, we formulate the secure
distance-bounding property proposed in [44] to verify this type of
protocols. Finally, in Section 5.3, we provide a symbolic formulation
of resistance to terrorist fraud.

5.1 Modelling Distance-Bounding Protocols

Distance-bounding protocols are security protocols that aim to
guarantee physical proximity between the participants. These pro-
tocols determine proximity by checking that the round trip times
(RTT) of a number of challenge/response cycles are below a certain
threshold. The phase of the protocol where the RTTs are measured
is called the fast phase. See next a running example.

Example 2 (The DBToy Protocol). Figure 6 depicts the DBToy
protocol, which works as follows. The prover P encrypts a fresh name
m with the shared key between P and the verifierV . Then P sends the
encryptedmessage toV . Hence, the fast phase starts withV sending the
fresh name n as the challenge, to which P must reply with f (n,m, P).
If P replies correctly and on time, then V declares P as being close.
The specification rules of DBToy are shown in Figure 7.

In the DBToy rules we have introduced the linear fact sym-
bols Net ∈ Γ1, Send,Recv ∈ Γ2, Action ∈ Γ1 and DBSec ∈ Γ4.
A fact Net(m) denotes that the message m is on the network. A
fact Send(X ,m) denotes the sending of m by the agent X , and
a fact Recv(X ,m) denotes the reception by X of the message m.
A fact Action(X) denotes that an action was taken by X . A fact
DBSec(V , P, ch, rp) denotesV ’s claim that P is close during the fast
phase, delimited by Send(V , ch) and Recv(V , rp). The remaining
newly introduced facts denote the agents’ information on the sys-
tem state. Recall that the reserved fact symbols Compromise and
Shk are persistent. The rest of the fact symbols used in Figure 7 are
linear.

The rules DBInject, DBSend, and DBRecv restrict the Dolev-Yao
attackers’ communication with protocol participants, in order to
comply with the semantic domain of [44]. This was briefly mo-
tivated in Section 2. The aim is to capture the statement “every
message that can be received by the verifier during the fast phase
has been sent from a real physical location”. The reason behind this
is that messages cannot travel faster than light, thus the adversary
cannot instantaneously send a message to an agent (as modelled

KeyGen :=
[
Fr(k)

]
−→

[
Shk(V , P,k)

]
KeyRevV :=

[
Shk(V , P,k)

] Compromise(V)
−−−−−−−−−−−−−→

[
Out(k),

Compromise(V)

]
KeyRevP :=

[
Shk(V , P,k)

] Compromise(P)
−−−−−−−−−−−−−→

[
Out(k),

Compromise(P)

]
DBInject :=

[
In(m),Compromise(X)

]
−→

[
Send(X ,m)

]
DBSend :=

[
Send(X ,m)

] Send(X ,m),Action(X)
−−−−−−−−−−−−−−−−−−→

[
Net(m),Out(m)

]
DBRecv :=

[
Net(m)

] Action(Y),Recv(Y ,m)
−−−−−−−−−−−−−−−−−→

[
Recv(Y ,m)

]
P1 :=

[
Fr(m), Shk(V , P,k)

] Start(m)
−−−−−−−→

[
Send(P, senc(m,k)),

ProvSt1(P,m)

]
V1 :=

[
Fr(n), Shk(V , P,k),

In(senc(m,k))

]
Start(n),Send(V ,n)
−−−−−−−−−−−−−−−−→

[
Out(n),

VerifSt1(V , P,n,m)

]
P2 :=

[
ProvSt1(P,m), In(n)

] End(m)
−−−−−−→

[
Send(P, f (n,m, P))

]
V2 :=

[
VerifSt1(V , P,n,m),

Recv(V , f (n,m, P))

]
DBSec(V ,P ,n,f (n,m,P)), End(n)
−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[]
Figure 7: Specification rules of the DBToy protocol.

by Dolev-Yao’s rule Inject in Figure 3). Hence, in order for the
adversary to inject data for an agent to receive, they must use a
compromised agent as the sender, and so the message takes a while
to arrive to the receiver. Note that we do not drop the traditional
Inject rule of Figure 3, but we use Recv and Send facts to model
the sending and receiving of messages during the fast phase.

In line with this, we will assume that every set of rules defining
a distance-bounding protocol is consistent with the usage of Send,
Recv and Action facts as follows: (1) every messagem sent by the
prover P is modelled by a rule with a fact Send(P,m) within the
conclusions, (2) every messagem received by the verifier V during
the fast phase is modelled by a rule with a fact Recv(V ,m) within
the premises, and (3) every messagem sent by the verifierV during
the fast phase is modelled by a rule with a fact Send(V ,m) within
the actions.

5.2 Secure Distance-Bounding

In [44], Mauw et al. defined the causality-based property secure
distance-bounding, to verify distance-bounding protocols. The prop-
erty resembles a form of aliveness [25, 43] as the prover must per-
form some action during the fast phase of the protocol. The authors
demonstrated that a verifier’s guarantee that the prover is alive
during the fast phase is equivalent to the verifier’s guarantee that
the fast phase RTT provides an upper bound to their distance to

Post-Collusion Security and Distance Bounding CCS ’19, November 11–15, 2019, London, United Kingdom

the prover. Next we formulate Mauw et al.’s property:

dbsec(t, l) ⇐⇒

∀V , P, ch, rp. DBSec(V , P, ch, rp) ∈ tl =⇒

(∃i, j,k . i < j < k ∧ Send(V , ch) ∈ ti ∧

Action(P) ∈ tj ∧ Recv(V , rp) ∈ tk) ∨

(∃b,b ′, i, j,k, P ′.

i < j < k ∧ Send(V , ch) ∈ ti ∧

Action(P ′) ∈ tj ∧ Recv(V , rp) ∈ tk ∧

Compromise(P) ∈ tb ∧ Compromise(P ′) ∈ tb′) ∨

(∃i . Compromise(V) ∈ ti).

Secure distance-bounding holds for a trace t if, whenever a claim
DBSec(V , P, ch, rp) occurs, it is the case that there is an action of P
(or a compromised prover P ′ if P is compromised) during the fast
phase. Tamarin provides proof of DBToy |= dbsec.

Observe that, unlike the agreement property from Section 3,
dbsec does not exclude traces in which one of the agents involved
in the security claim is compromised. Instead, should the prover be
compromised, then the verification fails only if no compromised
prover is active in the fast phase.

5.3 Formalising (Resistance To) Terrorist Fraud

We informally define terrorist fraud as follows.

Definition 5 (Informal). Terrorist fraud (TF) is an attack in
which a remote and non-compromised prover P colludes with a close
and compromised prover A to make the verifier believe that P is close.
Conditionally, A (or any other compromised prover) must not be able
to attack the protocol again without further collusion.

The dbsec property allows us to detect attacks in which the
proving party is compromised, such as distance fraud [28] and
distance hijacking [26] (details on these attacks can be found in
Appendix A). However, dbsec is too fine-grained for modelling
terrorist fraud, as we require the distant and colluding prover to be
non-compromised (in the case of a compromised prover, collusion
actions do little to aid the adversary). In line with this reasoning,
we define below a property weaker than dbsec, that is conditional
on non-compromise of both prover and verifier:

dbsec_hnst(t, l) ⇐⇒

∀V , P, ch, rp. DBSec(V , P, ch, rp) ∈ tl =⇒

(∃i, j,k . i < j < k ∧ Send(V , ch) ∈ ti ∧

Action(P) ∈ tj ∧ Recv(V , rp) ∈ tk) ∨

(∃i . Compromise(V) ∈ ti ∨ Compromise(P) ∈ ti).

Intuitively, a trace satisfies dbsec_hnst if, whenever a verifier V
believes a prover P is close, P took some action between the verifier
sending the challenge ch and receiving reponse rp.

We formally define next resistance to terrorist fraud, a property
formulated by means of post-collusion security with respect to
dbsec_hnst.

Definition 6 (Resistance to Terrorist Fraud). A protocol
Proto ⊆ R \ C is resistant to terrorist fraud if every valid extension

Proto′ of Proto that breaks dbsec_hnst is not post-collusion secure
with respect to dbsec_hnst, i.e.

Proto′ ̸ |= dbsec_hnst =⇒ Proto′ ̸ |=⋆ dbsec_hnst. (9)

Observe that resistance to terrorist fraud is a property on proto-
cols rather than on traces. Further, terrorist fraud uses the negation
of post-collusion security. This is because in a terrorist fraud attack,
the colluding prover wishes to allow their partner to complete the
protocol only whilst they are cooperating.

