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Abstract. The recent formalization of the semantics of Message Sequence
Charts enables the derivation of tools for MSCs directly from this formal de-
finition. We use the ASF+SDF Meta-environment to make a straightforward
implementation of tools for transformation, simulation and requirements tes-
ting. In this paper we present the complete specification of the tools.

1 Introduction

Message Sequence Charts (MSCs) are a graphical method for the description of
the interaction between system components [IT94]. Due to the recent formaliza-
tion [MR94a, MR94b, IT95] of the semantics of Message Sequence Charts, we can
consider MSC as a formal description technique.

Currently, this formalization has already influenced the development of the lan-
guage (in particular with respect to composition of MSCs, for which algebraic ope-
rators are considered) and it is expected to also influence the use of MSCs.

Formalization will also have impact on the work of tool builders. The behavior
of tools can be validated against the formal semantics, but even more valuable is
the possibility to generate tools, or prototypes, directly from the formal definitions.
This paper is to be considered a case study in the formal development of computer
tools for programming languages.

In practice, tools for an informally defined language are developed mainly based
on the intuition of the program designer. Unless all people have a common un-
derstanding of the language, this leeds to inconsistent tools. If a formal definition
of the language is available, tools can also be based on the understanding of these
formal semantics. This may lead to more consistent tools, but in practice this only
works if the semantics is well accessible. A better approach would be to automa-
tically implement the formal semantics of the language. This leeds to correct and
consistent tools. A possible problem with this approach is that necessarily a formal
semantics has a high level of abstraction and is not directed towards possible tools.
Thus, automatic implementation of the formal semantics is not always feasible. An
operational semantics and decisions on implementation details may be needed.

Our aim is to demonstrate how the abstract definitions of the formal semantics of
Basic Message Sequence Charts (BMSCs) can be implemented. BMSCs are Message
Sequence Charts with only the main features: communication and local actions.
The techniques described in this paper transfer straightforward to the complete
MSC language. As described in [MR94a] the semantics of BMSCs is defined by a
translation into process algebra. This translation is defined by means of equations
and the axioms defining process algebra are also equations. Therefore, the obvious
way of implementing the semantics of MSCs is by using algebraic specifications
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We used the AsF+SDF Meta-environment [K1i93] for the implementation. With
this system algebraic specifications can be implemented by means of term rewriting
systems. Furthermore, a complete programming environment for BMSCs can be
generated, including a syntax directed editor, a parser and a pretty printer.

The implementation consists of three parts. The first part consists of an imple-
mentation of the static requirements for BMSCs expressed informally in [IT94] and
formalized in [Ren94]. The second part is the translation of BMSCs into process
algebra expressions. This is based on the definition of the semantic functions in
[MR94a]. The third part is the definition of a simulator for BMSCs. Although
a simulator is not part of the formal semantics, it can easily be derived from the
operational semantics given in [MR94a]. In fact the description of the simulator
can be regarded as a formal specification of a simulation tool.

Figure 1 describes the structure of the generated tool set. Boxes denote expres-
sions in the given language and arrows represent transformations from one language
to the other. Apart from the INPUT language which is plain ASCII, we consider
the following languages. MESSAGES is the language of output messages generated
by the requirements checker and the simulator, BMSC is the language of (parsed)
Basic Message Sequence Charts, PApjrsc is the process algebra theory used for
describing the semantics of BMSCs (see [MR94al]) and BPA is the sub-language of
PAgysc that only contains the normalized PApyrsc expressions. The generated

Syntax
Directed
Editor Checker
INPUT BMSC MESSAGES
Parser
Semantics
Calculator
Simulator
PA BMSC ‘ MESSAGES
Normalizer
BPA

Figure 1: Structure of the tools

tools are considered as transformation tools, described by algebraic specifications.
We specified the following tools.

Syntax directed editor and parser The parser converts plain ASCII text into

BMSC.

Checker The additional syntax requirements (static semantics) for BMSCs can be
checked with this tool.

Semantics Calculator The semantics of a BMSC is described by a translation
into the process algebra PAgysc. The Semantics Calculator (or semantics
function) computes the semantics of a BMSC.

Normalizer The normalizer reduces the expression resulting from the previous
step to normal form. This tool makes it possible to inspect the complete
behavior of the given BMSC.

Simulator Test runs of the BMSC can be generated interactively with the simu-
lator. It offers the user a choice between all possible continuations. After
selecting one event, it calculates the PApysc expression that results after
execution of the event.
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This paper is structured in the following way. Section 2 contains a description
of the AsF+SDF Meta-environment. In Section 3 we give a short overview of the
BMSC language. Section 4 contains the specification of the static requirements.
In Section 5 we define the process algebra and its specification in AsF+SDF. The
Semantics Calculator and Normalizer are defined in Section 6 and the simulator in
Section 7.

Although this paper covers the complete semantics of BMSCs, it is not inten-
ded as a self-contained explanation of these semantics. Refer to [MR94a] for a
comprehensive treatment.

Acknowledgements

Thanks are due to Arie van Deursen, Wilco Koorn, Michel Reniers and Eelco Visser
for their assistance during several phases of this project.

2 The ASF+SDF Meta-environment

The ASF+SDF Meta-environment [K1i93] is a programming environment generator
based on algebraic specifications. From a specification of the syntax and semantics
of a language an environment is generated, in its simplest form consisting of a
syntax directed editor and a term rewrite system. The generated environment can
be customized further by means of the language SEAL [K0092, Koo94].

2.1 Algebraic Specifications

An algebraic specification consists of a signature, a set of variables and a set of
equations. The signature describes a number of sorts and functions over these sorts.
Using these functions and the variables one can construct terms. The equations
define equalities between these terms.

Consider, e.g., an algebraic specification of the data-structure Booleans. The
signature defines one sort BOOL, two constants of sort BOOL, namely true —
BOOL and false -+ BOOL, one unary function not: BOOL — BOOL, and two bi-
nary functions and: BOOL # BOOL — BOOL and or: BOOL # BOOL — BOOL.
Let’s assume that a variable Bool over sort BOOL is declared. From the signature
and the variables terms like true, false, Bool, not(true), not(Bool), and(true,false),
and(Bool,true),
and “or” are defined by equations. We have, for instance, not(true) = false. A
complete specification of this data-structure in Asr+SDF notation will be given in
section 2.2.

etc. can be derived. The semantics of the functions “not”, “and”

The most common strategy for implementing algebraic specifications is via term
rewrite systems (TRSs). An algebraic specification can be transformed into a TRS
by interpreting the equations as rewrite rules from left to right. An algebraic spe-
cification of the Booleans can thus be used to compute the value of a function by
rewriting a term to its normal form, true or false.

The transformation into a TRS sometimes implies that decisions on implemen-
tation details are made, which were not expressed in the algebraic specification.
For example, if we aim at complete TRSs (i.e. TRSs which are confluent and ter-
minating, see [Kl092]), we need to decide on the implementation of commutative
operators and the implementation of sets by ordered lists. Therefore, a completely
automatic implementation of an algebraically specified semantics by means of a
TRS is not always feasible.
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2.2 The formalism ASF-+SDF

When specifying programming languages in an algebraic manner the syntax for
function definitions is found to be too restrictive. The formalism ASF+SDF the-
refore combines the algebraic specification formalism ASF with a formalism for
defining syntax: SDF. SDF allows for the combined specification of concrete syntax
(like in BNF) and abstract syntax. Hence, AsF+SDF is a formalism for writing
algebraic specifications with user defined syntax.

An ASF+SDF specification consists of a sequence of modules. Each module may
contain

Imports of other modules.
Sort declarations defining the sorts of a signature.
Lexical syntax defining layout conventions and lexical tokens.

Context-free syntax defining the concrete syntactic forms of the functions in the
signature.

Variables to be used in equations. In general, each variable declarations has the
form of a regular expression and defines the class of all variables whose name
is described by the regular expression.

Equations Conditional equations define the meaning of the functions defined in
the contex-free syntax.

Sort declarations, lexical functions, context-free syntax and variables are either part
of an export section in a module or can be declared as hidden. When a module
imports another module the export sections in the syntax definition as well as the
equations of the imported module are visible in the importing module. Hidden
sorts, functions or variables cannot be referred to by the importing module.

Example A simple example specification is given below consisting of the modules
Layout and Booleans. Module Booleans defines the Boolean values and operators.
In order to avoid ambiguities in parsing terms attributes {left} or {right} can be
added to function declarations, defining a function to be left associative or right
associative. For instance, the attribute {left} in BOOL ”&” BOOL — BOOL in-
dicates that the term true & false & true should be parsed as (true & false) & true
rather than true & (false & true). Moreover, the specifier can indicate by means of
priorities rules how terms should be parsed. For instance, the priority rule in module
Booleans states that the operator “not” binds stronger than the operator “&” which
in turn binds stronger than the operator “|”. Hence, the term not true & false will
be parsed as (not true) & false rather than not (true & false). Likewise, the term
true & false | true should be parsed as (true & false) | true. The function with the
attribute {bracket} is added only for grouping and disambiguation, it is not inclu-
ded in the abstract syntax.

