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Abstract. Distance-bounding protocols use the round-trip time of a
challenge-response cycle to provide an upper-bound on the distance be-
tween prover and verifier. In order to obtain an accurate upper-bound,
the computation time at the prover’s side should be as short as possible,
which can be achieved by precomputing the responses and storing them
in a lookup table. However, such lookup-based distance bounding proto-
cols suffer from a trade-off between the achieved security level and the
size of the lookup table. In this paper, we study this security-memory
trade-off problem for a large class of lookup-based distance bounding
protocols; called layered protocols. Relying on an automata-based se-
curity model, we provide mathematical definitions for different design
decisions used in previous lookup-based protocols, and perform general
security analyses for each of them. We also formalize an interpretation
of optimal trade-off and find a non-trivial protocol transformation ap-
proach towards optimality. That is to say, our transformation applied to
any layered protocol results in either an improved or an equal protocol
with respect to the optimality criterion. This transformation allows us
to provide a subclass of lookup-based protocol that cannot be improved
further, which means that it contains an optimal layered protocol.

Keywords: Distance bounding · RFID · Security · Mafia-fraud · Relay
attack

1 Introduction

Secure physical proximity checking in wireless technologies is a well-established
field within computer security. As the speed of light represents a hard limit
on the speed of radio waves, it has been used to accurately compute an upper
bound on the distance between a transmitter (e.g., a satellite or an RFID reader)
and a receiver (e.g., a GPS receiver or an RFID tag). The equation is simple:
the distance to the receiver is half the round-trip time (RTT) multiplied by
the speed of light. Nonetheless, this computation ought to be embedded into a
cryptographic protocol in order to ensure the authenticity of the receiver and
the integrity of the distance calculation. Such a cryptographic protocol is called
a distance bounding protocol [4], that is, an authentication protocol that also
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determines an upper bound on the distance between the protocol’s participants.
In this setting, the transmitter is called verifier and the receiver is called prover.

Like most cryptographic protocols, a distance bounding protocol consists of
a series of challenge-response rounds, with the peculiarity that some of these
rounds are used to compute round-trip times. Replying to such a round-trip
challenge should be a computationally inexpensive task, because otherwise the
round-trip time will become tainted by the prover’s computation time as illus-
trated in Figure 1.

Verifier Prover

RTT Comp. time

Verifier Prover

RTT Comp. time

Fig. 1: The impact of the prover’s computation time on the round-trip-time
(RTT) measurement.

A fundamental approach to computational efficiency is precomputation. In
distance bounding, this technique was first proposed by Hancke and Kuhn [8] in
2005, and later improved in [2, 7, 9, 10, 12–14]. These protocols, named lookup-
based protocols in [12], contain an initial precomputation phase in which the
verifier and the prover secretly agree on a lookup table. This phase is followed
by n round-trip-time measurements realized by an n-fold challenge-response pro-
cess. For each challenge, the prover determines his response by looking it up in
the table. The protocol finishes successfully if all responses are correct with re-
spect to the precomputed lookup table and all round-trip-times are below a given
time threshold. Simplicity and efficiency make this type of protocols appealing
for battery-less or constrained devices, such as RFID tags. Moreover, their secu-
rity can be arbitrarily improved by increasing n, with little or no computational
overhead [8].

Despite the simplicity of lookup-based protocols, none of them have been
proven optimal in terms of security, given a practical threshold on the size of
the lookup table. This is a security-memory trade-off problem which resem-
bles the classical time-memory trade-off problem occurring in other application
domains, such as cryptanalysis, rainbow tables, and dynamic programming. A
recent work [12] shows that if an exponential number of values (in terms of n)
can be precomputed, then the tree-based protocol proposed in [3] is optimal.
However, an exponentially large lookup table is unattainable in practice.
Contributions. In this article, we study the security-memory trade-off problem
for a large class of lookup-based protocols; called layered protocols. The class of
layered protocols is not trivial, as it contains all lookup-based distance bounding
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protocols proposed to date, except for the Poulidor protocol [14]. Our findings
can be listed as follows.

– First, we rely on the automata-based model proposed in [12] (Section 3) to
provide mathematical definitions of common design decisions used in lookup-
based protocols (Section 4). For example, many lookup-based protocols use
a fixed and known data access structure for the lookup table. Others, such as
the Poulidor protocol [14], use a randomized indexing technique. We formal-
ize both techniques by exploiting equivalence relations between automata,
and perform general security analyses for those layered protocols using either
of the two techniques (Section 4).

