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Abstract 
A description of a tool to support computer-aided construction of proofs for parallel systems is 
given. In contrast to the conventional approach based on state space exploration, we use an 
axiomatic approach. The axioms we use for the construction of proofs, are based on ACP. Besides 
these standard axioms we also consider tactics for shortening proofs. We use PSF (Process 
Specification Formalism), an extension of ACP with abstract data types, to describe the processes 
subject to the verification. 

1. INTRODUCTION 

One of the advantages of the use of formal techniques for the specification of parallel 
systems is that it enables formal verification of the correctness of such a specification. 
There are several approaches towards verification. One can verify certain properties of a 
specification, such as deadlock-freedom, fairness or starvation-freedom. A more general 
approach is to verify the truth of logic propositions about the execution traces of a 
specified system, see for example [HM85,TT91]. We will focus on a third approach, 
namely verifications of equality of two specifications, as developed in [Baeg0]. Equality in 
this context can be interpreted in many ways, depending on the desired semantics. 
A common way of proving that two processes are equal is by interpreting (or defining) 
the processes in some model, typically a graph model, followed by  testing whether  the 
interpretations are equal with respect to some congruence relation, such as observational 
equivalence or weak bisimulation. For finite process graphs several more or less efficient 
algorithms have been developed for determining these congruences [Fer91,GVg0]. All of 
these algorithms suffer from the so-called state explosion problem. This problem comes 
from the fact that the number  of states in a complex system is proportional  to the 
product  of the number of states of its parallel components. 
An alternative is the algebraic or axiomatic approach, where a process expression is 
manipulated and proven equal to another process expression at a syntactic level, using 
an effectively given set of axioms. The advantage of this method over exploring the state 
space is that one can reason about the components or subsystems at a higher level of 
abstraction. Subsystems can be replaced by  simpler ones and this way  of pruning in the 
state graph results in simpler proofs. Another advantage is that an algebraic approach 
gives more insight into the reasons why a proof works or fails. This might give dues  as 
to how faulty specifications can be repaired, and how correct specifications can be 
optimized. The axiomatic approach is also used in the PAM project [Lin91]. 
The restriction to finite state machines, or the class of regular processes, that is implied 
by  the state exploration methods does not apply to the axiomatic approach. This way 
more complex processes, such as an unbounded queue, can be considered. The main 
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drawback of an axiomatic approach is that an equality guaranteed by some state space 
exploration algorithm need not be effectively constructable in the axiomatic system. 
Computer tools supporting the axiomatic approach can be divided into two classes: 
theorem provers and proof assistants. The distinction is based on the level of 
mechanization of the process of proving. A simple proof assistant will have the form of 
an "electronic notebook" with accompanying software, which helps in rewriting the 
formulas that constitute the proof and will depend heavily on the interaction between 
people and machines. A more sophisticated theorem prover would make use of a 
number of heuristics to decide automatically what axioms to apply in what order. 
ACP (Algebra of Communicating Processes) [BW90] is a process theory, which has been 
developed from an axiomatic viewpoint. Verifications of systems specified in ACP can be 
found in [Bae90] for example. The process specification language PSF [MV90] is an 
extension of ACP with abstract data types. It has a computer readable format and several 
computer tools have been developed to support specification in PSF, such as a syntax 
checker and a simulator. 
In this paper we will describe how a proof assistant for PSF can be designed and the status 
of current preliminary investigation. This tool will be an aid in editing process 
expressions, selecting axioms that are applicable and applying these axioms. Preferably, 
sequences of applications of axioms which are commonly used in proofs must be offered 
using some shorthand. We will call these sequences: tactics. 
This article is organised in the following way. We start off with a description of the 
toolkit for PSF which is under development followed with a short introduction to ACP. 
After that we will explain what we consider a proof within the proof assistant, give the 
axioms that are used to construct proofs and discuss the tactics that have been 
implemented. We conclude with a description of the implementation and an example to 
demonstrate the current status of the proof assistant. 

