Specification of the Transit Node in PSF,

S. Mauw F. Wiedijk

University of Amsterdam
Programming Research Group
P.O.Box 41882, 1009 DB Amsterdam
The Netherlands

abstract The specification language PSF, is used to give a formal specification of a
transit node, a common case study in ESPRIT project METEOR. The design of the
specification derived from the informal text and the ERAE specification is included. A
short discussion on the relation to the specification in ERAE is provided.

1. INTRODUCTION
This paper contains a case study in the formal description technique PSF4. We specify a transit node,
which is the common case study for several formalisms in the ESPRIT project METEOR. In [MHB89]
the transit node is specified in the algebraic specification language PLUSS. The PSF4 specification is
derived partially from an informal text and partially from the ERAE specification in [Hag88]. The
design of the specification is included, from which a general method can be derived for specifying
similar problems in PSFy.

In [MHB89] the transit node is specified in the algebraic specification language PLUSS.

The PSFy specification can be viewed at as a more implementation directed specification than the
one in ERAE. Certain design decisions are made, e.g. in identifying the separate objects that act in
parallel. Thus the PSFy specification, viewed as an implementation of the ERAE specification must
be verified or validated. A short discussion is devoted to this topic.

2. PSFy

PSFq (Process Specification Formalism - Draft) is a Formal Description Technique developed for
specifying concurrent systems. The formal definition of PSF4 can be found in [MV88]. In [MV89] an
introduction to the basic features is given.

PSF4 has been designed as the base for a set of tools to support ACP (Algebra of Communicating
Processes) [BK86]. We use bisimulation semantics to attach a meaning to the specification of
processes. The part of PSFq that deals with the description of the data is based on ASF (Algebraic

Specification Language) [BHK89]. Here we use initial algebra semantics.
PSF4 supports the modular construction of specification and parameterization of modules.

342

3. THE TRANSIT NODE

The Transit Node is a case study, which was defined in the RACE project 1046 (SPECS). An informal
description of the Transit Node and the ERAE specification of it can be found in [Hag88]. The
informal specification reads as follows:

"The system to be specified consists of a transit node with:
® 1 Control Port-In
e 1 Control Port-Out
® N Data Ports-In
® N Data Ports-Out
e M Routes Through
(The limits of N and M are not specified.)
Each port is serialized. All ports are concurrent to all others. The ports should be specified
as separate, concurrent entities. Messages arrive from the environment only when a Port-
In is abe to treat them.
The node is "fair”. All messages are equally likely to be treated, when a selection must be
made, and all messages will eventually transit the node, or be placed in the collection of
faulty messages.
Initial State: 1 Control Port-In, 1 Control Port-Out.
The Control Port-In accepts and treats the following three messages:
® Add-Data-Port-In-&-Out(n)
gives the node knowledge of a new port-in(n) and a new port-out(n). The node
commences to accept and treat messages sent to the port-in, as indicated below on
Data Port-In.
e Add-Route((m)n(i),n(j),...))
gives the node knowledge of a route associating route m with Data Pori-
Out(n(i)n(j),...).
e Send-Faults
routes all saved faulty messages, if any to Control-Port-Out. The order in which the
faulty messages are transmitted is not specified.
A Data Port-In accepts and treats only messages of the type:
® Route(m).Data
The Port-In routes the message, unchanged, to any one (non-determinate) of the
Data Ports-Out associated with route m. (Note that a Data Port-Out is serialized - the
message has to be buffered until the Data Port-Out can process it). The message
becomes a faulty message if its transit time through the node (from initial receipt by
a Data Port-In to transmission by a Data Port-Out) is greater than a constant time T.
Data Ports-Out and Control Port-Out accept messages of any type and will transmit the
message out of the node. Messages may leave the node in any order.
All faulty messages are saved until a Send-Faults command message causes them to be
routed to Control Port-Out. Faulty messages are messages on the Control Port-In that are
not one of the three commands listed, messages on a Data Port-In that indicate an
unknown route, or messages whose transit time through the node is greater than T.
Messages that exceed the transit time of T become faulty as soon as the time T is exceeded.
It is permissible for a faulty message to not be routed to Control Port-Out (because, for
example, it has just become faulty, bul has not yet been placed in a faulty message
collection), but all faulty messages must eventually be sent to Control Port-Out with a
succession of Send-Faults commands.
It may be assumed that a source of time (time-of-day or a signal each time interval) is
available in the environment and need not be modeled with the specification.”

