
Speci�cation ofTools for Message Sequence ChartsS. Mauw1 E. A. van der Meulen21Dept. of Mathematics and Computing Science, EindhovenUniversity of Technology, P.O. Box 513, 5600 MB Eindhoven,The Netherlands, email: sjouke@win.tue.nl2Dept. of Mathematics and Computing Science, University ofAmsterdam, Kruislaan 403, 1098 SJ Amsterdam, TheNetherlands, email: emma@fwi.uva.nlAbstract. The recent formalization of the semantics of Message SequenceCharts enables the derivation of tools for MSCs directly from this formal de-�nition. We use the Asf+Sdf Meta-environment to make a straightforwardimplementation of tools for transformation, simulation and requirements tes-ting. In this paper we present the complete speci�cation of the tools.1 IntroductionMessage Sequence Charts (MSCs) are a graphical method for the description ofthe interaction between system components [IT94]. Due to the recent formaliza-tion [MR94a, MR94b, IT95] of the semantics of Message Sequence Charts, we canconsider MSC as a formal description technique.Currently, this formalization has already inuenced the development of the lan-guage (in particular with respect to composition of MSCs, for which algebraic ope-rators are considered) and it is expected to also inuence the use of MSCs.Formalization will also have impact on the work of tool builders. The behaviorof tools can be validated against the formal semantics, but even more valuable isthe possibility to generate tools, or prototypes, directly from the formal de�nitions.This paper is to be considered a case study in the formal development of computertools for programming languages.In practice, tools for an informally de�ned language are developed mainly basedon the intuition of the program designer. Unless all people have a common un-derstanding of the language, this leeds to inconsistent tools. If a formal de�nitionof the language is available, tools can also be based on the understanding of theseformal semantics. This may lead to more consistent tools, but in practice this onlyworks if the semantics is well accessible. A better approach would be to automa-tically implement the formal semantics of the language. This leeds to correct andconsistent tools. A possible problem with this approach is that necessarily a formalsemantics has a high level of abstraction and is not directed towards possible tools.Thus, automatic implementation of the formal semantics is not always feasible. Anoperational semantics and decisions on implementation details may be needed.Our aim is to demonstrate how the abstract de�nitions of the formal semantics ofBasic Message Sequence Charts (BMSCs) can be implemented. BMSCs are MessageSequence Charts with only the main features: communication and local actions.The techniques described in this paper transfer straightforward to the completeMSC language. As described in [MR94a] the semantics of BMSCs is de�ned by atranslation into process algebra. This translation is de�ned by means of equationsand the axioms de�ning process algebra are also equations. Therefore, the obviousway of implementing the semantics of MSCs is by using algebraic speci�cations[EM85].Proceedings of ASF+SDF95. A workshop on Generating Tools from Algebraic Speci�cations.May 11 & 12, 1995, CWI, Amsterdam, M.G.J. van den Brand, A. van Deursen, T.B. Dinesh,J.F.Th. Kamperman & E. Visser (eds.) Technical Report P9504, Programming ResearchGroup, University of Amsterdam

176 S. Mauw & E. A. van der MeulenWe used the Asf+Sdf Meta-environment [Kli93] for the implementation. Withthis system algebraic speci�cations can be implemented by means of term rewritingsystems. Furthermore, a complete programming environment for BMSCs can begenerated, including a syntax directed editor, a parser and a pretty printer.The implementation consists of three parts. The �rst part consists of an imple-mentation of the static requirements for BMSCs expressed informally in [IT94] andformalized in [Ren94]. The second part is the translation of BMSCs into processalgebra expressions. This is based on the de�nition of the semantic functions in[MR94a]. The third part is the de�nition of a simulator for BMSCs. Althougha simulator is not part of the formal semantics, it can easily be derived from theoperational semantics given in [MR94a]. In fact the description of the simulatorcan be regarded as a formal speci�cation of a simulation tool.Figure 1 describes the structure of the generated tool set. Boxes denote expres-sions in the given language and arrows represent transformations from one languageto the other. Apart from the INPUT language which is plain ASCII, we considerthe following languages. MESSAGES is the language of output messages generatedby the requirements checker and the simulator, BMSC is the language of (parsed)Basic Message Sequence Charts, PABMSC is the process algebra theory used fordescribing the semantics of BMSCs (see [MR94a]) and BPA is the sub-language ofPABMSC that only contains the normalized PABMSC expressions. The generated
PA
BMSC

Calculator
Semantics

INPUT

BPA

Parser

Normalizer

Editor
Directed
Syntax

BMSC

Checker

Simulator

MESSAGES

MESSAGES

Figure 1: Structure of the toolstools are considered as transformation tools, described by algebraic speci�cations.We speci�ed the following tools.Syntax directed editor and parser The parser converts plain ASCII text intoBMSC.Checker The additional syntax requirements (static semantics) for BMSCs can bechecked with this tool.Semantics Calculator The semantics of a BMSC is described by a translationinto the process algebra PABMSC . The Semantics Calculator (or semanticsfunction) computes the semantics of a BMSC.Normalizer The normalizer reduces the expression resulting from the previousstep to normal form. This tool makes it possible to inspect the completebehavior of the given BMSC.Simulator Test runs of the BMSC can be generated interactively with the simu-lator. It o�ers the user a choice between all possible continuations. Afterselecting one event, it calculates the PABMSC expression that results afterexecution of the event.

Tools for Message Sequence Charts 177This paper is structured in the following way. Section 2 contains a descriptionof the Asf+Sdf Meta-environment. In Section 3 we give a short overview of theBMSC language. Section 4 contains the speci�cation of the static requirements.In Section 5 we de�ne the process algebra and its speci�cation in Asf+Sdf. TheSemantics Calculator and Normalizer are de�ned in Section 6 and the simulator inSection 7.Although this paper covers the complete semantics of BMSCs, it is not inten-ded as a self-contained explanation of these semantics. Refer to [MR94a] for acomprehensive treatment.AcknowledgementsThanks are due to Arie van Deursen, Wilco Koorn, Michel Reniers and Eelco Visserfor their assistance during several phases of this project.2 The ASF+SDF Meta-environmentThe Asf+Sdf Meta-environment [Kli93] is a programming environment generatorbased on algebraic speci�cations. From a speci�cation of the syntax and semanticsof a language an environment is generated, in its simplest form consisting of asyntax directed editor and a term rewrite system. The generated environment canbe customized further by means of the language SEAL [Koo92, Koo94].2.1 Algebraic Speci�cationsAn algebraic speci�cation consists of a signature, a set of variables and a set ofequations. The signature describes a number of sorts and functions over these sorts.Using these functions and the variables one can construct terms. The equationsde�ne equalities between these terms.Consider, e.g., an algebraic speci�cation of the data-structure Booleans. Thesignature de�nes one sort BOOL, two constants of sort BOOL, namely true !BOOL and false ! BOOL, one unary function not: BOOL ! BOOL, and two bi-nary functions and: BOOL # BOOL! BOOL and or: BOOL # BOOL! BOOL.Let's assume that a variable Bool over sort BOOL is declared. From the signatureand the variables terms like true, false, Bool, not(true), not(Bool), and(true,false),and(Bool,true), etc. can be derived. The semantics of the functions \not", \and"and \or" are de�ned by equations. We have, for instance, not(true) = false. Acomplete speci�cation of this data-structure in Asf+Sdf notation will be given insection 2.2.The most common strategy for implementing algebraic speci�cations is via termrewrite systems (TRSs). An algebraic speci�cation can be transformed into a TRSby interpreting the equations as rewrite rules from left to right. An algebraic spe-ci�cation of the Booleans can thus be used to compute the value of a function byrewriting a term to its normal form, true or false.The transformation into a TRS sometimes implies that decisions on implemen-tation details are made, which were not expressed in the algebraic speci�cation.For example, if we aim at complete TRSs (i.e. TRSs which are conuent and ter-minating, see [Klo92]), we need to decide on the implementation of commutativeoperators and the implementation of sets by ordered lists. Therefore, a completelyautomatic implementation of an algebraically speci�ed semantics by means of aTRS is not always feasible.

