
1
Generating tools for Message Sequen
e ChartsS. Mauwa and E.A. van der Meulenba Dept. of Mathemati
s and Computing S
ien
e, Eindhoven University of Te
hnology,P.O. Box 513, 5600 MB Eindhoven, The Netherlandsb Dept. of Mathemati
s and Computing S
ien
e, University of Amsterdam, Kruislaan403, 1098 SJ Amsterdam, The NetherlandsThe re
ent formalization of the semanti
s of Message Sequen
e Charts enables thederivation of tools for MSCs dire
tly from this formal de�nition. We use the Asf+SdfMeta-environment to make a straightforward implementation of tools for transformation,simulation and requirements testing.1. INTRODUCTIONMessage Sequen
e Charts (MSCs) are a graphi
al method for the des
ription of theintera
tion between system
omponents [11℄. Due to the re
ent formalization [7, 8, 12℄ ofthe semanti
s of Message Sequen
e Charts, we
an
onsider MSC as a formal des
riptionte
hnique.Currently, this formalization has already in
uen
ed the development of the language(in parti
ular with respe
t to
omposition of MSCs) and it is expe
ted to also in
uen
ethe use of MSCs.Formalization will also have impa
t on the work of tool builders. The behavior of tools
an be validated against the formal semanti
s, but even more valuable is the possibilityto generate tools, or prototypes, dire
tly from the formal de�nitions. This paper
an be
onsidered as a
ase study in the formal development of
omputer tools for programminglanguages.In pra
ti
e, tools for an informally de�ned language are developed mainly based onthe intuition of the program designer. Unless all people have a
ommon understandingof the language, this leeds to in
onsistent tools. If a formal de�nition of the language isavailable, tools
an also be based on the understanding of these formal semanti
s. Thismay lead to more
onsistent tools, but in pra
ti
e this only works if the semanti
s is wella

essible. A better approa
h would be to automati
ally implement the formal semanti
sof the language. This leeds to
orre
t and
onsistent tools. A possible problem with thisapproa
h is that ne
essarily a formal semanti
s has a high level of abstra
tion and is notdire
ted towards possible tools. Thus, automati
 implementation of the formal semanti
sis not always feasible. An operational semanti
s and de
isions on implementation detailsmay be needed.Our aim is to demonstrate how the abstra
t de�nitions of the formal semanti
s ofBasi
 Message Sequen
e Charts (BMSCs)
an be implemented. BMSCs are MessageSequen
e Charts with only the main features:
ommuni
ation and lo
al a
tions. The