2. THE PSF PROJECT 
The PAT (Process Algebra Tools) project aims at constructing an environment of 
computer tools for studying concurrent systems, especially in the settin8 of the formal 
concurrency theory ACP (Algebra of Communicating Processes) [BWg0]. Several tools 
had been written before the PAT project started, but because of the lack of a unified 
guiding framework there were many inconsistencies between the tools. The first step 
towards the construction of an integrated system in PAT has been the development of a 
language for specifying ACP-like processes in general. The resulting language PSF 
(Process Specification Language) is a formal specification language suitable for specifying 
concurrent systems. An introduction to the subject including examples is [MV89a], and 
the formal definition of PSF is given in [MVg0]. 

PSF 
ImodulartzaUon 

ASF 1 

ASF ACP 

Figure 1. 

PSF has been designed as the high-level specification language in the PAT project. It 
combines ACP with abstract data types. On the one hand PSF is based on AC.P, that is for 
the part that is used to describe processes. The syntax of this part is kept as close as 
possible to the more informal syntax of ACP. On the other hand PSF is based on ASF 
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(Algebraic Specification Formalism) [BHK89]. This formalism is used to describe the data 
types with which processes can be parameterized. PSF also inherits its modularization 
concepts and its support of generics from ASF. Figure 1 gives a graphical representation 
of the constituting parts of PSF. 
In contrast to PSF, a low-level language called TIL (Tool Interface Language) [MV89b] has 
been designed. TIL serves as a common kernel language for all the tools to be supported 
by  the environment,  including: a simulator; a proof assistant; a term rewriter and a 
bisimulation verifier. Although TIL was primarily intended as a dedicated interface 
language for the tools in the PAT project, it was designed so that it could be used on its 
own. From a semantical point of view TIL has the same expressive power  as the 
combination of ACP and ASF. The main advantage of using TIL is that many parts of the 
toolkit can be reused. Because TIL is used mainly by tools, its readability for humans is of 
secondary importance. 

I  ,,0r I 

library manager I 

I 
] t,-~,,J.to,- J 

[ s i m u l ! t ~  tool s 
I pro~ assistant k ~,' 

[ equ~,a~nce tester I 

m 

Figure 2. 

At the centre of the toolkit, see figure 2, is the Tool Interface Language (TIL) through 
which all tools can communicate. From the picture we see that the PSF specification at 
the top is translated into TIL using two intermediate languages called M-TIL and I-TIL. In 
the course of this translation the library manager is used which supports and controls 
separate compilation of PSF modules. 
Each PSF module is translated into exactly one M-TIL module. M-TIL is similar to TIL, 
but  it still contains information about the modular structure of the specification. Because 
TIL supports no modular structure at all, a PSF specification has to flattened. This is done 
in the normalizat ion phase in which the I-TIL language is used. The complete 
description of the translation from PSF to TIL can be found in [Velg0]. 
At the bottom of the picture we see the several tools. At the moment  a simulator, a term 
rewriter and a proof assistant have been implemented. We are currently working on 
interfacing the toolkit with an existing tool for equivalence testing. Future plans for 
other tools include, for example, a compiler that compiles a PSF specification into a 
traditional programming language. 
This approach of implementing an environment by using clearly defined intermediate 
languages, serves several purposes. The main reason is that it results in a layered design, 
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in which humans  can inspect specifications on a high level through PSF and in which 
the tools have access to the specifications through a low level representat ion tailored to 
their needs. This means in particular that the process of parsing and type checking of PSF 
is of no concern to the tools which will use a very simple parser  to read the intermediate 
language. The second reason for using TIL and its derivatives is that having a definition 
of an intermediate language, construction of software can be started in parallel and so for 
example the construction of the simulator had not to wait  for the parser  and normalizer  
to be completed. The final reason for using ITL is that for new versions of PSF, or 
formalisms with comparable functionality, the toolkit can be easily adapted.  Writing a 
new front-end for the specific language will be sufficient. In this way  reusability of large 
parts of software, present in the tools, is guaranteed. 