178 S. Mauw & E. A. van der Meulen2.2 The formalism Asf+SdfWhen specifying programming languages in an algebraic manner the syntax forfunction de�nitions is found to be too restrictive. The formalism Asf+Sdf the-refore combines the algebraic speci�cation formalism ASF with a formalism forde�ning syntax: SDF. SDF allows for the combined speci�cation of concrete syntax(like in BNF) and abstract syntax. Hence, Asf+Sdf is a formalism for writingalgebraic speci�cations with user de�ned syntax.An Asf+Sdf speci�cation consists of a sequence of modules. Each module maycontainImports of other modules.Sort declarations de�ning the sorts of a signature.Lexical syntax de�ning layout conventions and lexical tokens.Context-free syntax de�ning the concrete syntactic forms of the functions in thesignature.Variables to be used in equations. In general, each variable declarations has theform of a regular expression and de�nes the class of all variables whose nameis described by the regular expression.Equations Conditional equations de�ne the meaning of the functions de�ned inthe contex-free syntax.Sort declarations, lexical functions, context-free syntax and variables are either partof an export section in a module or can be declared as hidden. When a moduleimports another module the export sections in the syntax de�nition as well as theequations of the imported module are visible in the importing module. Hiddensorts, functions or variables cannot be referred to by the importing module.Example A simple example speci�cation is given below consisting of the modulesLayout and Booleans. Module Booleans de�nes the Boolean values and operators.In order to avoid ambiguities in parsing terms attributes fleftg or frightg can beadded to function declarations, de�ning a function to be left associative or rightassociative. For instance, the attribute fleftg in BOOL "&" BOOL ! BOOL in-dicates that the term true & false & true should be parsed as (true & false) & truerather than true & (false & true). Moreover, the speci�er can indicate by means ofpriorities rules how terms should be parsed. For instance, the priority rule in moduleBooleans states that the operator \not" binds stronger than the operator \&" whichin turn binds stronger than the operator \j". Hence, the term not true & false willbe parsed as (not true) & false rather than not (true & false). Likewise, the termtrue & false j true should be parsed as (true & false) j true. The function with theattribute fbracketg is added only for grouping and disambiguation, it is not inclu-ded in the abstract syntax.The variable declaration \Bool [1-9']� ! BOOL" declares an in�nite number ofvariables of sort BOOL. All variables start with the letters Bool followed by zeroor more (�) occurences of numbers and quotes [1-9']. In the equations we use onlyone variable.Module Booleans imports module Layout which consists of two lexical functionsfor the prede�ned sort LAYOUT. The upper one de�ning that spaces (n), tabs (nt)and newlines (nn) are layout, and thus separate tokens. The lower function de�nesa comment convention by stating that any string starting with two percentage signs(\%%") followed by any number of characters other than a newline (~[nn]), andconcluded by a newline ([nn]) is to be considered layout as well.

Tools for Message Sequence Charts 1792.2.1 Booleansimports Layout2:2:2exportssorts BOOLcontext-free syntaxtrue ! BOOLfalse ! BOOLBOOL \j" BOOL ! BOOL fleftgBOOL \&" BOOL ! BOOL fleftg\not" BOOL ! BOOL\(" BOOL \)" ! BOOL fbracketghiddensvariablesBool [1-9 0]� ! BOOLprioritiesBOOL \j"BOOL ! BOOL < BOOL \&"BOOL ! BOOL <\not"BOOL ! BOOLequations[1] true j Bool = true[2] false j Bool = Bool[3] true & Bool = Bool[4] false & Bool = false[5] not true = false[6] not false = true2.2.2 Layoutexportslexical syntax[ntnn] ! LAYOUT\%%"�[nn]�[nn] ! LAYOUTOther features Other features of Asf+Sdf will be explained when necessary. Inparticular, the use of default equations and the description of list sorts is explainedin section 4.1. More advanced priority rules are referred to in section 5.2.3 Message Sequence ChartsMessage Sequence Charts provide a graphical method for the description of thecommunication behavior of system components. The ITU-TS (the Telecommuni-cation Standardization Section of the International Telecommunication Union, theformer CCITT) maintains recommendation Z.120 [IT94] which contains the syntaxand an informal explanation of the semantics of Message Sequence Charts. A formalsemantics based on process algebra has been proposed in [MR94b]. This proposalhas been accepted for standardization by the ITU [IT95].3.1 Basic Message Sequence ChartsIn this paper we restrict ourselves to the core language of Message Sequence Charts,which we call Basic Message Sequence Charts (BMSCs). A Basic Message Sequence

180 S. Mauw & E. A. van der MeulenChart concentrates on communications and local actions only. These are the fea-tures encountered in most languages comparable to Message Sequence Charts. Theirsemantics is described in [MR94a].A Basic Message Sequence Chart contains a (partial) description of the com-munication behavior of a number of instances. An instance is an abstract entityof which one can observe (part of) the interaction with other instances or with theenvironment. The Basic Message Sequence Chart in Figure 2 de�nes the commu-nication behavior between instances a and b. This will be the running example inthe remainder of this paper. An instance is denoted by a vertical axis. The timealong each axis runs from top to bottom.A communication between two instances is represented by an arrow which startsat the sending instance and ends at the receiving instance. In Figure 2 we considermessage m from instance a to instance b and message k which is sent from a to theenvironment.. The behavior of the environment is not speci�ed. For instance b wealso de�ne a local action p.
a b

p

m

k

msc example1

Figure 2: Example Basic Message Sequence ChartAlthough the activities along one single instance axis are completely ordered,we will not assume a notion of global time. The only dependencies between thetiming of the instances come from the restriction that a message must have beensent before it is received. In Figure 2 this implies for example that message mis received by b only after it has been sent by a. Furthermore, it is required thataction p is executed before messagem is received, and that messagem is sent beforemessage k. For the sending of k and the reception of m no ordering is speci�ed.3.2 BMSC syntaxThe grammar de�ning the syntax of textual Basic Message Sequence Charts aspresented in [MR94a] is given in Table 1. The nonterminals <mscid>, <iid>, <mid>and <aid> represent identi�ers. The symbol <> denotes the empty string. Thefollowing identi�ers are reserved keywords: action, endinstance, endmsc, env,from, in, instance, msc, out and to. The language generated by a non-terminal< x > is denoted by L(< x >).The Basic Message Sequence Chart of Figure 2 has the following textual repre-sentation.msc example1;instance a;out m to b;out k to env;endinstance;

Tools for Message Sequence Charts 181Table 1: The BNF grammar of Basic Message Sequence Charts<msc> ::= msc <mscid>;<msc body> endmsc;<msc body> ::= <> |<inst def> <msc body><inst def> ::= instance <iid>;<inst body> endinstance;<inst body> ::= <> |<event> <inst body><event> ::= in <mid> from <iid>; |in <mid> from env; |out <mid> to <iid>; |out <mid> to env; |action <aid>;instance b;action p;in m from a;endinstance;endmsc;The context free syntax for BMSCs is expressed in ASF+SDF in the followingspeci�cation. It is easily derived from the BNF grammar.The �rst module below de�nes the Identi�ers, which consist of a character fol-lowed by characters and digits. It states that there is an (invisible) mapping fromelements of the sort ID to the sorts MSCID, IID, MID and AID. The second modulede�nes the syntax of BMSCs.3.2.1 Identi�ersimports Layout2:2:2exportssorts ID MSCID IID MID AIDlexical syntax[a-z][a-z0-9]� ! IDcontext-free syntaxID ! MSCIDID ! IIDID ! MIDID ! AID3.2.2 BMSC-Syntaximports Identi�ers3:2:1exportssorts MSC MSC-BODY INST-DEF INST-BODY EVENTcontext-free syntaxmsc MSCID \;" MSC-BODY endmsc \;" ! MSC! MSC-BODYINST-DEF \;" MSC-BODY ! MSC-BODYinstance IID \;" INST-BODY endinstance ! INST-DEF! INST-BODYEVENT \;" INST-BODY ! INST-BODY

182 S. Mauw & E. A. van der Meulenin MID from IID ! EVENTin MID from env ! EVENTout MID to IID ! EVENTout MID to env ! EVENTaction AID ! EVENT3.3 ExampleA syntax directed editor for BMSC is generated by theAsf+SdfMeta-environment.From the de�nition of the (context-free) syntax of BMSC, a scanner and a parserfor BMSC is created. If the text in the editor is conform the BMSC syntax theparser generates the corresponding BMSC term. Figure 3 shows a snapshot of thesyntax directed editor, containing the running example of �gure 2. Note, that but-tons are connected to the editor for the four other tools. These buttons are createdby means of the user interface language SEAL [Koo92, Koo94]. When a button isselected the corresponding tool is applied to the BMSC in the editor.