5.4 On the Completeness of our Approach

Definition 6 is quantified over all (valid) extensions of a collection
of protocol rules. As such, it can present obstacles in providing
proofs of security, as the number of extensions is exponential in the
complexity of the protocol. Indeed, attempting to fully automate
this process is an open problem which is also considered by other
approaches [9, 12].

To deal with this completeness issue for the problem of prov-
ing terrorist fraud resistance, we introduce the notion of a least-
disclosing message. Such message is a knowledge-minimal message
that the adversary needs, in order to produce the fast phase response
upon reception of the challenge. For instance, if ch is the verifier’s
fast phase challenge, and the prover’s fast phase response can be
written as f (ch, z1, . . . , zn) for some z1, . . . , zn ∈ TΣ(V) such that
λch. f is either injective or constant, then a least-disclosing message
is ⟨z1, . . . , zn⟩. Such message can lead, in some cases, to the disclo-
sure (directly or not) of the long-term keys. To better illustrate the
least-disclosing notion, le us consider again the DBToy protocol.

Theorem 1. DBToy is resistant to terrorist fraud.

Proof. Let DBToy′ be a valid extension of DBToy such that
DBToy′ ̸ |= dbsec_hnst. Thus, there exist t1 · · · tl ∈ Traces(DBToy′),
and n,m,V , P ∈ TΣ, and i,k ∈ {1, . . . , l} with i < k , such that:

Send(V ,n) ∈ ti ∧ Recv(V , f (n,m, P)) ∈ tk ∧

DBSec(V , P,n, f (n,m, P)) ∈ tl ∧

(∄j ∈ {i + 1, . . . ,k − 1}. Action(P) ∈ tj) ∧

(∄j ∈ {1, . . . , l}. Compromise(V) ∈ tj) ∧

(∄j ∈ {1, . . . , l}. Compromise(P) ∈ tj), (10)

Hence, because of Equation 10 above and given the fact that
Recv(V , f (n,m, P)) can only occur due to the rule DBNet (see Fig-
ure 7), we derive that:

∃c, j ∈ {1, . . . ,k − 1},C .
(Send(C, f (n,m, P)) ∈ tj ∧ Compromise(C) ∈ tc). (11)

Equation 11 implies that ∃w < k . K(m) ∈ tw . This means that
DBToy′ has a collusion rule in whichm is given away. Notice thatm
(or equivalently ⟨m, P⟩) is indeed a least-disclosing message because
of the following two reasons:m is needed by the adversary to break
dbsec_hnst, andm is atomic (i.e. it cannot be learned by pieces).

But, if the adversary knowsm, then they can use a compromised
prover to run again the protocol with V on behalf of P , by using
the messages senc(m,k) and f (n2,m, P) in that order, where n2 is
V ’s (new) challenge. This reasoning can be formalized as follows.

CCS ’19, November 11–15, 2019, London, United Kingdom Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-Rasua

Given that DBToy′ is valid (see Definition 2) we have that e ≥ l ,
and tl+1, . . . , te exist such that:

t1 · · · tl · · · te ∈ Traces(DBToy′) ∧ complete(t1 · · · tl · · · te). (12)

Now, l2 ≥ e , and te+1, . . . , tl2 , and n2, and i2,k2 ∈ {e+1, . . . , l2−
1} exist such that:

t1 · · · tl · · · te · · · tl2 ∈ Traces(DBToy′) ∧

Send(V ,n2) ∈ ti2 ∧ Recv(V , f (n2,m, P)) ∈ tk2 ∧

DBSec(V , P,n2, f (n2,m, P)) ∈ tl2 ∧

(∄j ∈ {i2 + 1, . . . ,k2 − 1}. Action(P) ∈ tj) ∧

(∄j ∈ {1, . . . , l2}. Compromise(V) ∈ tj) ∧

(∄j ∈ {1, . . . , l2}. Compromise(P) ∈ tj). (13)

Therefore, from Equations 12 and 13 we deduce that DBToy′ ̸ |=⋆
dbsec_hnst, which completes the proof3. □

The reasoning about the least-disclosing messages is supported
by the observation that any follow-up, collusion-free trace which
the adversary can lead to with less knowledge, they can also lead
to with further knowledge.

6 A SURVEY OF DISTANCE BOUNDING

In this section we show how the Tamarin tool can be used to con-
struct proofs of security or attacks on distance-bounding protocols.
In Section 6.1, we describe the results of our verification of a num-
ber of distance-bounding protocols. In Section 6.2 we show how
the results of our approach differ from those of Chothia et al. [20].
Finally, in Section 6.3 we analyse three industrial protocols based on
the ISO/IEC 14443 standard and propose Tamarin-verified repaired
protocols.

6.1 Case Studies

We conducted verification in Tamarin of a number of distance-
bounding protocols from the literature. For each of them, we verify
whether it satisfies dbsec_hnst (without collusion), whether it satis-
fies dbsec (also without collusion) and whether it resists terrorist
fraud (Definition 6). The results are shown in Table 1.

To identify the type of attack against a given protocol, we provide
two hints: (1) if the protocol does not satisfy dbsec_hnst, then a
mafia fraud exists; and (2) if the protocol satisfies dbsec_hnst but
it does not satisfy dbsec, then a distance fraud and/or a distance
hijacking exist. In this second case, it is highly recommended to
run Tamarin in interactive mode and inspect the trace invalidates
the property dbsec in order to visually assert the existence of the
attack. Further details on this can be found in our repository.

Out of the analysed protocols, only three protocols are distance-
bounding secure and resist terrorist fraud. These protocols are Reid
et al.’s [53], DBPK [17], and Swiss Knife [37]. A total of nineteen
protocols were found vulnerable to terrorist fraud.

The authors of UWB impulse radio based protocol [39] do not
give precise specifications of their secure channel. Hence we em-
ployed two schemes: asymmetric encryption/decryption and a mes-
sage authentication code (MAC). We found a mafia fraud against

3A Tamarin proof for a given DBToy′ is also available in our repository.

Table 1: Tamarin verification results. We highlighted in

bold the protocols that satisfy dbsec and resist terrorist fraud.
The protocols from the block “Lookup-based” have identi-

cal specification. Legend: ✓: verified, ×: attack found,
(n)

: no

symbolic, computer-verifiable (in)security proof reported

before,
(,c)

: differs from Chothia et al.’s results [20].

Protocol

Satisfies Satisfies Resists

dbsec_hnst dbsec TF

Brands-Chaum [15]
- Signature id. ✓ × ×(n)

- Fiat-Shamir id. ✓ × ×(n)

CRCS [52]
- Non-revealing sign. ✓ ✓ ×

- Revealing sign. ✓ × ×

Meadows et al. [46]
- f := ⟨NV , P ⊕ NP ⟩ ✓ ×(,c) ×

- f := NV ⊕ h(P,NP) ✓(n) ✓(n) ×(n)

- f := ⟨NV , P,NP ⟩ ✓(n) ✓(n) ×(n)

Lookup-based

✓ ✓ ×(,c)
- Tree [7]
- Poulidor [60]
- Hancke-Kuhn [34]
- Uniform [45]
Munilla-Peinado [48] ✓ ✓ ×(n)

Kim-Avoine [36] ✓ ✓ ×(n)

Reid et al. [53] ✓ ✓ ✓(n)

MAD (one way) [19] ✓ ×(,c) ×

DBPK [17] ✓(n) ✓(n) ✓(n)

Swiss Knife [37] ✓ ✓ ✓(n)

UWB [39]
- Asymmetric ×(n) ×(n) ✓(n)

- keyed-MAC ×(n) ×(n) ✓(n)

WSBC+DB [50] ✓(n) ×(n) ×(n)

Hitomi [51] ✓(n) ✓(n) ×(n)

TREAD [4]
- Asymmetric × × ✓(n)

- Symmetric ✓ × ✓(n)

ISO/IEC 14443
- PaySafe [21] ✓ × ×

- MIFARE Plus [58] ✓ × ×

- PayPass [31] ✓ × ×

each variation. Such attack is not reported in [39], as the authors
only consider verbatim relay.