– Second, we formalize an interpretation of the security-memory trade-off
problem for layered protocols, and provide a non-trivial protocol transfor-
mation approach towards optimality (Section 5). In more detail, for every
protocol P with size s (a measure of memory), we show how to obtain an-
other protocol P ′ of the same size and with equal or higher resistance to
pre-ask attacks. We also prove that the proposed transformation has the full
class of layered protocols as domain. We can thus conclude that an optimal
layered protocol is within the image set of our transformation.

2 Related Work

The earliest distance bounding protocol based on RTT measurements was pro-
posed by Brands and Chaum [4] in 1993 (see Figure 2a). Their protocol (BC)
assumes a verifier and a prover, each armed with a public/private key pair. By
considering n to be the number of RTT measurements, the prover commits to a
random sequence of bits m1 · · ·mn, after which the fast phase or RTT measure-
ment phase starts. The fast phase consists of n rounds of a single bit-exchange.
At the ith round, the verifier sends a random bit-challenge ci and the prover
instantly replies with ci ⊕ mi. Proximity checking fails if the computed RTT
at any round is above a given threshold. Authentication, on the other hand, is
verified during a final phase where the prover opens the commit and signs all
exchanges during the fast phase.

In 2005, Hancke and Kuhn (HK) proposed a different design for distance
bounding protocols [8], where proximity checking and authentication are per-
formed together during the fast phase. Because each round during the fast phase
is quick and inexpensive, this makes it possible to improve the security with
very-low computational overhead by simply increasing n. Hancke and Kuhn’s
protocol, depicted in Figure 2b, works as follows. First, the parties exchange one
nonce each (nv and np). The two nonces and a shared secret key x are used by
both parties as input to a pseudo-random function f , whose output is a sequence
of 2n bits H1 · · ·H2n. As usual, the fast phase consists of n rounds. At the i-th
round, the verifier generates a random bit-challenge ci. If the bit-challenge is 0,
the prover replies H2i−1, otherwise H2i. The protocol succeeds if all responses
are correct and all round-trip times are below a predefined threshold.
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Verifier Prover
slow phase

rand m ∈ {0, 1}n
commit(m)←−−−−−−−−−−

fast phase
for i = 1 to n

rand ci ∈ {0, 1}
start clock at t1

ci−−−−−−−−−−→
ri = ci ⊕mi

stop clock at t2
ri←−−−−−−−−−−

check t2 − t1 ≤ ∆

final phase
m = c1|r1| · · · |cn|rn

open commit, sign(m)←−−−−−−−−−−−−−
verify commit
verfify sign(m)

(a) Brands and Chaum’s protocol

Verifier Prover
secret x secret x

slow phase

nonce nv
nv−−−−−−−−−−→
np←−−−−−−−−−− nonce np

H1 . . . H2n = f(x, nv, np)

fast phase
for i = 1 to n

rand ci ∈ {0, 1}
start clock at t1

ci−−−−−−−−−−→
ri = H2i+ci−1

stop clock at t2
ri←−−−−−−−−−−

check ri and
t2 − t1 ≤ ∆

(b) Hancke and Kuhn’s protocol

Fig. 2: Two distance bounding protocols.

The difference between HK and BC approaches becomes apparent if we con-
sider the role of the sequences m = m1 . . .mn and H = H1 . . . H2n in their
corresponding protocols. Revealing m allows an adversary to successfully pass
the proximity checking phase in Brands and Chaum’s protocol, yet the adversary
cannot impersonate the prover as the prover’s signature is required after the fast
phase.

Hancke and Kuhn’s protocol, instead, fails to provide proximity checking
and authentication if H is revealed, as the two properties rely on the secrecy
of H. Both approaches have their merits and shortcomings, resulting in the
publication of two different types of distance bounding protocols: those based
on Brands and Chaum’s approach (e.g., [3–5, 11]) and those based on Hancke
and Kuhn’s approach (e.g., [2, 7, 9, 10, 14]).

A common feature of HK-based protocols is that, during the fast phase,
the prover uses a simple lookup operation to compute the correct reply to the
verifier’s challenge; hence their name lookup-based protocols. The drawback of
lookup-based protocols, as shown in [1, 12], is its low resistance to pre-ask attacks.
A pre-ask attack is a sophisticated version of the so-called mafia-fraud attack,
introduced by Desmedt, Goutier, and Bengio in 1987 [6].