Figure 3: Syntax directed editor4 RequirementsTwo static requirements for Basic Message Sequence Charts are formulated in[MR94a]. The �rst is that an instance may be declared only once. The secondis that every message identi�er occurs exactly once in an output action and oncein a matching input action, or in case of a communication with the environment amessage identi�er occurs only once. In addition we will check whether all instancesthat are referred to in messages have been declared. Module Requirements importstwo auxiliary modules: Xevents and Messages.4.1 XeventsThe speci�cation of the requirements is facilitated when an MSC is represented bya list of its events. We therefore introduce the sort XEVENT. This is an eventextended with the name of the instance it belongs to. E.g., when instance a sendsa message m to instance b, out m to b, the corresponding extended event is out mfrom a to b.The declaration \[" fXEVENT \;"g� \]"! XEVENTLIST declares a list of zeroor more (�) XEVENTs separated by semicolums (\;") and surrounded by squarebrackets (\[" \]"). The variables declaration \<"xevent\>"\�"[0-9]� ! fXEVENT";"g� declares variables over such lists of XEVENTs. Any list of XEVENTs matchesvariables like <xevent>�, <xevent>�1, <xevent>�13 etc.. Equation 6 de�nes the

Tools for Message Sequence Charts 183union of two lists of XEVENTs as a list containing the events of the �rst list followedby those of the second list.The functions xevent, xeventbody , xeventlist and extend are introduced to derivea list of extended events from an MSC. Equations 1 through 11 specify the behaviorof these functions.The function message-name returns an MIDLIST, a list containing the messageidenti�er of an XEVENT. Equations 12 through 15 specify the application of thisfunction to all xevents describing input or output actions. Equation 16 is a so calleddefault equation, marked with the keyword otherwise. Such an equation is onlyused for rewriting a given term if no other equation applies. Hence, equation 16states that the message-name of any xevent not describing an input or output actionequals the empty list [].Equations 17 and 18 specify that two xevents match, if one of them representsthe sending of a message to an instance and the other one is the xevent for the re-ception of that message. The default equation 19 states that applying the predicatematching-xevents to any other pair of xevents equals false.4.1.1 Xeventsimports BMSC-Syntax3:2:2 Booleans2:2:1exportssorts XEVENTLIST XEVENT MIDLISTcontext-free syntax\[" fXEVENT \;"g� \]" ! XEVENTLISTxevents(MSC) ! XEVENTLISTxevents \ " body \(" MSC-BODY \)" ! XEVENTLISTxevents \ " inst \(" IID \;" INST-BODY \)" ! XEVENTLISTXEVENTLIST \[" XEVENTLIST ! XEVENTLIST fleftgin MID from IID to IID ! XEVENTin MID from env to IID ! XEVENTout MID from IID to IID ! XEVENTout MID from IID to env ! XEVENTaction AID by IID ! XEVENTextend(IID, EVENT) ! XEVENTmessage-name(XEVENT) ! MIDLIST\[" fMID \;"g� \]" ! MIDLISTmatching-xevents(XEVENT, XEVENT) ! BOOLhiddensvariables\<"msc-body\>" ! MSC-BODY\<"inst-def\>"\�"[0-9]� ! fINST-DEF \;"g�\<"inst-body\>" ! INST-BODY\<"event\>"[0-9]� ! EVENT\<"xevent\>"\�"[0-9]� ! fXEVENT \;"g�\<"xevent\>"[0-9]� ! XEVENT\<"mscid\>" ! MSCID\<"iid\>"[0-9]� ! IID\<"mid\>" ! MID\<"aid\>" ! AIDequations[1] xevents(msc <mscid>; <msc-body> endmsc;) = xeventsbody (<msc-body>)[2] xeventsbody () = []

184 S. Mauw & E. A. van der Meulen[3] xeventsbody (instance <iid>; <inst-body> endinstance; <msc-body>) =xeventsinst (<iid>; <inst-body>) [xeventsbody (<msc-body>)[4] xeventsinst (<iid>;) = [][5] xeventsinst (<iid>; <event>; <inst-body>) =[extend(<iid>; <event>)] [xeventsinst (<iid>; <inst-body>)[6] [<xevent>�1] [[<xevent>�2] = [<xevent>�1; <xevent>�2][7] extend(<iid>1; in <mid> from <iid>2) = in <mid> from <iid>2 to <iid>1[8] extend(<iid>1; in <mid> from env) = in <mid> from env to <iid>1[9] extend(<iid>1; out <mid> to <iid>2) = out <mid> from <iid>1 to <iid>2[10] extend(<iid>1; out <mid> to env) = out <mid> from <iid>1 to env[11] extend(<iid>1; action <aid>) = action <aid> by <iid>1[12] message-name(in <mid> from <iid>1 to <iid>2) = [<mid>][13] message-name(in <mid> from env to <iid>2) = [<mid>][14] message-name(out <mid> from <iid>1 to <iid>2) = [<mid>][15] message-name(out <mid> from <iid>1 to env) = [<mid>][16] message-name(<xevent>) = [] otherwise[17] matching-xevents(out <mid> from <iid>1 to <iid>2;in <mid> from <iid>1 to <iid>2) = true[18] matching-xevents(in <mid> from <iid>1 to <iid>2;out <mid> from <iid>1 to <iid>2) = true[19] matching-xevents(<xevent>1; <xevent>2) = false otherwise4.2 MessagesModule Messages de�nes the general syntax of the error messages used in moduleRequirements. Note, that these are not messages in the sense of MSC, but messagesto inform the user of the system. Four kinds of messages are distinguished in thelexical syntax. (1) Opening brackets � followed by a string without the symbol >and concluded by �, (2) Opening brackets � followed by a string without quotesor >, and concluded by quotes. (3) Quotes followed by a string without > andconcluded by�. (4) Quotes followed by a string without quotes or > and concludedby quotes.This syntax allows for composed messages of sort MESSAGELIST like [� ininstance "a" an error has been found �].The operator [speci�es the union of lists of messages.

Tools for Message Sequence Charts 1854.2.1 Messagesimports Layout2:2:2exportssorts MESSAGE MESSAGELISTlexical syntax\�"�[>]�\�" ! MESSAGE\�"�[n" >]�\n"" ! MESSAGE\n""�[>]�\�" ! MESSAGE\n""�[n" >]�\n"" ! MESSAGEcontext-free syntax\[" MESSAGE� \]" ! MESSAGELISTMESSAGELIST \[" MESSAGELIST ! MESSAGELIST fleftghiddensvariablesm[0-9]�\�"! MESSAGE�equations[1] [m�1] [[m�2] = [m�1 m�2]4.3 Requirements speci�cationThe main function in module Requirements is the function check for MSCs. Theresult of checking an MSC is CHECKINFO, composed of a boolean value and apossible empty list of error messages. Two CHECKINFOs can be added by meansof the function CHECKINFO and CHECKINFO. Equation 1 speci�es how thisis done. The sort MESSAGE is extended so that identi�ers and xevents can bereferred to in error messages.As mentioned before, three requirements will be checked. Equation 2 statesthat the function check invokes the functions unique-instance-names, inst-declaredand check-message-names. Equations 3 to 5 specify the semantics of the functionsunique-instances and uinbody . According to equation 4 an empty MSC-BODY iscorrect, i.e. all instance names are unique. If the MSC-BODY consists of an instancede�nition followed by an MSC-BODY, we check that the name of the �rst instancedoes not occur in the set of declared instance names of the remaining MSC-BODY.By a recursive call of the function uinbody the rest of the BMSC is checked (equation5). The error messages are generated by the auxiliary function notin. Equation 6states that if a given instance name occurs at any position in a list of instancenames, the Boolean value false and an error message are returned. Otherwise, theBoolean value true and an empty list of error messages are returned (equation 7).Equations 8, 9 and 10 inductively de�ne the auxiliary function declared-instnames,which computes the set of instance names in an MSC-BODY.The function inst-declared checks whether instances referred to by input andoutput actions have been declared (equation 11). The auxiliary functions re�nstsselect the names of all instances referred to by input or output actions of an MSC(equations 12 unto 17). The function included-in checks if all IIDs in a list do occurin another list of IIDs. If not, an error-message is generated (equations 18 { 20).Application of the function check-message-names to an MSC invokes the appli-cation of the functions unique-message-names and check-nonmatching-messages tothe corresponding list of xevents. Equation 23 speci�es that unique-message-namesselects all pairs of xevents that mistakenly have the same message name. If such apair is present, an error message is generated and the function is recursively appliedto the rest of the list. Lists without such pairs are correct according to equation 24.

186 S. Mauw & E. A. van der MeulenEquation 25 speci�es that check-nonmatching-messages removes all matchingpairs of input output actions from a list of xevents. If no such pairs are left inthe list the function aux-nonmatching-messages is invoked (equation 26). Applyingaux-nonmatching-messages to an empty list yields the boolean value true and anempty list of error messages. If the �rst xevent in the list represents receiving amessage from an instance or sending a message to an instance, no matching actionwill be present in the rest of the list. Therefore, an error message is generated andthe rest of the list is checked. If the �rst xevent is any other action, it is correctand the rest of the list is checked (equations 27 { 30).4.3.1 Requirementsimports Xevents4:1:1 Messages4:2:1exportssorts CHECKINFO IIDLISTcontext-free syntaxcheck(MSC) ! CHECKINFO\Check:" BOOL \Errors:" MESSAGELIST ! CHECKINFOCHECKINFO and CHECKINFO ! CHECKINFO fleftgMESSAGE IID MESSAGE ! MESSAGEMESSAGE MID MESSAGE ! MESSAGEMESSAGE XEVENT MESSAGE ! MESSAGEunique-instance-names \(" MSC \)" ! CHECKINFOuin \ " body \(" MSC-BODY \)" ! CHECKINFOIID notin IIDLIST ! CHECKINFOdeclared-instnames \(" MSC \)" ! IIDLISTdeclared-instnames \(" MSC-BODY \)" ! IIDLISTinst-declared(MSC) ! CHECKINFOre�nsts(MSC) ! IIDLISTre�nsts(XEVENTLIST) ! IIDLISTre�nsts(XEVENT) ! IIDLISTIIDLIST includedin IIDLIST ! CHECKINFO\[" fIID \;"g� \]" ! IIDLISTIIDLIST \[" IIDLIST ! IIDLIST fleftgcheck-message-names(MSC) ! CHECKINFOunique-message-names(XEVENTLIST) ! CHECKINFOcheck-nonmatching-messages(XEVENTLIST) ! CHECKINFOaux-nonmatching-messages(XEVENTLIST) ! CHECKINFOhiddensvariablesb[0-9]� ! BOOLml[0-9]� ! MESSAGELIST\<"msc\>" ! MSC\<"msc-body\>" ! MSC-BODY\<"inst-def\>" ! INST-DEF\<"inst-body\>" ! INST-BODY\<"event\>"\�"[0-9]� ! fEVENT \;"g�\<"event\>" ! EVENTxel ! XEVENTLIST\<"xevent\>"\�"[0-9]� ! fXEVENT \;"g�\<"xevent\>"[0-9]� ! XEVENT\<"mscid\>" ! MSCID\<"iid\>"\�"[0-9]� ! fIID \;"g�i ! IID