For each one of the protocols reported as not resistant to terror-
ist fraud, the valid extension used to invalidate Equation 9 is the
prover’s leakage of the least-disclosing message, whose notion was
discussed in 5.4. For each protocol Proto reported as resistant to
terrorist fraud, one of the following three cases occurred:

(1) Proto ̸ |= dbsec_hnst and Proto ̸ |=⋆ dbsec_hnst, thus Proto′ ̸ |=⋆
dbsec_hnst for any valid extension Proto′ of Proto, because
Traces(Proto) ⊆ Traces(Proto′). The protocols of this type are

Post-Collusion Security and Distance Bounding CCS ’19, November 11–15, 2019, London, United Kingdom

TREAD [4] with asymmetric encryption, and both versions
of UWB [39].

(2) Every valid extension Proto′ of Proto such that Proto′ ̸ |=

dbsec_hnst leads to replay of an attack on dbsec_hnst, there-
fore Proto′ ̸ |=⋆ dbsec_hnst. The protocol of this type is
TREAD [4] with symmetric encryption.

(3) Every valid extension Proto′ of Proto such that Proto′ ̸ |=

dbsec_hnst leads to disclosure of the symmetric key shared
by the prover and verifier, therefore Proto′ ̸ |=⋆ dbsec_hnst.
The protocols of this type are Reid et al. [53], DBPK [17],
and Swiss-Knife [37].

The proofs of terrorist fraud resistance of the four protocols from
the last two cases were constructed by following the semi-automatic
approach based on least-disclosing messages, applied to the DBToy
protocol proof of Section 5.4. It is a semi-automatic approach, be-
cause Tamarin alone cannot faithfully verify that Definition 6 holds
for any protocol. This is because of the complexity of handling the
universal quantifier over all valid collusion extensions. However, a
simple manual proof analogous to that of the DBToy protocol, in
combination with the tool successfully led to security proofs of the
referred protocols.

On average, a Tamarinmodel of a protocol consists of about 260
lines of code, out of which 170 are of generic code, approximately.
On a modern laptop, the verification of all lemmas for a given
protocol takes about half of a minute on average and a few seconds
in most cases. All (in)security proofs were constructed without any
proof oracles for speeding up the verification.

6.2 Our Approach vs. Chothia et al.’s
As mentioned in Section 2, a recent publication [20] at the USENIX
Security Symposium 2018 analysed a number of distance-bounding
protocols. Our findings show incorrectness in their results. In this
section we will briefly explain and interpret three inconsistencies
between this work and ours. Furthermore, a more detailed discus-
sion can be found in Appendix B.

The first inconsistency is regarding the DBToy protocol of Ex-
ample 2. By employing Chothia et al.’s framework, we analysed
this protocol4 and identified a terrorist fraud attack against it. This
is in contradiction with Theorem 1. The inconsistency arises from
Chothia et al. using a different definition of terrorist fraud than
us. Their terrorist fraud prover colludes as long as their long-term
key(s) are not revealed. It does not consider the (non-)repeatability
of the resulting attacks.

Chothia et al. [20] also produce results which contradict those
widely accepted and reiterated in the literature. For example, Hancke
and Kuhn’s protocol [34] is widely agreed to admit a terrorist fraud
attack (see e.g. [2, 3, 5, 6, 14, 16, 37]). Chothia et al. report otherwise,
without any discussion on the topic. Such inconsistency is due to
an over-approximation on the symbolic abstraction the authors
make of the protocol.

Lastly, Chothia et al.’s verification results report no attack, other
than terrorist fraud, against versions of Meadows et al.’s proto-
col [46] and the MAD protocol [19]. Our verification, however,
identifies a valid distance hijacking attack against each of these

4Our repository contains the ProVerif model of this and several other protocols.

counter ATC
shared KM

R

counter ATC
shared KM

C

fresh UN
fresh amount

fresh nC
Timing info ti

SELECT, PayPass

SELECTED

GPO

AIP, AFL

EXCHANGE RRD, UN

RTT nC, ti

READ RECORD

GENERATE AC, UN , amount , . . .

KS:=senc(ATC ,KM)
AC :=MAC(KS,amount,ATC ,UN)
SDAD :=sign(〈nC,UN ,AC ,ti〉,skC)

SDAD ,AC ,ATC

C is close

Figure 8: Mastercard’s PayPass protocol.

protocols. We note that such attacks are not new, as they have been
reported by a number of previous works, e.g. [6, 26, 27, 44].

6.3 On the ISO/IEC 14443 Protocols

The ISO/IEC 14443 standard is used in more than 80% of today’s
contactless smart cards. Within our case studies, we analysed 3
protocols based on this standard. Those protocols are:

• NXP’s MIFARE Plus5 (versions X and EV1) with proximity
check (patent [58]) with worldwide applications in public
transport, access management, school and campus cards,
citizen cards, employee cards, and car parking.

• PaySafe [21], which is a distance-bounding-enabled version
of Visa’s contactless payment protocol payWave (in qVSDC
mode) [32].

• PayPass [31], which is Mastercard’s contactless payment
protocol with relay resistance.

To demonstrate our analysis, we have chosen the PayPass proto-
col, represented in Figure 8. The analyses of the other two protocols
are analogous. In the context of these protocols, the verifier R is
the reader terminal and the prover C is the card.

PayPass is a relay-resistance-enabled version of the EMV6 pay-
ment protocol implemented in Mastercard’s contactless cards. EMV
(which stands for Europay, Mastercard and Visa) has become the
international standard for smart cards/chips payment protocols.

In a regular EMV session, a transaction is initiated by the ex-
change of SELECT and SELECTED commands along with the se-
lected EMV applet that will be used for the transaction (PayPass in
5https://www.mifare.net/en/products/chip-card-ics/mifare-plus
6https://www.emvco.com

https://www.mifare.net/en/products/chip-card-ics/mifare-plus
https://www.emvco.com

CCS ’19, November 11–15, 2019, London, United Kingdom Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-Rasua

this case). Then, the terminal issues the GPO command to inform
the card on the terminal’s capabilities. The card then responds to
this command with the Application Interchange Profile (AIP) and
Application File Locator (AFL) which indicate the card’s capabilities
and the location of data files, respectively. Then, the terminal issues
the GENERATE_AC command, which includes an Unpredictable
Number UN , the amount of the transaction, the currency code,
and other data. The cards responds with the Application Cryp-
togram (AC), the Signed Dynamic Application Data (SDAD) and
the Application Transaction Counter (ATC). The AC is a the result
of keyed-MAC on the transaction information whose key is an
encryption of the Application Transaction Counter (ATC, equal to
the number of transactions previously made by the card) with a
long-term symmetric key shared between the terminal and the card.
The AC is the proof of the transaction, which can be verified by
the card issuer. The SDAD is the card’s signature of the transaction
information.

To ensure the EMV protocol satisfies relay resistance, after the
AIP and AFL commands, the terminal issues the new Exchange
Relay Resistance Data EXCHANGE_RRD command, along with
the Terminal Relay Resistance Entropy number (which equals UN).
This message initiates the fast phase of the protocol. The card must
respond on time with their nonce nC (Device Relay Resistance
Entropy) and three timing estimates: minimum time for processing,
maximum time for processing and estimated transmission time.

When modelling the PayPass protocol in Tamarin, and also the
other ISO/IEC 14443 protocols, we made the following abstractions:
(1) the timing information is considered a nonce; and (2) we did not
model any exchanged messages that are fully composed of constant
terms, e.g. the first message ⟨SELECT, PayPass⟩.

As Table 1 shows, PayPass satisfies dbsec_hnst, which means
that it does resist mafia fraud and in particular, relay attacks. In-
deed, defending against relay is a fundamental security goal of
this protocol. However, PayPass fails to defend against distance
fraud [28] and distance hijacking [26]. Those attacks refer to a re-
mote and compromised card which successfully tricks the reader
into believing they are co-located, and thus the reader accepts the
transaction.

One might argue that those attacks are irrelevant for payment
systems. After all, it is the compromised card’s owner’s bank ac-
count which ends up being charged. However, suppose an attacker
has acquired the payment card of a victim and wishes to cause them
harm. After compromising the card, they might place a concealed
device near the checkout area of a store that performs a distance
hijacking attack using the compromised card. Shoppers at the store
would then perform transactions, believing that they were paying
for products, whilst in fact all payments came from the one cor-
rupted card. The attacker could even mix in several transactions
of their own, which would be indistinguishable from the honest
shoppers. As a result of this “Robin Hood” style attack, the victim
will be charged for these illegitimate transactions with no clear
perpetrator.