For example, a pre-ask attack against Hancke and Kuhn’s proposal might be
the following. The adversary queries the legitimate prover with all-zero challenges
to learn half of the sequence H. If the adversary then moves sufficiently close
to the verifier, he can use this knowledge to impersonate the prover. By using
his knowledge of half of H, the adversary will provide the correct response for
the verifier’s challenges that are equal to 0. For the challenges equal to 1, the
adversary simply replies with random bits. With this strategy, the adversary will
pass Hancke and Kuhn’s protocol with probability (3/4)n. In contrast, a pre-ask
attack against Brands and Chaum’s protocol succeeds with probability (1/2)n.
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Resisting pre-ask attacks and reducing the size of the lookup table has been
the aim of many lookup-based protocols proposed in the last ten years [2, 7, 9–
14]. However, these two goals, namely improving security and reducing size, seem
to be in conflict in lookup-based protocols. This is a security-memory trade-off
problem which has not been formally addressed yet. In the remainder of this
article we study this problem for a subclass of lookup-based protocols.

3 Preliminaries

In this section we present the MTT security model introduced in [12] to study
lookup-based distance bounding protocols.

3.1 The MTT Model

The security model is based on state-labeled Deterministic Finite Automata
(DFAs) of the form (Σ,Γ,Q, q0, δ, `), where Σ is a set of input symbols, Γ is a set
of output symbols, Q is a set of states, q0 ∈ Q is the initial state, δ : Q×Σ → Q
is a transition function, and ` : Q → Γ is a labeling function. Given input and
output symbol sets Σ and Γ , respectively, we use UΣ,Γ to denote the universe
of all DFAs over Σ and Γ .

Definition 1 (Lookup-based protocol). A lookup-based distance bounding
protocol, lookup-based protocol for short, with input set Σ and output set Γ is a
finite non-empty subset of UΣ,Γ .

A restriction imposed by Definition 1 on a lookup-based protocol is that it
must be formed by automata with the same input and output sets. The reason
is that Σ and Γ define the alphabets of the verifier’s challenges and prover’s
responses, respectively.

Given an automaton A = (Σ,Γ,Q, q0, δ, `) and a current state q ∈ Q, a
lookup operation is regarded as a transition to a new state q′ = δ(q, c) where
c ∈ Σ is a verifier’s challenge. The corresponding response for such challenge
is the output symbol attached to the new state q′, i.e., `(q′). Successive lookup
operations form a path in the automaton. We thus introduce additional notation
for a sequence of input symbols c = c1 · · · ci ∈ Σi:

– δ̂(c) = q0 if i = 0, i.e., c is an empty string, otherwise δ̂(c) = δ(δ̂(c1 . . . ci−1), ci).

In a nutshell, δ̂(c) returns the state reached by the input sequence c.

– ˆ̀(c) = `(δ̂(c)), which is the output symbol attached to the state reached by
the sequence c.

– ΩA(c) is used to represent the sequence of labels attached to the states

δ̂(c1), δ̂(c1c2), . . . , δ̂(c1c2 · · · ci) in that order, i.e., ΩA(c) = r1 · · · ri ∈ Γ i,

where rj = ˆ̀(c1 · · · cj), ∀j ∈ {1, . . . , i}.

The model in [12] abstracts away from the precomputation phase in lookup-
based protocols by considering the following execution model.
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Definition 2 (Execution model). A correct execution of a lookup-based pro-
tocol P with n > 0 rounds is a triple (A,C,R), where A is an automaton ran-
domly selected from P , C is an input sequence randomly selected from Σn and
R is an output sequence from Γn such that R = ΩA(C).

The outcome of the precomputation phase is considered to be a random au-
tomaton A ∈R P within the set of automata defining the lookup-based protocol
P . The input sequence C = c1 · · · cn corresponds to the verifier’s challenges,
and the correct replies R = r1 · · · rn must satisfy that ˆ̀(c1) = r1, ˆ̀(c1c2) =

r2, · · · , ˆ̀(c1 · · · cn) = rn.

3.2 Layered Protocols

The set-of-automata representation of many existing lookup-based protocols,
e.g., [2, 8, 9, 11, 12], satisfies that, given an automaton A = (Σ,Γ,Q, q0, δ, `) and

two input sequences x and y, δ̂(x) = δ̂(y) implies that the sizes of x and y are
equal. Formulated differently, given any of the automata defining a protocol, two
sequences of different size do not end in the same state. Protocols satisfying this
property are called layered protocols [12].