The variable declaration “Bool[1-9’]x — BOOL” declares an infinite number of
variables of sort BOOL. All variables start with the letters Bool followed by zero
or more (%) occurences of numbers and quotes [1-9’]. In the equations we use only
one variable.

Module Booleans imports module Layout which consists of two lexical functions
for the predefined sort LAYOUT. The upper one defining that spaces (\, ), tabs (\t)
and newlines (\n) are layout, and thus separate tokens. The lower function defines
a comment convention by stating that any string starting with two percentage signs
(“%%”) followed by any number of characters other than a newline ("[\n]), and
concluded by a newline ([\n]) is to be considered layout as well.
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2.2.1 Booleans

imports Layout??-?

exports
sorts BOOL
context-free syntax
true — BOOL
false — BOOL

BOOL “” BOOL — BOOL {left}
BOOL “&” BOOL — BOOL {left}

“not” BOOL — BOOL
“” BOOL %)” — BOOL {bracket}
hiddens
variables
Bool [1-9']* - BOOL
priorities

BOOL “”"BOOL — BOOL < BOOL “&”BOOL — BOOL <
“not”BOOL — BOOL

equations
1]  true| Bool = true
[2] false| Bool = Bool
3] true & Bool = Bool
[4] false & Bool = false
[5] not true = false
[6] not false = true
2.2.2 Layout
exports

lexical syntax

[L\t\n] — LAYOUT

“9%9%” ~[\n]*[\n] — LAYOUT

Other features Other features of Asr+SpDF will be explained when necessary. In
particular, the use of default equations and the description of list sorts is explained
in section 4.1. More advanced priority rules are referred to in section 5.2.

3 Message Sequence Charts

Message Sequence Charts provide a graphical method for the description of the
communication behavior of system components. The ITU-TS (the Telecommuni-
cation Standardization Section of the International Telecommunication Union, the
former CCITT) maintains recommendation Z.120 [IT94] which contains the syntax
and an informal explanation of the semantics of Message Sequence Charts. A formal
semantics based on process algebra has been proposed in [MR94b]. This proposal
has been accepted for standardization by the ITU [IT95].

3.1 Basic Message Sequence Charts

In this paper we restrict ourselves to the core language of Message Sequence Charts,
which we call Basic Message Sequence Charts (BMSCs). A Basic Message Sequence
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Chart concentrates on communications and local actions only. These are the fea-
tures encountered in most languages comparable to Message Sequence Charts. Their
semantics is described in [MR94a].

A Basic Message Sequence Chart contains a (partial) description of the com-
munication behavior of a number of instances. An instance is an abstract entity
of which one can observe (part of) the interaction with other instances or with the
environment. The Basic Message Sequence Chart in Figure 2 defines the commu-
nication behavior between instances a and b. This will be the running example in
the remainder of this paper. An instance is denoted by a vertical axis. The time
along each axis runs from top to bottom.

A communication between two instances is represented by an arrow which starts
at the sending instance and ends at the receiving instance. In Figure 2 we consider
message m from instance a to instance b and message k which is sent from a to the
environment.. The behavior of the environment is not specified. For instance b we
also define a local action p.

msc examplel

Figure 2: Example Basic Message Sequence Chart

Although the activities along one single instance axis are completely ordered,
we will not assume a notion of global time. The only dependencies between the
timing of the instances come from the restriction that a message must have been
sent before it is received. In Figure 2 this implies for example that message m
is received by b only after it has been sent by a. Furthermore, it is required that
action p is executed before message m is received, and that message m is sent before
message k. For the sending of k and the reception of m no ordering is specified.

3.2 BMSC syntax

The grammar defining the syntax of textual Basic Message Sequence Charts as
presented in [MR94a] is given in Table 1. The nonterminals <mscid>, <iid>, <mid>
and <aid> represent identifiers. The symbol <> denotes the empty string. The
following identifiers are reserved keywords: action, endinstance, endmsc, env,
from, in, instance, msc, out and to. The language generated by a non-terminal
< x > is denoted by L(< z >).

The Basic Message Sequence Chart of Figure 2 has the following textual repre-
sentation.

msc examplel;
instance a;
out m to b;
out k to env;
endinstance;
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Table 1: The BNF grammar of Basic Message Sequence Charts
<msc> = msc <mscid>;

<msc body> endmsc;
<> |

<inst def> <msc body>
instance <iid>;

<msc body>

<inst def>
<inst body> endinstance;

<inst body> = <> |
<event> <inst body>
<event> = in <mid> from <iid>;

in <mid> from env;
out <mid> to <iid>;
out <mid> to env;

action <aid>;

instance b;
action p;
in m from a;
endinstance;
endmsc;

The context free syntax for BMSCs is expressed in ASF+SDF in the following
specification. It is easily derived from the BNF grammar.

The first module below defines the Identifiers, which consist of a character fol-
lowed by characters and digits. It states that there is an (invisible) mapping from
elements of the sort ID to the sorts MSCID, IID, MID and AID. The second module
defines the syntax of BMSCs.

3.2.1 Identifiers

imports Layout??-?

exports

sorts ID MSCID IID MID AID
lexical syntax

[a-z][a-z0-9)x — ID
context-free syntax

ID —» MSCID

ID — IID

ID — MID

ID —» AID

3.2.2 BMSC-Syntax

imports Identifiers®?!

exports
sorts MSC MSC-BODY INST-DEF INST-BODY EVENT
context-free syntax

msc MSCID “” MSC-BODY endmsc “” — MSC

— MSC-BODY
INST-DEF “” MSC-BODY — MSC-BODY
instance IID “;” INST-BODY endinstance — INST-DEF

— INST-BODY

EVENT “” INST-BODY — INST-BODY
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in MID from IID — EVENT
in MID from env — EVENT
out MID to IID — EVENT
out MID to env — EVENT
action AID — EVENT

3.3 Example

A syntax directed editor for BMSC is generated by the AsF+SDF Meta-environment,.
From the definition of the (context-free) syntax of BMSC, a scanner and a parser
for BMSC is created. If the text in the editor is conform the BMSC syntax the
parser generates the corresponding BMSC term. Figure 3 shows a snapshot of the
syntax directed editor, containing the running example of figure 2. Note, that but-
tons are connected to the editor for the four other tools. These buttons are created
by means of the user interface language SEAL [K0092, Koo94]. When a button is
selected the corresponding tool is applied to the BMSC in the editor.

[®] BMSC-Syntax : /nfssadam/adal/emmasSPEC/MSEL
[1 tree text expand help

m=c runningexample :
instance a !
out m to by
out k to env:
endinstance !
instance b :
action pi
in m from a
endinstance :
endmsc 2

L

Figure 3: Syntax directed editor

4 Requirements

Two static requirements for Basic Message Sequence Charts are formulated in
[MR94a]. The first is that an instance may be declared only once. The second
is that every message identifier occurs exactly once in an output action and once
in a matching input action, or in case of a communication with the environment a
message identifier occurs only once. In addition we will check whether all instances
that are referred to in messages have been declared. Module Requirements imports
two auxiliary modules: Xevents and Messages.

4.1 Xevents

The specification of the requirements is facilitated when an MSC is represented by
a list of its events. We therefore introduce the sort XEVENT. This is an event
extended with the name of the instance it belongs to. E.g., when instance a sends
a message m to instance b, out m to b, the corresponding extended event is out m
from a to b.

The declaration “[” {XEVENT “;”}x “]” — XEVENTLIST declares a list of zero
or more (¥x) XEVENTSs separated by semicolums (“;”) and surrounded by square
brackets (“[” “]”). The variables declaration “<” zevent“>” “x”[0-9]%x — {XEVENT
7.7 }% declares variables over such lists of XEVENTSs. Any list of XEVENTSs matches

variables like <zevent>x, <zevent>x1, <zevent>x13 etc.. Equation 6 defines the
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union of two lists of XEVENTS as a list containing the events of the first list followed
by those of the second list.

The functions xevent, xeventy,q,, xevent;;s; and extend are introduced to derive
a list of extended events from an MSC. Equations 1 through 11 specify the behavior
of these functions.

The function message-name returns an MIDLIST, a list containing the message
identifier of an XEVENT. Equations 12 through 15 specify the application of this
function to all xevents describing input or output actions. Equation 16 is a so called
default equation, marked with the keyword otherwise. Such an equation is only
used for rewriting a given term if no other equation applies. Hence, equation 16
states that the message-name of any xevent not describing an input or output action
equals the empty list [].

Equations 17 and 18 specify that two xevents match, if one of them represents
the sending of a message to an instance and the other one is the xevent for the re-
ception of that message. The default equation 19 states that applying the predicate
matching-xevents to any other pair of xevents equals false.