Fixing the ISO/IEC 14443 Protocols. As before, we will focus on
the PayPass protocol. Before giving the fixes, let us motivate the
reasons for which it does not satisfy dbsec. As noted by Mauw et
al. in [44] when analysing PaySafe, a distance fraud is possible due

to the lack of a causal relation between the fast phase challenge
and response. That is, the fast phase response can be produced
prior to reception of the challenge. To solve this issue, Mauw et al.
suggested the inclusion of the reader’s nonce UN within the card’s
response.

Mauw et al.’s suggestion applied to PayPass does prevent dis-
tance fraud, but it does not prevent distance hijacking. To prevent
the latter, we must bind the fast phase messages to the card’s iden-
tity. We do so by adding to the card’s fast phase response, besides
UN , the card’s signature on the nonce nC . Thus, the card’s fast
phase response becomes:

⟨nC , ti, sign(nC , skC),UN ⟩ .

This modification results in a protocol PayPass_Fix that satisfies
dbsec. Observe that the signature sign(nC , skC) can be computed
prior to the fast phase, so it does not delay the card’s response.

The very same solution of adding ⟨sign(nC , skC),UN ⟩ into the
card’s fast phase response works for both the PaySafe and MIFARE
Plus protocols as well. Though, to keep consistency with the usage
of cryptographic operations in the case of the latter protocol, we
propose a keyed-MACmessageMAC(KM ,nC , ‘1’, ‘2’) instead of the
signature sign(nC , skC). As before, the keyed-MAC message can be
computed prior to the fast phase.

The modified protocol PayPass_Fix does not resist terrorist fraud
because the card’s leakage of ⟨nC , ti, sign(nC , skC)⟩ prior to the fast
phase leads to a valid attack. To prevent terrorist fraud, we propose
to further modify the PayPass protocol by changing the card’s fast
phase response and SDAD messages so that they become:

⟨nC , ti, f (UN ,nC ⊕ KM)⟩ and sign(⟨UN ,AC⟩ , skC),

respectively; where f is an irreversible function. The referred modi-
fication on PayPass results in a protocol PayPass_FixTF that satisfies
dbsec and resists terrorist fraud.

Similar constructions can be performed on PaySafe and MIFARE
Plus in order to repair them. The Tamarin models and security
proofs of the two versions of each protocol are available in our
repository. We give two different repaired versions of each protocol
in order to leave the choice up to the requirements of the application
system. For example, if terrorist fraud is not a critical issue, then the
first modification (i.e. Protocol_Fix) is suggested over the second
one (i.e. Protocol_FixTF) as the latter modifies the standard more
“aggressively”. We do always suggest the first modified version over
the original protocol, regardless of the application.

Other modifications for the ISO/IEC 14443 protocols that make
them resistant to terrorist fraud possibly exist, and likely all of
them (like ours) would require major changes to the standard. For
example, the composition of the SDAD message would likely have
to be modified due to the occurrence of the card’s nonces within it.
Furthermore, we conjecture that if the card’s nonces (e.g. nC) can be
inferred from passive observation of the execution, then versions
of the protocols in question that resist terrorist fraud would be
vulnerable to relay attacks, thus violating a primary security goal
of these protocols.

7 CONCLUSIONS

This paper addressed symbolic analysis of security protocols in
the presence of colluding agents. Colluding agents are agents who

Post-Collusion Security and Distance Bounding CCS ’19, November 11–15, 2019, London, United Kingdom

are not under full control of the adversary, yet they are willing
to deviate from the intended protocol execution with the goal to
invalidate a given property. By looking at different use-cases, we
observe that post-collusion security may or may not be a desirable
goal. This is because the risk of irreparable damage to the security
of a protocol may motivate agents to avoid collusion.

We proposed a concrete symbolic formulation of post-collusion
security that can be implemented in state-of-the-art protocol verifi-
cation tools such as Tamarin. We used our definition to illustrate
that leakage of session data can lead to impersonation of agents.
This is particularly interesting in the context of authentication prop-
erties in which agents, by leaking only session-fresh data, enable
the adversary to successfully break the authentication property in
every session thereafter.

By means of post-collusion security, we provided the first formal
symbolic definition of (resistance to) the sophisticated terrorist
fraud attack against distance-bounding protocols. By using our
theoretical model and the Tamarin tool, we provided computer-
verifiable proofs of the (in)security of over 25 distance-bounding
protocols that account for all classes of attacks, as given by the
literature on distance bounding. To the best of our knowledge, this
is the most extensive and sound set of security/vulnerability proofs
within this research subject.

Our verification reports that for the vast majority of the analysed
protocols at least one attack exists. The vulnerable protocols include
protocols based on the ISO/IEC 14443 standard such as Mastercard’s
PayPass [31], Visa’s payWave with distance-bounding [21], and
NXP’s MIFARE Plus with proximity check [58]. Finally, we pro-
posed fixes for these protocols and provide computer-verifiable
security proofs of the repaired protocols. The proposed fixes form
demonstrative examples that could be used to improve proximity-
based secure systems that follow the standard, or may even form
guidance for a future version of the standard itself.

A ATTACKS ON DISTANCE BOUNDING

There exist four main classes of attacks on distance-bounding proto-
cols. Some authors consider more classes but, consistent with [26],
our classification represents an exhaustive partition of the full
space of attacks: mafia fraud [29], distance fraud [28], distance hi-
jacking [26], and terrorist fraud [29]. We briefly describe next these
attacks, and their graphical representations are shown in Figure 9.

Mafia Fraud (Figure 9a) Given a verifier V , a close compro-
mised agent A uses a distant and honest prover P to make V
believe that P is close. The attack works in two sessions: one
between A and P (the so-called pre-ask session) and another
one between V and A. In most cases, A relays the verbatim
untimed communication between P andV , and impersonates
P to V during the fast phase.

Distance Fraud (Figure 9b) Given a verifier V , a distant and
compromised prover P anticipates V ’s challenges so that V
believes that P is close. This means that P must be able to
reproduce the responses prior to receiving the challenges.
For this type of attack, P does not need to use any other
provers.

Distance Hijacking (Figure 9c) Given a verifier V , a distant
and compromised prover P makes use of a close and honest

prover A to makeV believe that P is close. To achieve this, P
lets A run the fast phase withV . Then (or, in some protocols,
before) P hijacks the session, injecting their own identity-
defining messages, possibly during the verification phase of
the protocol. This makesV believe that they are running the
protocol, and in particular the fast phase, with P .

Terrorist Fraud (Figure 9d) Given a verifier V , a close and
compromised prover A, and a distant (non-compromised)
prover P collude tomakeV believe that P is close. A condition
for this attack to be valid is that, without further collusion
involving A, it must not be possible to further convince V
that A is close.

B CHOTHIA ET AL.’S FRAMEWORK VS. OURS

In this appendix we provide a detailed description on the incon-
sistencies between Chothia et al.’s work [20] in relation to our
framework and results.

B.1 On Terrorist Fraud

Chothia et al.’s terrorist fraud approach and ours yield different
results when analysing the DBToy protocol in Example 2. The rea-
son is a fundamental difference between the approaches in defining
what consists a terrorist fraud attack.

Both definitions state that a distant prover, by colluding with
a close and compromised prover, make a verifier believe that the
distant prover is close. The definitions differ in the condition on the
collusion that make one consider the attack as valid. Chothia et al.’s
definition states that a terrorist fraud occurs whenever the distant
prover does not reveal their secret keys in the process of collusion.
Our definition, on the other hand, requires a stronger condition, in
that the distant prover must not allow the compromised prover to
proof proximity in further sessions without further collusion.

The reason for this is related to the reveal of messages that are
as relevant as secret keys, rather than the reveal of secret keys
themselves. For example, for some protocols, a prover’s leakage
of session-fresh data can lead to their impersonation in every ses-
sion thereafter. A running example is given as follows. Consider a
distance-bounding protocol Proto in which every crypto-operation
uses a shared, symmetric key. Let us assume that the only aid the
distant prover can provide the close prover with is to give away the
shared key. If we follow Chothia et al.’s approach, Proto would be
resistant to terrorist fraud. Consider now another protocol Proto′
that results from Proto by replacing any instance of a shared key
k by its hash h(k). Therefore, if we use Chothia et al.’s approach,
Proto′ would not be resistant to terrorist fraud, as the distant prover
can leak h(k), which does not reveal k itself. In this case, the mes-
sage h(k) is equally as valuable as the key k itself. This means that
the key-hashing transformation weakens the protocol, which does
not seem to be a coherent statement. The mentioned issue does not
occur if we apply our approach as both Proto and Proto′ would be
resistant to terrorist fraud.