Definition 3 (Layered protocol). A lookup-based protocol P is layered if, for

every (Σ,Γ,Q, q0, δ, `) ∈ P and every x, y ∈ Σ∗, δ̂(x) = δ̂(y) =⇒ |x| = |y|.

Layered protocols guarantee that the prover’s answers at different rounds
rely on different states regardless of the verifier’s challenges. Given an automaton
(Σ,Γ,Q, q0, δ, `) in a layered protocol, we thus consider Q to be partitioned in

Q0 ∪Q1 ∪Q2 · · · where Qi = {δ̂(x) | x ∈ Σi}.
For the sake of simplicity, and because most distance bounding protocols

consider bit exchanges during the fast phase, we assume that the input and
output symbol sets are binary, i.e., Σ = Γ = {0, 1}. Consequently, unless other-
wise specified, all DFAs considered in the remainder of this article belong to the
universe UΣ,Γ with Σ = Γ = {0, 1}.

4 Security Analysis through Equivalence Relations

While modeling lookup-based protocols by a set of automata, we have found that
most lookup-based protocols defined in literature share some structural proper-
ties. For instance, the automata for the HK protocol all have a similar layered
structure with two nodes in each layer [12]. We will exploit such similarities when
reasoning about protocols. In this section, we will introduce two equivalence re-
lations on automata that express relevant similarities and we will define closure
and consistency with respect to these equivalences. Based on these relations, we
provide a general security analysis of layered protocols.
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4.1 Equivalence Relations between Automata

A common feature of many lookup-based protocols is that all their automata
have the same shape and differ only in the symbols attached to the states. This
property, which we name state-label-insensitive, is satisfied by HK [8], KA [10],
Tree-based [2], PUF [9], and Uniform [12], amongst others. The design decision
represented by the state-label-insensitive property makes it easy for participants
in a protocol to agree on the shape or structure of the lookup table, while only
requiring randomness on the precomputed values.

Definition 4 (State-label-insensitive). The state-label-insensitive relation
∼S is a symmetric binary relation on UΣ,Γ , defined by (Σ,Γ,Q, q0, δ, `) ∼S
(Σ,Γ,Q′, q′0, δ

′, `′) if and only if Q = Q′, q0 = q′0 and δ = δ′.

A few lookup-based protocols contain automata that are not related accord-
ing to ∼S , e.g., the Poulidor protocol [14]. In this protocol, the authors designed
a mechanism to prevent (to some extent) an adversary from knowing which state
is being used by the prover at any round of the fast phase. The idea is simple,
the probability of two automata sharing the same transition function must be
negligible. Such a mechanism seems to improve the resistance to pre-ask attacks
as the adversary cannot easily use knowledge acquired in previous rounds to
succeed in the current round of the fast phase.

Even though two automata in the Poulidor protocol can have different tran-
sition functions, they still preserve a slightly weaker structural property than the
above mentioned state-label-insensitive property. If we ignore the edge labels of
the automata, i.e., if we only look at the structure of the underlying graph of
the automata, the transition functions of the automata in the Poulidor protocol
are identical. We provide a formal definition for this structural relation next.

Definition 5 (Label-insensitive). The label-insensitive relation ∼L is a sym-
metric binary relation on UΣ,Γ , defined by (Σ,Γ,Q, q0, δ, `) ∼L (Σ,Γ,Q′, q′0, δ

′, `′)
if and only if Q = Q′, q0 = q′0 and {δ(q, c) | c ∈ Σ} = {δ′(q, c) | c ∈ Σ} for every
q ∈ Q.

A fundamental operator in binary relations is the closure with respect to a
given property.

Definition 6 (Closure). Let P be a lookup-based protocol and ∼R⊆ UΣ,Γ ×
UΣ,Γ be a binary relation. The closure of P with respect to ∼R, denoted by P

R

,

is the minimal superset of P such that ∀(A,A′) ∈∼R : A ∈ PR

=⇒ A′ ∈ PR

.

We observe that most existing lookup-based protocols can be easily defined
by using the closure operator. As an example, we show next a representation of
the Poulidor protocol by using the closure w.r.t. the label-insensitive relation.