3. ACP 
In this section we will give a brief introduction to ACP. This introduction is by  no means 
intended to be complete. For more specific information on ACP we refer to [BW90]. The 
notation used here will differ slightly f rom the one used in the aforementioned book, 
because we have to deal with a computer readable syntax. 
ACP starts from a set of objects, called atomic actions, atoms or steps. Atomic actions are 
the basic and indivisible elements of ACP. The (finite) set of constants is called A. On this 
set A there is defined a fixed partial function ~, : A • A ---) A. Moreover  we  have  two 
special constants: 

�9 delta or deadlock. (delta ~ A) 
deadlock is the acknowledgement that there is no possibility to proceed. 

�9 skip or silent action. (skip e A) 
skip represents the process terminating after some time, wi thout  performing any  
observable action. 

Processes are constructed by  combining constants and processes by  operators.  In the 
following introduction of the operators ,  a,b,c will s tand for constants and  x,y,z for 
processes. 

�9 +, alternative composition or sum. 
x + y is the process that first makes a choice between its summands  x and y, and 
then proceeds with the execution of the chosen command.  In the presence of an 
alternative, deadlock is never chosen. 

� 9  sequential composition or product. 
x.y is the process that executes x first and continues with y after termination of x. 

�9 [1, parallel composition or merge. 
x ][ y is the process that represents the simultaneous execution of x and y. 

�9 [L, left merge. 
x U. y is the process that represents the simultaneous execution of x and y in which 
the first action to be performed must  come from x. 

�9 [, communication merge. 
x [ y is the process that represents the simultaneous execution of x and y in which 
the first action to be performed must  be a communication between an action f rom x 
and an action from y. 

�9 encaps(H,x), encapsulation. 
encaps(H,x) is the process x without the possibility of performing f rom the set of 
actions H (H~A). 

�9 hide(I,x), abstraction. 
hide(Ix) is the process x without the possibility of observing actions f rom the set of 
atomic actions I fl_A). This is achieved by  renaming ail atoms from I in x into skip. 
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4 .  PROOFS 

In this section we will shortly discuss what we consider a proof in the setting o~ the proof 
assistant. A verification of a process expression consists of a stepwise transformation of 
this process expression into another one. This transformation can be seen as a proof that 
both expressions are equal in a certain process semantics. The semantics depends on the 
axioms used within the p roof  assistant. In the current implementation we use the weak 
bisimulation semantics [BWg0]. 
In the next section we will give the axioms used by the proof assistant. If every step in a 
proof can be motivated by one of the given axioms, it can be considered correct. Using 
this technique, correctness of, say, a communication protocol is demonstra ted b y  
constructing a proof that the protocol specification and the service specification denote 
the same process. Computer  support  in construction of proofs can be applied in the 
editing of an expression, the selection of suitable axioms, the application of trivial 
transformation sequences, the report  generation of the proof and to check manually 
constructed proofs. 

5. AX IOMS 

The axioms for ACP, describing the operators presented in section 3, can be transformed 
into a complete term rewriting system modulo commutativity and associativity [ABg0]. 
The axioms given here should also be read as a TRS in which the expressions on the 
lefthand-side are rewritten into the expressions on the righthand-side. Some rules are 
added that are not present in the standard axiomatization, but  they serve to optimize the 
rewriting within the proof assistant. See LMRG_SEQMRG for an example of an equality 
that, although it can be derived from the basic axioms, is a useful property to shorten 
proofs. 

x + y = y + x A L T _ C O M M  
x + (y + z) = (x + y) + z ALT_ASOC 
x ,+ x = x ALT_IDENT 

x + de l ta  = x DLK_ALT 

In the axioms we choose the left-associative form of an expression. See for example 
axiom ALT_ASOC. An exception to the this rule is SEQ_ASOC where  the right- 
associative form is chosen because one is mostly interested in the first atom (head) of the 
sequential composition. 