2te
hniques des
ribed in this paper transfer straightforward to the
omplete MSC language.As des
ribed in [7℄ the semanti
s of BMSCs is de�ned by a translation into pro
ess algebra.Be
ause this translation is de�ned by means of equations and be
ause the axioms de�ningpro
ess algebra are also equations, the obvious way of implementing the semanti
s of MSCsis by using algebrai
 spe
i�
ations [1℄.We used the Asf+Sdf Meta-environment [3℄ for the implementation. With this sys-tem algebrai
 spe
i�
ations
an be implemented by means of term rewriting systems.Furthermore, a
omplete programming environment for BMSCs
an be generated, in
lud-ing a syntax dire
ted editor, a parser and a pretty printer.In this paper we will only des
ribe the stru
ture of the tool set and highlight parts of theformal spe
i�
ation. The
omplete spe
i�
ation
an be found in [9℄. The implementation
onsists of three parts. The �rst part is the translation of BMSCs into pro
ess algebraexpressions. This is based on the de�nition of the semanti
 fun
tions in [7℄. The se
ondpart is the de�nition of a simulator for BMSCs. Although a simulator is not part of theformal semanti
s, it
an easily be derived from the operational semanti
s given in [7℄. Infa
t the des
ription of the simulator in [9℄
an be regarded as a formal spe
i�
ation of asimulation tool. The third part
onsists of an implementation of the stati
 requirementsfor BMSCs expressed informally in [11℄ and formalized in [10℄.This paper is stru
tured in the following way. Se
tion 2
ontains a des
ription ofthe Asf+Sdf Meta-environment. In Se
tion 3 we give a short overview of the BMSClanguage. Se
tion 4
ontains a des
ription of the tool set and highlights parts of thespe
i�
ation.Although this paper
overs the
omplete semanti
s of BMSCs, it is not intended as aself-
ontained explanation of these semanti
s. Refer to [7℄ for a
omprehensive treatment.A
knowledgementsThanks are due to Arie van Deursen, Wil
o Koorn, Mi
hel Reniers and Eel
o Visserfor their assistan
e during several phases of this proje
t.2. THE ASF+SDF META-ENVIRONMENTThe Asf+Sdf Meta-environment [3℄ is a programming environment generator basedon algebrai
 spe
i�
ations. From a spe
i�
ation of the syntax and semanti
s of a languagean environment is generated, in its simplest form
onsisting of a syntax dire
ted editorand a term rewrite system. The generated environment
an be
ustomized further bymeans of the language SEAL [5, 6℄.An algebrai
 spe
i�
ation [1℄ in Asf (Algebrai
 Spe
i�
ation Formalism)
onsists oftwo parts. A signature for des
ribing sorts and fun
tions, and a set of equations, whi
hgive an algebrai
 de�nition of the fun
tions.When spe
ifying programming languages in an algebrai
 manner, the syntax for fun
-tion de�nitions is found to be too restri
tive. The formalismAsf+Sdf therefore
ombinesthe algebrai
 spe
i�
ation formalismAsf with a formalism for de�ning syntax: Sdf. Sdfallows for the
ombined spe
i�
ation of
on
rete syntax (like in BNF) and abstra
t syn-tax. Hen
e, Asf+Sdf is a formalism for writing algebrai
 spe
i�
ations with user de�nedsyntax. A modularization
on
ept is part of Asf+Sdf to support design in the large.The most
ommon strategy for implementing algebrai
 spe
i�
ations is via term rewrite

3systems (TRSs, see [4℄). An algebrai
 spe
i�
ation
an be transformed into a TRS byinterpreting the equations as rewrite rules from left to right. This TRS
an be used to
ompute the value of a fun
tion appli
ation.3. MESSAGE SEQUENCE CHARTSMessage Sequen
e Charts provide a graphi
al method for the des
ription of the
om-muni
ation behaviour of system
omponents. The ITU-TS (the Tele
ommuni
ation Stan-dardization Se
tion of the International Tele
ommuni
ation Union, the former CCITT)maintains re
ommendation Z.120 [11℄ whi
h
ontains the syntax and an informal explana-tion of the semanti
s of Message Sequen
e Charts. A formal semanti
s based on pro
essalgebra has been proposed in [8℄. This proposal is
urrently subje
t to standardizationby the ITU ([12℄).In this paper we restri
t ourselves to the
ore language of Message Sequen
e Charts,whi
h we
all Basi
 Message Sequen
e Charts (BMSCs). A Basi
 Message Sequen
eChart
on
entrates on
ommuni
ations and lo
al a
tions only. These are the featuresen
ountered in most languages
omparable to Message Sequen
e Charts. Their semanti
sis des
ribed in [7℄.A Basi
 Message Sequen
e Chart
ontains a (partial) des
ription of the
ommuni
ationbehavior of a number of instan
es. An instan
e is an abstra
t entity of whi
h one
an ob-serve (part of) the intera
tion with other instan
es or with the environment. An instan
eis denoted by a verti
al axis. The time along ea
h axis runs from top to bottom.A
ommuni
ation between two instan
es is represented by an arrow whi
h starts at thesending instan
e and ends at the re
eiving instan
e. Although the a
tivities along one
i j

msc runningexample

k l

Figure 1. Example Basi
 Message Sequen
e Chartsingle instan
e axis are
ompletely ordered, we will not assume a notion of global time.The only dependen
ies between the timing of the instan
es
ome from the restri
tion thata message must have been sent before it is re
eived.Figure 1 shows a simple BMSC in whi
h only
ommuni
ations with the environmentare spe
i�ed. This will be the running example in the remainder of this paper. Note thatthere is no ordering imposed on the events k and l.The Basi
 Message Sequen
e Chart of Figure 1 has the following textual representation.