343

4. DESIGN OF THE SPECIFICATION

4.1. General

The specification was designed using a mixed top-down and bottom-up approach. It was based on
the informal text, while using the interpretation of the text in the ERAE specification when needed
to fill in omissions or solve ambiguities.

Several design decisions were made, which did not follow directly from the informal description of

the case study. (e.g. the decision to let the Control Port-in keep control of the table containing all
routes through the node).

4.2. Design

We first identify all parameters of the system, i.e. objects which are -and should be- unspecified.
Since "it may be assumed that a source of time is available in the environment”, we postulate the
existence of a process that behaves like a clock. This can be done by making a parameter containing
this clock process. The second parameter is formed by the time that a message may be inside the
node without getting faulty, the maximal transit time. The exact length of this duration should be
decided upon at the implementation phase.

Then we identify all (concurrent) components in the system. We have a Control-Port-In, a Control-
Port-Out, a number of Data-Ports-in and a number of Data-Ports-Out. Note that we don't consider the
Routes as components, since these are static objects without temporal behaviour. Because all Data-

Ports-In have the same behaviour, we can specify just one process, indexed with the actual name of
the port. The same holds for the Data-Ports Out.

Now we make the decision that the routes and the information about the ports that exist are
handled by the Control-Port-In, so this process is indexed with a route-table and with a port-set.

Furthermore we see that the Control-Porf-Out must contain a number of faulty messages that

should be flushed and that every Data-Port-Out must contain a number of messages that should be

sent to the environment. So both processes are indexed with a message-bag. The signature of the top-
level objects now looks like:

processes
control-port-in : route-table # port-set
control-port-out : message-bag
data-port-in : port-name
data-port-out : port-name # message-bag

m the informal text and the ERAE specification we can now define the initial state of the the
e, It consists of the concurrent operation of the control-port-in and the control-port-out, indexed
ith the empty-route-table, the empty-port-set and the empty-message-bag. Of course we must add

parameter process clock in parallel and we must abstract from the internal actions and
psulate unsuccessful communications.

transit-node = hide (I, encaps(H,
clock ||

control-port-in(empty-route-table, empty-port-set) ||
control-port-out (empty-message-bag)))

we can proceed in a bottom up way by defining the data types route-table (an instance of the
ameterized module table with the data type routes), port-set (sets instantiated with ports),
age-bag (bags instantiated with messages) and port-nante.

344

The top-down approach is continued by defining the behaviour of the four processes, each in a
separate module. This leads to the question which objects are connected, in order to communicate to
each other. We see that there is a link between the control-port-in and the control-port-out. Every
data-port-in is linked to the control-port-in for route information and to the control-port-out for
sending faulty messages. All data-ports-in are connected to all data-ports-out to transmit messages.
And finally all ports have a connection to the environment for either accepting or transmitting
messages.

As can be seen in the specification, the behaviour of the objects is specified by determining all initial
communication actions. Every action is then followed by the corresponding behaviour, e.g. a
transmission or a state change. This can possibly be specified by using subprocesses.

The control-port-in e.g. can accept one of the following messages:

* add-datum-port(p), followed by the subprocess that handles adding a data-port-in
and a data-port-out;

¢ add-route(r), followed by a state change where the route-table is updated;
¢ send-faults, followed by forwarding this message to control-port-out;

° request-route(rn), followed by sending appropriate information about the route
back.

After having identified all atomic actions (i.e. communication attempts) we can define the
communication function and the set of atoms that has to be encapsulated and abstracted.
4.3. Topology of the transit node

We can visualize the structure of the transit node with the following picture.

control-input control-in-to-out control-output

control-port-in » J| control-port-out —

rejection
control-to-data(p1) ata-to-control(p1)

data-input(p1)) J data-output(p1)
»| data-port-in(p1) data-port-outlpl) | g
data-in-yo-outlp1,p b \
z” “
I ~ 1
: + :,‘ 'S - % / ‘\
1 ’ ~_ -
! 1 ’f S i ~ 1"
1 ~
' ! - > ~ ‘ \
1 1
1 1
---------------- - -

figure 1 The transit node

e

5. THE SPECIFICATION

a bottom-up way.