Example 1 (Poulidor protocol). Consider the automaton A = (Σ,Γ,Q, q0, δ, `)
with Σ = Γ = {0, 1}, where Q = {0, 1, . . . , 2n − 1}, q0 = 0, δ(q, c) = (q + c +
1) (mod 2n) and `(q) = 0, ∀q ∈ Q. The Poulidor protocol, up to n rounds, can
be defined as a set of automata that is the closure of {A} with respect to ∼L,

i.e., {A}
L

.
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We say that a protocol P is closed under ∼R if P = P
R

. Moreover, if ∀A,A′ ∈
P : A ∼R A′, then P is said to be consistent with respect to ∼R. The Poulidor
protocol, for example, is closed with respect to ∼S and ∼L, and it is consistent
with respect to ∼L. However, it is not consistent with respect to ∼S .

4.2 Resistance to Pre-ask Attacks of Layered Protocols

Avoine et al. concluded in [1] that in the context of DB protocols without a final
authentication phase, the most efficient adversarial strategy when conducting a
mafia-fraud attack is the pre-ask strategy.

In a recent work [12], it was proven that, if a protocol is layered and closed
under ∼S (called random-labeled in [12]), then there exists a deterministic op-
timal strategy to execute a pre-ask attack against the protocol. This strategy
consists in replying to the verifier’s challenges with exactly the same sequence of
responses obtained from the prover in the pre-ask session. The next proposition
is based on this result.

Proposition 1 (Mafia success probability). Let P be a layered protocol with
n > 0 rounds. For every x ∈ {0, 1}n, let Ex be the event that ΩA(x) = ΩA(c)
for a random automaton A ∈ P and a random input sequence c ∈ {0, 1}n. If P
is closed under ∼S, then the probability of success of an optimal pre-ask attack
against P , denoted by M(P ), can be computed as follows:

M(P ) = max
x∈{0,1}n

{Pr (Ex)} .

Proof. The proposition easily follows from the definition of optimal strategy, and
the underlying assumption that the adversary can find out x ∈ {0, 1}n such that
Pr(Ex) ≥ Pr(Ey) for every y ∈ {0, 1}n. ut

In Lemmas 1 and 2 below, we make Proposition 1 more precise by providing
formulas to compute Pr(Ex) in protocols that are consistent and closed with
respect to ∼S and ∼L, respectively. We do so by considering, for a given au-
tomaton, the meeting points between the input sequence used by the adversary
during the pre-ask session and the challenges sent by the verifier.

Definition 7 (Meeting points set). Given an automaton A = (Σ,Γ,Q, q0, δ, `)
and two input sequences x, y ∈ Σn, the meeting points set I (A, x, y) is the set{
i ∈ {1, . . . , n} | δ̂(x1 · · ·xi) = δ̂(y1 · · · yi)

}
.

Lemma 1. Let P be a layered protocol with n > 0 rounds and A any automaton
in P . If P is consistent and closed with respect to ∼S, then:

M(P ) = max
x∈{0,1}n

 1

4n

∑
y∈{0,1}n

2|I(A,x,y)|

 .
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Proof. Let x, y ∈ {0, 1}n be two random input sequences. As P is consistent
with respect to ∼S , we have that I (A, x, y) = I (A′, x, y) for every A′ ∈ P . In
addition, given that P is closed under ∼S , there are 2|Q|−(n−|I(A,x,y)|) automata
A′ in P such that ΩA′(x) = ΩA′(y). Therefore, for a random automaton A′ ∈ P ,
we have:

Pr (ΩA′(x) = ΩA′(y)) =
2|Q|−(n−|I(A,x,y)|)

2|Q|
=

2|I(A,x,y)|

2n
. (1)

Now, define the event Ex that ΩA′(x) = ΩA′(c) for a random input sequence
c ∈ {0, 1}n and a random automaton A′ ∈ P (as in Proposition 1). Hence, by
the law of total probability we have:

Pr(Ex) =
∑

y∈{0,1}n
Pr(Ex | c = y) Pr(c = y). (2)

But, Pr(c = y) = 1
2n and Pr(Ex | c = y) = 2|I(A,x,y)|/2n (see Equation 1).

Therefore, by applying these results in Equation 2 we obtain:

Pr(Ex) =
1

4n

∑
y∈{0,1}n

2|I(A,x,y)|. (3)

Finally, by using Equation 3 in Proposition 1 we obtain the expected result. ut

Lemma 2. Let P be a layered protocol with n > 0 rounds and A any automaton
in P . If P is consistent and closed with respect to ∼L, then:

M (P ) =
1

8n

∑
x,y∈{0,1}n

2|I(A,x,y)|.

