
A PSF library of data typesS. Mauw� J. C. Mulder��Dept. of Mathematics and Computing Science, EindhovenUniversity of Technology, P.O. Box 513, 5600 MB Eindhoven,The Netherlands, email: fsjouke,hansmg@win.tue.nlAbstract. We present a library of basic data types for the process speci�ca-tion formalism PSF. The speci�cation is written in the algebraic speci�cationformalism ASF, which is a sublanguage of PSF.1 IntroductionPSF (Procees Speci�cation Formalism, [MV93]) is a language for the formal spec-i�cation of distributed systems. The dynamic part is based on the Algebra ofCommunicating Processes (ACP [BW90, BK84]) and the static part on the Alge-braic Speci�cation Formalism (ASF [BHK89]). In this paper we will only discussthe static part.The elegance of an algebraic speci�ation formalism such as ASF partly comesfrom the fact that, in contrast to modern programming languages, it has no built indata types. This leads to a semantics that is easy to understand, but also to a quitecumbersome speci�cation style. Users have to give their own de�nitions of, say,Booleans and Natural numbers, which may distract the attention from the actualtarget of speci�cation. Since the ASF language allows for reuse of speci�cations bymeans of modularisation and parameterisation constructs, it is possible to collectfrequently used primitive data types into a library.The library speci�cation in a language such as ASF is at the same level as thetarget speci�cation. This has an advantage over the case where a library is de�nedon a lower level, which is the case for, e.g. COBOL, namely, the semantics of thelibrary are de�ned by the semantics of the speci�cation language. Furthermorethe existing tools don't need to be extended since the library is de�ned within thespeci�cation language. A drawback is that the implementation of the library datatypes by means of the existing tools for term rewriting may not be as e�cient as atailored implementation.There exist several libraries for algebraic speci�cation languages. We mentionthe LOTOS library [ISO89], the SDL library [IT88] and the library from [Mos92].The �rst two libraries can be considered subsets of our library (neglecting the lan-guage speci�c data types in the SDL library). The library from [Mos92] is aboutas extensive as ours, but has a rather di�erent goal. The language used there hasa rich syntax and semantics allowing for short and expressive speci�cations. Bycontrast, PSF is rather spartan. Under the restriction that our speci�cation mustbe algebraically correct, we tried to make a speci�cation as e�cient as possible.This is not the target of [Mos92], in which readability was the primary goal.Experience has shown that it is di�cult to write a library which satis�es theneeds of all users. An example of a particularly hard problem is to provide asu�ciently 
exible error handling mechanism. Even if one comes close to a completelibrary, the so-called Not Invented Here syndrome causes people to write their ownbasic data type speci�cations anyway.For PSF two attempts for a general library of basic data types are in [MV93] and[vW93]. The �rst only contains the modules that are shared by the speci�cations in[MV93]. The second is a more serious attempt to make a general library. Both arecurrently being distributed with the PSF-Toolkit [Vel93]. The library from [vW93]Proceedings of the ASF+SDF95 workshop on generating tools from algebraic speci�cations,May 11 & 12, 1995, CWI, Amsterdam