4 ms
 example1;instan
e i;out k to env;endinstan
e;instan
e j;out l to env;endinstan
e;endms
;4. DESCRIPTION OF THE TOOLSFor ea
h of the tools generated by the Asf+Sdf Meta-environment we give a shortdes
ription and highlight small parts of the algebrai
 spe
i�
ation. The
omplete spe
i�-
ation
an be found in [9℄. First we give an overview of the relation between the tools.4.1. OverviewFigure 2 des
ribes the stru
ture of the generated tool set. Boxes denote expressionsin the given language and arrows represent transformations from one language to theother. Apart from the INPUT language whi
h is plain ASCII, we
onsider the follow-ing languages. MESSAGES is the language of output messages generated by the re-quirements
he
ker and the simulator, BMSC is the language of (parsed) Basi
 MessageSequen
e Charts, PABMSC is the pro
ess algebra theory used for des
ribing the seman-ti
s of BMSCs (see [7℄) and BPA is the sub-language of PABMSC that only
ontains thenormalized PABMSC expressions. The generated tools are
onsidered as transformation
PA

BMSC

Calculator
Semantics

INPUT

BPA

Parser

Normalizer

Editor
Directed
Syntax

BMSC

Checker

Simulator

MESSAGES

MESSAGES

Figure 2. Stru
ture of the toolstools, des
ribed by algebrai
 spe
i�
ations. The implementation of these spe
i�
ations isinternal to the Asf+Sdf Meta-environment. We spe
i�ed the following tools.Syntax dire
ted editor and parser The parser
onverts plain ASCII text into BMSC.Che
ker The additional syntax requirements (stati
 semanti
s) for BMSCs
an be
he
kedwith this tool.

5Semanti
s Cal
ulator The semanti
s of a BMSC is des
ribed by a translation into thepro
ess algebra PABMSC . The Semanti
s Cal
ulator
omputes the semanti
s of aBMSC.Normalizer The normalizer redu
es the expression resulting from the previous step tonormal form. This tool makes it possible to inspe
t the
omplete behavior of thegiven BMSC.Simulator Test runs of the BMSC
an be generated intera
tively with the simulator. Ito�ers the user a
hoi
e between all possible
ontinuations. After sele
ting one event,it
al
ulates the PABMSC expression that results after exe
ution of the event.4.2. Syntax dire
ted editorA syntax dire
ted editor for BMSC is automati
ally derived from the des
ription of thesyntax of BMSC in Asf+Sdf. Part of the module BMSC-Syntax in whi
h the syntaxis spe
i�ed is presented below. The module uses the module Identi�ers whi
h introdu
esMSCID (MSC names), IID (Instan
e names), MID (Message names) and AID (A
tionnames).The sorts MSC, MSC-BODY, INST-DEF, INST-BODY and EVENT are the non-terminals of the grammar. The produ
tion rules of the grammar are expressed in the
ontext-free syntax se
tion of the spe
i�
ation. For example, an MSC-BODY is eitherempty or
onsists of an INST-DEF followed by an MSC-BODY. Using this grammar,fun
tions on BMSCs
an be de�ned by means of indu
tion on the stru
ture of a BMSC.BMSC-Syntaxsorts MSC MSC-BODY INST-DEF INST-BODY EVENT
ontext-free syntax\ms
" MSCID \;" MSC-BODY \endms
" \;" ! MSC! MSC-BODYINST-DEF MSC-BODY ! MSC-BODY\instan
e" IID \;" INST-BODY \endinstan
e" \;"! INST-DEF! INST-BODYEVENT INST-BODY ! INST-BODY\in" MID \from" IID \;" ! EVENT\in" MID \from" \env" \;" ! EVENT\out" MID \to" IID \;" ! EVENT\out" MID \to" \env" \;" ! EVENT\a
tion" AID \;" ! EVENTA syntax dire
ted editor for BMSC is generated by the Asf+Sdf Meta-environment.From the de�nition of the (
ontext-free) syntax of BMSC, a s
anner and a parser forBMSC is
reated. If the text in the editor is
onform the BMSC syntax the parsergenerates the
orresponding BMSC term. Figure 3 shows a snapshot of the syntax dire
tededitor,
ontaining the running example. Note, that buttons are
onne
ted to the editorfor the four other tools. These buttons are
reated by means of the user interfa
e languageSEAL [5, 6℄. When a button is sele
ted the
orresponding tool is applied to the BMSCin the editor.