4.1.1 Xevents

imports BMSC-Syntax®?? Booleans??!
exports
sorts XEVENTLIST XEVENT MIDLIST

context-free syntax

“" {XEVENT “”}x “]” — XEVENTLIST
xevents(MSC) — XEVENTLIST
xevents “_” body “(” MSC-BODY «)” — XEVENTLIST
xevents “_” inst “(” IID «” INST-BODY “)” — XEVENTLIST
XEVENTLIST “u” XEVENTLIST — XEVENTLIST {left}
in MID from IID to IID — XEVENT
in MID from env to 11D — XEVENT
out MID from IID to IID — XEVENT
out MID from IID to env — XEVENT
action AID by IID — XEVENT
extend(IID, EVENT) — XEVENT
message-name(XEVENT) — MIDLIST
“"AMID “"}x €7 — MIDLIST
matching-xevents(XEVENT, XEVENT) — BOOL

hiddens

variables

“<"msc-body“>" — MSC-BODY
“<?inst-def“>" “«”[0-9]x — {INST-DEF “ }«
“<”inst-body“>" — INST-BODY
“<” event“>"[0-9)* — EVENT

“<’zevent“>” “«"[0-9)x — {XEVENT “}«
“<” zevent“>"[0-9)* — XEVENT

“<"mscid“>" — MSCID
“<7iid“>"[0-9) — IID
“<"mid“>” — MID
“<”aid“>" — AID
equations
1]  xevents(msc <mscid>; <msc-body> endmsc;) = Xeventsbody (<msc-body>)

[2] Xevent;sbody 0O

[
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(3] Xevent;sbody (instance <iid>; <inst-body> endinstance; <msc-body>) =

xevents, . (<iid>, <inst-body>) U Xeventsbody (<msc-body>)

[4]  xevents, (<ud>,) =[]

st

[s]  xevents, (<iid>, <event>; <inst-body>) =

st
[extend(<uid>, <event>)] U xevents, . (<ud>, <inst-body>)

6] [<zevent>]] U [<zevent>;] = [<zevent>]; <zevent>3]

71  extend(<#id>1, in <mid> from <iid>>) = in <mid> from <iid>, to <iid>;
8] extend(<iid>1, in <mid> from env) = in <mid> from env to <ud>,

9] extend(<id>:, out <mid> to <ud>,;) = out <mid> from <id>, to <id>,
o] extend(<ud>1, out <mid> to env) = out <mid> from <iid>, to env
[11] extend(<i#id>1, action <aid>) = action <aid> by <#id>;

[12] message-name(in <mid> from <iid>; to <#d>>) = [<mid>]

[13] message-name(in <mid> from env to <iid>;) = [<mid>]

[14] message-name(out <mid> from <iid>; to <ud>,) = [<mid>]

[15] message-name(out <mid> from <iid>; to env) = [<mid>]

[16] message-name(<zevent>) = otherwise
matching-xevents(out <mid> from <#d>, to <iid>,,

(17 in <mid> from <iid>; to <iid>») ~ true
matching-xevents(in <mid> from <iid>; to <iid>s,

(18] out <mid> from <iid>1 to <iid>») ~ true

[19] matching-xevents(<zevent>, <zevent>;) = false otherwise

4.2 Messages

Module Messages defines the general syntax of the error messages used in module
Requirements. Note, that these are not messages in the sense of MSC, but messages
to inform the user of the system. Four kinds of messages are distinguished in the
lexical syntax. (1) Opening brackets < followed by a string without the symbol >
and concluded by >, (2) Opening brackets < followed by a string without quotes
or >, and concluded by quotes. (3) Quotes followed by a string without > and
concluded by >. (4) Quotes followed by a string without quotes or > and concluded
by quotes.

This syntax allows for composed messages of sort MESSAGELIST like [« in

instance "a" an error has been found >].
The operator U specifies the union of lists of messages.
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4.2.1 Messages

imports Layout??-?
exports
sorts MESSAGE MESSAGELIST
lexical syntax
“>]x>” - MESSAGE
“7~[\” >]x“\"” — MESSAGE
A" ~[>]x“>” - MESSAGE
A7\ >)x“\"” - MESSAGE
context-free syntax
“I’ MESSAGE=x “)” — MESSAGELIST
MESSAGELIST “v” MESSAGELIST —+ MESSAGELIST {left}
hiddens

variables
m[0-9]x“+” — MESSAGEx
equations
[ U [ma] = [my ms]

4.3 Requirements specification

The main function in module Requirements is the function check for MSCs. The
result of checking an MSC is CHECKINFO, composed of a boolean value and a
possible empty list of error messages. Two CHECKINFOs can be added by means
of the function CHECKINFO and CHECKINFO. Equation 1 specifies how this
is done. The sort MESSAGE is extended so that identifiers and xevents can be
referred to in error messages.

As mentioned before, three requirements will be checked. Equation 2 states
that the function check invokes the functions unique-instance-names, inst-declared
and check-message-names. Equations 3 to 5 specify the semantics of the functions
unique-instances and uing.qy. According to equation 4 an empty MSC-BODY is
correct, i.e. all instance names are unique. If the MSC-BODY consists of an instance
definition followed by an MSC-BODY, we check that the name of the first instance
does not occur in the set of declared instance names of the remaining MSC-BODY.
By arecursive call of the function uing,q, the rest of the BMSC is checked (equation
5). The error messages are generated by the auxiliary function notin. Equation 6
states that if a given instance name occurs at any position in a list of instance
names, the Boolean value false and an error message are returned. Otherwise, the
Boolean value true and an empty list of error messages are returned (equation 7).
Equations 8, 9 and 10 inductively define the auxiliary function declared-instnames,
which computes the set of instance names in an MSC-BODY.

The function inst-declared checks whether instances referred to by input and
output actions have been declared (equation 11). The auxiliary functions refinsts
select the names of all instances referred to by input or output actions of an MSC
(equations 12 unto 17). The function included-in checks if all IIDs in a list do occur
in another list of IIDs. If not, an error-message is generated (equations 18  20).

Application of the function check-message-names to an MSC invokes the appli-
cation of the functions unique-message-names and check-nonmatching-messages to
the corresponding list of xevents. Equation 23 specifies that unique-message-names
selects all pairs of xevents that mistakenly have the same message name. If such a
pair is present, an error message is generated and the function is recursively applied
to the rest of the list. Lists without such pairs are correct according to equation 24.
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Equation 25 specifies that check-nonmatching-messages removes all matching
pairs of input output actions from a list of xevents. If no such pairs are left in
the list the function aux-nonmatching-messages is invoked (equation 26). Applying
aux-nonmatching-messages to an empty list yields the boolean value true and an
empty list of error messages. If the first xevent in the list represents receiving a
message from an instance or sending a message to an instance, no matching action
will be present in the rest of the list. Therefore, an error message is generated and
the rest of the list is checked. If the first xevent is any other action, it is correct

S. Mauw & E. A. van der Meulen

and the rest of the list is checked (equations 27 — 30).

4.3.1 Requirements

imports Xevents®'' Messages*?"'
exports
sorts CHECKINFO IIDLIST
context-free syntax
check(MSC)
“Check:” BOOL “Errors:” MESSAGELIST
CHECKINFO and CHECKINFO

MESSAGE IID MESSAGE
MESSAGE MID MESSAGE
MESSAGE XEVENT MESSAGE

unique-instance-names “(” MSC “)”
uin “” body “(” MSC-BODY “)”

IID notin IIDLIST

declared-instnames “(” MSC “)”
declared-instnames “(” MSC-BODY “)”

inst-declared(MSC)
refinsts(MSC)
refinsts(XEVENTLIST)
refinsts(XEVENT)

IIDLIST includedin IIDLIST

44[7: {IID “777}* “]77
IIDLIST “u” IIDLIST

check-message-names(MSC)
unique-message-names(XEVENTLIST)

— CHECKINFO
— CHECKINFO
— CHECKINFO

— MESSAGE
— MESSAGE
— MESSAGE

— CHECKINFO
— CHECKINFO
— CHECKINFO
— IIDLIST
— IIDLIST

— CHECKINFO
— IIDLIST
— IIDLIST
— IIDLIST
— CHECKINFO

— IIDLIST
— IIDLIST

— CHECKINFO
— CHECKINFO

check-nonmatching-messages( XEVENTLIST) - CHECKINFO

aux-nonmatching-messages(XEVENTLIST)
hiddens

variables
b[0-9)* — BOOL
mil[0-9) s MESSAGELIST
“<msct>" — MSC
“<”msc-body“>" — MSC-BODY
“<"inst-def“>” — INST-DEF
“<"inst-body“>" — INST-BODY
“<”event“>" “47[0-9]x — {EVENT “7”}x
“<" event“>" — EVENT
zel — XEVENTLIST