( x + y ) . z = x . z + y . z  

( x .  y) �9 z = x .  ( y .  z) 
d e l t a ,  x = del ta  

x II y = y U x 
x II (y II z) = (x II y) II z 
x l l y = ( x l l y + y l l x ) + x  I y 

a ~ . x = a . x  
a �9 x II y = a �9 (x II y) 
( x + y )  II z = x  II z + y  II z 

x II del ta  = x .  del ta 

del ta  II x = del ta  

a l b = ~ ( a , b )  

a I b = delta 

x I del ta  = del ta  

x l y = y l x  
( a . x )  l b = ( a  I b ) . x  

i f  3' is d e f i n e d  

i f y  is unde f ined  

SEQ_ALT 

SEQ_ASOC 
DLK_SEO. 

M R G _ C O M M  
MRG_ASOC 
MRG_LMRG 

LMRG_SEQ 
LMRG_SEQMRG 
LMRG_ALT  

LMRG_DLKSEQ 
DLK_LMRG 

CMM_DEF 

C M M _ U N D E F  
D L K _ C M M  

C M M _ C O M M  
C M M  S E Q  
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(a .  x) I (b .  y) = (a i b ) -  (x II y) 
(x+y) l z = x l z + y l z  
encaps(H, a) = a if a E H 
encaps(H, a) = delta if a ~ H 
encaps(H, skip ) = skip 
encaps(H, x + y) = encaps(H, x) + encaps(H, y) 
encaps(H, x �9 y) = encaps(H, x) �9 encaps(H, y) 
hide(I, a) = a if a e~ I 
hide(I, a) = skip if a E I 
hide(I, skip ) = skip 
hide(I, x + y) = hide(I, x) + hide(I, y) 
hide(I, x .  y) = hide(I, x) �9 hide(I,  y) 
x �9 skip = x 
skip . x + x = s k i p  . x  
a . ( s k i p  . x + y ) = a . ( s k i p  . x + y ) + a . x  
x . ( s k i p  . y ) = x . y  

CMM_SEQMRG 
CMM_ALT 
E N CATM 
ENC_DLKATM 
ENC_SKP 
ENC_ALT 
ENC_SEQ 
HID ATM 
HID_DLKATM 
HID_SKP 
HID_ALT 
HID_SEQ 
SKPACP.T1 
SKPACP T2 
SKPACP_T3 
SKPACP_T1 B 

At the end of the table we have added some laws for skip which are known as Milner's.z- 
laws. Technically speaking the last axiom is not necessary, because it is a consequence of 
the first axiom. We have added it however because of the right-associative form used for 
the sequential composition. 

6. TACTICS 
Trying to prove facts by using only the axioms provided can be a tiresome job and 
therefore error-prone. As a typical example we found in one of our first experiments 
with the initial implementation of the proof  assistant, that a simple proof  that takes 
seven steps when done with pencil and paper takes more than sixty steps when applying 
only one axiom at a time. It goes without saying that a successful proof assistant should 
provide means to shorten such proofs. We have tried to cope with this problem by tryin, g 
to mimic the reasoning used by human provers. In doing this, however,  we remain 
exact all the time, that is we do not want to rely on heuristics of any kind. In this section 
we will discuss some of the tactics that we have found and that are implemented in the 
proof assistant. These tactics were developed by analyzing a number  of manual  ACP 
verifications from [Bae90]. 
In order to keep up with the state explosion problem it is crucial to be able to prune the 
state space 'as soon as possible. One of the strategies to follow is to try to p r o d u c e  and 
remove dead.locks as early as possible. By applying the axiom delta �9 x = delta, we can 
prevent  unnecessary rewriting within x. Deadlocks are created within encapsulation 
expressions when atomic actions are prohibited to occur because they are blocked. An 
atomic action that is blocked could escape the blocking because it can engage in a 
communication and get renamed. However ,  atomic actions that are blocked by  an 
encapsulation operator and are not able to communicate can be renamed into deadlocks 
safely. We can get rid of the processes following a delta by applying the axiom: delta �9 x = 
delta. This strategy is called find deadlocks in the proof assistant. A related strategy is 
remove deadlocks. This strategy removes, possibly multiple, deadlocks in one step by  
creating as much deadlocks as possible followed by applying: delta + x = x. 
The next strategy is what  we think one of the main Strategies humans  apply  in 
constructing proofs in an ACP setting. In this strategy we try to separate a term X into a 
head, the first atom that is possible to occur, and the rest of the term, its tail. In analogy 
this strategy is called head-tail. In general the resulting term is not  s imply a head 
followed by  a taft but it is of the form: hi.t1+ h2.t2 + ... + hn'tn. In trying to create the 
head-tall expression each process variable that is encountered, is expanded. This means 
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that the lefthand-side of a process definition is replaced by  the appropriate  r ighthand- 
side. 
In fact this head-tail strategy is a combination of a number  of axioms which relate closely 
to the expansion theorem from [BW90]. For brevi ty  we state this axiom in the case we 
have a merge with two components X and Y, defined by 
X = al  �9 X l  + ... + an �9 Xn 
Y = b l  �9 Y1 + ... + bn �9 Ym, then 
X II Y = a l .  (X l  II Y) + ... + a , .  (Xn II Y) + 