6

Figure 3. Syntax dire
ted editor4.3. Che
kTwo stati
 requirements for Basi
 Message Sequen
e Charts are formulated in [7℄. The�rst is that an instan
e may be de
lared only on
e. The se
ond is that every messageidenti�er o

urs exa
tly on
e in an output a
tion and on
e in a mat
hing input a
tion, orin
ase of a
ommuni
ation with the environment a message identi�er o

urs only on
e.The unique-instan
es requirement has been spe
i�ed in Asf+Sdf in module Require-ments by means of a fun
tion uin whi
h applied to BMSCs yields a message
ontainingboth a Boolean value and a possibly empty list of error messages. The equations [1℄ to [6℄below spe
ify the semanti
s of this fun
tion applied to an MSC-BODY and its auxiliaryfun
tions.
ontext-free syntaxuin \(" MSC-BODY \)" ! CHECKINFOallinstnames \(" MSC-BODY \)"! IIDLISTIID \notin" IIDLIST ! CHECKINFOequations[1℄ uin() = Che
k: true Errors: [℄[2℄ uin(instan
e <iid>; <inst-body> endinstan
e; <ms
-body>) =<iid> notin allinstnames(<ms
-body>) and uin(<ms
-body>)[3℄ allinstnames() = [℄[4℄ allinstnames(instan
e <iid>; <inst-body> endinstan
e; <ms
-body>) =[<iid>℄ [allinstnames(<ms
-body>)[5℄ <iid> notin [<iid>�1; <iid>; <iid>�2℄ =Che
k: false Errors: [<<dupli
ate instan
e name "<iid> " >>℄[6℄ <iid> notin [<iid>�℄ = Che
k: true Errors: [℄ otherwiseThe terms <x> indi
ate a variable of the sort X, <x>� and <x>�i indi
ate a sequen
eof variables of the sort X. Equation [1℄ shows that the
he
k su

eeds if the MSC-BODY

7is empty. If the MSC-BODY is not empty, i.e.
onsists of an instan
e de�nition followedby an MSC-BODY, equation [2℄
an be applied. In this
ase, we
he
k that the name ofthe �rst instan
e does not o

ur in the set of instan
e names of the MSC-BODY, and bya re
ursive
all of the fun
tion uin the rest of the BMSC is
he
ked. Equations [3℄ and [4℄indu
tively de�ne the auxiliary fun
tion allinstnames, that
omputes the set of instan
enames in an MSC-BODY. The error messages are generated by the auxiliary fun
tionnotin. Equation [5℄ states that if the given instan
e name o

urs at any position in thegiven set of instan
e names, the information from the
he
ker
onsists of the Booleanvalue false and an error message. Otherwise, the
he
ker returns the Boolean value trueand an empty list of error messages (equation [6℄).Similar fun
tions for spe
ifying the other requirement are given in the same module.When the Che
k button in Figure 3 is sele
ted the relevant fun
tions are applied to theterm in the editor and the generated term rewrite system is used to
ompute the result.A window will pop up
ontaining this result. Figure 4 shows the result of
he
king theBMSC in our running example. Sin
e this term is
orre
t the list of error messages isempty. Next, suppose that we
hange the identi�er j in the editor of Figure 3 into i.Sele
ting the
he
k button then results in the window of Figure 5.