2 S. Mauw & J. C. Mulderhas several shortcomings. First of all, due to its size, compilation takes quite sometime. Furthermore its performance is ratheru slow since the algorithms used werenot optimal with respect to term rewriting. Next, the interfaces of the data typesare not completely uniform and some useful data types were missing. Finally itcontains some errors.The library presented in this paper is adapted from the library in [vW93] wherewe resolved the above mentioned shortcomings. We don't think this is the �nal PSFlibrary. Practical experience has to point out new shortcomings.The library consists of the following data types: Booleans, Sequences, Tables,Naturals (decimal, binary and unary), Integers (decimal), Floats (decimal), Char-acters (ASCII), Strings and Finite sorts with equality.We considered including Cartesian product types (also known as records). Thelanguage would be marginally easier to use if this construct were built in. As it is,we can simulate products using parameterized modules, but binding such a moduleis almost as much work as creating a product type from scratch. Consequently, wedecided to leave them out of the library.Our aim was to write a library within the existing PSF language, restricted bythe possibilities of the current term rewriting tool. Thus, we do not add specialfeatures to the language, although it would certainly be more e�cient to solve someof the problems by changing the language or the tools. Therefore, we consider so-called hybrid implementations as cheating. Furthermore, we adhere to the initialalgebra semantics, so we do not have special features, such as partial functions, neg-ative conditions and ordered equations, which would have resulted in more e�cientand concise speci�cations. The consequence of not having partial functions is thatwe have to make all functions total by choosing default outcomes. For example, wechose to specify x=0 = 0.Furthermore, we have the rigid syntax of ASF, which is less 
exible than theformalism ASF+SDF allows for. The natural number 42 is, e.g. represented bythe expression nat(^4^2). Since one of our objectives was to make an executablespeci�cation, we did not include abstract data types such as sets. Nevertheless,we do provide a module called Quasi-Sets, which de�nes set operations on setsimplemented as lists.The speci�cation can be interpreted as a term rewriting system (TRS) by or-dering the equations from left to right. The TRS obtained in this way is complete.We will not give a proof of this property.The complete PSF-Toolkit, including the new library can be obtained by anony-mous ftp from ftp://ftp.win.tue.nl/pub/psf/psf.0.9.5.tar.Z.2 Overview of the libraryIn order to avoid summing up lengthy speci�cations, we will not present the com-plete library here. A typical user of the library will only need the visible signaturesof the relevant data types plus an intuition of the meaning. This is the interfacebetween his speci�cation and the library speci�cation.For each data type from the library we will informally explain its meaning, givethe exported signature, describe the normal forms and give some examples. Noticethat for reasons of conciseness, we do not adhere strictly to the PSF syntax. Forinstance, we will contract the declarations of two functions if they have the sametype.



A PSF library of data types 32.1 BooleansThis module de�nes the standard Boolean values and functions.module: Booleanssort: BOOLEANfunctions:true, false : -> BOOLEANnot : BOOLEAN -> BOOLEANeq, ne, and, or, xor : BOOLEAN # BOOLEAN -> BOOLEANtypical normal form: trueexample: or(true, false) = true2.2 SequencesThis �rst two modules below de�ne two 
avours of sequences, with or without theempty sequence. Both modules are parameterized with the type of the elements ofthe sequence. The disadvantage of having an empty sequence is that you need an er-ror element in that type. Sequences are built from the constructors empty-sequenceand in�x ^; non-empty sequences from pre�x ^ and in�x ^.Quasi-sets are actually sequences on which we de�ned some typical set opera-tors.module: Sequencesparameter: Elementssort: ITEMfunctions:eq : ITEM # ITEM -> BOOLEANerror-element : -> ITEMsort: SEQfunctions:empty-sequence : -> SEQ_^_ : SEQ # ITEM -> SEQ^_ : ITEM -> SEQfirst, last : SEQ -> ITEMtail, reverse : SEQ -> SEQconcat : SEQ # SEQ -> SEQeq, ne : SEQ # SEQ -> BOOLEANelem : ITEM # SEQ -> BOOLEANwith Elements bound to Booleans:typical normal form: (empty-sequence ^ true) ^ falseexample: elem(false, ^ true ^ false) = true