— CHECKINFO

{left}

{left}

“<77 Ievent“>” “*77 [0_9]*
“<” zevent“>"[0-9)*
((<77 mscid“>77

“<77 Z'Z'd“>77 “*77 [0_9]*

i

— {XEVENT %"}«
— XEVENT

— MSCID

— {IID “ "}«

— 1ID
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“<7iid“>"[0-9) — 1ID

“<"mid“>" — MID

“<”aid*>" — AID
equations

(1] Check: by Errors: ml, and Check: by Errors: ml, = Check: by & b, Errors: ml, U ml,

[2]  check(<msc>) = unique-instance-names(<msc>)
and inst-declared(<msc>)
and check-message-names(<msc>)

3] unique-instance-names(msc <mscid>; <msc-body> endmsc;) = uinbody (<msc-body>)

Check: true Errors: ||

(4] uinbody 0

5] uinbody (instance <iid>; <inst-body> endinstance; <msc-body>) =

<#id> notin declared-instnames(<msc-body>) and Uinbody (<msc-body>)

[6] <iid> notin [<iid>], <iid>, <iid>3] =

Check: false Errors: [<<duplicate instance name " <iid> " >>]
[7]  <#d> notin [<iid>"] = Check: true Errors: [] otherwise
8] declared-instnames() = []

9]  declared-instnames(instance <ud>; <inst-body> endinstance; <msc-body>) =
[<iid>] U declared-instnames(<msc-body>)

(o] declared-instnames(msc <mscid>; <msc-body> endmsc;) =

declared-instnames(<msc-body>)

[11] inst-declared(<msc>) =

refinsts(<msc>) includedin declared-instnames(<msc>)

[12] refinsts(<msc>) = refinsts(xevents(<msc>))

[13] refinsts([]) I

[14] refinsts([<zevent>; <zevent>*]) =

refinsts(<zevent>) U refinsts([<zevent>*])
15] refinsts(in <mid> from <iid>, to <i#d>,) = [<iid>1]
[16] refinsts(out <mid> from <iid> to <iid>;) = [<iid>2]

[17] refinsts(<zevent>) = otherwise

(18] [] includedin [<#id>"] = Check: true Errors: []
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(19]

(20]

(21]

[22]

(23]

[24]

25]

(26]

[27]

(28]

[29]

[30]

S. Mauw & E. A. van der Meulen

[<iid>], <iid>, <#d>3) includedin [<iid>3, <id>, <iid>3] =

[<iid>], <iid>3] includedin [<#d>}, <iid>, <@id>}]

[<itd>, <iid>]] includedin [<iid>35] =

Check: false Errors: [<<instance " <iid> "used but not declared>>] otherwise
and [<iid>]] includedin [<#id>3]

[<id>T] U [<iud>3] = [<iud>T, <iid>j)]

check-message-names(<msc>) = unique-message-names(zel)
and check-nonmatching-messages(zel)
when
zel = xevents(<msc>)

unique-message-names([<zevent>]; <revent>s;
<zevent>3; <zrevent>;
<zevent>;])
= Check: false
Errors: [<<duplicate message name. " <mid> " >>]
and unique-message-names([<zevent>7;
<zevent>3;
<zevent>:])
when
[<mid>] = message-name(<zevent>;),
[<mid>] = message-name(<zevent>,),
false = matching-xevents(<zevent>s,
<zevent>4)

unique-message-names([<zevent>"]) = Check: true Errors: [] otherwise

check-nonmatching-messages(|<zevent>]; <zevent>s;
<zevent>3; <zevent>y;
<zevent>}])
= check-nonmatching-messages([< revent>1;
<zevent>};
<zevent>}])
when
matching-xevents(<zevent>,, <zevent>4) = true

check-nonmatching-messages([<zevent>"]) =

aux-nonmatching-messages([<zevent>*]) otherwise
aux-nonmatching-messages([]) = Check: true Errors: ||

aux-nonmatching-messages([in <mid> from <#d>, to <id>,; <zevent>"]) =

Check: false

Errors: [<<no_matching ,event for," in <mid> from <iid>; to <iid>, " ,>>]
and check-nonmatching-messages([<zevent>*])

aux-nonmatching-messages([out <mid> from <iid>; to <i#d>z; <zevent>"]) =
Check: false

Errors: [<<no_matching ,event for," out <mid> from <iid> to <iid>> ",>>]
and check-nonmatching-messages([<zevent>"])

aux-nonmatching-messages([<zevent>; <zevent>*]) =

Check: true Errors: |] otherwise
and check-nonmatching-messages([<zevent>"])
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4.4 Example

When the Check button in Figure 3 is selected the relevant functions are applied
to the term in the editor and the generated term rewrite system is used to compute
the result. A window will pop up containing this result. Figure 4 shows the result
of checking the BMSC in our running example. Since this term is correct the list of
error messages is empty. Next, suppose that we change the message name k in out
k to env of Figure 3 into m. Selecting the check button then results in the window

of Figure 5.

@] Requirements : /nfs/adamsadal emma/ 5]
[] tree text expand help

Figure 4: Result of checking a correct BMSC

[*] Requirements : /nfss/adamsadal emma/H]
[] tree text expand help

Check:
" false
Errors:
[ <<duplicate message name " m " >» 1‘

Figure 5: Result of checking a BMSC with a double occurrence of message m

5 Process algebra

This section contains the definition of the process algebra PAgassc. First we define
the atomic actions. After that we give the definition of the process algebra PA. and
extend it with the state operator.

5.1 Atomic actions

The process algebra PAgprsc is an algebraic theory for the description of process
behavior based on ACP [BW90, BK84]. First we will define the set of atomic actions
of f%413A{5(L

Every (extended) event occurring in a BMSC will be translated into an atomic
action from PApgarsc. Thus we have the atomic actions as displayed in Table 2.

The description in ASF+SDF of the atomic actions is given in module Atoms.
Instead of defining the sets from Table 2, we define four predicates. The equations
defining these predicates are straightforward.

5.1.1 Atoms

imports PA-Kernel®-?-? Identifiers®>?' Booleans??!
exports

context-free syntax
in(IID, 11D, MID) — ATOM
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Table 2: The atomic actions of PAgysc

A; = Ain(s,r,m)|s,r € IID,m e MID}
A, = Aout(s,r,m)|s,r€IID,me MID}
A, = Hout(s,env,m)|se€IID,me MID}

U{in(env,r,m) | r € IID,m € MID}
A, = Aaction(i,aid)|i € IID,aid € AID}
A = A UA,UA UA,

in(env, IID, MID) — ATOM
out(IID, IID, MID) — ATOM
out(IID, env, MID) — ATOM
action(IID, AID) — ATOM

is-in-atom(ATOM) — BOOL
is-out-atom(ATOM) — BOOL

is-env(ATOM) — BOOL
is-action(ATOM) — BOOL
hiddens
variables
atom]0-9]x — ATOM

“<7ud“>"[0-9x — 11D

“<”mid“>"[0-9]x — MID

“<7aid“>"[0-9x — AID
equations

1] is-in-atom(in(<#id>1, <iid>, <mid>)) = true

[2]  is-in-atom(atom) = false otherwise

8]  is-out-atom(out(<itd>:, <id>,, <mid>)) true

[4]  is-out-atom(atomn) = false otherwise
[5] is-env(in(env, <iid>:, <mid>)) = true

6] is-env(out(<iid>1, env, <mid>)) = true

[71  is-env(atom) = false otherwise

[8]  is-action(action(<ud>, <aid>)) = true

[9)  is-action(atom) false otherwise

5.2 PA,

The theory PApaysc is an extension of the theory PA. . The signature of PA.
consists of the following functions.

1. the special constants § and e
2. the set of atomic actions A

3. the unary operator /
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4. the binary operators +, -, || and ||

The special constant § denotes the process that has stopped executing actions
and cannot proceed. This constant is called deadlock. The special constant £ denotes
the process that is only capable of terminating successfully. It is called the empty
process.

The atomic actions from A are the smallest processes in the description. The
actual set A is defined in Table 2.

The binary operators + and - are called the alternative and sequential composi-
tion. The alternative composition of the processes z and y is the process that either
executes process x or y but not both. The sequential composition of the processes
x and y is the process that first executes process x, and upon completion thereof
starts with the execution of process y.

The binary operator || is called the free merge. The free merge of the pro-
cesses ¢ and y is the process that executes the processes x and y in parallel.
For a finite set D = {d,---,d,}, the notation | ,.,P(d) is an abbreviation for
P(dy) |l --- | P(dy,). If D = @ then || ,c,P(d) = e. For the definition of the merge
we use two auxiliary operators. The termination operator / applied to a process z
signals whether or not the process x has an option to terminate immediately. The
binary operator || is called the left merge. The left merge of the processes z and y
is the process that first has to execute an atomic action from process x, and upon
completion thereof executes the remainder of process 2 and process y in parallel.

In the priorities section of module PA-Syntax one finds the line {left: PROCESS
IPROCESS — PROCESS , PROCESS || PROCESS — PROCESS } . This means
that the operators merge ” ||” and left merge 7| ” associate from left to right.
Moreover, the operator - for sequential composition binds stronger than either of
the merge operators, whereas the merge operators bind stronger than the operator
for alternative composition.