Figure 4. Result of
he
king a
orre
t BMSC
Figure 5. Result of
he
king a BMSC with a double o

urren
e of instan
e i
4.4. Semanti
s Cal
ulatorIn [7℄ Mauw and Reniers des
ribe the translation from Basi
 Message Sequen
e Chartsinto the pro
ess algebra PABMSC . The de�nition of this translation fun
tion
an be
onsidered as an algebrai
 spe
i�
ation in a straightforward manner. We will not showthe resulting spe
i�
ation.

8 The result of applying this translation to the BMSC in the editor of Figure 3 is the pro-
ess algebra term �;(out(i; env; k) k out(j; env; l)). The appli
ation of the merge operator(k) shows that the semanti
s of the given BMSC is the interleaved exe
ution of the eventsout(i; env; k) and out(j; env; l). The state operator (�;) in front of the expression enfor
esthat input of message only o

urs after the
orresponding output. Sin
e the example only
onsiders
ommuni
ations with the environment, in this
ase the state operator imposesno restri
tions.Figure 6 shows the window that appears after having sele
ted the Semanti
s button.
Figure 6. Result of
omputing the semanti
s of a BMSC4.5. NormalizerThe two operators in the expression of Figure 6
an be eliminated. This is
allednormalization. The resulting term
ontains the operators for sequential
omposition (�)and alternative
omposition (+) only. It expresses all possible behaviors of the BMSC.Figure 7 shows the e�e
t of pressing the normalize button in the editor of Figure 3. Thereare two alternative behaviors: the two events may be exe
uted in either order.The implementation of the normalizer is simple. The axioms de�ning the pro
essalgebra PABMSC
an easily be interpreted as rewrite rules. Only
are has to be taken notto in
lude the axioms for
ommutativity, sin
e this would give a non-terminating termrewrite system. Consequently, some extra rewrite rules had to be added, as explained in[9℄.

Figure 7. Result of normalizing the semanti
s of a BMSC

94.6. SimulatorFor large BMSCs, the expressions des
ribing the normalized semanti
s as in Figure 7be
ome quite large and
omplex. Therefore, the tools o�er the possibility to walk throughthe events of a BMSC in any of the admitted orders. Thus, the user
an intera
tivelysimulate the behavior of a BMSC. For this purpose we used the operational semanti
s forBMSCs from [7℄. This operational semanti
s de�nes for a given BMSC a labeled transitionsystem. The transitions
orrespond with the events of the BMSC.For the running example, represented by the term �;(out(i; env; k) k out(j; env; l)), theset of transitions is fout(i;env;k)! �;(out(j; env; l)); out(j;env;l)! �;(out(i; env; k))g. This meansthat exe
uting event out(i; env; k) results in the BMSC represented by �;(out(j; env; l))and that exe
ution of the alternative a
tion out(j; env; l) results in �;(out(i; env; k)).Likewise, the transition set of �;(out(j; env; l)) is fout(j;env;l)! "g and of �;(out(i; env; k)) isfout(i;env;k)! "g. The symbol " means that the BMSC has terminated.In the spe
i�
ation below, parts of the spe
i�
ation of the fun
tion transitions areshown. This fun
tion
al
ulates the set of transitions for a given PABMSC expression.Equation [TR1℄ states that a terminated BMSC, represented by " has no transitions.Equation [TR2℄ de�nes the transitions for a single event a. In this
ase there is one singletransition, namely exe
ute a and terminate. Equation [TR5℄ de�nes the transitions ofthe parallel
omposition of two expressions. It makes use of two auxiliary fun
tions, theunion ([) as de�ned in equation [T1℄ and the merge of a transition set and a pro
essexpression (also denoted by the operator k) as de�ned in the equations [T4℄ through[T7℄. The de�nition in equation [TR5℄ states that in order to
al
ulate the transitions ofx k y, we �rst take the transitions of x and the transitions of y. The result is not simplythe union of these two transition sets, sin
e, if x exe
utes an a
tion, y still has to be pla
edin parallel with the resulting pro
ess. This is expressed in equation [T5℄. The symmetri