Tools for Message Sequence Charts 187\<"iid\>"[0-9]� ! IID\<"mid\>" ! MID\<"aid\>" ! AIDequations[1] Check: b1 Errors: ml1 and Check: b2 Errors: ml2 = Check: b1 & b2 Errors: ml1 [ml2[2] check(<msc>) = unique-instance-names(<msc>)and inst-declared(<msc>)and check-message-names(<msc>)[3] unique-instance-names(msc <mscid>; <msc-body> endmsc;) = uinbody (<msc-body>)[4] uinbody () = Check: true Errors: [][5] uinbody (instance <iid>; <inst-body> endinstance; <msc-body>) =<iid> notin declared-instnames(<msc-body>) and uinbody (<msc-body>)[6] <iid> notin [<iid>�1; <iid>; <iid>�2] =Check: false Errors: [<<duplicate instance name "<iid> " >>][7] <iid> notin [<iid>�] = Check: true Errors: [] otherwise[8] declared-instnames() = [][9] declared-instnames(instance <iid>; <inst-body> endinstance; <msc-body>) =[<iid>] [declared-instnames(<msc-body>)[10] declared-instnames(msc <mscid>; <msc-body> endmsc;) =declared-instnames(<msc-body>)[11] inst-declared(<msc>) =re�nsts(<msc>) includedin declared-instnames(<msc>)[12] re�nsts(<msc>) = re�nsts(xevents(<msc>))[13] re�nsts([]) = [][14] re�nsts([<xevent>; <xevent>�]) =re�nsts(<xevent>) [re�nsts([<xevent>�])[15] re�nsts(in <mid> from <iid>1 to <iid>2) = [<iid>1][16] re�nsts(out <mid> from <iid>1 to <iid>2) = [<iid>2][17] re�nsts(<xevent>) = [] otherwise[18] [] includedin [<iid>�] = Check: true Errors: []

188 S. Mauw & E. A. van der Meulen[19] [<iid>�1; <iid>; <iid>�2] includedin [<iid>�3; <iid>; <iid>�4] =[<iid>�1; <iid>�2] includedin [<iid>�3; <iid>; <iid>�4][20] [<iid>; <iid>�1] includedin [<iid>�2] =Check: false Errors: [<<instance " <iid> " used but not declared>>]and [<iid>�1] includedin [<iid>�2] otherwise[21] [<iid>�1] [[<iid>�2] = [<iid>�1; <iid>�2][22] check-message-names(<msc>) = unique-message-names(xel)and check-nonmatching-messages(xel)whenxel = xevents(<msc>)[23] unique-message-names([<xevent>�1; <xevent>2;<xevent>�3; <xevent>4;<xevent>�5])= Check: falseErrors: [<<duplicate message name "<mid> " >>]and unique-message-names([<xevent>�1;<xevent>�3;<xevent>�5])when[<mid>] = message-name(<xevent>2),[<mid>] = message-name(<xevent>4),false = matching-xevents(<xevent>2;<xevent>4)[24] unique-message-names([<xevent>�]) = Check: true Errors: [] otherwise[25] check-nonmatching-messages([<xevent>�1; <xevent>2;<xevent>�3; <xevent>4;<xevent>�5]) = check-nonmatching-messages([<xevent>�1;<xevent>�3;<xevent>�5])whenmatching-xevents(<xevent>2; <xevent>4) = true[26] check-nonmatching-messages([<xevent>�]) =aux-nonmatching-messages([<xevent>�]) otherwise[27] aux-nonmatching-messages([]) = Check: true Errors: [][28] aux-nonmatching-messages([in <mid> from <iid>1 to <iid>2; <xevent>�]) =Check: falseErrors: [<<no matching event for " in <mid> from <iid>1 to <iid>2 " >>]and check-nonmatching-messages([<xevent>�])[29] aux-nonmatching-messages([out <mid> from <iid>1 to <iid>2; <xevent>�]) =Check: falseErrors: [<<no matching event for " out <mid> from <iid>1 to <iid>2 " >>]and check-nonmatching-messages([<xevent>�])[30] aux-nonmatching-messages([<xevent>; <xevent>�]) =Check: true Errors: []and check-nonmatching-messages([<xevent>�]) otherwise

Tools for Message Sequence Charts 1894.4 ExampleWhen the Check button in Figure 3 is selected the relevant functions are appliedto the term in the editor and the generated term rewrite system is used to computethe result. A window will pop up containing this result. Figure 4 shows the resultof checking the BMSC in our running example. Since this term is correct the list oferror messages is empty. Next, suppose that we change the message name k in outk to env of Figure 3 into m. Selecting the check button then results in the windowof Figure 5.
Figure 4: Result of checking a correct BMSC

Figure 5: Result of checking a BMSC with a double occurrence of message m5 Process algebraThis section contains the de�nition of the process algebra PABMSC . First we de�nethe atomic actions. After that we give the de�nition of the process algebra PA" andextend it with the state operator.5.1 Atomic actionsThe process algebra PABMSC is an algebraic theory for the description of processbehavior based on ACP [BW90, BK84]. First we will de�ne the set of atomic actionsof PABMSC .Every (extended) event occurring in a BMSC will be translated into an atomicaction from PABMSC . Thus we have the atomic actions as displayed in Table 2.The description in Asf+Sdf of the atomic actions is given in module Atoms.Instead of de�ning the sets from Table 2, we de�ne four predicates. The equationsde�ning these predicates are straightforward.5.1.1 Atomsimports PA-Kernel5:2:2 Identi�ers3:2:1 Booleans2:2:1exportscontext-free syntaxin(IID, IID, MID) ! ATOM

190 S. Mauw & E. A. van der MeulenTable 2: The atomic actions of PABMSCAi = fin(s; r;m) j s; r 2 IID;m 2MIDgAo = fout(s; r;m) j s; r 2 IID;m 2MIDgAe = fout(s; env;m) j s 2 IID;m 2MIDg[fin(env; r;m) j r 2 IID;m 2MIDgAa = faction(i; aid) j i 2 IID; aid 2 AIDgA = Ai [Ao [Ae [Aain(env, IID, MID) ! ATOMout(IID, IID, MID) ! ATOMout(IID, env, MID) ! ATOMaction(IID, AID) ! ATOMis-in-atom(ATOM) ! BOOLis-out-atom(ATOM) ! BOOLis-env(ATOM) ! BOOLis-action(ATOM) ! BOOLhiddensvariablesatom[0-9]� ! ATOM\<"iid\>"[0-9]� ! IID\<"mid\>"[0-9]� ! MID\<"aid\>"[0-9]� ! AIDequations[1] is-in-atom(in(<iid>1; <iid>2; <mid>)) = true[2] is-in-atom(atom) = false otherwise[3] is-out-atom(out(<iid>1; <iid>2; <mid>)) = true[4] is-out-atom(atom) = false otherwise[5] is-env(in(env; <iid>2; <mid>)) = true[6] is-env(out(<iid>1; env; <mid>)) = true[7] is-env(atom) = false otherwise[8] is-action(action(<iid>; <aid>)) = true[9] is-action(atom) = false otherwise5.2 PA"The theory PABMSC is an extension of the theory PA" . The signature of PA"consists of the following functions.1. the special constants � and "2. the set of atomic actions A3. the unary operator p