4 S. Mauw & J. C. Muldermodule: Non-Empty-Sequencesparameter: Elementssort: ITEMfunction: eq : ITEM # ITEM -> BOOLEANsort: SEQfunctions:̂ _ : ITEM -> SEQ_^_ : SEQ # ITEM -> SEQfirst, last : SEQ -> ITEMtail, reverse : SEQ -> SEQconcat : SEQ # SEQ -> SEQeq, ne : SEQ # SEQ -> BOOLEANelem : ITEM # SEQ -> BOOLEANwith Elements bound to Booleans:typical normal form: ^(true) ^ falseexample: elem(false, ^ true ^ false) = truemodule: Quasi-setslike Sequences, except:functions:insert, delete : ITEM # SEQ -> SEQis-member : ITEM # SEQ -> BOOLEANis-subset, equal, not-equal : SEQ # SEQ -> BOOLEANunion, intersection, difference : SEQ # SEQ -> SEQwith Elements bound to Booleans:typical normal form: ^(true) ^ falseexample: intersection(^ true, ^false) = empty-sequence2.3 TablesLookup tables are de�ned in the next two modules. The parameters Keys and Itemsare separate, so we can bind them to two di�erent modules. The module Tablesuses a linear list of key-value pairs, while the module Binary-Trees uses a moree�cient structure.module: Tablesparameter: Keys



A PSF library of data types 5sort: KEYfunction: eq : KEY # KEY -> BOOLEANparameter: Itemssort: ITEMsorts: TABLE, ENTRY, RESULT-OF-LOOKUPfunctions:empty-table : -> TABLE_~_ : ENTRY # TABLE -> TABLEentry : KEY # ITEM -> ENTRYinsert : TABLE # KEY # ITEM -> TABLEdelete : TABLE # KEY -> TABLElookup : TABLE # KEY -> RESULT-OF-LOOKUPfound : ITEM -> RESULT-OF-LOOKUPnot-found : -> RESULT-OF-LOOKUPwith Keys and Items bound to Booleans:typical normal form: entry(false, true) ~ empty-tableexamples:insert(empty-table, true, false)= entry(false, true) ~ empty-tablelookup(entry(false, true) ~ empty-table, false)= found(true)module: Binary-Treesparameter: Keyssort: KEYfunctions:eq, lt : KEY # KEY -> BOOLEANparameter: Itemssort: ITEMsorts: TABLE, ENTRY, RESULT-OF-LOOKUPfunctions:empty-table : -> TABLEnode : ENTRY # TABLE # TABLE -> TABLEentry : KEY # ITEM -> ENTRYinsert : TABLE # KEY # ITEM -> TABLEdelete : TABLE # KEY -> TABLElookup : TABLE # KEY -> RESULT-OF-LOOKUPfound : ITEM -> RESULT-OF-LOOKUPnot-found : -> RESULT-OF-LOOKUPwith Keys and Items bound to Booleans:typical normal form:node(entry(false, true), empty-table, empty-table)



6 S. Mauw & J. C. Mulderexample: insert(empty-table, false, true)= node(entry(false, true),empty-table, empty-table)lookup(node(entry(false, true),empty-table, empty-table), false)= found(true)2.4 Arithmetic2.4.1 Decimal naturalsThe natural numbers are implemented as sequences of decimal digits. We have tointroduce the digits in a separate module so that we can bind the parameter of thenon-empty sequences to it.The module Naturals has a lot of sub-modules which we do not describe here.For convenience we provide abbreviations for the �rst 101 numbers.module: Digitssort: DIGITfunctions:0, 1, ..., 9 : -> DIGITtypical normal form: 7module: Naturalssort: NATURALfunctions:nat : DIGIT-SEQUENCE -> NATURALnat0, nat1, nat2, ...., nat100 : -> NATURALsucc, pred : NATURAL -> NATURAL_+_, _-_, _*_, _/_, mod, _**_ : NATURAL # NATURAL -> NATURALeq, ne, gt, ge, lt, le : NATURAL # NATURAL -> BOOLEANif : BOOLEAN # NATURAL # NATURAL -> NATURALmin, max : NATURAL # NATURAL -> NATURALtypical normal form: nat(^(4) ^ 2)example: nat3 + nat4 = nat(^(7))2.4.2 Binary naturalsThe binary naturals are similar to the decimal naturals.module: Bits