Proof. For every x ∈ {0, 1}n, we define the event Ex that ΩA′(x) = ΩA′(c)
for a random automaton A′ ∈ P and a random input sequence c ∈ {0, 1}n. Let
{P1, P2, . . . , Pk} be the equivalence classes of P with respect to ∼S , i.e., ∀B,B′ ∈
P : B ∼S B′ =⇒ ∃i ∈ {1, . . . , k} : B ∈ Pi ∧ B′ ∈ Pi. Since P is consistent
and closed with respect to ∼L we derive that ∀i, j ∈ {1, . . . , k} : |Pi| = |Pj |.
Moreover, for every i ∈ {1, . . . , k} the protocol defined by the set of automata
Pi is consistent and closed with respect to ∼S .

Let x be a sequence in {0, 1}n and r ∈ {1, . . . , k} such that A ∈ Pr and let
A′ be a random automaton in P . According to the law of total probability we
have:

Pr(Ex) =

k∑
i=1

Pr(Ex|A′ ∈ Pi) Pr(A′ ∈ Pi) =
1

k

k∑
i=1

Pr(Ex|A′ ∈ Pi). (4)

Consider the sets Ri =
{
y ∈ {0, 1}n | ∀j ≤ n : δ̂r(x1 · · ·xj) = δ̂i(y1 · · · yj)

}
, for

every i ∈ {1, . . . , k}, where δi is the common transition function of the automata
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in Pi; remark that Pi is consistent and closed with respect to ∼S . Thus, for every
i ∈ {1, . . . , k} and every y ∈ Ri, we have:

Pr(Ex|A′ ∈ Pi) = Pr(Ey|A′ ∈ Pr). (5)

Therefore, by iterating i over {1, . . . , k} and y on the corresponding Ri, we get:

k∑
i=1

∑
y∈Ri

Pr(Ex|A′ ∈ Pi) =

k∑
i=1

∑
y∈Ri

Pr(Ey|A′ ∈ Pr). (6)

Let Cy = {i ∈ {1, . . . , k} | y ∈ Ri} for every y ∈ {0, 1}n. By symmetry, |Ri| =
|Rj |, ∀i, j ∈ {1, . . . , k} and |Cy| = |Cz|,∀y, z ∈ {0, 1}n. Let t = |Ri| and c = |Cy|.
The left-hand and right-hand sides of Equation 6 are respectively equivalent to:

k∑
i=1

∑
y∈Ri

Pr(Ex|A′ ∈ Pi) = t

k∑
i=1

Pr(Ex|A′ ∈ Pi), and (7)

k∑
i=1

∑
y∈Ri

Pr(Ey|A′ ∈ Pr) = c
∑

y∈{0,1}n
Pr(Ey|A′ ∈ Pr). (8)

Thus, from Equations 4, 6, 7 and 8 we obtain Pr(Ex) = c
tk

∑
y∈{0,1}n Pr(Ey|A′ ∈

Pr). But, given that Pr is consistent and closed with respect to ∼S we derive
that Pr(Ey|A′ ∈ Pr) = 1

4n

∑
z∈{0,1}n 2|I(A,y,z)| (see Equation 3). Therefore:

Pr(Ex) =
c

4ntk

∑
y,z∈{0,1}n

2|I(A,y,z)|. (9)

Observe that the right-hand side of Equation 9 does not depend on x, therefore
M(P ) = Pr(Ex), ∀x ∈ {0, 1}n. On the other hand,

∑k
i=1 |Ri| =

∑
y∈{0,1}n |Cy|

which gives tk = 2nc. By using this in Equation 9 we complete the proof. ut

The closed formulas from the two lemmas above will be used in the next
section to prove that, for every layered protocol P , there exists a protocol P ′ ⊆ P
(i.e. a protocol formed by a subset of the automata in P ) such that its closure
under ∼L results in a protocol with equal or better resistance to pre-ask attacks
than the original protocol P .

5 A Protocol Transformation towards Optimality

As pointed out in the previous section, all lookup-based protocols found in the
literature are closed and consistent with respect to either ∼S or ∼L. Both design
principles have been shown effective by comparing different protocol designs, but
it is not clear whether they must be applied in general. In this section, we give,
to the best of our knowledge, the first formal proof that those design principles
are indeed well-founded. We do so by providing a protocol transformation that
uses the closure with respect to both ∼S and ∼L, and results in a better or equal
protocol with respect to the resistance to pre-ask attacks.
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Theorem 1. Let P be a layered protocol with n > 0 rounds, then:

M(P ) ≥M
(
P

S
)

.