Another inconsistency between our results on terrorist fraud
analysis and those of Chothia et al. is with respect to Hancke and
Kuhn’s protocol [34], depicted in Figure 10. This protocol was re-
ported as resistant to terrorist fraud by Chothia et al.’s ProVerif

CCS ’19, November 11–15, 2019, London, United Kingdom Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-Rasua

PV

A

(a) Mafia fraud

PV

(b) Distance fraud

PV

A

(c) Distance hijacking

PV

A

(d) Terrorist fraud

Figure 9: Types of attack on distance-bounding protocols. In all cases, V is the verifier, P is the prover who V claims prox-

imity to, and A is an agent in the proximity of V . Filled icons represent agents who either collude or are compromised by

the adversary. Unfilled icons represent honest agents, i.e. agents who don’t deviate from the protocol specification. The en-

circled area represents V ’s proximity, which is bounded by the predefined threshold on the round-trip time. Dashed arrows

represent untimed communication, which is communication that does not occur entirely within the fast phase. Thanks to

https://thenounproject.com for the icons.

shared k

V

shared k

P

fresh NV , ch fresh NP

NV

NP

ch

RTT f(ch, g(k,NV , NP))

P is close

Figure 10: Hancke and Kuhn’s protocol [34]. In Chothia et
al. [20] the prover’s response f (ch,д(k,NV ,NP)) is modelled

as f (ch,NV ,NP ,k). This over-approximated modelling is the

cause for which Chothia et al.’s verification results did not

identify a terrorist fraud attack against this protocol.

verification [20]. We refute Chothia et al.’s statement by demon-
strating a trivial terrorist attack, represented in Figure 11.

Recall that in Chothia et al. [20], the prover’s response message
is modelled as f (ch,NV ,NP ,k) which is an inaccurate modelling

shared k with P

V A

shared k with V

P

fresh NV , ch fresh NP

NV

g(k,NV , NP)

NP

ch

RTT f(ch, g(k,NV , NP))

P is close

Figure 11: A terrorist fraud attack on Hancke and Kuhn’s

protocol [34]. The distant prover P colludes with the close

and compromised prover A by giving away д(k,NV ,NP), rep-

resented by the dashed arrow. This allows A to impersonate

P to the verifier V during the fast phase, hence V believes

that P is close. The same false-proximity proof cannot be is-

sued in further sessions without further collusion because

д(k,NV ,NP) is fresh in every session and k is not revealed.

https://thenounproject.com

Post-Collusion Security and Distance Bounding CCS ’19, November 11–15, 2019, London, United Kingdom

shared k

V

shared k

P

fresh NV fresh NP

V, ‘hello’

NV

RTT f(NV , P,NP)

s := 〈P, locP , NP , NV 〉

s, h(k, s)

P is close

Figure 12: Meadows et al.’s protocol [46], where locP denotes

the location of the prover P . Such location has no impact

on any symbolic analysis as it comes in plain text, thus it is

modelled as a nonce. Three instances of the protocol are pro-

posed by the authors, given by the following three choices

of f : ⟨NV , P ⊕ NP ⟩, ⟨NV , P,NP ⟩, and NV ⊕ h(P,NP) where ⊕ is

the exclusive-OR and h is a collision-free hash function.

compared to the original protocol specification. We remark that
the order of the arguments is not the issue, but the level at which
they occur in the function f . In particular, the prover uses the
values NV ,NP and k to seed a PRNG д before the fast phase begins.
During the phase phase, the prover then uses this PRNG to respond
to challenges. As a result, a more faithful representation of the
challenge response message is f (ch,д(k,NV ,NP)), in which the
shared key k is not in the same level as the challenge ch. As a result,
the prover can leak д(k,NV ,NP) (i.e. the seeded PRNG) without
leaking k . In the representation of Chothia et al., k and ch are at
the same level, hence in order for the prover to leak dbsec_hnst-
breaking data, the shared key k must be leaked, and this indeed
makes the attack no longer valid. This is the reason for which
Chothia et al. do not deliver the attack depicted Figure 11.

B.2 On Distance Hijacking

Chothia et al.’s verification reports no attack, other than terrorist
fraud, against Meadows et al.’s protocol [46] version in which the
prover’s fast phase response is ⟨NV , P ⊕ NP ⟩, and the MAD proto-
col [19] with one-way authentication. These protocols are depicted
in Figures 12 and 13, respectively.

Our verification, however, identifies a valid distance hijacking
attack against each of these protocols (see Figures 14 and 15). In
both cases, the compromised prover P , who is distant from the
verifier V , hijacks the session between V and a close-by and hon-
est prover A by replacing the final authentication message of the
legitimate and close P with their own authentication message, thus
making V believe that P is close. In the case of Meadows et al.’s
protocol, the existence of this attack is indeed consistent with the
authors’ own statement that their model does not cover attacks

shared k

V

shared k

P

fresh b fresh s, s′

H(s, s′)

b

RTT s⊕ b

s′,MACk(V, P, b, s)

P is close

Figure 13: Capkun et al.’sMADprotocol [19]. This is the vari-

ant with prover-to-verifier authentication. H is a hash func-

tion andMACk is a keyed-MAC function.

shared k with P

V A

shared k with V

P

fresh NV fresh NA

V, ‘hello’

NV

RTT NV , A⊕NA

NP :=P⊕(A⊕NA)
s:=〈P,locA,NP ,NV 〉

s, h(k, s)

P is close

Figure 14: A distance hijacking attack on Meadows et al.’s
protocol with the choice f := ⟨NV , P ⊕ NP ⟩. P learns NV
and A ⊕ NA from passive observation of the legitimate fast

phase. Hence, P produces their own authentication message

⟨s,h(k, s)⟩, given that the equality P ⊕ NP = A ⊕ NA.

of the compromised-prover type. As previously mentioned in Sec-
tion 6.2 before, a number of previous papers, such as [6, 26, 27, 44],
also report distance hijacking attacks against these two protocols.

B.3 Attempts to Implement Distance Hijacking

The checkDB7 tool created by Chothia et al. [20] is used to compile
ProVerif files for distance bounding protocols. We attempted to find
distance hijacking attacks by using the checkDB tool as follows. A
class of attacks is defined in Chothia et al.’s model by a configu-
ration of agents. For example, the configuration [V (id)]|[DP(id)]
corresponds to a verifierV authenticating a distant dishonest prover
7http://www.cs.bham.ac.uk/~tpc/distance-bounding-protocols/CheckDB-
master.tar.gz

http://www.cs.bham.ac.uk/~tpc/distance-bounding-protocols/CheckDB-master.tar.gz
http://www.cs.bham.ac.uk/~tpc/distance-bounding-protocols/CheckDB-master.tar.gz

CCS ’19, November 11–15, 2019, London, United Kingdom Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-Rasua

shared k with P

V

shared k′ with P

A

shared k with V
shared k′ with A

P

fresh b fresh s, s′

H(s, s′)

b

RTT s⊕ b

s′,MACk′(P,A, b, s)

s′,MACk(V, P, b, s)

P is close

Figure 15: A distance hijacking attack onMAD protocol [19]

with one-way authentication. P learns b and s ⊕ b (and s by
extension) from passive observation of the legitimate fast

phase. Therefore, P produces their own authentication mes-

sage ⟨s ′,MACk (V , P,b, s)⟩.

DP - this represents a distance fraud attack. In the syntax of the
checkDB tool, this is written as:
[!Verifier] |
[!(new id;

let idP = id in !DishonestProver)
]

Security is then modelled by the reachability of the query:
query ev:Verified(id)

Intuitively, the query is satisfied whenever it is possible for a
verifier to reach the end of their role specification (the value id is a
free term and not tied to a specific identifier). Note that in the case
of distance fraud, this means the query is satisfied only if there is
an attack.

The checkDB tool is also used to verify terrorist fraud, mafia
fraud, and a property referred to as uncompromised distance bound-
ing. Note that in each of these cases, the configuration also ensures
that a verifier can only reach the end of their specification if an
attack exists.

We attempted to implement distance hijacking by testing the
process:
[!Verifier |

(new id2;
let idP=id2 in !Prover)

] |
[!(new id;

let idP=id in !DishonestProver)
]

However, this naive implementation leads to several problemswhen
applying it to various protocols:

• In this configuration, ‘honest’ sessions can be completed
between the verifier and local prover. The non-specificity of
the query can lead to these honest traces being flagged as
potential attacks.