A PSF library of data types 7sort: BITfunctions:0b, 1b : -> BITtypical normal form: 1bmodule: Binary-Naturalssort: BINARY-NATURALfunctions:bin : BIT-SEQUENCE -> BINARY-NATURALbin0, bin1, bin10, ...., bin1000000 : -> BINARY-NATURALsucc, pred : BINARY-NATURAL -> BINARY-NATURAL_+_, _-_, _*_, _/_, mod, _**_ :BINARY-NATURAL # BINARY-NATURAL -> BINARY-NATURALeq, ne, gt, ge, lt, le :BINARY-NATURAL # BINARY-NATURAL -> BOOLEANif : BOOLEAN # BINARY-NATURAL # BINARY-NATURAL-> BINARY-NATURALmin, max : BINARY-NATURAL # BINARY-NATURAL -> BINARY-NATURALtypical normal form: bin(((((^(1b) ^ 0b) ^ 1b) ^ 0b) ^ 1b) ^ 0b)example: bin11 + bin100 = bin((^(1b) ^ 1b) ^ 1b)2.4.3 Unary naturalsFor completeness we also provide natural numbers in the usual succ(zero) nota-tion, which is admittedly not very e�cient.module: Unary-Naturalssort: UNARY-NATURALfunctions:zero : -> UNARY-NATURALunary0, unary1, ..., unary10 : -> UNARY-NATURALsucc, pred : UNARY-NATURAL -> UNARY-NATURAL_+_, _-_, _*_, _/_, mod, _**_ :UNARY-NATURAL # UNARY-NATURAL -> UNARY-NATURALeq, ne, gt, ge, lt, le :UNARY-NATURAL # UNARY-NATURAL -> BOOLEANif : BOOLEAN # UNARY-NATURAL # UNARY-NATURAL -> UNARY-NATURALmin, max : UNARY-NATURAL # UNARY-NATURAL -> UNARY-NATURALtypical normal form: succ(succ(succ(succ(succ(succ(succ(zero)))))))example: unary3 + unary4



8 S. Mauw & J. C. Mulder= succ(succ(succ(succ(succ(succ(succ(zero)))))))2.5 IntegersAn integer is a pair of a sign and a natural number. For convenience we provide aseries of mixed mode arithmatic operators. The constructor for integers is the func-tion int : SIGN # DIGIT-SEQUENCE -> INTEGER, however this function is hiddenfor reasons of e�ciency. The user may call the function make-int which rewritesto a normalized integer.module: Signssort: SIGNfunctions:pos, neg : -> SIGNtypical normal form: posmodule: Integerssort: INTEGERfunctions:make-int: SIGN # DIGIT-SEQ -> INTEGERnat-to-int: NATURAL -> INTEGERint-to-nat: INTEGER -> NATURALsign : INTEGER -> SIGN_-, abs, succ, pred : INTEGER -> INTEGER_+_, _-_, _*_, _/_, mod : INTEGER # INTEGER -> INTEGEReq, ne, gt, ge, lt, le : INTEGER # INTEGER -> BOOLEANif : BOOLEAN # INTEGER # INTEGER -> INTEGERmin, max : INTEGER # INTEGER -> INTEGER_- : NATURAL -> INTEGER_+_, _-_, _*_, _/_, mod : NATURAL # INTEGER -> INTEGEReq, ne, gt, ge, lt, le : NATURAL # INTEGER -> BOOLEANif : BOOLEAN # NATURAL # INTEGER -> INTEGERmin, max : NATURAL # INTEGER -> INTEGER_+_, _-_, _*_, _/_, mod : INTEGER # NATURAL -> INTEGEReq, ne, gt, ge, lt, le : INTEGER # NATURAL -> BOOLEANif : BOOLEAN # INTEGER # NATURAL -> INTEGERmin, max : INTEGER # NATURAL -> INTEGERtypical normal form: int(pos, nat(^(4) ^ 2))example: -nat6 * -nat7 = int(pos, nat(^(4) ^ 2))