Proof. Let x ∈ {0, 1}n be the input sequence selected by the adversary to query
the prover in the pre-ask session. Consider the following pre-ask strategy, for
a given z ∈ {0, 1}n and the responses from the prover y ∈ {0, 1}n: at the i-th
round, the adversary will reply to the verifier’s challenges c with the sequence
y⊕¬z. In other words, the adversary will reply with ΩzA(c) = ΩA(x)⊕¬z, where
A is the selected automaton for the execution. Let Mz(P ) be the probability
that the adversary succeeds with z in P , i.e., Mz(P ) = Pr(ΩA(c) = ΩzA(c)), for
a random A ∈ P and a random c ∈ {0, 1}n. Therefore,

Mz(P ) =
1

2n|P |
∑
A∈P

∑
c∈{0,1}n

D (ΩA(c), ΩzA(c)) , (10)

where D(u, v) is 1, if u = v or 0, otherwise. Let us assume that P
S 6= P ,

otherwise the theorem holds straightforwardly. Hence,Mz
(
P

S
)

= a ·Mz(P ) +

b ·Mz
(
P

S − P
)

, where a = |P |∣∣∣PS
∣∣∣ and b =

∣∣∣PS−P
∣∣∣∣∣∣PS

∣∣∣ . Now, assume that P is more

resistant than P
S

to pre-ask attacks, i.e. ∀z ∈ {0, 1}n : Mz
(
P

S
)
≥Mz (P ) and

there exists at least one value z such that the inequality is strict. Therefore,

∀z ∈ {0, 1}n : Mz
(
P

S − P
)
≥ Mz(P ) (and at least for one z the inequality is

strict). This gives us: ∑
z∈{0,1}n

Mz(P
S − P ) >

∑
z∈{0,1}n

Mz(P ). (11)

Our goal is to reach a contradiction. To do so, consider the set Bc,z of automata
A in P such that ΩA(c) = ΩzA(c). Hence, from Equation 10 we have:

Mz(P ) =
1

2n|P |
∑

c∈{0,1}n
|Bc,z|. (12)

Now, observe that ∀z, z′ ∈ {0, 1}n : z 6= z′ =⇒ Bc,z
⋂
Bc,z

′
= ∅. Besides,

∀(A, c) ∈ P × {0, 1}n : ΩA(c) = ΩzA(c) where z = ΩA(x) ⊕ ΩA(c). This gives
that for every c ∈ {0, 1}n it holds that {Bc,z | z ∈ {0, 1}n} is a partition of P
which gives ∀c ∈ {0, 1}n :

∑
z∈{0,1}n |Bc,z| = |P |. Therefore, by applying this

in Equation 12 we derive
∑
z∈{0,1}nMz(P ) = 1. Analogously, we obtain that∑

z∈{0,1}nMz(P
S − P ) = 1, which is in contradiction with the inequality in

Equation 11. ut

A consequence of Theorem 1 is the following. If P is optimal in terms of
resistance to pre-ask attacks, then P

S

is optimal as well. This result is relevant,
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as the closure P
S

only differs from P on the distribution of the precomputed
values, while it keeps the same structure of the lookup table.

The second design principle is defined as the property of the protocol to be
consistent and closed with respect to ∼L. In the case that P is already closed
under ∼S (i.e., it satisfies the first principle), we prove, in Theorem 2 below,
that there exists a subset of P whose closure w.r.t. ∼L is at least as resistant to
pre-ask attacks as the former.

Theorem 2. Let P be a layered protocol with n > 0 rounds and {P1, . . . , Pk}
be the equivalence classes of P with respect to ∼S. Let j ∈ {1, . . . , k} such that

∀i ∈ {1, . . . , k} : M
(
Pi

L
)
≥M

(
Pj

L
)

. If P is closed under ∼S, then:

M(P ) ≥M
(
Pj

L
)

.

Proof. Given that P is closed under ∼S , Pi is consistent and closed with respect
to ∼S , for every i ∈ {1, . . . , k}. Now, let A be a random automaton in P . As in
Proposition 1, for every x ∈ {0, 1}n, we define the event Ex that ΩA(x) = ΩA(c)
for a random input sequence c ∈ {0, 1}n. By the law of total probability we have
that for every x ∈ {0, 1}n:

Pr(Ex) =

k∑
i=1

Pr(Ex | A ∈ Pi) Pr(A ∈ Pi). (13)

FromM(P ) = maxx∈{0,1}n Pr(Ex) we deduce thatM(P ) ≥ 1
2n

∑
x∈{0,1}n Pr(Ex).