Tools for Message Sequence Charts 1914. the binary operators +, �, k and kThe special constant � denotes the process that has stopped executing actionsand cannot proceed. This constant is called deadlock. The special constant " denotesthe process that is only capable of terminating successfully. It is called the emptyprocess.The atomic actions from A are the smallest processes in the description. Theactual set A is de�ned in Table 2.The binary operators + and � are called the alternative and sequential composi-tion. The alternative composition of the processes x and y is the process that eitherexecutes process x or y but not both. The sequential composition of the processesx and y is the process that �rst executes process x, and upon completion thereofstarts with the execution of process y.The binary operator k is called the free merge. The free merge of the pro-cesses x and y is the process that executes the processes x and y in parallel.For a �nite set D = fd1; � � � ; dng, the notation k d2DP (d) is an abbreviation forP (d1) k � � � kP (dn). If D = ; then k d2DP (d) = ". For the de�nition of the mergewe use two auxiliary operators. The termination operator p applied to a process xsignals whether or not the process x has an option to terminate immediately. Thebinary operator k is called the left merge. The left merge of the processes x and yis the process that �rst has to execute an atomic action from process x, and uponcompletion thereof executes the remainder of process x and process y in parallel.In the priorities section of module PA-Syntax one �nds the line fleft: PROCESSkPROCESS! PROCESS , PROCESS k PROCESS! PROCESS g . This meansthat the operators merge " k " and left merge "k " associate from left to right.Moreover, the operator � for sequential composition binds stronger than either ofthe merge operators, whereas the merge operators bind stronger than the operatorfor alternative composition.5.2.1 PA-Syntaximports Layout2:2:2exportssorts ATOM PROCESS PROCESS LISTcontext-free syntaxATOM ! PROCESSPROCESS \+" PROCESS ! PROCESS frightgPROCESS \:" PROCESS ! PROCESS frightg\�" ! PROCESS\"" ! PROCESSPROCESS \k" PROCESS ! PROCESS fleftgPROCESS \k " PROCESS ! PROCESS fleftg\p" \(" PROCESS \)" ! PROCESS\(" PROCESS \)" ! PROCESS fbracketgprioritiesPROCESS \:"PROCESS ! PROCESS > fleft:PROCESS \k"PROCESS ! PROCESS,PROCESS \k "PROCESS ! PROCESSg >PROCESS \+"PROCESS ! PROCESSFor a 2 A[f�g and processes x; y; z, the axioms of PA" are given in the Table 3.Axioms A1{A9 are well known. The axioms TE1{TE3 express that a process xhas an option to terminate immediately if p(x) = ", and that p(x) = � otherwise.In itself the termination operator is not very interesting, but in de�ning the freemerge we need this operator to express the case in which both processes x and yare incapable of executing an atomic action. Axiom TM1 expresses that the free

192 S. Mauw & E. A. van der MeulenTable 3: Axioms of PA"x+ y = y + x A1(x+ y) + z = x+ (y + z) A2x+ x = x A3(x+ y) � z = x � z + y � z A4(x � y) � z = x � (y � z) A5x+ � = x A6� � x = � A7x � " = x A8" � x = x A9x k y = xk y + yk x+p(x) � p(y) TM1"k x = � TM2a � xk y = a � (x k y) TM3(x+ y)k z = xk z + yk z TM4p(") = " TE1p(a � x) = � TE2p(x + y) = p(x) +p(y) TE3merge of the two processes x and y is their interleaving. This is expressed in thethree summands. The �rst two state that x and y may start executing. The thirdsummand expresses that if both x and y have an option to terminate, their mergehas this option too.Some problems arise when interpreting the axioms of Table 3 as term rewriterules. It is clear that axiom A1 hinders termination. If we would simply delete thisaxiom, we would not be able to rewrite � + a into a, so we add axiom A6a fromTable 4. A second problem is that axiom A8 (x � " = x) is often used from right toleft in calculations (e.g. ak b = a � "k b = a � (" k b) = : : : = a � b). Therefore, if wegive A8 an orientation from left to right, we must add the axioms TM3a and TE2a.Finally, in order to simplify expressions we add axioms TM1a and TM1b. Notethat all these axioms are provable for closed process expressions.Table 4: Additional axioms� + x = x A6a" kx = x TM1ax k " = x TM1bak x = a � x TM3ap(a) = � TE2aWe decided to split up the axioms of PA" over two separate Asf+Sdf modules.The �rst module PA-Kernel only contains rules which deal with simpli�cation ofexpressions containing the special constants. The second module PA contains therules concerning the actual rewriting into normal form. The reason is that aftertranslating a BMSC into a process algebra expression, one is not always interestedin a complete reduction into normal form. The simulator, for example, does notneed the normal forms.It is well known that the complete state space of a parallel process may becomevery large. This is the so-called state explosion problem. The normal form of a

Tools for Message Sequence Charts 193process corresponds to its state space, so we will only calculate it when necessary.5.2.2 PA-Kernelimports PA-Syntax5:2:1hiddensvariablesx! PROCESSequations[1] x + � = x[2] � + x = x[3] � : x = �[4] x : " = x[5] " : x = x[6] x k " = x[7] " k x = x5.2.3 PAimports PA-Kernel5:2:2hiddensvariablesa ! ATOM[xyz]! PROCESSequations[1] (x + y) + z = x + y + z[2] x + x = x[3] (x + y) : z = x : z + y : z[4] (x : y) : z = x : y : z[5] x k y = x k y + y k x + p(x) : p(y)[6] " k x = �[7] a : x k y = a : (x k y)[8] a k x = a : x[9] � k x = �[10] (x + y) k z = x k z + y k z[11] p(") = "[12] p(a : x) = �[13] p(a) = �[14] p(�) = �[15] p(x + y) = p(x) + p(y)5.3 The state operator �MA Basic Message Sequence Chart speci�es a (�nite) number of instances that com-municate by sending and receiving messages. A message is divided into two parts: a

194 S. Mauw & E. A. van der Meulenmessage output and a message input. The correspondence between message outputsand message inputs has to be de�ned uniquely by message name identi�cation.A message input may not be executed before the corresponding message outputhas been executed. We introduce an operator �M that enables only those executionpaths that respect the above constraint. The operator �M is an instance of thestate operator as can be found in [BW90]. This operator remembers all messageoutputs that have been executed in a set M and only allows a message input if itscorresponding message output is in that set.Before specifying the signature of the state operator, we need a speci�cation ofsets of atomic actions with operators for testing, di�erence and union.5.3.1 Atom-Setimports Atoms5:1:1exportssorts ATOM-SETcontext-free syntax\f" fATOM \;"g� \g" ! ATOM-SETelem(ATOM, ATOM-SET) ! BOOLATOM-SET \n" ATOM-SET ! ATOM-SET fleftgATOM-SET \[" ATOM-SET ! ATOM-SET fleftg\(" ATOM-SET \)" ! ATOM-SET fbracketgprioritiesATOM-SET \n"ATOM-SET ! ATOM-SET >ATOM-SET \["ATOM-SET ! ATOM-SEThiddensvariablesM [0-9]� ! ATOM-SETb\�"[0-9] ! fATOM \;"g�b\+"[0-9]! fATOM \;"g+[ab] ! ATOMequations[1] fb�1; a; b�2; a; b�3g = fb�1; a; b�2; b�3g[2] elem(a; fb�1; a; b�2g) = true[3] elem(b; M) = false otherwise[4] fb�1; a; b�2g n fb�3; a; b�4g = fb�1; b�2g n fb�3; b�4g[5] M1 n M2 = M1 otherwise[6] fb�1g [fb�2g = fb�1; b�2g5.3.2 State-Operator-Syntaximports Atom-Set5:3:1exportscontext-free syntax\�" \ " ATOM-SET \(" PROCESS \)" ! PROCESSThe axioms for the state operator are given in Table 5.Again, some additional axioms are needed in order to get a complete term re-writing system. These are displayed in Table 6.The axioms are again partitioned in axioms for simpli�cation (module State-Operator-Kernel) and axioms for reduction to normal form (module State-Operator).The equations can be derived easily from Tables 5 and 6.

Tools for Message Sequence Charts 195Table 5: Axioms for the state operator �M�M (") = " if M = ; LM1�M (") = � if M 6= ; LM2�M (�) = � LM3�M (a � x) = a � �M (x) if a 62 Ao [Ai LM4�M (out(i; j;m) � x) = out(i; j;m) � �M[fout(i;j;m)g(x) LM5�M (in(i; j;m) � x) = in(i; j;m) � �Mnfout(i;j;m)g(x) if out(i; j;m) 2M LM6if out(i; j;m) 2M�M (in(i; j;m) � x) = � if out(i; j;m) 62M LM7�M (x+ y) = �M (x) + �M (y) LM8Table 6: Auxiliary axioms for the state operator�M (a) = a if a 62 Ao [Ai, M = ; LM4a�M (a) = � if a 62 Ao [Ai, M 6= ; LM4b�M (out(i; j;m)) = out(i; j;m) � � LM5a�M (in(i; j;m)) = in(i; j;m) if out(i; j;m) 2M , Mnfout(i; j;m)g = ; LM6a�M (in(i; j;m)) = in(i; j;m) � � if out(i; j;m) 2M , Mnfout(i; j;m)g 6= ; LM6b�M (in(i; j;m)) = � if out(i; j;m) 62M LM7a5.3.3 State-Operator-Kernelimports State-Operator-Syntax5:3:2hiddensvariablesM [0-9]� ! ATOM-SETa ! ATOMx ! PROCESS\<"iid\>"[0-9]� ! IID\<"mid\>" ! MIDequations[1] �M (") = " when M = fg[2] �M (") = � when M 6= fg[3] �M (�) = �5.3.4 State-Operatorimports State-Operator-Kernel5:3:3hiddensvariablesM [0-9]� ! ATOM-SETa ! ATOM[xyz] ! PROCESS\<"iid\>"[0-9]� ! IID\<"mid\>" ! MIDequations