A PSF library of data types 92.6 Floating point arithmeticThe module Floating-Points-M-P is parameterized with two natural numbers.The �rst number (M) is the precision used for normal forms. The second num-ber (P) denotes the precision used while computing. Shown here is the binding[M->3, P->4].The normal forms of the sort FP are constructed with the hidden functionfp : INTEGER # INTEGER -> FP. The user has access to a wide range of make-fpfunctions which accept various combinations of argument types. To analyze a 
oat-ing point number one may use the two projection functions mantissa and exponent.module: Floating-Points-3-4sort: FPfunctions:abs : FP -> FPsign : FP -> SIGNmantissa : FP -> INTEGERexponent : FP -> INTEGER_+_, _-_, _*_, _/_ : FP # FP -> FPeq, ne, gt, ge, lt, le : FP # FP -> BOOLEANif : BOOLEAN # FP # FP -> FPmin, max : FP # FP -> FP_+_, _-_, _*_, _/_ : INTEGER # FP -> FPeq, ne, gt, ge, lt, le : INTEGER # FP -> BOOLEANif : BOOLEAN # INTEGER # FP -> FPmin, max : INTEGER # FP -> FP_+_, _-_, _*_, _/_ : FP # INTEGER -> FPeq, ne, gt, ge, lt, le : FP # INTEGER -> BOOLEANif : BOOLEAN # FP # INTEGER -> FPmin, max : FP # INTEGER -> FP_+_, _-_, _*_, _/_ : NATURAL # FP -> FPeq, ne, gt, ge, lt, le : NATURAL # FP -> BOOLEANif : BOOLEAN # NATURAL # FP -> FPmin, max : NATURAL # FP -> FP_+_, _-_, _*_, _/_ : FP # NATURAL -> FPeq, ne, gt, ge, lt, le : FP # NATURAL -> BOOLEANif : BOOLEAN # FP # NATURAL -> FPmin, max : FP # NATURAL -> FPmake-fp : SIGN # DIGIT-SEQ # DIGIT-SEQ # INTEGER -> FPmake-fp : SIGN # DIGIT-SEQ # DIGIT-SEQ -> FPmake-fp : SIGN # DIGIT-SEQ # INTEGER -> FPmake-fp : SIGN # DIGIT-SEQ -> FPmake-fp : DIGIT-SEQ # DIGIT-SEQ # INTEGER -> FPmake-fp : DIGIT-SEQ # DIGIT-SEQ -> FPmake-fp : DIGIT-SEQ # INTEGER -> FP



10 S. Mauw & J. C. Muldermake-fp : DIGIT-SEQ -> FPmake-fp : SIGN # NATURAL # INTEGER -> FPmake-fp : SIGN # NATURAL -> FPmake-fp : NATURAL # INTEGER -> FPmake-fp : NATURAL -> FPmake-fp : INTEGER # INTEGER -> FPmake-fp : INTEGER -> FPtypical normal form: fp(int(pos, nat(^(4) ^ 2)), int(pos, nat(^(0))))examples:make-fp(^3) + make-fp(^4)= fp(int(pos, nat(^(7))), int(pos, nat(^(0))))make-fp(nat2) / make-fp(nat3)= fp(int(pos, nat((^(6) ^ 6) ^ 7)), int(neg, nat(^(3))))2.7 Characters and stringsThe ASCII characters and non-empty sequences of the same are described in tworather simple modules.module: Characterssort: CHARACTERfunctions:'nul', 'soh', 'stx', 'etx', 'eot', 'enq', 'ack','bel', 'bs', 'ht', 'nl', 'vt', 'ff', 'cr','so', 'si', 'dle', 'dc1', 'dc2', 'dc3', 'dc4','nak', 'syn', 'etb', 'can', 'em', 'sub', 'esc','fs', 'gs', 'rs', 'us', 'spa', 'exc', 'dqu','hsh', 'dlr', 'prc', 'amp', 'squ', 'lpa', 'rpa','ast', 'pls', 'cma', '-', 'dot', 'fsl', '0','1', '2', '3', '4', '5', '6', '7','8', '9', 'col', 'sco', 'lth', 'eql', 'grt','que', 'ats', 'A', 'B', 'C', 'D', 'E','F', 'G', 'H', 'I', 'J', 'K', 'L','M', 'N', 'O', 'P', 'Q', 'R', 'S','T', 'U', 'V', 'W', 'X', 'Y', 'Z','lbr', 'bsl', 'rbr', 'hat', 'und', 'bqu', 'a','b', 'c', 'd', 'e', 'f', 'g', 'h','i', 'j', 'k', 'l', 'm', 'n', 'o','p', 'q', 'r', 's', 't', 'u', 'v','w', 'x', 'y', 'z', 'lac', 'bar', 'rac','tld', 'del' : -> CHARACTERfirst-char, last-char : -> CHARACTERsucc, pred : CHARACTER -> CHARACTEReq, ne, gt, ge, lt, le : CHARACTER # CHARACTER -> BOOLEANord : CHARACTER -> NATURALchar : NATURAL -> CHARACTERtypical normal form: 'x'