51- (X U Y 0  + ... + bm" (X II Ym) + 
(all b 0 .  (X l  II Y1) + (a~l b=).  (X l  II Y2) +... + (a , I  bnO" (Xn II Ym) 

In case the merge is surrounded by  an encapsulation operator, we have the following: 

e n c a p s ( H ,  X II Y) = ,T_,j_" (Xi II Y) + ,~,b i �9 (X II Yj) + ~ (a i l~ )  �9 (Xi II Yj) 
{ila,~aH} (jlbj e~ FI} {i,jl ailbj e~ H} 

A l s o  o ther  combina t ions  of  operators  are suppor ted .  
As a corollary we have the recurs ive  head-tai l  strategy. Here  we have to be careful not 
just to try to apply  head-tail on all sub-expressions otherwise we would be able to wind 
up  in an endless recursion when we consider the following process e.g.: X = a.X. Without 
explicitly stating these, a number  of rules are built  in that determine when  to stop 
recursion. 
Finally there are three strategies implemented  that relate to the so-caged conditional 
axioms [BBK87]. These axioms are very useful in breaking a complex specification down 
into subsystems. They support  a modular  approach towards verification. 

Before giving the axioms we first have to introduce the notion of the alphabet cz(x) of a 
process x. This is the collection of all atomic actions that process x can per form (see 
[BBK87] for a definition). 
Since this notion is not decidable (see [BBK87]), the alphabet  of process x will be 
approximated by  the collection of all actions used in the specification of x or one of its 
sub-processes. This inexactness does not influence the validity of the axioms. 
Another  notation which will be used is the communicat ion set S I T of two sets of 
atoms, S and T. This is defined by  

S I T = { a l b  I a ~  S, b E ' r } .  
The first conditional axiom deals with pushing encapsulations through a merge. 

encaps(H,  X II Y) = encaps(H,  X II encaps(H ' ,Y) ) ,  

where H' = H- { a ~ co(Y) I (({a}lr n H c) ~ 0 }  - {a I a ~ (~e0}. 
The set H '  is derived f rom H by  first deleting all elements which can take par t  in a 
coanmunication of which the resulting action is not  encapsulated. Secondly we  delete 
the actions from H that are superfluous because they do not occur in Y. 
The second conditional axiom deals with pushing hiding through a merge. 

hide( I ,  X II Y)  = hide( I ,  X II h ide( l ' ,Y) ) ,  
w h e r e  I' = I- { a E oc(Y) I ({a}lcc(X)) ~ 0 }  - {a I a E o~(Y)}. 

The third axiom is a combination of the first two. 
hide( I ,  encaps(H,  X II Y)) = h ide( I ,  encaps(H,  X II h ide( l ' ,Y) ) ) ,  
w h e r e  I' = I - H - { a E c~(Y) I ({a}lcc(X)) ~ E~} - {a I a ~ cz(Y)}. 