196 S. Mauw & E. A. van der Meulen
[1] �M (a : x) = a : �M (x)whenis-out-atom(a) = false,is-in-atom(a) = false[2] �M (a) = awhen M = fg,is-out-atom(a) = false,is-in-atom(a) = false[3] �M (a) = a : �when M 6= fg,is-out-atom(a) = false,is-in-atom(a) = false[4] �M (out(<iid>1; <iid>2; <mid>) : x) =out(<iid>1; <iid>2; <mid>) : �M [fout(<iid>1; <iid>2; <mid>)g (x)[5] �M (out(<iid>1; <iid>2; <mid>)) = out(<iid>1; <iid>2; <mid>) : �[6] �M (in(<iid>1; <iid>2; <mid>) : x) = in(<iid>1; <iid>2; <mid>): �M n fout(<iid>1; <iid>2; <mid>)g (x)whenelem(out(<iid>1; <iid>2; <mid>); M) = true[7] �M (in(<iid>1; <iid>2; <mid>)) = in(<iid>1; <iid>2; <mid>)whenelem(out(<iid>1; <iid>2; <mid>); M) = true,M n fout(<iid>1; <iid>2; <mid>)g = fg[8] �M (in(<iid>1; <iid>2; <mid>)) = in(<iid>1; <iid>2; <mid>) : �whenelem(out(<iid>1; <iid>2; <mid>); M) = true,M n fout(<iid>1; <iid>2; <mid>)g 6= fg[9] �M (in(<iid>1; <iid>2; <mid>) : x) = �whenelem(out(<iid>1; <iid>2; <mid>); M) = false[10] �M (in(<iid>1; <iid>2; <mid>)) = �whenelem(out(<iid>1; <iid>2; <mid>); M) = false[11] �M (x + y) = �M (x) + �M (y)

Tools for Message Sequence Charts 1976 Translation into process algebraIn this section, we will de�ne a semantic function S that associates to every BasicMessage Sequence Chart in textual format a closed PABMSC term. Before we givethe de�nition of this semantic function we need to explain some auxiliary functions.The powerset of a set S is denoted by IP (S).The functionInstances : L(<msc>)! IP (L(<inst def>))that associates to a Basic Message Sequence Chart the set containing all instancede�nitions of the instances de�ned in the chart, is de�ned byInstances(msc <mscid>; <msc body> endmsc;) =Instancesbody(<msc body>)where the functionInstancesbody : L(<msc body>)! IP (L(<inst def>))is de�ned byInstancesbody(<>) = ;Instancesbody(<inst def><msc body>) =f<inst def>g [Instancesbody(<msc body>)Next we de�ne the following two functionsName : L(<inst def>)! L(<iid>)Body : L(<inst def>)! L(<inst body>)These functions associate to an instance de�nition its name and body.Name(instance <iid>;<inst body> endinstance;) = <iid>Body(instance <iid>;<inst body> endinstance;) = <inst body>6.1 The semantic functionThe general idea is that the semantics of a Basic Message Sequence Chart is thefree merge of the semantics of its instances. By this construction we enable allinterleavings of the message outputs and message inputs. However, a message inputcan only be performed after its corresponding message output. In order to rule outall interleavings where a message output is preceded by the corresponding messageinput we use the state operator �M . We de�ne the function S : L(<msc>) !T (�PABMSC) byS[[msc]] = �; � k idef 2Instances(msc) Sinst[[idef]]�The semantic function Sinst : L(<inst def>) ! T (�PABMSC) is de�ned toexpress the semantics of one instance in separation. In the textual representationof an instance the atomic actions are speci�ed in the order they are to be executed,thus the semantics of an instance de�nition is the sequential composition of itsactions. Sinst[[idef]] = SName(idef)body [[Body(idef)]]where for i 2 L(<iid>) the functionSibody : L(<inst body>)! T (�PABMSC)is de�ned by

198 S. Mauw & E. A. van der MeulenSibody[[<>]] = "Sibody[[<event><inst body>]] =Sievent[[<event>]] � Sibody[[<inst body>]]and for every i 2 L(<iid>) the functionSievent : L(<event>)! T (�PABMSC)is de�ned bySievent[[in <mid> from <iid>;]] = in(<iid>; i; <mid>)Sievent[[in <mid> from env;]] = in(env; i; <mid>)Sievent[[out <mid> to <iid>;]] = out(i; <iid>; <mid>)Sievent[[out <mid> to env;]] = out(i; env; <mid>)Sievent[[action <aid>;]] = action(i; <aid>)The translation of the semantic function into Asf+Sdf is rather straightfor-ward. The only problem is that the generalized merge construct (k idef 2Instances(msc))occurring in the de�nition of S[[msc]] requires higher order functions. Therefore, wecombined the generalized merge and the application of the function Sinst into onesingle function kSinst. This function requires the collection of all instance de�-nitions as input and calculates the parallel composition of the semantics of theseinstances. The set of instances is calculated by the auxiliary function Instances.Furthermore, notice that we only import the kernel of the process algebra. Thismeans that we only have the signature and some rules for simpli�cation, but notthe de�ning equations.6.1.1 BMSC-Semanticsimports State-Operator-Kernel5:3:3 BMSC-Syntax3:2:2exportssorts INST-DEF-LISTcontext-free syntax\S" \(" MSC \)" ! PROCESS\S" \ " \inst" \(" INST-DEF \)" ! PROCESS\S" \ " \body" \^" IID \(" INST-BODY \)" ! PROCESS\S" \ " \event" \^" IID \(" EVENT \)" ! PROCESShiddenscontext-free syntax\jjS" \ " \inst" INST-DEF-LIST ! PROCESS\(" fINST-DEF \;"g� \)" ! INST-DEF-LISTINST-DEF-LIST \[" INST-DEF-LIST ! INST-DEF-LIST fleftg\Instances"(MSC) ! INST-DEF-LIST\Instances" \ " \body" \(" MSC-BODY \)" ! INST-DEF-LIST\Name"(INST-DEF) ! IID\Body"(INST-DEF) ! INST-BODYvariables\<"inst-def\>"\�"[0-9]� ! fINST-DEF \;"g�i ! IID\<"msc\>" ! MSC\<"msc-body\>" ! MSC-BODY\<"inst-def\>" ! INST-DEF\<"inst-body\>" ! INST-BODY\<"event\>"[0-9]� ! EVENT\<"mscid\>" ! MSCID\<"iid\>" ! IID\<"mid\>" ! MID

Tools for Message Sequence Charts 199\<"aid\>" ! AIDequations[1] S(<msc>) = �fg (jjSinst Instances(<msc>))[2] jjSinst () = "[3] jjSinst (<inst-def>) = Sinst (<inst-def>)[4] jjSinst (<inst-def>; <inst-def>�) =Sinst (<inst-def>) k jjSinst (<inst-def>�)[5] Sinst (<inst-def>) = SName(<inst-def>)body (Body(<inst-def>))[6] Sibody () = "[7] Sibody (<event>; <inst-body>) =Sievent (<event>) : Sibody (<inst-body>)[8] Sievent (in <mid> from <iid>) = in(<iid>; i; <mid>)[9] Sievent (in <mid> from env) = in(env; i; <mid>)[10] Sievent (out <mid> to <iid>) = out(i; <iid>; <mid>)[11] Sievent (out <mid> to env) = out(i; env; <mid>)[12] Sievent (action <aid>) = action(i; <aid>)[13] Instances(msc <mscid>; <msc-body> endmsc;) =Instancesbody (<msc-body>)[14] Instancesbody () = ()[15] Instancesbody (<inst-def>; <msc-body>) =(<inst-def>) [Instancesbody (<msc-body>)[16] Name(instance <iid>; <inst-body> endinstance) = <iid>[17] Body(instance <iid>; <inst-body> endinstance) = <inst-body>[18] (<inst-def>�1) [(<inst-def>�2) = (<inst-def>�1; <inst-def>�2)