ase is expressed in [T7℄. Finally [TR7℄ states that for the transition set of an expressionstarting with the state operator �M , we need to
al
ulate the transition list of its argumentand �lter out the sequen
es in whi
h an input o

urs before the
orresponding output.The de�nition of this �lter fun
tion is not in
luded in this do
ument.
ontext-free syntax\|" ATOM \!" PROCESS ! TRANSITION\transitions" \(" PROCESS \)" ! TRANSITIONLISTTRANSITIONLIST \[" TRANSITIONLIST! TRANSITIONLISTTRANSITIONLIST \k" PROCESS ! TRANSITIONLISTPROCESS \k" TRANSITIONLIST ! TRANSITIONLISTequations[TR1℄ transitions(") = [℄[TR2℄ transitions(a) = [| a ! "℄[TR3℄ transitions(x + y) = transitions(x) [transitions(y)[TR5℄ transitions(x k y) = transitions(x) k y [x k transitions(y)[TR7℄ transitions(�M (x)) = �lterM (transitions(x))

10[T1℄ [tl1℄ [[tl2℄ = [tl1; tl2℄[T4℄ [℄ k y = [℄[T5℄ [| a ! x; tl℄ k y = [| a ! x k y℄ [[tl℄ k y[T6℄ y k [℄ = [℄[T7℄ y k [| a ! x; tl℄ = [| a ! y k x℄ [y k [tl℄If we sele
t the simulate button in Figure 3, we obtain three windows from Figure 8. Theupper window is the sele
tion window, in whi
h all possible
ontinuations of the BMSCare displayed. Either event may o

ur. The middle window displays the list of all eventsexe
uted until now. This list is empty. The lower window shows the pro
ess algebrarepresentation of the BMSC under
onsideration.

Figure 8. Starting the simulatorIf the user sele
ts the se
ond event, all windows will be updated (see Figure 9). Thesele
tion window now
ontains the one remaining event. The tra
e window
ontains the
hosen event and the
urrent window
ontains the pro
ess algebra representation of theBMSC resulting after having exe
uted the se
ond event.If we sele
t the remaining event, we obtain the situation from Figure 10. It shows thatexe
ution of the BMSC is �nished.5. CONCLUSIONSThe main obje
tive of this
ase study was to provide eviden
e that the formal semanti
sde�nition of Basi
 Message Sequen
e Charts
an be used to derive tools in a straightfor-ward way. The translation of the pro
ess algebra and the de�nitions of the semanti
sfun
tions into algebrai
 spe
i�
ations is easy, but
are has to be taken when implement-ing them as rewrite rules. In order to obtain a ni
e term rewriting system, some ruleshave to be deleted, added or modi�ed.