5.2.1 PA-Syntax

imports Layout??-?

exports

sorts ATOM PROCESS PROCESS_LIST

context-free syntax
ATOM — PROCESS
PROCESS “+” PROCESS — PROCESS {right}
PROCESS “” PROCESS — PROCESS {right}
“§” — PROCESS
“e” — PROCESS
PROCESS “|” PROCESS — PROCESS {left}
PROCESS “||” PROCESS — PROCESS ({left}
“  “(” PROCESS ©)” — PROCESS
“(” PROCESS “)” — PROCESS {bracket}

priorities
PROCESS “”PROCESS — PROCESS > {left:
PROCESS “|”PROCESS — PROCESS,
PROCESS “|| "PROCESS — PROCESS} >
PROCESS “+”PROCESS — PROCESS

For a € AU{0} and processes x,y, z, the axioms of PA. are given in the Table 3.
Axioms A1 A9 are well known. The axioms TE1 TE3 express that a process x
has an option to terminate immediately if v/(z) = £, and that /(z) = § otherwise.
In itself the termination operator is not very interesting, but in defining the free
merge we need this operator to express the case in which both processes z and y
are incapable of executing an atomic action. Axiom TM1 expresses that the free
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Table 3: Axioms of PA.

r+y = y+x A1l
(z+y)+z = z+([y+2) A2
r+z =z A3
(z+y)-z =z-24+y-2 A4
(x-y)-z =z (y-2) A5
r+d6 == A6
d-x = 06 AT
T-e = A8
e-x = x A9

zlly = zly+yllz+/(z) V(@) TMI1

ele =4 TM2
a-zl|ly = a-(z|y) TM3
(x+y)z =z z+y| = TM4

Vi) = ¢ TE1
(a-z) =36 TE2
ViE+y) = V(@) +V) TE3

merge of the two processes z and y is their interleaving. This is expressed in the
three summands. The first two state that z and y may start executing. The third
summand expresses that if both z and y have an option to terminate, their merge
has this option too.

Some problems arise when interpreting the axioms of Table 3 as term rewrite
rules. It is clear that axiom A1 hinders termination. If we would simply delete this
axiom, we would not be able to rewrite § + a into a, so we add axiom A6a from
Table 4. A second problem is that axiom A8 (z - & = z) is often used from right to
left in calculations (e.g. al|b=a-¢||b=a-(c]|b) =... = a-b). Therefore, if we
give A8 an orientation from left to right, we must add the axioms TM3a and TE2a.

Finally, in order to simplify expressions we add axioms TM1a and TM1b. Note
that all these axioms are provable for closed process expressions.

Table 4: Additional axioms

b+z ==z A6a
elle = TMla
zle =z TM1b
alz = a-x TM3a
V@) =96 TE2a

We decided to split up the axioms of PA. over two separate ASF+SDF modules.
The first module PA-Kernel only contains rules which deal with simplification of
expressions containing the special constants. The second module PA contains the
rules concerning the actual rewriting into normal form. The reason is that after
translating a BMSC into a process algebra expression, one is not always interested
in a complete reduction into normal form. The simulator, for example, does not
need the normal forms.

It is well known that the complete state space of a parallel process may become
very large. This is the so-called state explosion problem. The normal form of a
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process corresponds to its state space, so we will only calculate it when necessary.

5.2.2 PA-Kernel

imports PA-Syntax®?"'
hiddens
variables

z— PROCESS

equations

T+ =
0+
0. x

ZT.c¢€

=

=
([ [l
8 8 8 8 > 8 8

ot

E.T =

=

x| e

S EENE

=)

clle =

5.2.3 PA

15.2.2

imports PA-Kerne
hiddens
variables
a — ATOM
[ryz] - PROCESS

equations

(T+y +z=2a+y+2

w

(z4+y) .z =z.24+y.z

]
]
]
(4] (z.y) .z ==x.y.z
5l zlly =zlly+yll z+ V(. V()
6 el z =34
M a.zly =a. (z]y)
8 al z =a.z
] o =z =34
o (z+y)llz=zlz2+yl 2
[ V(e =
2] (a. ) =94
(3] (a) =34
(14 V/(8) =4
VI

r+y = V@ + V)

5.3 The state operator \;,

A Basic Message Sequence Chart specifies a (finite) number of instances that com-
municate by sending and receiving messages. A message is divided into two parts: a
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message output and a message input. The correspondence between message outputs
and message inputs has to be defined uniquely by message name identification.

A message input may not be executed before the corresponding message output
has been executed. We introduce an operator Aj; that enables only those execution
paths that respect the above constraint. The operator Aj; is an instance of the
state operator as can be found in [BW90]. This operator remembers all message
outputs that have been executed in a set M and only allows a message input if its
corresponding message output is in that set.

Before specifying the signature of the state operator, we need a specification of
sets of atomic actions with operators for testing, difference and union.

5.3.1 Atom-Set

imports Atoms®'!
exports
sorts ATOM-SET
context-free syntax
“7 {ATOM “"}x “}” — ATOM-SET
elem(ATOM, ATOM-SET) — BOOL

ATOM-SET “\” ATOM-SET — ATOM-SET {left}
ATOM-SET “U” ATOM-SET — ATOM-SET {left}
“” ATOM-SET «)” — ATOM-SET {bracket}
priorities
ATOM-SET “\” ATOM-SET — ATOM-SET >
ATOM-SET “U”ATOM-SET — ATOM-SET
hiddens
variables
M [0-9)x — ATOM-SET
b“x”[0-9) — {ATOM "}«
b“_'_”[o_g] % {ATOM (4777 }+

[ab] — ATOM
equations
n {bi, a, b3, a, b3} = {b1, a, b3, b3}
[2]  elem(a, {b7, a, b3}) = true
3]  elem(b, M) = false otherwise
4 {bi, a, b3} \ {bs, a, bi} = {b1, b3} \ {b3, b3}
5] M\ M, = M, otherwise
6]  {bi} U {b3} = {b1, b3}

5.3.2 State-Operator-Syntax

imports Atom-Set®3!

exports
context-free syntax

“A7 47 ATOM-SET “(” PROCESS “)” — PROCESS

The axioms for the state operator are given in Table 5.

Again, some additional axioms are needed in order to get a complete term re-
writing system. These are displayed in Table 6.

The axioms are again partitioned in axioms for simplification (module State-
Operator-Kernel) and axioms for reduction to normal form (module State-Operator).
The equations can be derived easily from Tables 5 and 6.
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Table 5: Axioms for the state operator Aps
Av(e) = € itM=0 LM1
Au(e) =4 it M #£0 LM2
Av(d) = 6 LM3
Av(a-z) = a-Ay(x) ifadg A, U A, LM4
AM(O’U’t Z:j: m 33) = OUt(i,j, m) ’ AMLJ~{c)ut(z'7j,'m)}(Cl:) LM5
Am(in(i, j,m) - x) = in(i,J,m) - A\ fout(i,j,m)} (2) if out(i,j,m) € M LM6
if out(i,j,m) € M
Av(in(i,j,m)-x) = § if out(i,j,m) ¢ M LM7
Av(z+y) = Au(z) + A (y) LM8
Table 6: Auxiliary axioms for the state operator

Av(a) = a ifag A,UA;, M =10 LM4a
Ap(a) = 6 ifag A,UA;, M#0 LM4b
Ay (out(i,j,m)) = out(i,j,m) -6 LM5a
Am(in(i,j,m)) = in(i,j,m) if out(i,j,m) € M, M\{out(i,j,m)} =0 LM6a
Am(in(i,gj,m)) = in(i,j,m) -4 if out(i,j,m) € M, M\{out(i,j,m)} #0 LM6b
Am(in(i,j,m)) = 6 if out(i,j,m) ¢ M LMT7a

5.3.3 State-Operator-Kernel

imports State-

Operator-Syntax®-3-2

— ATOM-SET
— ATOM
— PROCESS

“<iid“>7[0-9)x — TID

hiddens
variables

M [0-9)«

a

T

“<77 mz'd“>77
equations
Ay, () =
(2] Ay (e) =
B Ay, (6) =

— MID

= ¢ when M={}

5 when M# {}

=94

5.3.4 State-Operator

imports State-Operator-Kernel®3-3

hiddens
variables
M [0-9]*
a
[zy2]

— ATOM-SET
— ATOM
— PROCESS

“<iid“>7[0-9)% — TID

LL<77 mz’d“>77

equations

— MID
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(2]

(4]

(10]

(1]
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/\M(G.ZE)ZG./\M(I)
when
is-out-atom(a) = false,
is-in-atom(a) = false
Ay (a)=a
when
M={},
is-out-atom(a) = false,
is-in-atom(a) = false
Ay (a)=a.d

when

M#{},
is-out-atom(a) = false,
is-in-atom(a) = false

Ay (out(<itd>1, <iid>>, <mid>) . x)

out(<iid>1, <#d>, <mid>) .