5.1. Basic data types

data module booleans
begin

exports
begin
sorts BOOL
functions
true
false :
or : BOOL
and : BOOL
end

variables
b : -> BOOL
equations
[1] or(true, b)
[2] or(false, b)
[3] and(true, b)
[4) and(false, b)

end booleans

BOOL
BOOL

data module natural-numbers

begin
exports
begin
sorts nat
functions
0
8 : nat
eq : nat
It : nat
_*+ _ : nat
- =
end

imports booleans

L

nat
nat
nat
nat

true

false

->
->

=->
->
-

345

The specification that resulted from the design as described in the previous paragraph will now be
given. Note that the linear structure of the specification does not comply with the way the
specification was designed. This is because the formalism forces us to write down the specification in

We first give all basic data types needed in the specification, then we define the data types specific to
the transit node, then we define all processes involved and finally we give an example of an
instantiation of the clock parameter.

The basic data types consist of the simple types booleans and natural numbers, and the parameterized
types bags, sets and tables. The difference between bags and sets is that in a set duplicates are
removed. A table can be used to look up an item corresponding to the value of a certain key.

=> BOOL
=> BOOL
=-> BOOL
-> BOOL

nat
nat
BOOL
BOOL
nat
nat

346

variables
n, nl, n2 : -> nat
equations
[1] eg(0, 0) = true
[2] eg(0, s(n)) = false
[3] eg(s(n), 0) = false
(4] eq(s(nl), s(n2)) = eq(nl, n2)
[5] 1t (0, s(n)) = true
[6] 1lt(n, 0) = false
[71 1lt(s(nl), s(n2)) = 1t(nl, n2)
[B] n+ 0 =n
[9] nl + a(n2) = 3(nl + n2)
[10] 0 -n =0
[11] n -0 =n
[12] s(nl) - s(n2) = nl - n2

end natural-numbers

data module bags
begin

parameters
items
begin
sorts item
end items

exports
begin
sorts bag
functions
empty-bag : -> bag
add : item # bag -> bag
end

variables
il, i2 : -> item
b : => bag
egquations
[1] add(il, add{i2, b)) = add(i2, add(il, b))

end bags

data module set

begin
parameters
equality
bagin
functions
eq : item # item -> BOOL
end equality
exports
begin
functions
eq : set # set -> BOOL
element : item # set -> BOOL

end

347

imports
bags
{ renamed by
[bag -> set,
empty-bag -> empty-set]
}i’
booleans
variables
i, i1, i2 : -> item
a 1 -> set
equations
[1] add(i, add(i, s)) = add (i, =)
[2] element (i, empty-set) = falase

[3] element (il, add(i2, s)) = or{eg(il, i2), element {il1, a))

end set

data module tables

begin
parameters
items
begin
sorts key, value
functions
eqg : key # key -> BOOL
default-value : => value
end items
exports
begin
sorts table
functions
empty-table : -> table
add : key # value # table -> table
lock-up : key # table -> value
end

imports booleans

variables
k, k1, k2 : -> key
v : => value
t i => table
equations
[1] look-up(k, empty-table) = default-value

[2] look-up(kl, add(k2, v, t)) = if(eq(kl, k2), v, lock-up(kl, t))

end tables

348

5.2. Data types specific to the transit node

The module time supplies functions to deal with timing information. To the outside the sort time is
built up from the constant initial-time, using the +-function to add durations. A duration is either
the constant tick-duration, or the difference of two times. Internally we use the naturals and
auxiliary functions to define the exported functions.