By substituting Equation 13 in such inequality, and inverting the order of the
sums we obtain:

M(P ) ≥
k∑
i=1

 1

2n

∑
x∈{0,1}n

Pr (Ex | A ∈ Pi)

Pr(A ∈ Pi). (14)

On the other hand, we derive from Lemmas 1 and 2 that, for every i ∈ {1, . . . , k},
1
2n

∑
x∈{0,1}n Pr (Ex | A ∈ Pi) = M

(
Pi

L
)
≥ M

(
Pj

L
)

as Pi is consistent and

closed with respect to ∼S . By applying this result in Equation 14 and given that∑k
i=1 Pr(A ∈ Pi) = 1, we complete the proof. ut

Our protocol transformation towards optimality consists of successive appli-
cations of Theorems 1 and 2. We observe that, by only considering the structure
of the underlying graph of the automata, both transformations either preserve or
simplify a protocol. We capture this notion of structural complexity of a protocol
by the following notion of size.

Definition 8 (Size). The size of a lookup-based protocol P , denoted by S (P ),
is the number of states of the largest automaton in P .

In a nutshell, the size of a protocol is determined by the largest automaton
that can be used during a fast phase. Remark that the number of states is a
standard measure of size in automata theory.
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Corollary 1 (Optimal Trade-off). Given a positive integer number s, con-
sider the set S of layered lookup-based protocols with size less or equal than
s, i.e., S = {P ⊆ UΣ,Γ | S (P ) ≤ s}. Let O ⊆ S be the set of protocols that
are optimal in terms of resistance to pre-ask attacks, within the set S, i.e.,
O = {P ∈ S | @P ′ ∈ S : M(P ′) <M(P )}. If S is not empty, then there exists a
protocol P in O that is consistent and closed with respect to ∼L.

Proof. The proof comes straightforwardly from Theorems 1 and 2. Let P ∈ O,

from Theorem 1 we haveM(P ) ≥M(P
S

). Because S (P ) = S
(
P

S
)

, then P
S ∈

O. On the other hand, because of Theorem 2, there exists P1 consistent with

respect to ∼S such that P1 ⊆ P
S

and M(P
S

) ≥ M(P1
L

). Besides, S
(
P1

L
)

=

S (P1) ≤ S
(
P

S
)

= S (P ) ≤ s. Therefore P1
L ∈ S and P1

L ∈ O. ut

Corollary 1 is a useful result towards finding an optimal layered protocol, as
it reduces the search space to the subclass of protocols that are consistent and
closed with respect to ∼L. It is worth noticing that a consistent protocol with
respect to ∼L imposes a rather strong structural property on a protocol, that is,
all the automata in the protocol are equal if we ignore the edge and state labels.
This rules out, for example, protocol composition as a technique to obtain an
optimal protocol, where a protocol composition is simply the union of the sets
of automata defining the two protocols, e.g. the union of Hancke and Kuhn’s
protocol [8] and the Uniform protocol [12].

We conclude by stressing that we have focused on non-trivial transformations
in lookup-based protocols, while there exist others that can be easily included
in our analyses. For example, the security-memory trade-off of every lookup-
based protocol can be improved by simply removing all unreachable states in
its automata representation. This consideration corresponds to a rather trivial
design principle whereby states that are not reachable from the initial state can
be removed, as they are not used in the protocol execution. Similarly, it can be
easily proven that two equivalent protocols up to isomorphism are equal in size
and resistance to pre-ask attacks.

6 Conclusions

We have studied layered protocols, a subclass of lookup-up based distance bound-
ing protocols that contains most lookup-based protocols proposed to date. Rel-
evant structural properties of this type of protocols that have been used in
previous work in a rather intuitive way, have been formalized in this article.
As a result, we developed a general security analysis that applies to all lay-
ered protocols. We have also addressed the security-memory trade-off problem
in lookup-based protocols. Our results indicate that there exists an optimal lay-
ered protocol that is consistent and closed with respect to ∼L, if an optimal
protocol exists at all. Our future work will be oriented towards finding sufficient
conditions for a layered protocol to be optimal. We plan to also extend this study
to those lookup-based protocols that are not layered.
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