A (out(<ud>y, <iid>,, <mid>)) =

w (

AL (In(<iid>q, <itd>,, <mid>) . 1) =

M

A, (In(<itd>q, <iid>2, <mid>)) =

M

A, (In(<#d>y, <id>2, <mid>)) =

M

)\M(

Ay (in(<d>1, <iid>,, <mid>))

Ay @4 y) = Ay (@) + 2y, ()

M u {out(<itd>q, <itd>,, <mid>)}

in(<#d>1, <tid>z, <mid>) . 1) =

(z)

out(<id>1, <id>,, <mid>) . §

in(<ud>q, <#id>2, <mid>)
) AM\ {out(<iid>,, <tid>,, <mid>)} ()
when
elem(out(<ud>q, <id>,, <mid>), M) = true

in(<ud>q, <#id>2, <mid>)

when

elem(out(<itd>1, <#d>,, <mid>), M) = true,
M\ {out(<ird>1, <itd>,, <mid>)} = {}

in(<itd>y, <#d>z, <mid>) . §
when

elem(out(<itd>1, <#d>,, <mid>), M) = true,
M\ {out(<iid>1, <iid>;, <mid>)} # {}

)

when
elem(out(<ud>1, <#d>,, <mid>), M) = false
)

when
elem(out(<itd>1, <itd>;, <mid>), M) = false
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6 Translation into process algebra

In this section, we will define a semantic function S that associates to every Basic
Message Sequence Chart in textual format a closed PAgysc term. Before we give
the definition of this semantic function we need to explain some auxiliary functions.
The powerset of a set S is denoted by IP(S).

The function

Instances : L(<msc>) — IP(L(<inst def>))

that associates to a Basic Message Sequence Chart the set containing all instance
definitions of the instances defined in the chart, is defined by

Instances(msc <mscid>; <msc body> endmsc;) =
Instancespody(<msc body>)

where the function
Instancespody : L(<msc body>) — IP(L(<inst def>))

is defined by

Instancespody(<>) = 0
Instancespody(<inst def><msc body>) =
{<inst def>} U Instancespody(<msc body>)

Next we define the following two functions

Name : L(<inst def>) — L£(<iid>)
Body : L(<inst def>) — L(<inst body>)

These functions associate to an instance definition its name and body.

Name(instance <iid>;<inst body> endinstance;) = <iid>
Body(instance <iid>;<inst body> endinstance;) = <inst body>

6.1 The semantic function

The general idea is that the semantics of a Basic Message Sequence Chart is the
free merge of the semantics of its instances. By this construction we enable all
interleavings of the message outputs and message inputs. However, a message input
can only be performed after its corresponding message output. In order to rule out
all interleavings where a message output is preceded by the corresponding message
input we use the state operator Ay;. We define the function S : L£(<msc>) —

T(ZPABMSC‘) by

S[[msc]] = A@ (” zdef €Instances(msc) Sin“[[idef ]])

The semantic function S;,s : L£(<inst def>) — T(Xpag,,sc) is defined to
express the semantics of one instance in separation. In the textual representation
of an instance the atomic actions are specified in the order they are to be executed,
thus the semantics of an instance definition is the sequential composition of its
actions.

Sinst[idef ] = s,f‘(fg;”e”def ) [Body(idef )]

where for i € £(<iid>) the function
S;ody : L(<inst body>) = T (Xpasycc)

is defined by
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Sgodyll<>]] = £
Shoay[<event><inst body>] =
St oni]<event>] - Sgody [<inst body>]

event

and for every i € £(<i1id>) the function

i
Sevent

: L(<event>) = T'(Xpagysc)
is defined by

in <mid> from <iid>;] = in(<iid>,i,<mid>)
in <mid> from env;] = in(env,i,<mid>)
out <mid> to <iid>;] = out(i, <iid>, <mid>)
out <mid> to env;] = out(i,env, <mid>)

event
event

evenf

[4
[4
evenfl[
[
[

action <aid>;] = action(i,<aid>)

event

The translation of the semantic function into ASF+SDF is rather straightfor-

ward. The only problem is that the generalized merge construct ( || idef elnsmmes(msc))

occurring in the definition of S[msc] requires higher order functions. Therefore, we
combined the generalized merge and the application of the function S;,s into one
single function || Sinst. This function requires the collection of all instance defi-
nitions as input and calculates the parallel composition of the semantics of these
instances. The set of instances is calculated by the auxiliary function Instances.

Furthermore, notice that we only import the kernel of the process algebra. This
means that we only have the signature and some rules for simplification, but not
the defining equations.

6.1.1 BMSC-Semantics

imports State-Operator-Kernel®** BMSC-Syntax®??
exports

sorts INST-DEF-LIST

context-free syntax

“S” “(” MSC “)” — PROCESS
“S? «7 “inst” “(” INST-DEF «)” — PROCESS
“S? «7 “body” “” IID “(” INST-BODY “)” — PROCESS
((S77 ((_77 “event” [{5 IID “(77 EVENT “)77 — PROCESS
hiddens
context-free syntax
“)S” «” “inst” INST-DEF-LIST — PROCESS
“(” {INST-DEF “”}x «)” — INST-DEF-LIST
INST-DEF-LIST “u” INST-DEF-LIST — INST-DEF-LIST {left}
“Instances” (MSC) — INST-DEF-LIST
“Instances” “_” “body” “(” MSC-BODY ¢)” — INST-DEF-LIST
“Name” (INST-DEF) — 1ID
“Body” (INST-DEF) — INST-BODY
variables
“<inst-def>" “«”[0-9]x — {INST-DEF “ }»
i — IID
“<"msc“>" — MSC
“<"msc-body“>" — MSC-BODY
“<"inst-def“>” — INST-DEF
<”inst-body*“>" — INST-BODY
“<” event“>"[0-9)* — EVENT
“<"mscid“>" — MSCID
“<iid“>" — 11D

“<"mad“>" — MID
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“<”aid“>" — AID

equations

(7]

(9]

(10]

(11]

(12]

[13]

[14]

(15]

[16]

(17]

(18]

S(<msc>) = )\{} (I1S; o Instances(<msc>))

HSI'HSt () = £

1S, (<inst-def>)

S; ot (Sinst-def>)

Hsinst (<inst-def>, <inst-def>") =

S. ot (Sinst-def>) || |IS, . (<inst-def>")

inst t

Name(<inst-def>)

S, o (<inst-def>) = body (Body(<inst-def>))
)
S =
body 0 ¢
S' (<event>; <inst-body>) =
body
S (<event>) . S (<inst-body>)
event body
S (in <mid> from <iid>) = in(<iid>, i, <mid>)
event
s' (in <mid> from env) = in(env, i, <mid>)
even
" (out <mid> to <iid>) = out(i, <iid>, <mid>)
event
(out <mid> to env) = out(i, env, <mid>)
event
(action <aid>) = action(i, <aid>)
event

Instances(msc <mscid>; <msc-body> endmsc;) =

Instancesbody (<msc-body>)
Inst.emces.:body O=20

Inst.emces.:body (<inst-def>; <msc-body>) =

(<inst-def>) U Instances (<msc-body>)

body

Name(instance <iid>; <inst-body> endinstance) = <iid>
Body(instance <iid>; <inst-body> endinstance) = <inst-body>

(<inst-def>]) U (<inst-def>) = (<inst-def>], <inst-def>})
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6.2 Example

The result of applying this translation to the BMSC in the editor of Figure 3 is
the process algebra term Ag(out(a,b, m) - out(a, env, k) || action(b, p) - in(a, b, m)).
The application of the merge operator (||) shows that the semantics of the given
BMSC is the interleaved execution of the processes out(a,b,m) - out(a,env, k) and
action (b, p) -in(a,b,m)). The state operator (Ag) in front of the expression enforces
that input of message m only occurs after the corresponding output.

Figure 6 shows the window that appears after having selected the Semantics
button.

[#] BMSC-Semantics : /nfs/adamsadal emmasSPEC/MSC/NEW/Semantics § H]
[] tree text expand help

lambda

£ Floutiarb.m} . out{a,env.k) |l actionib.p} . inta.b.mi} N

Figure 6: Result of computing the semantics of a BMSC

6.3 Normalization

The state operator and the merge operator in the expression of Figure 6 can be
eliminated. This is called normalization. The resulting term contains the operators
for sequential composition (-) and alternative composition (+) only. It expresses all
possible behaviors of the BMSC. The normalizer is simply defined by combining the
definitions of the semantic functions and the complete specification of the process
algebra.

6.3.1 Normalize

imports BMSC-Semantics®'' PA®?? State-Operator®®*

6.4 Example

Figure 7 shows the effect of pressing the normalize button in the editor of Figure 3.
It expresses the branching structure of the process. First one can make a choice
between executing out(a,b,m) and action(b,p). If one chooses the first option,
another choice has to be made between out(a, env, k) and action(b, p). The rest of
the process can be understood in a similar way.