data module time

begin
exports
begin
sorts time, duration
functions
initial-time : -> time
tick-duration : -> duration
1t : duration # duration -> BOOL
o : time # duration -> time
o : time # time => duration
end
imports natural-numbers
functions
time : nat -> time

duration : nat -> duration

variables
nl, n2 : -> nat
egquations
[1] 4initial-time = time (0)
[2] tick-duration = duratiocn(s(0))
[3] 1t (duration(nl), duration(n2)) = lt(nl, n2)
[4] time{nl) + duration(n2) = time(nl + n2)

[5] time(nl) - time(n2) duration(nl - n2)

end time

The type of information that can be transmitted through the transit node is defined in the module
datum.

data module datum
begin

exports
begin
sorts datum
end

imports natural-numbers

functions
datum : nat -> datum

end datum

349

set to port-name.

data module port-name
begin

exports
begin
sorts
port-name
functions
eq : port-name # port-name -> BOOL
end

imports natural-numbers
functions
port-name : nat -> port-name

variables
nl, n2 ; -> nat
egquations

end port-name

data module port-sets
begin

imports
et
{ renamed by
[set -> port-set,
empty-set -> empty-port-set]
items bound by
[item => port-name]
to port-name
equality bound by
[eq -> eq]
to port-name
}

end port-sets

created route.

data module route-names
begin

exports
begin
sorts
route-name
functions
eq : route-name # route-name -> BOOL
end

The transit nodes contains a number of ports for input and output. These ports are named with
natural numbers. Port names can be collected into sets by binding the parameter of the basic module

[1] eg(port-name(nl), port-name(n2)) = eqg(nl, n2)

A route consists of a route-name and a set of output ports associated with this route. Routes are
collected into tables in order to look up the port-set corresponding to the name of a previously

350

imports natural-numbers
functions
route-name : nat -> route-name

variables
nl, n2 : -> nat
equations
[1] eg{route-name(nl), route-name(n2}) = eq(nl, n2)

end route-names

data module routes

begin
exports
begin
sorts route
functions
route : route-name # port-set -> route
name-of : route -> route-name
ports-of : route -> port-set
eq : route # route -> BOOL
end =

imports booleans, port-sets, route-names

variables
nl, n2 : => route-name
pal, pa2 : -> port-set
eguations
[1] name-of(route{nl, psl)) = nl
[2] ports-of(route(nl, psl)) = psl

[3] eg(route(nl, psl), route(n2, ps2)) = and(eg(nl, n2), eq(psl,

end routes

data module route-tables

begin
imports
tables
{renamed by
[table -> route-table,

empty-table -> empty-route-table]
items bound by

[key => route-name,
value -> port-set,
eq -> eq,

default-value -> empty-port-set]
to routes}

and route-tables

ps2))

351

If components communicate to the outside world or to each other, messages are exchanged. Most of
the messages are indexed with a value of some data type. Messages can be collected in bags.

data module messages

begin
exports
begin
sorts message
functions
add-datum-port : port-name => message
add-route : route -> message
send-faults : -> message
routed-datum : route-name # datum -> message
reg-route : route-name -> message
available-ports : port-set -> message
timed-message : time # datum -> message
datum : datum -> message
end

imports datum, time, port-name, routes
eand messages

data module message-bags
bagin
imports
bags
{ renamed by
[bag -> message-bag,
empty-bag -> empty-message-bag]
items bound by
[item =-> message]
to messages
}
end message-bags

The various components of the transit node are connected to each other with channels. There are
also channels to the environment.

data module channels

bagin
exports
begin
sorts channel
functions
control-input - -> channel
control-output : -> channel
control-in-to-out : => channel
control-to-data : port-name -> channel
data-to-contrel : port-name -> channel
rejection = =-> channel
data-in-to-out : port-name # port-name -> channel
data-input : port-name -> channel
data-output : port-name -> channel
end

imports port-name
end channels

352

5.3. The processes

5.3.1. Communication The module communication defines the atomic actions that can be executed
by the various components, when trying to communicate. The communication function is defined
such that a read action (r) and a send action (s) can be combined into a communication action (c).
These actions are indexed with the channel used to communicate and the message to be transmitted.
In the same way timing information can be communicated.