• Many protocols which admit distance hijacking attacks in-
volve the prover revealing their identity only late in the pro-
tocol, by use of a shared key or signing key. One workaround
- using a dummy message to indicate to a verifier who their
partner is - affects the faithfulness of the model and can lead
to the false attacks mentioned above.

• Several distance hijacking attacks (including Meadows and
MAD) rely on the adversary abusing the algebraic properties
of the exclusive-or operator. It is not clear if the equational
theory used in the given models (which relies on applying
deconstructor functions) is sufficient to model a prover being
unable to distinguish e.g. x ⊕ y and x ⊕ z ⊕ z ⊕ y.

We emphasize that while themodel of Chothia et al. distinguishes
which prover in a configuration is the one being ‘tested’ for prox-
imity, their tooling does not make this distinction without manually
modifying compiled output files. This difference between model
and implementation has no impact in configurations in which hon-
est executions cannot complete, but this is not the case for distance
hijacking attacks.

ACKNOWLEDGMENTS

This work was partially supported by the Luxembourg National
Research Fund (FNR) under the grants AFR-PhD-10188265 and
C15-IS-10428112.

REFERENCES

[1] Yonatan Aumann and Yehuda Lindell. 2010. Security Against Covert Adversaries:
Efficient Protocols for Realistic Adversaries. J. Cryptology 23, 2 (2010), 281–343.
https://doi.org/10.1007/s00145-009-9040-7

[2] Gildas Avoine,MuhammedAli Bingöl, Ioana Boureanu, Srdjan Capkun, Gerhard P.
Hancke, Süleyman Kardas, Chong Hee Kim, Cédric Lauradoux, Benjamin Martin,
Jorge Munilla, Alberto Peinado, Kasper Bonne Rasmussen, Dave Singelée, Aslan
Tchamkerten, Rolando Trujillo-Rasua, and Serge Vaudenay. 2019. Security of
Distance-Bounding: A Survey. ACM Comput. Surv. 51, 5 (2019), 94:1–94:33.
https://dl.acm.org/citation.cfm?id=3264628

[3] Gildas Avoine, Muhammed Ali Bingöl, Süleyman Kardas, Cédric Lauradoux, and
Benjamin Martin. 2011. A framework for analyzing RFID distance bounding
protocols. Journal of Computer Security 19, 2 (2011), 289–317. https://doi.org/10.
3233/JCS-2010-0408

[4] Gildas Avoine, Xavier Bultel, Sébastien Gambs, David Gérault, Pascal Lafourcade,
Cristina Onete, and Jean-Marc Robert. 2017. A Terrorist-fraud Resistant and
Extractor-free Anonymous Distance-bounding Protocol. In Proceedings of the
2017 ACM on Asia Conference on Computer and Communications Security, AsiaCCS
2017, Abu Dhabi, United Arab Emirates, April 2-6, 2017. 800–814. https://doi.org/
10.1145/3052973.3053000

[5] Gildas Avoine, Cédric Lauradoux, and BenjaminMartin. 2011. How secret-sharing
can defeat terrorist fraud. In Proceedings of the Fourth ACM Conference on Wireless
Network Security, WISEC 2011, Hamburg, Germany, June 14-17, 2011. 145–156.
https://doi.org/10.1145/1998412.1998437

[6] Gildas Avoine, Sjouke Mauw, and Rolando Trujillo-Rasua. 2015. Comparing
distance bounding protocols: A critical mission supported by decision theory.
Computer Communications 67 (2015), 92–102. https://doi.org/10.1016/j.comcom.
2015.06.007

[7] Gildas Avoine and Aslan Tchamkerten. 2009. An Efficient Distance Bounding
RFID Authentication Protocol: Balancing False-Acceptance Rate and Memory
Requirement. In Information Security, 12th International Conference, ISC 2009, Pisa,
Italy, September 7-9, 2009. Proceedings. 250–261. https://doi.org/10.1007/978-3-
642-04474-8_21

[8] David A. Basin, Srdjan Capkun, Patrick Schaller, and Benedikt Schmidt. 2009.
Let’s Get Physical: Models and Methods for Real-World Security Protocols. In
Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs
2009, Munich, Germany, August 17-20, 2009. Proceedings. 1–22. https://doi.org/10.
1007/978-3-642-03359-9_1

[9] David A. Basin and Cas Cremers. 2014. Know Your Enemy: Compromising
Adversaries in Protocol Analysis. ACM Trans. Inf. Syst. Secur. 17, 2 (2014), 7:1–
7:31. https://doi.org/10.1145/2658996

https://doi.org/10.1007/s00145-009-9040-7
https://dl.acm.org/citation.cfm?id=3264628
https://doi.org/10.3233/JCS-2010-0408
https://doi.org/10.3233/JCS-2010-0408
https://doi.org/10.1145/3052973.3053000
https://doi.org/10.1145/3052973.3053000
https://doi.org/10.1145/1998412.1998437
https://doi.org/10.1016/j.comcom.2015.06.007
https://doi.org/10.1016/j.comcom.2015.06.007
https://doi.org/10.1007/978-3-642-04474-8_21
https://doi.org/10.1007/978-3-642-04474-8_21
https://doi.org/10.1007/978-3-642-03359-9_1
https://doi.org/10.1007/978-3-642-03359-9_1
https://doi.org/10.1145/2658996

Post-Collusion Security and Distance Bounding CCS ’19, November 11–15, 2019, London, United Kingdom

[10] David A. Basin and Cas J. F. Cremers. 2010. Modeling and Analyzing Security
in the Presence of Compromising Adversaries. In Computer Security - ESORICS
2010, 15th European Symposium on Research in Computer Security, Athens, Greece,
September 20-22, 2010. Proceedings. 340–356. https://doi.org/10.1007/978-3-642-
15497-3_21

[11] David A. Basin, Jannik Dreier, Lucca Hirschi, Sasa Radomirovic, Ralf Sasse, and
Vincent Stettler. 2018. A Formal Analysis of 5G Authentication. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018. 1383–1396. https://doi.org/
10.1145/3243734.3243846

[12] David A. Basin, Sasa Radomirovic, and Lara Schmid. 2016. Modeling Hu-
man Errors in Security Protocols. In IEEE 29th Computer Security Founda-
tions Symposium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016. 325–340.
https://doi.org/10.1109/CSF.2016.30

[13] Thomas Beth and YvoDesmedt. 1990. Identification Tokens - or: Solving the Chess
Grandmaster Problem. In Advances in Cryptology - CRYPTO ’90, 10th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 11-15,
1990, Proceedings. 169–177. https://doi.org/10.1007/3-540-38424-3_12

[14] Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vaudenay. 2013. Towards
Secure Distance Bounding. In Fast Software Encryption - 20th International Work-
shop, FSE 2013, Singapore, March 11-13, 2013. Revised Selected Papers. 55–67.
https://doi.org/10.1007/978-3-662-43933-3_4

[15] Stefan Brands and David Chaum. 1993. Distance-Bounding Protocols (Extended
Abstract). In Advances in Cryptology - EUROCRYPT ’93, Workshop on the Theory
and Application of of Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993,
Proceedings. 344–359. https://doi.org/10.1007/3-540-48285-7_30

[16] Agnès Brelurut, David Gerault, and Pascal Lafourcade. 2015. Survey of Distance
Bounding Protocols and Threats. In Foundations and Practice of Security - 8th
International Symposium, FPS 2015, Clermont-Ferrand, France, October 26-28, 2015,
Revised Selected Papers. 29–49. https://doi.org/10.1007/978-3-319-30303-1_3

[17] Laurent Bussard and Walid Bagga. 2005. Distance-Bounding Proof of Knowledge
to Avoid Real-Time Attacks. In Security and Privacy in the Age of Ubiquitous
Computing, IFIP TC11 20th International Conference on Information Security (SEC
2005), May 30 - June 1, 2005, Chiba, Japan. 223–238.