200 S. Mauw & E. A. van der Meulen6.2 ExampleThe result of applying this translation to the BMSC in the editor of Figure 3 isthe process algebra term �;(out(a; b;m) � out(a; env; k) kaction(b; p) � in(a; b;m)).The application of the merge operator (k) shows that the semantics of the givenBMSC is the interleaved execution of the processes out(a; b;m) � out(a; env; k) andaction(b; p) � in(a; b;m)). The state operator (�;) in front of the expression enforcesthat input of message m only occurs after the corresponding output.Figure 6 shows the window that appears after having selected the Semanticsbutton.
Figure 6: Result of computing the semantics of a BMSC6.3 NormalizationThe state operator and the merge operator in the expression of Figure 6 can beeliminated. This is called normalization. The resulting term contains the operatorsfor sequential composition (�) and alternative composition (+) only. It expresses allpossible behaviors of the BMSC. The normalizer is simply de�ned by combining thede�nitions of the semantic functions and the complete speci�cation of the processalgebra.6.3.1 Normalizeimports BMSC-Semantics6:1:1 PA5:2:3 State-Operator5:3:46.4 ExampleFigure 7 shows the e�ect of pressing the normalize button in the editor of Figure 3.It expresses the branching structure of the process. First one can make a choicebetween executing out(a; b;m) and action(b; p). If one chooses the �rst option,another choice has to be made between out(a; env; k) and action(b; p). The rest ofthe process can be understood in a similar way.
Figure 7: Result of normalizing the semantics of a BMSC

Tools for Message Sequence Charts 2017 A simulatorFor large BMSCs, the expressions describing the normalized semantics as in Figure 7become quite large and complex. This is the so-called state explosion problem.Therefore, the tools o�er the possibility to walk through the events of a BMSC inany of the admitted orders. Thus, the user can interactively simulate the behaviorof a BMSC. For this purpose we used the operational semantics for BMSCs from[MR94a]. This operational semantics de�nes for a given BMSC a labeled transitionsystem. The transitions correspond with the events of the BMSC.First, we will interpret the de�nition of the transition rules in an algebraicspeci�cation. After that, we de�ne the additional functions needed to obtain asimulator.7.1 TransitionsIn this section we de�ne a structural operational semantics of Basic Message Se-quence Charts in the style of Plotkin [Plo83]. For this purpose we de�ne actionrelations on closed PABMSC terms.On the set of PABMSC terms we de�ne a predicate #� T (�PABMSC) and binaryrelations a! � T (�PABMSC)� T (�PABMSC) for every a 2 A. These predicates arede�ned by means of inference rules, which have the following form.p1; : : : ; pnqThis expression means that for every instantiation of variables in p1; : : : ; pn; q wecan conclude q from p1; : : : ; pn. If q is a tautology, we omit p1; : : : ; pn and thehorizontal bar.The intuitive idea of the predicate # is as follows: t# denotes that t has an optionto terminate immediately, i.e. " is a summand of t. For x; y 2 T (�PABMSC), andM � Ao, the predicate # is de�ned in Table 7.Table 7: The predicate #" #x # x # ; y # y #(x+ y) # (x � y) # (x+ y) #x # x # ; y # x #(p(x)) # (x k y) # (�M (x)) #The intuitive idea of the binary operator a! is as follows: t a! s denotes that theprocess t can execute the atomic action a and after this execution step the resultingprocess is s. For x; x0; y; y0 2 T (�PABMSC), a 2 A, M � Ao, i; j 2 L(<iid>), andm 2 L(<mid>), the binary relations a! are de�ned in Table 8.We will illustrate the use of these action relations with an example. Considerthe following expression. �;(out(a; b; k) k in(a; b; k))We have out(a; b; k)out(a;b;k)! ", so we can derive out(a; b; k) k in(a; b; k)out(a;b;k)! " k in(a; b; k).From this we can conclude

202 S. Mauw & E. A. van der MeulenTable 8: The action relations a!a a! "x a! x0 y a! y0 x a! x0 x # ; y a! y0x+ y a! x0 x+ y a! y0 x � y a! x0 � y x � y a! y0x a! x0 y a! y0 x a! x0x k y a! x0 k y x k y a! x k y0 xk y a! x0 k ya62Ao[Ai ; x a! x0�M (x) a! �M (x0) x out(i;j;m)�! x0�M (x) out(i;j;m)�! �M[fout(i;j;m)g(x0) out(i;j;m)2M ; x in(i;j;m)�! x0�M (x) in(i;j;m)�! �Mnfout(i;j;m)g(x0)�;(out(a; b; k) k in(a; b; k))out(a;b;k)! �fout(a;b;k)g(" k in(a; b; k))Next we have in(a; b; k)in(a;b;k)! ", and we can derive " k in(a; b; k)in(a;b;k)! " k ". Thuswe have �fout(a;b;k)g(" k in(a; b; k))in(a;b;k)! �;(" k ")In order to see that this expression has the possibility to terminate, we derive " #and thus (" k ") #, so �;(" k ") #Finally, we conclude that the given process �;(out(a; b; k) k in(a; b; k)) can �rst exe-cute out(a; b; k), then execute in(a; b; k) and �nally terminate. Note that this is theonly execution sequence that can be derived from the inference rules.7.2 Algebraic speci�cation of the transition rulesThe translation of the transition rules into an algebraic speci�cation needs someexplanation. In the transition rules we de�ned the transition predicate and thetermination predicate. However, for a simulator we need to know for a given processalgebra expression all possible transitions coming from this expression. Thus we arenot interested in the transition relation itself, but in the function transitions whichcalculates for a given PROCESS a TRANSITIONLIST. A TRANSITION consistsof an ATOM which is the label of the transition and a PROCESS which is theresulting process after executing the atomic action. Some additional functions areneeded for calculating the list of transitions of a given process.For example, Table 8 shows that if one wants to calculate the transitions forx + y, one simply has to calculate the transitions of both x and y (equation 4).The case of x:y is a bit more involved. By combining the two derivation rules forsequential composition from Table 8, we obtain equations 5 and 6. If we considerthe case that x does not terminate, the subtle point is that the transitions of x:y arenot completely equal to the transitions of x. The residue after executing an actionhas to be extended with y. For this purpose we use the overloaded \:" function.The same procedure is carried out for the remaining operators.The algebraic speci�cation of the predicate terminates is straightforward.

Tools for Message Sequence Charts 2037.2.1 Transitionsimports BMSC-Semantics6:1:1exportssorts TRANSITION TRANSITIONLISTcontext-free syntax\|" ATOM \!" PROCESS ! TRANSITION\[" fTRANSITION \;"g� \]" ! TRANSITIONLISTTRANSITIONLIST \[" TRANSITIONLIST ! TRANSITIONLIST fleftgTRANSITIONLIST \:" PROCESS ! TRANSITIONLISTTRANSITIONLIST \k" PROCESS ! TRANSITIONLISTPROCESS \k" TRANSITIONLIST ! TRANSITIONLIST\�lter" \ " ATOM-SET \(" TRANSITIONLIST \)" ! TRANSITIONLISTterminates(PROCESS) ! BOOLtransitions(PROCESS) ! TRANSITIONLIST\(" TRANSITIONLIST \)" ! TRANSITIONLIST fbracketghiddensvariablesM ! ATOM-SETx ! PROCESSy ! PROCESSa ! ATOMtl[0-9]� ! fTRANSITION \;"g�\<"iid\>"[0-9]� ! IID\<"mid\>"[0-9]� ! MID\<"aid\>"[0-9]� ! AIDequations[1] transitions(�) = [][2] transitions(") = [][3] transitions(a) = [| a ! "][4] transitions(x + y) = transitions(x) [transitions(y)[5] transitions(x : y) = transitions(x) : y [transitions(y)whenterminates(x) = true[6] transitions(x : y) = transitions(x) : ywhenterminates(x) = false[7] transitions(x k y) = transitions(x) k y [x k transitions(y)[8] transitions(x k y) = transitions(x) k y[9] transitions(�M (x)) = �lterM (transitions(x))[10] terminates(") = true[11] terminates(a) = false[12] terminates(�) = false[13] terminates(x + y) = terminates(x) j terminates(y)[14] terminates(x : y) = terminates(x) & terminates(y)[15] terminates(p(x)) = terminates(x)[16] terminates(x k y) = terminates(x) & terminates(y)[17] terminates(�M (x)) = terminates(x)

204 S. Mauw & E. A. van der Meulen[18] [tl1] [[tl2] = [tl1; tl2][19] [] : x = [][20] [| a ! x; tl] : y = [| a ! x : y] [[tl] : y[21] [] k y = [][22] [| a ! x; tl] k y = [| a ! x k y] [[tl] k y[23] y k [] = [][24] y k [| a ! x; tl] = [| a ! y k x] [y k [tl][25] �lterM ([]) = [][26] �lterM ([| out(<iid>1; <iid>2; <mid>) ! x; tl]) =[| out(<iid>1; <iid>2; <mid>) ! �M [fout(<iid>1; <iid>2; <mid>)g (x)][�lterM ([tl])[27] �lterM ([| in(<iid>1; <iid>2; <mid>) ! x; tl]) = [| in(<iid>1; <iid>2; <mid>)! �M n fout(<iid>1; <iid>2; <mid>)g (x)][�lterM ([tl])whenelem(out(<iid>1; <iid>2; <mid>); M) = true[28] �lterM ([| in(<iid>1; <iid>2; <mid>) ! x; tl]) = �lterM ([tl])whenelem(out(<iid>1; <iid>2; <mid>); M) = false[29] �lterM ([| a ! x; tl]) =[| a ! �M (x)] [�lterM ([tl]) otherwise7.3 SimulationA simulator displays the current state of the BMSC and o�ers the user a choicebetween all possible continuations. Such a STATE consists of three parts. The�rst component is the PROCESS under consideration. The second component,NUMBERED-TRLIST, is the list of transitions associated to this process. Thetransitions are numbered in order to o�er the user the possibility of choosing sucha transition. The third component of the state is an ATOMLIST which containsthe history of the simulation session. It consists of all atomic actions chosen so far.The function execute accepts a number and a state and calculates the resultingstate after execution of the transition labeled with the given number.Note that the imported module Naturals is not included in this paper. It de�nesthe sort NAT with obvious properties.7.3.1 Simulatorimports Naturals Transitions7:2:1exportssorts NUMBERED-TRLIST STATE NUMBERED-TRANSITIONATOMLIST NUMBERED-ATOM NUMBERED-ATOMLISTcontext-free syntaxinitial-state(PROCESS) ! STATE