The set of internal actions (I) and the set of actions to be encapsulated in order to get only successful
communication (H) are also defined.

process module communication

begin
exports
begin
atoms
r : channel # message
s : channel # message
c : channel # message
read-time : time
send-time : time
comm-time : time
sets of atoms
I={c(c, m), comm-time(t) |
t in time, ¢ in internal-channels, m in message }
H={ r{ic, mj, s({c, m}, send-time(t), read-time(t) |
t in time, ¢ in internal-channels, m in message }
end
imports
channels,
messages,
time

sets of channel
internal-channels =
{ control-in-to-out, rejection,
data-to-control (pnl), control-to-data({pnl),
data-in-to=-out (pnl, pn2) | pnl in port-name, pn2 in port-name }

communications

r{c, m) | s{e, m) = c(c, m)
for c in channel, m in message
read-time(t) | send-time(t) = comm-time (t)

for t in time

end communication

353

5.3.2. Data-ports-in For every port-name a process data-port-in is defined. Every data-port-in behaves
as follows. First it reads from its input channel the message to send some datum along some route.
Then it reads the current time and asks the control-port-in for the port set attached to the requested
route. Then a transit attempt is made. If the route-name was faulty, an empty-port-set was returned
and the incoming message is routed to the rejection channel, thus becoming faulty. If the port-set
was not empty, one port is selected randomly and after adding a time stamp the incoming message
is routed to that port. The process transit-datum is not defined in case the port-set is empty. This
means that it equals deadlock.

process module data-ports-in
begin

exports
begin
processes
data-port-in : port-name
end

imports
port-sets,
route-names,
time,
communication

processes
transit-attempt : port-set # port-name # time # route-name # datum
transit-datum : port-set # port-name # time # datum

variables
tl, £t2 : => time
Pl, p2 : -> port-name

n : => route-name

L] : -> port-set

d : => datum
definitions

data-port-in(pl) = sum(d in datum, sum(rn in route-name,
r(data-input (pl), routed-datum(rn, d))..
sum(tl in time, read-time(tl) . s (data-to-control(pl), reg-route(rn)) .
sum(ps in port-set, r(control-to-data(pl), available-porta(ps))
transit-attempt (ps, pl, tl, zn, d)
data-port-in(pl)}))))

transit-attempt (empty-port-set, pl, tl, rn, d) =
s (rejection, routed-datum(rn, d))

transit-attempt (add(p2, ps), pl, tl, zn, d) =
transit-datum(add(p2, ps), pl, tl, d)

transit-datum(add(p2, ps), pl, tl1l, d) =
s (data-in-to-out (pl, p2), timed-message(tl, d)) +
transit-datum(ps, pl, tl, d)

end data-ports-in

354

5.3.3. Data-ports-out The following module is parameterized with a duration, max-transit-time, that
determines the maximum time a message may stay within the transit node.

For every port-name a process data-port-out is defined. Every data-port-out is indexed with a bag of
messages that must be sent to the environment. Initially this bag is empty. It starts by reading a
timed message from one of the data-input-ports. This message is added to the bag and the process
starts again. If the bag is not empty, the process also has the possibility to output some message from
the bag. If the max-transit-time is expired, then the message becomes faulty and will be sent to the
rejection channel. Otherwise, the message is sent to the environment.

process module data-ports-out
begin

parameters
max-transit-time
begin
functions
max-transit-time : -> duration
end max-transit-time

exports
begin
pProcesses
data-port-out : port-name # message-bag
end

imports
port-name,
message-bags,
communication

processes
handle-message-out : BOOL # datum # port-name

variables
t, tl, £2 : => time
pl, p2 : -> port-name
mb : -> message-bag
d, e : => datum
definitions

data-port-out (p2, empty-message-bag) =
sum(pl in port-name, sum(tl in time, sum(d in datum,
r(data-in-to-out (pl, p2), timed-message (tl, d})
data-port-out (p2, add(timed-message(tl, d), empty-message-bag)))))
data-port-out (p2, add(timed-message(t2, e), mb)) =
sum(pl in port-name, sum(tl in time, sum(d in datum,
r(data-in-to-out (pl, p2), timed-message(tl, d})
data-port-out (p2,
add (timed-message (tl, d), add(timed-message(t2, e), mb)))})) +
sum(t in time, read-time(t)
handle-message-out (1t (t - t2, max-transit-time), e, p2)
data-port-out (p2, mb))