[18] Ran Canetti and Rafail Ostrovsky. 1999. Secure Computation with Honest-
Looking Parties: What If Nobody Is Truly Honest? (Extended Abstract). In Pro-
ceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, May
1-4, 1999, Atlanta, Georgia, USA. 255–264. https://doi.org/10.1145/301250.301313

[19] Srdjan Capkun, Levente Buttyán, and Jean-Pierre Hubaux. 2003. SECTOR: secure
tracking of node encounters in multi-hop wireless networks. In Proceedings of the
1st ACM Workshop on Security of ad hoc and Sensor Networks, SASN 2003, Fairfax,
Virginia, USA, 2003. 21–32. https://doi.org/10.1145/986858.986862

[20] Tom Chothia, Joeri de Ruiter, and Ben Smyth. 2018. Modelling and Analysis of a
Hierarchy of Distance Bounding Attacks. In 27th USENIX Security Symposium,
USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018. 1563–1580. https:
//www.usenix.org/conference/usenixsecurity18/presentation/chothia

[21] TomChothia, Flavio D. Garcia, Joeri de Ruiter, Jordi van den Breekel, andMatthew
Thompson. 2015. Relay Cost Bounding for Contactless EMV Payments. In Fi-
nancial Cryptography and Data Security - 19th International Conference, FC 2015,
San Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers. 189–206.
https://doi.org/10.1007/978-3-662-47854-7_11

[22] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Milner.
2018. On Ends-to-Ends Encryption: Asynchronous Group Messaging with Strong
Security Guarantees. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018. 1802–1819. https://doi.org/10.1145/3243734.3243747

[23] Katriel Cohn-Gordon, Cas J. F. Cremers, and Luke Garratt. 2016. On Post-
compromise Security. In IEEE 29th Computer Security Foundations Symposium,
CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016. 164–178. https://doi.org/10.
1109/CSF.2016.19

[24] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der
Merwe. 2017. A Comprehensive Symbolic Analysis of TLS 1.3. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. 1773–1788. https:
//doi.org/10.1145/3133956.3134063

[25] Cas Cremers and Sjouke Mauw. 2012. Operational Semantics and Verification of
Security Protocols. Springer. https://doi.org/10.1007/978-3-540-78636-8

[26] Cas J. F. Cremers, Kasper Bonne Rasmussen, Benedikt Schmidt, and Srdjan Cap-
kun. 2012. Distance Hijacking Attacks on Distance Bounding Protocols. In IEEE
Symposium on Security and Privacy, S&P 2012, 21-23 May 2012, San Francisco,
California, USA. 113–127. https://doi.org/10.1109/SP.2012.17

[27] Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling. 2018. A Symbolic
Framework to Analyse Physical Proximity in Security Protocols. In 38th IARCS
Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science, FSTTCS 2018, December 11-13, 2018, Ahmedabad, India. 29:1–29:20.
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.29

[28] Yvo Desmedt. 1988. Major Security Problems with the “Unforgeable" (Feige)-
Fiat-Shamir Proofs of Identity and How to Overcome them. In SECURICOM’88.

15–17.
[29] Yvo Desmedt, Claude Goutier, and Samy Bengio. 1987. Special Uses and Abuses

of the Fiat-Shamir Passport Protocol. In Advances in Cryptology - CRYPTO ’87,
A Conference on the Theory and Applications of Cryptographic Techniques, Santa
Barbara, California, USA, August 16-20, 1987, Proceedings. 21–39. https://doi.org/
10.1007/3-540-48184-2_3

[30] Danny Dolev and Andrew Chi-Chih Yao. 1983. On the security of public key
protocols. IEEE Trans. Information Theory 29, 2 (1983), 198–207. https://doi.org/
10.1109/TIT.1983.1056650

[31] EMVCo. 2018. EMV Contactless Specifications for Payment Systems, Book C-2,
Kernel 2 Specification, Version 2.7.

[32] EMVCo. 2018. EMV Contactless Specifications for Payment Systems, Book C-3,
Kernel 3 Specification, Version 2.7.

[33] Matthew K. Franklin and Moti Yung. 1992. Communication Complexity of
Secure Computation (Extended Abstract). In Proceedings of the 24th Annual ACM
Symposium on Theory of Computing, May 4-6, 1992, Victoria, British Columbia,
Canada. 699–710. https://doi.org/10.1145/129712.129780

[34] Gerhard P. Hancke and Markus G. Kuhn. 2005. An RFID Distance Bounding Pro-
tocol. In First International Conference on Security and Privacy for Emerging Areas
in Communications Networks, SecureComm 2005, Athens, Greece, 5-9 September,
2005. 67–73. https://doi.org/10.1109/SECURECOMM.2005.56

[35] Martin Hirt and Ueli M. Maurer. 1997. Complete Characterization of Adversaries
Tolerable in Secure Multi-Party Computation (Extended Abstract). In Proceedings
of the Sixteenth Annual ACM Symposium on Principles of Distributed Computing,
Santa Barbara, California, USA, August 21-24, 1997. 25–34. https://doi.org/10.
1145/259380.259412

[36] Chong Hee Kim and Gildas Avoine. 2009. RFID Distance Bounding Protocol with
Mixed Challenges to Prevent Relay Attacks. In Cryptology and Network Security,
8th International Conference, CANS 2009, Kanazawa, Japan, December 12-14, 2009.
Proceedings. 119–133. https://doi.org/10.1007/978-3-642-10433-6_9

[37] Chong Hee Kim, Gildas Avoine, François Koeune, François-Xavier Standaert,
and Olivier Pereira. 2008. The Swiss-Knife RFID Distance Bounding Protocol. In
Information Security and Cryptology - ICISC 2008, 11th International Conference,
Seoul, Korea, December 3-5, 2008, Revised Selected Papers. 98–115. https://doi.org/
10.1007/978-3-642-00730-9_7

[38] Hugo Krawczyk. 2005. HMQV: A High-Performance Secure Diffie-Hellman
Protocol. In Advances in Cryptology - CRYPTO 2005: 25th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 14-18, 2005, Pro-
ceedings. 546–566. https://doi.org/10.1007/11535218_33

[39] Marc Kuhn, Heinrich Luecken, and Nils Ole Tippenhauer. 2010. UWB impulse
radio based distance bounding. In 7th Workshop on Positioning Navigation and
Communication, WPNC 2010, Dresden Germany, 11-12 March 2010, Proceedings.
28–37. https://doi.org/10.1109/WPNC.2010.5653801

[40] Brian A. LaMacchia, Kristin E. Lauter, and Anton Mityagin. 2007. Stronger
Security of Authenticated Key Exchange. In Provable Security, First International
Conference, ProvSec 2007, Wollongong, Australia, November 1-2, 2007, Proceedings.
1–16. https://doi.org/10.1007/978-3-540-75670-5_1

[41] Kristin E. Lauter and Anton Mityagin. 2006. Security Analysis of KEA Authenti-
cated Key Exchange Protocol. In Public Key Cryptography - PKC 2006, 9th Interna-
tional Conference on Theory and Practice of Public-Key Cryptography, New York, NY,
USA, April 24-26, 2006, Proceedings. 378–394. https://doi.org/10.1007/11745853_25

[42] Gavin Lowe. 1995. An Attack on the Needham-Schroeder Public-Key Authentica-
tion Protocol. Inf. Process. Lett. 56, 3 (1995), 131–133. https://doi.org/10.1016/0020-
0190(95)00144-2

[43] Gavin Lowe. 1997. A Hierarchy of Authentication Specifications. In 10th Com-
puter Security Foundations Workshop (CSFW ’97), June 10-12, 1997, Rockport, Mas-
sachusetts, USA. 31–44. https://doi.org/10.1109/CSFW.1997.596782

[44] Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-Rasua. 2018.
Distance-Bounding Protocols: Verification without Time and Location. In 2018
IEEE Symposium on Security and Privacy, S&P 2018, Proceedings, 21-23 May 2018,
San Francisco, California, USA. 549–566. https://doi.org/10.1109/SP.2018.00001

[45] Sjouke Mauw, Jorge Toro-Pozo, and Rolando Trujillo-Rasua. 2016. A Class of
Precomputation-Based Distance-Bounding Protocols. In IEEE European Sympo-
sium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, March 21-24,
2016. 97–111. https://doi.org/10.1109/EuroSP.2016.19

[46] Catherine A. Meadows, Radha Poovendran, Dusko Pavlovic, LiWu Chang, and
Paul F. Syverson. 2007. Distance Bounding Protocols: Authentication Logic
Analysis and Collusion Attacks. In Secure Localization and Time Synchronization
for Wireless Sensor and Ad Hoc Networks. 279–298. https://doi.org/10.1007/978-0-
387-46276-9_12

[47] Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin. 2013. The
TAMARIN Prover for the Symbolic Analysis of Security Protocols. In Computer
Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg,
Russia, July 13-19, 2013. Proceedings. 696–701. https://doi.org/10.1007/978-3-642-
39799-8_48