These three axioms are easily proved correct for closed process expressions, using the 
conditional axioms from [BBK87]. 
The following example will clarify the use of these axioms. We consider an array of n 
components ,  serially connected to each other. Without  giving a descript ion of the 
behaviour  of the components,  we  assume that each component  has k states. Thus the 
parallel composition (before encapsulation and abstraction) has k n states. Now assume 
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that  after encapsulation and abstraction of the complete parallel composit ion a fairly 
simple process with, say n.k states results, then we would have needed to visit these n.k 
states in order to reduce the system to the smaller size. 
N o w  by applying the conditional axioms described above, we can focus on the subsystem 
consisting of the first two components, which has k 2 states, and reduce it to a system with 
2.k states. The following step would be to focus on the subsystem obtained by  combining 
this newly derived component  and the third component,  and so on. The result of this 
operation is that by  restricting oneself to only sub-systems, the number  of states visited 
decreases significantly. In this example the order of states visited would be nZ.k 2 instead 
ofk n. 

7. THE IMPLEMENTATION OF THE PROOF ASSISTANT 

As mentioned earlier the proof assistant is part  of the PAT project. It has been developed 
on SUN workstations and is written in the programming language C [KR78] using the X- 
Windows system. The proof  assistant is an interactive tool and currently we  restrict 
ourselves to PSF specifications in which atomic actions can be parameter ized  wi th  
elements f rom finite data sets only. 
The proof assistant uses TIL as input language so one has to translate a PSF specification 
into TIL using the PSF-compiler. After reading the TIL specification, the proof  assistant 
interacts with the user through five windows which are described below. 
PSF Window. This w i n d o w  displays a PSF version of the specification which  is 
constructed by translating the input TIL back into PSF. The text can be scroUed using the 
mouse.  Verify Window. This window shows all the steps of the proof  constructed so far. 
In this w indow the user selects the subterms that are to be manipulated.  Operation 
Window. This window contains several buttons among  which the buttons to activate 
the tactics. The buttons are only active when  there is a term selected in the Verify 
Window. Rewrite Window. Whenever a subterm is selected in the Verify Window, this 
w indow pops up and shows the rewrite actions possible according to the axioms. The 
desired action can be selected using the mouse. Special Window. This w indow contains 
some buttons for actions to: undo the last step, reset the complete verification, choose 
another term from the specification to rewrite, generate troff output  of the proof  f rom 
the Verify Window, quit the proof assistant. 

8. VERIFICATION OF TWO ONE-BIT BUFFERSr AN EXAMPLE 

Although an explanation of an interactive tool by means of a writ ten text is less adequate 
than active hands-on experience, we will try to demonstrate  the working of the proof  
assistant with an example. We will use the tools to construct a proof that a system of two 
one-bit buffers shows the same behaviour as one two-bit buffer. Facilities for handling 
data will not be used, since the current status of the tools will not allow this. 

output 

Figure 3. 

THE SPECIFICATION 
The system that we will consider consists of a parallel composition of two one-bit buffers, 
which are connected via an internal port. The left buffer (OBB-L) gets data f rom the 
envi ronment  via an input-port and sends it to the internal channel, while the right 
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buffer reads data from this internal channel and hands it over to the environment via 
the output-port. The situation is as depicted in figure 3. 
The shaded area is to indicate that we want to abstract from all actions at the internal 
port. In PSF the specification of this system looks as follows. First we define the 
behaviour of the two-bit buffer, which will be our target specification. The atomic actions 
input and output are defined, the process TBB which represents the two-bit buffer, and 
two auxiliary processes TBB" and TBB". 
The behaviour of the buffer is straightforward. It starts with an input action and comes 
in the state TBB' which indicates that there is one item in the buffer. TBB' can either do 
another input action and continue in state TBB" with two buffered items, or it can do an 
output  action and restart with an empty buffer. Process TBB'" can only do an output 
action and continue with TBB'. 
For the system of two one-bit buffers, we define the processes OBB-L and OBB-R. 
Communication via the internal channel takes place by means of the r and s action. If 
both an r and an s action occur, this will result in a c action, which indicates successful 
communicat ion.  
The behaviour of the two one-bit buffers is defined straightforward. Now the System is 
defined as the parallel composit ion of these two buffers, while encapsulat ing 
unsuccessful communications (from the set H) and abstracting from communications 
via the internal channel (see the set D. 

process module TBB 

begin 

exports 

begin 

atoms 

input, output 

processes 

TBB, TBB', TBB'' 

end 

definitions 

TBB = input . TBB' 