handle-measage-ocut (false, d, p2) =
s (rejection, datum(d))

handle-message-out (true, d, p2) =
s {data-cutput (p2), datum(d))

end data-ports-out

355

5.3.4. Control-port-in The process control-port-in keeps track of all defined routes and all existing
ports, so it is indexed with a route-table and a port-set. It is connected to the environment with the
contrel-input channel. Via this channel it can receive the message to add a datum-port, to add a

-

f

t route, or to flush all faulty messages. As a last option it can receive a request from some data-port-in
i to send the routing information belonging to some route-name.. All these incoming messages are
1 treated separately. The request to add a datum port is handled using a subprocess. This handler

: checks wether the data port already exists. Then it either rejects the message or adds the port to the

port-set and creates two new parallel processes: a data-port-in and a data-port-out.
If a request is made to add a route, it simply adds the route information to the route-set. A send-

faults request is simply passed on to the control-port-out. A request for route information is
answered by looking up the requested information and sending it back.

process module control=-port-in
begin

exports
begin
processes
control-port-in : route-table # port-set

end

imports
route-tables,
communication,
data-ports-in,
data-ports-out

processes
handle-add-port : route-table # port-set # port-name # BOOL

variables
P : -> port-name
rt : -> route-table
P8 : -> port-set

definitions
control-port-in(rt, ps) = ;
sum(p in port-name, r(control-input, add-datum-port (p))
handle-add-port(rt, ps, p, element(p, ps)))
+ sum{r in route, r({control-input, add-route(r))
control-port-in(add(name-of(r), ports-of(r), rt), ps))
+ r(control-input, send-faults})
s (control-in-to-out, send-faults)
control-port-in(rt, ps)
+ sum{p in port-name, sum(rn in route-name,
r{data-to-control(p), reg-route(rn))
s (control-to-data(p), available-ports(lock-up(rn, rt))})) .
control-port-in{rt, ps)
handle-add-port (rt, ps, p, true) =
3 (rejection, add-datum-port(p))
control-port-in(rt, ps)
handle-add-port {rt, ps, p, false) =
control-port-in(rt, add(p, ps}) ||
data-port-in(p} || data-port-out(p, empty-message-bag)

end control-port-in

356

5.3.5. Control-port-out The process control-port-out is indexed with the message-bag containing all
faulty messages. It has a simple behaviour. It can receive the message to send all faulty messages to
the environment, which is handled by the subprocess flush, or it can receive faulty message via the
rejection channel.

process module control-port-out
begin

exports
bagin
processas
control-port-ocut : message-bag
end

imports
message-bags,
communication

processes
flush : message-bag

variables
m : =-> message
mb : -> message-bag

definitions
control-port-out (mb) =
r{control-in-to-out, send-faults) . flush(mb)
+ sum(m in message, r(rejection, m)
control-port-out (add(m, mb)))

flush (empty-message-bag) = control-port-out (empty-message-bag)
flush(add{(m, mb)) = s(control-output, m) . flush(mb)

end control-port-out

5.3.6. Transit-node Finally the transit node is specified by the concurrent operation of the clock
process, which is a parameter of the system, the control-port-in and the control-port-out. These ports
are initialized with an empty table, set and bag. In order to hide internal actions and to get only
successful communication, we add the hiding operator and the encapsulation operator.

Note that apart from the parameter clock, we also inherit the parameter max-transit-time from the
imported module data-ports-out.

process module transit-node
begin

parameters
time
begin
processes
clock
end time

357

exports
begin
processes
transit-node
end

imports
control-port-in,
control-port-out

definitions
transit-node = hide(I, encaps(H,
clock ||

control-port-in(empty-route-table, empty-port-set)
control-port-out (empty-message-bag)))

end transit-node

5.4, Example of a clock

In this section we give an example of how the clock parameter of the transit node can be initialized.
The process clock starts at the initial-time. Then it can do a tick, followed by an increment of the
current time with a tick-duration, or it can send the time to anyone willing to read it. Note that in
this version of a clock the action of sending the time will not cost any time.