11

Figure 9. Result after sele
ting event number (2)

Figure 10. Result after sele
ting the �nal eventWe also spe
i�ed a simulator tool based on the operational semanti
s for MessageSequen
e Charts. The de�nition of this simulator
ould serve as a formal spe
i�
ation ofsu
h a tool. Finally, we formalized the stati
 requirements.By using the Asf+SdfMeta-environment we derived (prototypes of) tools for BMSCs.It proved to be a
exible programming environment whose
apabilities of in
rementaldevelopment helped in easy prototyping. The possibilities of de�ning a user interfa
e ontop of the term rewrite engine enables the generation of demonstrable and usable tools.The possibility of prototyping makes it easy to explore new versions of MSC in stan-dardization work and to make diale
ts of MSC for internal use. Changes to the syntaxonly require minor modi�
ations to the spe
i�
ation. Changes with respe
t to the se-manti
s and new language features require modi�
ation of the formal semanti
s and a
orresponding modi�
ation of the spe
i�
ation.A disadvantage of the term rewriting paradigm in Asf+Sdf is that, sometimes, easyto understand algebrai
 rules have to be transformed into a more implementation dire
tedform.

12The transformation into a TRS sometimes implies that de
isions on implementationdetails are made, whi
h were not expressed in the algebrai
 spe
i�
ation. For example, ifwe aim at
omplete TRSs (i.e. TRSs whi
h are
on
uent and terminating, see [4℄), we needto de
ide on the implementation of
ommutative operators and the implementation of setsby ordered lists. Therefore, a
ompletely automati
 implementation of an algebrai
allyspe
i�ed semanti
s by means of a TRS is not always feasible.The te
hniques des
ribed in this paper
an be easily extended to the general settingof Message Sequen
e Charts. Due to the modular des
ription, the framework for Basi
Message Sequen
e Charts
an be reused almost
ompletely.Starting from the algebrai
 spe
i�
ations, there are two ways to pro
eed with the devel-opment of real tools. The obvious way is to manually translate the fun
tionality expressedin the equations into eÆ
ient
ode. The spe
i�
ation
an then be used for validation pur-poses. The se
ond way is to (semi-) automati
ally generate eÆ
ient programs. This istopi
 of ongoing resear
h ([2℄).REFERENCES1. H. Ehrig and B. Mahr. Fundamentals of Algebrai
 Spe
i�
ations, vol. I, Equationsand Initial Semanti
s. Springer-Verlag, 1985.2. J. F. Th. Kamperman and H.R. Walters. ARM, abstra
t rewriting ma
hine. Te
hni
alReport CS-9330, Centrum voor Wiskunde en Informati
a, 1993.3. P. Klint. A meta-environment for generating programming environments. ACMTransa
tions on Software Engineering Methodology, 2(2):176{201, 1993.4. J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and T. Maibaum,editors, Handbook of Logi
 in Computer S
ien
e, volume II, pages 1{116. OxfordUniversity Press, 1992.5. J.W.C. Koorn. Conne
ting semanti
 tools to a syntax-dire
ted user-interfa
e. ReportP9222, Programming Resear
h Group, University of Amsterdam, 1992.6. J.W.C. Koorn. Generating uniform user-interfa
es for intera
tive programming en-vironments. PhD thesis, University of Amsterdam, 1994. ILLC Dissertation series1994-2.7. S. Mauw and M.A. Reniers. An algebrai
 semanti
s of Basi
 Message Sequen
e Charts.The
omputer journal, 37(4):269{277, 1994.8. S. Mauw and M.A. Reniers. An algebrai
 semanti
s of Message Sequen
e Charts.Experts Meeting SG10, Turin, TD9009, ITU-TS, 1994. Report CSN94/23, EindhovenUniversity of Te
hnology, 1994.9. S. Mauw and E.A. van der Meulen. Generating tools for Message Sequen
e Charts.Study Group Meeting SG10, Geneva, TD60, ITU-TS, 1994.10. M.A. Reniers. Syntax requirements of Message Sequen
e Charts. Study Group Meet-ing SG10, Geneva, TD59, ITU-TS, 1994.11. Z.120 (1993). Message sequen
e
hart (MSC). ITU-T, 1994.12. Z.120 B (1995). Message sequen
e
hart algebrai
 semanti
s. ITU-T, Publ. s
hed.1995.