TBB' = input . TBB'' + output . TBB 

TBB'' = output . TBB' 

end TBB 

process module Buffers 

begin 

imports 

TBB 

at ores 

s, r, c 

processes 

System, 0BB-L, OBB-R 

sets of atoms 

H - { r, s } 

" r = { c )  

communications 

S ~ r = c 

definitions 

OBB-L = input . S . OBB-L 

OBB-R = r . output . OBB-R 

System = hide (I, 

encaps(H, OBB-L I~ OBB-R )) 

end Buffers 

VERIFICATION 
The aim is to verify that the processes TBB and System define the same process, by which 
one may conclude for example that a composition of two one-bit buffers can be used as 
an implementation for a two-bit buffer. Figure 4 contains the output of the tool. 
After starting the tool one can select the process to be manipulated. This will be the 
System process, for which the definition is displayed. After clicking on the hide operator 
to select the entire expression, applying the head-taft operation yields expression A1. The 
skip action comes out when doing this again (A2). After selecting the first dot, an axiom 
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can be chosen which removes internal skip actions in this context (A3). The last step is to 
attach a new name, S'  for example, to the expression after the input action (A4). 
Next we focus on the newly defined process S'. After three steps we have been able to 
prove it equal to an expression which contains a new process name S "  and the already 
defined process System. Note that the order of the left and  the right buffer  in the 
definition of System is opposite to the order in B2. However  these two subexpressions 
are recognized by the proof assistant as being equal. 
The third step is to repeat  the process for the new process name S" .  This yields an 
expression in which the definition for S'  is recognized automatically (C3). 

System = hide(I, encaps(H, OBB-L I] 0BB-R ) ) 

( A1 ) = input . hide(I, encaps(H, s . OBB-L II OBB-R ) ) 

( A2 ) = input . skip . hide(I, encaps(H, 0BB-L II output . OBB-R ) ) 

( A3 ) = input . hide(I, encaps(H, OBB-L ~I output . OBB-R ) ) 

( A4 ) = input . S' 

S' = hide(I, encaps(H, OBB-L II output . OBB-R ) ) 

( B1 ) = input . hide(I, encaps(H, s . 0BB-L I] output . OBB-R ) ) + 

output . hide(I, encaps(H, 0BB-R ]I OBB-L ) ) 

( B2 ) = input . S'' + output . hide(I, encaps(H, OBB-R II OBB-L ) ) 

( B3 ) ~ input . S'' + output . System 

S'' = hide(I, encaps(H, ~ . 0BB-L I I output . 0~-R ) ) 

( CI ) = output . hlde(I, enoaps (H, 0BB-R If s . OBB-L ) ) 

( C2 ) = output . skip . hide(It encaps(H, output . OBB-R I[ 0BB-L ) ) 

( C3 ) = output . hide(I, encaps(H, output . 0BB-R I] OBB-L ) ) 

( C4 ) = output . S' 

Figure 4. 

The result of this manipulat ion is that we have given a derivat ion that the process 
System is the solution of the following set of equations. 

System = input . S' 

S' = input . S'' + output . System 

S' ' - output . S' 

Figure 5. 

N o w  using the Recursive Specification Principle (see [BWg0]) we can conclude that  
System and TBB in fact define the same process: This last step of reasoning has not yet  
been implemented in the proof assistant. 