[¢] Mormalize : /nfs/adamsadalsemmasSPEC/MSC/NEW/NormalizedSefTH
tree text expand help

ut{a, b.m) .
toutla.env.k) , actionib.p) ., inf{a.b.m}
+
actionf(h.p?
(infa.b.m} , outla.env.k) + outia,env. k) , inla.b.m)} )

ctionth,p? .
out{a.b.m .
foutia,env. k) . inta k.m} + inta.b.m! . outla.env.kil

Figure 7: Result of normalizing the semantics of a BMSC
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7 A simulator

For large BMSCs, the expressions describing the normalized semantics as in Figure 7
become quite large and complex. This is the so-called state explosion problem.
Therefore, the tools offer the possibility to walk through the events of a BMSC in
any of the admitted orders. Thus, the user can interactively simulate the behavior
of a BMSC. For this purpose we used the operational semantics for BMSCs from
[MR94a]. This operational semantics defines for a given BMSC a labeled transition
system. The transitions correspond with the events of the BMSC.

First, we will interpret the definition of the transition rules in an algebraic
specification. After that, we define the additional functions needed to obtain a
simulator.

7.1 Transitions

In this section we define a structural operational semantics of Basic Message Se-
quence Charts in the style of Plotkin [Plo83]. For this purpose we define action
relations on closed PAgrsc terms.

On the set of PAgysc terms we define a predicate |C T(Epa,,,, o) and binary
relations = C T(Zpapyec) X T(Epagpyse) for every a € A. These predicates are
defined by means of inference rules, which have the following form.

P1,---3Pn
q
This expression means that for every instantiation of variables in py,...,p,.,q we
can conclude ¢ from py,...,p,. If ¢ is a tautology, we omit p;,...,p, and the

horizontal bar.
The intuitive idea of the predicate | is as follows: | denotes that t has an option

to terminate immediately, i.e. € is a summand of ¢. For z,y € T(Xpagysc), and
M C A,, the predicate | is defined in Table 7.

Table 7: The predicate |
el

z rl,yl yl
(+y)d (@)l (=+y)l

] xl,yd z
WE)d @yl Qu)

The intuitive idea of the binary operator — is as follows: t = s denotes that the
process t can execute the atomic action a and after this execution step the resulting
process is s. For z,2',y,y' € T(Epagysce), @ € A, M C A,, i,j € L(<iid>), and
m € L(<mid>), the binary relations % are defined in Table 8.

We will illustrate the use of these action relations with an example. Consider
the following expression.

Ag(out(a,b, k) ||in(a,b, k))

out(i$b7k

We have out(a, b, k)OUt(iib7k)E7 so we can derive out(a, b, k) || in(a,b, k) e |lin(a,b, k).

From this we can conclude
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Table 8: The action relations —»

a,
a — €
5 y 5y r > gz T
4y > o T4y >y Ty S -y T -
a i a i a, i
T = x y =y T = x
zlly = a'lly zlly = x|y zlly = a'lly

out(i,j,m)
e

out(i,jm)EM | x

in(i,j,m)

T
a, out(i,j,m in(z,j,m
Am(z) = Au (@) Ay () () AMUfout(ij,m)3 (') Au(®) (hdym) A\ Jout(ij,m)} ()

. out(a,b,k .
No(out(a, b, k) [l in(a, b, )" SN fput(asiy (¢ | ina, b, k)

Next we have in(a, b, k)m(&)b’k)s, and we can derive ¢ || in(a, b, k)

we have

aPh |le. Thus

3 in(a,b,k)
/\{out(a,b,k)}(6 || 'LTL((I, b7 k)) - /\@ (6 || 6)

In order to see that this expression has the possibility to terminate, we derive € |
and thus (g ¢) |, so

Aolelle)

Finally, we conclude that the given process Ag(out(a, b, k) || in(a,b, k)) can first exe-
cute out(a, b, k), then execute in(a, b, k) and finally terminate. Note that this is the
only execution sequence that can be derived from the inference rules.

7.2 Algebraic specification of the transition rules

The translation of the transition rules into an algebraic specification needs some
explanation. In the transition rules we defined the transition predicate and the
termination predicate. However, for a simulator we need to know for a given process
algebra expression all possible transitions coming from this expression. Thus we are
not interested in the transition relation itself, but in the function transitions which
calculates for a given PROCESS a TRANSITIONLIST. A TRANSITION consists
of an ATOM which is the label of the transition and a PROCESS which is the
resulting process after executing the atomic action. Some additional functions are
needed for calculating the list of transitions of a given process.

For example, Table 8 shows that if one wants to calculate the transitions for
x + y, one simply has to calculate the transitions of both z and y (equation 4).
The case of x.y is a bit more involved. By combining the two derivation rules for
sequential composition from Table 8, we obtain equations 5 and 6. If we consider
the case that = does not terminate, the subtle point is that the transitions of z.y are
not completely equal to the transitions of x. The residue after executing an action
has to be extended with y. For this purpose we use the overloaded “.” function.
The same procedure is carried out for the remaining operators.

The algebraic specification of the predicate terminates is straightforward.




7.2.1 Transitions

imports BMSC-Semantics®!*
exports

sorts TRANSITION TRANSITIONLIST

context-free syntax

terminates(PROCESS)
transitions(PROCESS)
“( TRANSITIONLIST «)”

hiddens

variables

M — ATOM-SET
z — PROCESS
Yy — PROCESS
a — ATOM
t[0-9)* — {TRANSITION “ }«

“—7 ATOM “—” PROCESS
(([77 {TRANSITION ((’77}* “]77

TRANSITIONLIST “u” TRANSITIONLIST
TRANSITIONLIST “.” PROCESS

TRANSITIONLIST “|” PROCESS
PROCESS “||” TRANSITIONLIST
“filter” “7 ATOM-SET “(” TRANSITIONLIST “)”

“<?iid“>"[0-9x - 11D
“<”mid“>"[0-9)% — MID
“<"aid“>"[0-9« — AID

equations

w e =

~

(6]

[10]
(1]
(12]
(13]
[14]
[15]
[16]

(17]
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— TRANSITION

— TRANSITIONLIST

— TRANSITIONLIST {left}
— TRANSITIONLIST

— TRANSITIONLIST
— TRANSITIONLIST
— TRANSITIONLIST
— BOOL

— TRANSITIONLIST

— TRANSITIONLIST {bracket}

transitions(d) =

transitions(e) =

transitions(a) =[—a—¢]

transitions(xz + y) = transitions(z) U transitions(y)

transitions(z . y) = transitions(z) . y U transitions(y)
when

terminates(z) = true

transitions(z . y) = transitions(z) .

when

terminates(z) = false

transitions(

x|
z| y)

transitions(

transitions(\,  (z)) = ﬁlterM (transitions(z))

terminates(e) = true

terminates(a) = false

terminates(d) false

terminates(z + y)
)

terminates(,/(x))

transitions(z) || y

terminates(z) | terminates(y)

terminates(x

| y) = transitions(z) | y U z || transitions(y)

terminates(z) & terminates(y)

terminates(z || y) = terminates(z) & terminates(y)

(
(
(
(
terminates(x . y
(
(
(

terminates A (z)) = terminates(x
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(18]
[19]
(20]
(21]
(22]
(23]

[24]

(25]

[26]

[27]

(28]

[29]
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[th] U [th] = [th, th)]
.z = ]
[—a—zt]l.y =[—a—-z.yJUt].y
01y = I
[—a—ztllly=[—a—-z||yult]|y
yIl ] = ]
ylll a—-ztl = a—-yllduyl| [t
filter,, () = [
ﬁ]terM ([  out(<itd>1, <itd>3, <mid>) — z, tl]) =

[ out(<itd>y, <itd>2, <mid>) — A
u ﬁlterM ([t)

(2)]

M u {out(<itd>,, <itd>,, <mid>)}

ﬁ]terM ([  in(<#d>q, <itd>2, <mid>) — z, tl])
=[ in(<#“d>, <“d>y, <mid>)

- )‘M\ {out(<iid>, <iid>,, <mid>)} (T)]

U filter,  ([tl])

when
elem(out(<iid>1, <#id>,, <mid>), M) = true

ﬁ]terM ([ in(<iéd>, <itd>;, <mid>) — z, tl]) = ﬁlterM ([th)

when
elem(out(<ud>1, <#d>,, <mid>), M) = false

filter, ([—a — x, t]]) =

wu (
[ a—=A, (@U ﬁlterM ([t]) otherwise

7.3 Simulation

A simulator displays the current state of the BMSC and offers the user a choice
between all possible continuations. Such a STATE consists of three parts. The

first component is the PROCESS under consideration. The second component,
NUMBERED-TRLIST, is the list of transitions associated to this process. The
transitions are numbered in order to offer the user the possibility of choosing such
a transition. The third component of the state is an ATOMLIST which contains
the history of the simulation session. It consists of all atomic actions chosen so far.