[48] Jorge Munilla and Alberto Peinado. 2008. Distance bounding protocols for RFID
enhanced by using void-challenges and analysis in noisy channels. Wireless
Communications and Mobile Computing 8, 9 (2008), 1227–1232. https://doi.org/

https://doi.org/10.1007/978-3-642-15497-3_21
https://doi.org/10.1007/978-3-642-15497-3_21
https://doi.org/10.1145/3243734.3243846
https://doi.org/10.1145/3243734.3243846
https://doi.org/10.1109/CSF.2016.30
https://doi.org/10.1007/3-540-38424-3_12
https://doi.org/10.1007/978-3-662-43933-3_4
https://doi.org/10.1007/3-540-48285-7_30
https://doi.org/10.1007/978-3-319-30303-1_3
https://doi.org/10.1145/301250.301313
https://doi.org/10.1145/986858.986862
https://www.usenix.org/conference/usenixsecurity18/presentation/chothia
https://www.usenix.org/conference/usenixsecurity18/presentation/chothia
https://doi.org/10.1007/978-3-662-47854-7_11
https://doi.org/10.1145/3243734.3243747
https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.1145/3133956.3134063
https://doi.org/10.1145/3133956.3134063
https://doi.org/10.1007/978-3-540-78636-8
https://doi.org/10.1109/SP.2012.17
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.29
https://doi.org/10.1007/3-540-48184-2_3
https://doi.org/10.1007/3-540-48184-2_3
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1145/129712.129780
https://doi.org/10.1109/SECURECOMM.2005.56
https://doi.org/10.1145/259380.259412
https://doi.org/10.1145/259380.259412
https://doi.org/10.1007/978-3-642-10433-6_9
https://doi.org/10.1007/978-3-642-00730-9_7
https://doi.org/10.1007/978-3-642-00730-9_7
https://doi.org/10.1007/11535218_33
https://doi.org/10.1109/WPNC.2010.5653801
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/11745853_25
https://doi.org/10.1016/0020-0190(95)00144-2
https://doi.org/10.1016/0020-0190(95)00144-2
https://doi.org/10.1109/CSFW.1997.596782
https://doi.org/10.1109/SP.2018.00001
https://doi.org/10.1109/EuroSP.2016.19
https://doi.org/10.1007/978-0-387-46276-9_12
https://doi.org/10.1007/978-0-387-46276-9_12
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1002/wcm.590
https://doi.org/10.1002/wcm.590

CCS ’19, November 11–15, 2019, London, United Kingdom Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-Rasua

10.1002/wcm.590
[49] Roger M. Needham and Michael D. Schroeder. 1978. Using Encryption for Au-

thentication in Large Networks of Computers. Commun. ACM 21, 12 (1978),
993–999. https://doi.org/10.1145/359657.359659

[50] Pedro Peris-Lopez, Julio César Hernández-Castro, Juan M. Estévez-Tapiador,
Esther Palomar, and Jan C. A. van der Lubbe. 2010. Cryptographic puzzles
and distance-bounding protocols: Practical tools for RFID security. In 2010 IEEE
International Conference on RFID (IEEE RFID 2010). 45–52. https://doi.org/10.
1109/RFID.2010.5467258

[51] Pedro Peris-Lopez, Julio César Hernández-Castro, Juan M. Estévez-Tapiador, and
Jan C. A. van der Lubbe. 2009. Shedding Some Light on RFID Distance Bounding
Protocols and Terrorist Attacks. CoRR abs/0906.4618 (2009). arXiv:0906.4618
http://arxiv.org/abs/0906.4618

[52] Kasper Bonne Rasmussen and Srdjan Capkun. 2010. Realization of RF Distance
Bounding. In 19th USENIX Security Symposium, Washington, DC, USA, August
11-13, 2010, Proceedings. 389–402. http://www.usenix.org/events/sec10/tech/full_
papers/Rasmussen.pdf

[53] Jason Reid, JuanManuel González Nieto, Tee Tang, and Bouchra Senadji. 2007. De-
tecting relay attacks with timing-based protocols. In Proceedings of the 2007 ACM
Symposium on Information, Computer and Communications Security, ASIACCS
2007, Singapore, March 20-22, 2007. 204–213. https://doi.org/10.1145/1229285.
1229314

[54] Patrick Schaller, Benedikt Schmidt, David A. Basin, and Srdjan Capkun. 2009.
Modeling and Verifying Physical Properties of Security Protocols for Wire-
less Networks. In Proceedings of the 22nd IEEE Computer Security Foundations

Symposium, CSF 2009, Port Jefferson, New York, USA, July 8-10, 2009. 109–123.
https://doi.org/10.1109/CSF.2009.6

[55] Benedikt Schmidt, Simon Meier, Cas J. F. Cremers, and David A. Basin. 2012. Au-
tomated Analysis of Diffie-Hellman Protocols and Advanced Security Properties.
In 25th IEEE Computer Security Foundations Symposium, CSF 2012, Cambridge,
MA, USA, June 25-27, 2012. 78–94. https://doi.org/10.1109/CSF.2012.25

[56] Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (1979), 612–613.
https://doi.org/10.1145/359168.359176

[57] Paul Syverson, Catherine Meadows, and Iliano Cervesato. 2000. Dolev-Yao is
no better than Machiavelli. In First Workshop on Issues in the Theory of Security,
WITS’00, Geneva, Switzerland, July 7-8, 2000. 87–92. https://www.nrl.navy.mil/
itd/chacs/syverson-dolev-yao-no-better-machiavelli

[58] Peter Thueringer, Hans De Jong, Bruce Murray, Heike Neumann, Paul Hubmer,
and Susanne Stern. 2011. Decoupling of measuring the response time of a
transponder and its authentication. US Patent No. US12994541.

[59] Martin Tompa and Heather Woll. 1986. How to Share a Secret with Cheaters.
In Advances in Cryptology - CRYPTO ’86, Santa Barbara, California, USA, 1986,
Proceedings. 261–265. https://doi.org/10.1007/3-540-47721-7_20

[60] Rolando Trujillo-Rasua, Benjamin Martin, and Gildas Avoine. 2010. The Pouli-
dor Distance-Bounding Protocol. In Radio Frequency Identification: Security and
Privacy Issues - 6th International Workshop, RFIDSec 2010, Istanbul, Turkey, June
8-9, 2010, Revised Selected Papers. 239–257. https://doi.org/10.1007/978-3-642-
16822-2_19

https://doi.org/10.1002/wcm.590
https://doi.org/10.1145/359657.359659
https://doi.org/10.1109/RFID.2010.5467258
https://doi.org/10.1109/RFID.2010.5467258
http://arxiv.org/abs/0906.4618
http://arxiv.org/abs/0906.4618
http://www.usenix.org/events/sec10/tech/full_papers/Rasmussen.pdf
http://www.usenix.org/events/sec10/tech/full_papers/Rasmussen.pdf
https://doi.org/10.1145/1229285.1229314
https://doi.org/10.1145/1229285.1229314
https://doi.org/10.1109/CSF.2009.6
https://doi.org/10.1109/CSF.2012.25
https://doi.org/10.1145/359168.359176
https://www.nrl.navy.mil/itd/chacs/syverson-dolev-yao-no-better-machiavelli
https://www.nrl.navy.mil/itd/chacs/syverson-dolev-yao-no-better-machiavelli
https://doi.org/10.1007/3-540-47721-7_20
https://doi.org/10.1007/978-3-642-16822-2_19
https://doi.org/10.1007/978-3-642-16822-2_19

	Abstract
	1 Introduction
	2 Related Work
	3 Modelling Security Protocols
	3.1 Preliminaries
	3.2 Protocol Specification
	3.3 Execution and Adversary Model
	3.4 Security Properties

	4 Collusion
	4.1 Collusion Rules
	4.2 Post-Collusion Security

	5 Distance Bounding and Terrorist Fraud
	5.1 Modelling Distance-Bounding Protocols
	5.2 Secure Distance-Bounding
	5.3 Formalising (Resistance To) Terrorist Fraud
	5.4 On the Completeness of our Approach

	6 A Survey of Distance Bounding
	6.1 Case Studies
	6.2 Our Approach vs. Chothia et al.'s
	6.3 On the ISO/IEC 14443 Protocols

	7 Conclusions
	A Attacks on Distance Bounding
	B Chothia et al.'s Framework vs. Ours
	B.1 On Terrorist Fraud
	B.2 On Distance Hijacking
	B.3 Attempts to Implement Distance Hijacking

	Acknowledgments
	References