process module a-clock
begin

exports
begin
processes
clock
end

imports
time,
communication

atoms
tick

pProcesses
clock : time

variables
t : =-> time
definitions
clock = clock(initial-time)

clock(t) = tick . clock(t + tick-duration) +

send-time(t) . clock(t)

end a-clock

358

process module transit-node-with-a-clock
begin

imports
transit-node
{time bound by
[elock => clock]
to a-clock}

end transit-node-with-a-clock

5.5. Graphical representation of the import relation

Using the IDEAS tool developed within the METEOR project [Ide88] we can give the following
picture (see figure 2), representing the import relation between all modules of the specification of
the transit node. Rectangular boxes are used for data modules and boxes with rounded corners are
used for process modules. An arrow from a module to another module means that the former is
imported into the latter. Note that not all textual imports are present in the picture. We used a tool
to compute the minimal import relation having the same transitive closure as the textual one.

6. RELATION TO THE ERAE SPECIFICATION

In this section we will give a brief discussion of the relation between the ERAE specification and the
PSFy specification of the transit node. It is clear that, since ERAE was designed for requirements
specification, the first one is closer to the textual specification, whereas in the second one some
design decisions had to be made. As an example look at the routing information that is treated as a
separate entity in ERAE, while in PSFy it is part of the state of the control-port-in.

The ERAE language is based on temporal logic. Its formal semantics can be found in [HR89], and
[DHR88] contains an introduction to the use of ERAE.

In order to validate that a PSFy specification is correct with respect to an ERAE specification, a formal
treatment of this notion of validation would be needed. Since this paper does not focus on this
subject, we only give some informal reasoning about the relation between the two specifications.
The validation is made up of two parts. First we must give a relation between the entities declared
in the ERAE specification and the ones declared in the PSF4 specification, and then we must provide
an interpretation of the temporal statements in ERAE into PSFg.

6.1. Entities

A quick inspection learns that, apart from some design decisions and detail implementations, the
entities in ERAE relate to the entities in PSFy having the same name. So where ERAE contains
messages like Add-route msgs indexed with a route nr and a series of out port-nr, PSF4 has a data
type messages, containing a function add-route, indexed with route which is a combination of a
route-name and a port-set.

As an other example look at the entity Dafa porf-in which is indexed with a nr, and is able to receive
Data msgs via a port. In PSFg this translates to a process data-port-in, indexed with a port-name,
having a channel to the environment called data-input, via which it can receive a routed-datum.

ng
of

is
ol

e

359

| channels.asf | | route-names.asf I datum.asf

[roues.ast 4|

messages.asf

message-bags.asf

(data-ports-in.psf) (data-ports-out.psf (

transit-node-with-a-clock. psf)

figure 2 The import relation

360

6.2. Temporal statements

Naively speaking the interpretation of a temporal statement in ERAE into PSFq4 consists of an
interpretation of all events involved into atomic actions, followed by a verification that every
possible trace of the specification in PSF4 satisfies all temporal statements about events given in the
ERAE specification. Unfortunately this approach is too simple since not only temporal information
is involved but also information about the state space of the system.

As an example of how to informally validate the PSFq specification, we will give some ERAE
statements and their informal interpretation in the PSFq specification.

initially = =3 dpi: is-in(dpi, Data-ports-in)

A —3 dpo: is-in(dpo, Data-ports-out)
A —3dr: is-in(r, Routes)
A =3 wm,dm: faulty(wm) v faulty (dm)

This can be interpreted as the statement that there are no data ports in the definition of the process
transit-node, and that the port-set, route-table and (faulty) message-bag are empty:

transit-node = hide(I, encaps (H,
clock || .
control-port-in(empty-route-table, empty-port-set) ||
control-port-out (empty-message-bag)))