9. CONCLUSIONS 
In this article we have given the description of a system that can be used to assist in the 
process of proving properties of process specifications. We think of the proof assistant as 
it is now, more as a somewhat  smart  electronic notebook than a full-fledged proof  
construct ing system. It never  has been our  a im to be able to genera te  p roofs  
automatically. 
Even so we think there are still a large number  of subjects on which, the proof  assistant 
can be improved.  In the current version the axioms are 'hard-wired into the code. The 
system would be more flexible if the user is allowed to enter a set of axioms of his own. 
In this way  the user would also be able to select a different process semantics than the 
weak bisimulation that we have implemented. To be able to achieve this, a language for 
representing axioms has to be developed. Moreover one can think of an extension of the 
PSF language that  al lows to express proofs,  which can be checked au tomat ica l ly  
afterwards. 
We think that  the conventional  method  of state space explorat ion and  axiomat ic  
approach should go hand in hand. In this way  the axiomatic approach can be used to cut 
down the state space into several components which can then be checked by  state space 
exploration. Although the implementat ion of the proof  assistant has not been finished 
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yet, we are encouraged by the fact that the tool is already used by people that are not 
involved in the PAT project. Experiences show that even for the relatively small 
examples, which it has been applied to, the tool is an important aid in constructing and 
analyzing specifications. Several suggestions for other tactics for special classes of 
specification domains are under consideration. 
The authors would like to thank Bob Diertens for his practical work on the proof 
assistant and Ben Thompson for proofreading this paper and suggesting several 
improvements. 

10. REFERENCES 

[ABg0] 

[Baeg0] 

[BBK87] 

[BHK89] 

[BW90] 

[Fer91] 

[GVg0] 

[HM~ 

[XR78] 

[Lin91] 
[MV89a] 

[MV89b] 

[MVg0] 

[Tr91] 

Wetg0] 

G.J. Akkerman & J.C.M. Baeten, Term rewriting analysis in process algebra, 
Report P9006, Programming Research Group, University of Amsterdam, 1990. 
J.C.M. Baeten (ed.), Applications of Process Algebra, Cambridge Tracts in 
Theoretical Computer Science 17, Cambridge University Press, 1990. 
J.C.M. Baeten, J.A. Bergstra & J.W. Klop, Conditional axioms and a/b-calculus 
in process algebra, in: Proceedings IFIP Conference on Formal Description of 
Programming Concepts HI, Ebberup, (M. Wirsing, ed.) pp. 77-103, North- 
Holland, 1987. 
J.A. Bergstra, J. Heering & P. Klint, The algebraic specification formalism ASF, 
in: Algebraic specification, J.A. Bergstra, J. Heering & P. Klint (eds.), pp. 1-66, 
ACM Press Frontier Series, Addison-Wesley 1989. 
J.C.M. Baeten & W.P. Weijland, Process Algebra, Cambridge Tracts in 
Theoretical Computer Science 18, Cambridge University Press, 1990. 
J.C. Fernandez, Alddbaran, A tool set for deciding bisimulation equivalences, 
in: Proceedings CONCUR '91, Amsterdam, (J.C.M. Beaten & J.A. Bergstra, eds.), 
1991. (to appear in LNCS series). 
J.F. Groote & F.W. Vaandrager, An efficient algorithm for branching 
bisimulation and stuttering equivalence, in: Proceedings 17th ICALP, 
Warwick, (M.S. Paterson, ed.) LNCS 443, pp. 626-638, Springer Verlag, 1990. 
M. Hennessy & R. Miiner, Algebraic Laws for Nondeterminism and 
Concurrency, Journal of the Association for Computing Machinery, vol. 32, nr. 
1, pp. 137-161, 1985. 
B.W. Kernighan & D.M. Ritchie, The C programming language, Prentice-Hall, 
1978. 
H. Lin, PAM: A Process Algebra Manipulator, this volume. 
S. Mauw & G.J. Veltink, An introduction to PSFd, in: Proc. International Joint 
Conference on Theory and Practice of Software Development, TAPSOFT '89, 
(J. Diaz, F. Orejas, eds.) LNCS 352, pp. 272-285, Springer Verlag, 1989. 
S. Mauw & G.J. Veltink, A Tool Interface Language for PSF, Report P8912, 
Programming Research Group, University of AmSterdam, 1989. 
S. Mauw & G.J. Veltink, A process specification formalism, Fundamenta  
Informaticae XUI (1990), pp. 85-139, IOS Press, 1990. 
B.C. Thompson & J.V. Tucker, Equational specification of Synchronous 
Concurrent Algorithms & Architectures, University College of Swansea, 
Technical Report, 1991. (in preparation) 
G.J. Veltink, From PSI= to TIL, Report P9009, Programming Research Group, 
University of Amsterdam, 1990. 