Tools for Message Sequence Charts 205\<" PROCESS \;"NUMBERED-TRLIST \;"ATOMLIST \>" ! STATE\[" fATOM \;"g� \]" ! ATOMLIST\(" NAT \)" ATOM ! NUMBERED-ATOM\[" fNUMBERED-ATOM \;"g� \]" ! NUMBERED-ATOMLISTATOMLIST \[" ATOMLIST ! ATOMLIST fleftgexecute(NAT, STATE) ! STATE\(" NAT \)" \|" ATOM \!" PROCESS ! NUMBERED-TRANSITION\[" fNUMBERED-TRANSITION \;"g� \]" ! NUMBERED-TRLISTnumber(TRANSITIONLIST) ! NUMBERED-TRLISTnumber-from(NAT, TRANSITIONLIST) ! NUMBERED-TRLISTNUMBERED-TRLIST \[" NUMBERED-TRLIST ! NUMBERED-TRLIST fleftghiddensvariablestl ! TRANSITIONLISTn ! NATa ! ATOMal ! ATOMLISTa[0-9]�\�" ! fATOM \;"g�tr[0-9]�\�" ! fTRANSITION \;"g�ntr[0-9]�\�"! fNUMBERED-TRANSITION \;"g�x[0-9]� ! PROCESSntl ! NUMBERED-TRLISTequations[1] number(tl) = number-from(1; tl)[2] number-from(n; []) = [][3] number-from(n; [| a ! x; tr�]) = [(n) | a ! x] [number-from(n + 1; [tr�])[4] [ntr�1] [[ntr�2] = [ntr�1; ntr�2][5] execute(n; < x1; [ntr�1; (n) | a ! x2; ntr�2]; al >) =< x2; number(transitions(x2)); al [[a] >[6] [a�1] [[a�2] = [a�1; a�2]7.4 ExampleFor the running example, represented by the term�;(out(a; b;m) � out(a; env; k) kaction(b; p) � in(a; b;m))the set of transitions isf out(a;b;m)! �;(out(a; env; k) kaction(b; p) � in(a; b;m));action(b;p)! �;(out(a; b;m) � out(a; env; k) k in(a; b;m))gThis means that executing event out(a; b;m) results in the BMSC represented by�;(out(a; env; k) kaction(b; p) � in(a; b;m)) and that execution of the alternativeaction action(b; p) results in �;(out(a; b;m) � out(a; env; k) k in(a; b;m)). Likewise,

206 S. Mauw & E. A. van der Meulenthe transition sets of the resulting processes can be determined. If the BMSC is�nished, the resulting process is ".If we select the simulate button in Figure 3, we obtain three windows from Figure8. The upper window is the selection window, in which all possible continuations ofthe BMSC are displayed. Either event may occur. The middle window displays thelist of all events executed until now. This list is empty. The lower window showsthe process algebra representation of the BMSC under consideration.

Figure 8: Starting the simulatorIf the user selects the �rst event, all windows will be updated (see Figure 9).The selection window now contains a new choice. The trace window contains thechosen event and the current window contains the process algebra representation ofthe BMSC resulting after having executed the event.

Figure 9: Result after selecting event number (1) in the previous �gureIf we subsequently select the second event, we obtain the situation from Figure10. Next, we select the �rst event and obtain the situation from Figure 11.Finally, there's only one remaining event. The result of selecting this event is inFigure 12. It shows that execution of the BMSC is �nished.8 ConclusionsThe main objective of this case study was to provide evidence that the formalsemantics de�nition of Basic Message Sequence Charts can be used to derive toolsin a straightforward way. The translation of the process algebra and the de�nitionsof the semantics functions into algebraic speci�cations is easy, but care has to be

Tools for Message Sequence Charts 207

Figure 10: Result after selecting event number (2) in the previous �gure

Figure 11: Result after selecting event number (1) in the previous �guretaken when implementing them as rewrite rules. In order to obtain a nice termrewriting system, some rules have to be deleted, added or modi�ed.We also speci�ed a simulator tool based on the operational semantics for Mes-sage Sequence Charts. The de�nition of this simulator could serve as a formalspeci�cation of such a tool. Finally, we formalized the static requirements.By using the Asf+Sdf Meta-environment we derived (prototypes of) tools forBMSCs. It proved to be a exible programming environment whose capabilitiesof incremental development helped in easy prototyping. The possibilities of de�-ning a user interface on top of the term rewrite engine enables the generation ofdemonstrable and usable tools.The possibility of prototyping makes it easy to explore new versions of MSCin standardization work and to make dialects of MSC for internal use. Changesto the syntax only require minor modi�cations to the speci�cation. Changes withrespect to the semantics and new language features require modi�cation of theformal semantics and a corresponding modi�cation of the speci�cation.A disadvantage of the term rewriting paradigm in Asf+Sdf is that, sometimes,easy to understand algebraic rules have to be transformed into a more implementa-tion directed form. The transformation into a TRS sometimes implies that decisionson implementation details are made, which were not expressed in the algebraic spe-ci�cation. For example, if we aim at complete TRSs (i.e. TRSs which are conuentand terminating, see [Klo92]), we need to decide on the implementation of com-mutative operators and the implementation of sets by ordered lists. Therefore,a completely automatic implementation of an algebraically speci�ed semantics bymeans of a TRS is not always feasible.

208 S. Mauw & E. A. van der Meulen

Figure 12: Result after selecting event number (1) in the previous �gureThe techniques described in this paper can be easily extended to the generalsetting of Message Sequence Charts. Due to the modular description, the frameworkfor Basic Message Sequence Charts can be reused almost completely.Starting from the algebraic speci�cations, there are two ways to proceed with thedevelopment of real tools. The obvious way is to manually translate the functionalityexpressed in the equations into e�cient code. The speci�cation can then be used forvalidation purposes. The second way is to (semi-) automatically generate e�cientprograms. This is topic of ongoing research ([KW93]).References[BK84] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communi-cation. Information & Control, 60:109{137, 1984.[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts inTheoretical Computer Science 18. Cambridge University Press, 1990.[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cations, vol. I,Equations and Initial Semantics. Springer-Verlag, 1985.[IT94] ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart(MSC). ITU-TS, Geneva, 1994.[IT95] ITU-TS. ITU-TS Recommendation Z.120 Annex B: Algebraic semanticsof Message Sequence Charts. ITU-TS, Geneva, Publ. Sched. 1995.[Kli93] P. Klint. A meta-environment for generating programming environments.ACM Transactions on Software Engineering Methodology, 2(2):176{201,1993.[Klo92] J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, andT. Maibaum, editors, Handbook of Logic in Computer Science, volume II,pages 1{116. Oxford University Press, 1992.[Koo92] J.W.C. Koorn. Connecting semantic tools to a syntax-directed user-interface. Report P9222, Programming Research Group, University ofAmsterdam, 1992.[Koo94] J.W.C. Koorn. Generating uniform user-interfaces for interactive pro-gramming environments. PhD thesis, University of Amsterdam, 1994.ILLC Dissertation series 1994-2.

Tools for Message Sequence Charts 209[KW93] J. F. Th. Kamperman and H.R. Walters. ARM, abstract rewriting ma-chine. Technical Report CS-9330, Centrum voorWiskunde en Informatica,1993.[MR94a] S. Mauw and M.A. Reniers. An algebraic semantics of Basic MessageSequence Charts. The computer journal, 37(4):269{277, 1994.[MR94b] S. Mauw and M.A. Reniers. An algebraic semantics of Message SequenceCharts. Experts Meeting SG10, Turin, TD9009, ITU-TS, 1994. ReportCSN94/23, Eindhoven University of Technology, 1994.[Plo83] G.D. Plotkin. An operational semantics for CSP. In Proceedings ofthe Conference on the Formal Description of Programming Concepts, vo-lume 2, Garmisch, 1983.[Ren94] M.A. Reniers. Syntax requirements of Message Sequence Charts. StudyGroup Meeting SG10, Geneva, TD59, ITU-TS, 1994.

210