A number of statements are about the behaviour of the environment of the transit node. These
statements are not explicitly met by the PSFy specification, since it only specifies the behaviour of the
transit node without restricting its environment. As an example look at the statement

occurs (dm) = @ exists(port (dm))

which states that messages only arrive at existing input ports (the symbol ® means "true in the
previous state"). This assumption about the environment is not stated in the PSFy specification.
As a last example look at the statement about state changes concerning data-ports-in:

exista(dpi) A @ o exists(dpi)
= 3 apm: occurs(apm) A nr(dpi)=port-nr (apm)

This states that if a data-pori-in is created, an add-port-message must have been occurred. In the PSF4
specification this is verified by looking at all places where a data-port-in is created. This can only
happen in the subprocess handle-add-port of the process control-port-in. This subprocess is only
invoked after the atomic action c(control-input, add-datum-port(p)) has occurred for some
appropriate port-name p.

It is clear that this reasoning is very informal. This is because the existence of a data-port-in is easy to
check at the textual level of the specification, but not at the level of the semantics of PSF4. The
semantics is a labeled transition graph, which in no way contains information about the number of
processes that it is constructed from, but only about the actions that can be performed by the system.
Also the actual value of the indexes of the processes involved is not part of the semantics,

361

7. DISCUSSION

Since some design decisions were needed, the specification of the transit node in PSF4 is more
specific than the specification in ERAE. There is no easy transformation from an ERAE specification
to a PSFg specification, however when having an ERAE specification, the informal text can be
interpreted more easily.
We can only give an informal validation of the PSFy specification when relating it to the ERAE
specification. This is due to the fact that in some cases ERAE statements relate to the state of the
system, which is not part of the formal semantics of PSF4. We can however look at the textual level
of the specification and give an informal reasoning. Also restrictions to the environment can not be
expressed in PSFg.
The design of the specification can be generalized to the following method:

¢ Identify the parameters of the system.

¢ Identify all concurrent components.

* Add indexes to the process names of each component to keep track of state
information and to create more instances of the object.

* Define the abstract data types needed for these indexes.

= Specify how the components are connected.

¢ Define the initial state of the system.

* Define the behaviour of each component.
Of course the last step of this method can be very involved. Each component in turn can then be
divided into subcomponents, in such a way that the method recursively applies to these
subcomponents.
As a conclusion we can state that PSFq is well suited for the specification of concurrent systems.

8. ACKNOWLEDGEMENTS

We like to thank Jos Baeten and Henrik Jacobsson for proof reading this document and the
specification and Hans Mulder for technical advice.

9. REFERENCES

[BHK89] J.A. Bergstra, J. Heering & P. Klint, Algebraic specification, ACM Press Frontier Series,
Addison Wesley, 1989.

[BK86] J.A. Bergstra & J.W. Klop, Process algebra: specification and verification in bisimulation
semantics,, in: Math. & Comp. Sdi. II, (M. Hazewinkel, J K. Lenstra & L.G.L.T. Meertens,
eds.), CWI Monograph 4, pp 61-94, North-Holland, Amsterdam, 1986.

[DHR88] E. Dubois, J. Hagelstein & A. Rifaut, Formal requirements engineering with ERAE,
Philips Journal of Research 43, nos. 3/4, pp. 393-414, 1988.

[Hag88] J. Hagelstein, The Transit Node - ERAE specification, METEOR PRLB Report, 1988.

[HR89]]. Hagelstein & A. Rifaut, The semantics of ERAE, Philips Research Laboratory Brussels
Manuscript, Belgium, 1989.

[Ide88] IDEAS interface user guide, Centre de Recherches de la C.G.E., Marcoussis 1988.

[MHB89] A. Mauboussin,]. Hagelstein, M. Bidoit, M-C. Gaudel & H. Perdrix, From an ERAE
requirement specification to a PLUSS algebraic specification: A case study, Report
METEOR task 10, 1989.

[MV88] S. Mauw & G.J. Veltink, A Process Specification Formalism, Report P8814, University of
Amsterdam, Amsterdam, 1988. To appear in: Fundamenta Informaticae.

[MV89] 5. Mauw & G.J. Veltink, An introduction to PSFy, in: Proc. TAPSOFT 89 (J. Diaz & F.
Orejas, eds.), LNCS 352, Volume 2, pp 272-285, Springer Verlag, 1989.