The function execute accepts a number and a state and calculates the resulting

state after execution of the transition labeled with the given number.

Note that the imported module Naturals is not included in this paper. It defines

the sort NAT with obvious properties.

7.3.

1 Simulator

imports Naturals Transitions” 2’
exports

sorts NUMBERED-TRLIST STATE NUMBERED-TRANSITION

ATOMLIST NUMBERED-ATOM NUMBERED-ATOMLIST

context-free syntax

initial-state(PROCESS) — STATE
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((<77 PROCESS ((’77
NUMBERED-TRLIST “”
ATOMLIST “>” — STATE
“I" {ATOM “”}x «7 — ATOMLIST
“(” NAT “)” ATOM — NUMBERED-ATOM
“"” {INUMBERED-ATOM “”}x “]” — NUMBERED-ATOMLIST
ATOMLIST “u” ATOMLIST — ATOMLIST {left}
execute(NAT, STATE) — STATE
“” NAT ¢)? «— ATOM “—=” PROCESS — NUMBERED-TRANSITION
“" {INUMBERED-TRANSITION “”}x “]” — NUMBERED-TRLIST
number(TRANSITIONLIST) — NUMBERED-TRLIST
number-from(NAT, TRANSITIONLIST) — NUMBERED-TRLIST
NUMBERED-TRLIST “u” NUMBERED-TRLIST -+ NUMBERED-TRLIST {left}
hiddens
variables
tl — TRANSITIONLIST
n — NAT
a — ATOM
al — ATOMLIST

a0-9+“" = {ATOM “7}«
tr{0-9%“«” — {TRANSITION “7}«

ntr[0-9)+“” — {NUMBERED-TRANSITION "}«
[0-9)% — PROCESS

ntl — NUMBERED-TRLIST
equations
1]  number(tl) = number-from(1, tl)

[2]  number-from(n, []) =

3] number-from(n, [— a — z, tr*]) = [(n) — a — 2] U number-from(n + 1, [tr"])
4]  [ntr]] U [ntr3] = [ntr], ntr3]

[5] execute(n, < x1, [ntry, (n) a— o, ntry], al >) =

< x2, number(transitions(z)), al U [a] >

6] [ai] U [a3] = [ai, a3

7.4 Example

For the running example, represented by the term
Ag(out(a,b,m) - out(a, env, k) || action(b, p) - in(a,b, m))

the set of transitions is

{

out(a,b,m)

Ag(out(a, env, k) || action(b, p) - in(a,b,m)),

aCtion(b7p))\@(out(a, b,m) - out(a,env, k) || in(a,b,m))}

This means that executing event out(a,b, m) results in the BMSC represented by
Ag(out(a, env, k) || action(b, p) - in(a,b,m)) and that execution of the alternative
action action(b, p) results in Agp(out(a,b,m) - out(a, env, k) || in(a, b, m)). Likewise,
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the transition sets of the resulting processes can be determined. If the BMSC is
finished, the resulting process is €.

If we select the simulate button in Figure 3, we obtain three windows from Figure
8. The upper window is the selection window, in which all possible continuations of
the BMSC are displayed. Either event may occur. The middle window displays the
list of all events executed until now. This list is empty. The lower window shows
the process algebra representation of the BMSC under consideration.

[®] Simulator-Ui : /nfs/adamsadal/emmas/SPEC/MSCAMNEW /S i)
[] tree text expand help

{<{zelect an event>> [ ¢ 1 } outia b.mi,
{2 ) astiontb.pl 1

@] Output : /nfssadam/adal/emmas/SPEC/MSC/NEW/ Trace &
[] tree text expand help

[®] Qutput : /nfssadam/adal/emmasSPEC/MSC/NEW/Current E
[1 tree text expand help

lambda € ¥loutia.b.m) , outfa.env.k) |l actionth.p) . inta b.mil

Figure 8: Starting the simulator

If the user selects the first event, all windows will be updated (see Figure 9).
The selection window now contains a new choice. The trace window contains the
chosen event and the current window contains the process algebra representation of
the BMSC resulting after having executed the event.

[®] Simulator-Ui : sn¥ssadamsadal/emmasSPEC/MSC/NEWS i
[] tree text expand help

{¢gelect an event>> [ (1 » outla.env.kl.
{2 actioni{b.p} ]A

[®] Output : /nfs/adam/adal/emmasSPEC/MSC/NEW/ Trace
[] tree text expand help

L ooutifa hb.my 1

T

[®] Output : /nfs/adam/adal/emmas/SPEC/MSCANEW Current E]
[] tree text expand help

lambda

£ outla.b.md 3 foutia.env.k) || actionib.p) . in(a.b,m)h

Figure 9: Result after selecting event number (1) in the previous figure

If we subsequently select the second event, we obtain the situation from Figure
10.

Next, we select the first event and obtain the situation from Figure 11.

Finally, there’s only one remaining event. The result of selecting this event is in
Figure 12. Tt shows that execution of the BMSC is finished.

8 Conclusions

The main objective of this case study was to provide evidence that the formal
semantics definition of Basic Message Sequence Charts can be used to derive tools
in a straightforward way. The translation of the process algebra and the definitions
of the semantics functions into algebraic specifications is easy, but care has to be
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[®] Simulator-Ui : /nfs/adam/adal emma/SPEC/MSC/MEW/ S5
[ tree text expand help

{<{zelect an event>> [ (1 } outia-env.ki.
2 inta bomd 1

[¢] Output : /nfs/adam/adal/emma’/SPEC/MSCANEW Trace
[1 tree text expand help

[ outia.b.m).
action{b.p} I,

[®] Output : /nfssadams/adal/emmasSPEC/MSC/NEW/ Current [}
[] tree text expand help

lambda _ € outfa.b.m} 3 { outia.env.k? || infa.b.my 3

Figure 10: Result after selecting event number (2) in the previous figure

[¢] Simulator-Ui : snfs/adamsadal/emmasSPECAMSC/NELW /S ]
[1 tree text expand help

{zelect an event>> [ (1} infa.b.md 1

[®] Dutput : s/nfs/adamsadalsemmasSPEC/MSCAMEW, Trace
[ tree texk expand help

[ out{a.b.m},
actionth.pl.
out fa.env. k1

i@ Output : /nfs/adam/adal/emmas/SPEC/MSC/NEW/Current &l
i tree text expand help

Alambda _ £ outia.b.m? ¥ 0 infacb.m) )

Figure 11: Result after selecting event number (1) in the previous figure

taken when implementing them as rewrite rules. In order to obtain a nice term
rewriting system, some rules have to be deleted, added or modified.

We also specified a simulator tool based on the operational semantics for Mes-
sage Sequence Charts. The definition of this simulator could serve as a formal
specification of such a tool. Finally, we formalized the static requirements.

By using the AsF+SDF Meta-environment we derived (prototypes of) tools for
BMSCs. It proved to be a flexible programming environment whose capabilities
of incremental development helped in easy prototyping. The possibilities of defi-
ning a user interface on top of the term rewrite engine enables the generation of
demonstrable and usable tools.

The possibility of prototyping makes it easy to explore new versions of MSC
in standardization work and to make dialects of MSC for internal use. Changes
to the syntax only require minor modifications to the specification. Changes with
respect to the semantics and new language features require modification of the
formal semantics and a corresponding modification of the specification.

A disadvantage of the term rewriting paradigm in ASF+4SDF is that, sometimes,
easy to understand algebraic rules have to be transformed into a more implementa-
tion directed form. The transformation into a TRS sometimes implies that decisions
on implementation details are made, which were not expressed in the algebraic spe-
cification. For example, if we aim at complete TRSs (i.e. TRSs which are confluent
and terminating, see [Klo92]), we need to decide on the implementation of com-
mutative operators and the implementation of sets by ordered lists. Therefore,
a completely automatic implementation of an algebraically specified semantics by
means of a TRS is not always feasible.
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[¢] Simulator-Ui : /nfs/adam/adal/emmasSPEC/MSC/NEW ST
[ tree text expand help

<{zelect an eventr> [ 1

[® Output : /nfs/adams/adal/emma/SPEC/MSC/MNEL Trace
[] tree text expand help

[ outia b.m}.
actionth,.p?.
out{a.env.kl.
infa kemr 1

[®] Output : snfssadamsadalsemmasSPEC/MSC/MEW/Current

[] tree text expand help

Figure 12: Result after selecting event number (1) in the previous figure

The techniques described in this paper can be easily extended to the general
setting of Message Sequence Charts. Due to the modular description, the framework
for Basic Message Sequence Charts can be reused almost completely.

Starting from the algebraic specifications, there are two ways to proceed with the
development of real tools. The obvious way is to manually translate the functionality
expressed in the equations into efficient code. The specification can then be used for
validation purposes. The second way is to (semi-) automatically generate efficient
programs. This is topic of ongoing research ([KW93]).
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