A PSF library of data types 11example: ord('x') = nat((^(1) ^ 2) ^ 0)module: Stringssort: CHAR-SEQThis is just Non-Empty-Sequences bound to Characters.typical normal form: (((^('h') ^ 'e') ^ 'l') ^ 'l') ^ 'o'example: elem('l', ^'h'^'e'^'l'^'l'^'o') = true2.8 Finite sorts with equalityIn practice one often needs a �nite sort with an explicit equality function. As shownin [BMW91] it is not easy to do this in a manner which is both correct and e�-cient. Therefore we included speci�cations of �nite sorts up to 25 elements and aperl script to generate larger sorts. It would be nice to do this in a parameterizedfashion, but in [BMW91] it was shown that this is impossible. Consequently, weprovide them as separate modules. One can use renaming to create a sort withmore meaningful names. A drawback is that it is not easy to create two di�erenttypes with the same number of elements in this way. By using simple renamings,the origin rule [BHK89] would make them equal.module: f5sort: f5functions:0f5, 1f5, 2f5, 3f5, 4f5 : -> f5succ, pred : f5 -> f5eq, ne, lt, le, gt, ge : f5 # f5 -> BOOLEANord : f5 -> NATURALf5 : NATURAL -> f5typical normal form: 2f5example: succ(2f5) = 3f53 ConclusionsExperiments showed that the new library compiles faster and is considerably moree�cient. Faster compilation is due to the reduced length gained by combiningseveral lengthy tables. The increase in e�ciency comes from the fact that we usedmore e�cient algorithms. It was often possible to reduce, say, quadratic algorithmsto linear ones.Since all numerical data types de�ne the same functions, we think that ourspeci�cation has a more consistent interface than [vW93].We encountered several shortcomings in the ASF speci�cation formalism whichin
uenced the e�ciency. The ability to use so-called default conditions in many cases



12 S. Mauw & J. C. Mulderwould reduce the duplication in the reduction of conditions. Further, the possibilityto only specify total functions not only leads to some extra equations, but in somecases it also in
uences the e�ciency because extra conditions are needed.We think, however, that the simplicity of the initial algebra approach outweighsthe bene�ts gained from these nice but semantically complex features.Furthermore, we encountered the problem that no distinction can be made be-tween the representation used for internal calculations (i.e. the normal forms ofthe speci�cation) and the representation of the terms showed to the user of thesystem. It is in general not the case that the representation suited for calculationsis the same as the representation preferred by the user. Explicit input and outputconversions would improve the readability.The possibility o�ered by ASF of writing parameterized speci�cations showedvery useful for the speci�cation of several generic data types.References[BHK89] J.A. Bergstra, J. Heering, and P. Klint, editors. Algebraic speci�cation.ACM Press frontier series. ACM Press, 1989.[BK84] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communi-cation. Information & Control, 60:109{137, 1984.[BMW91] J.A. Bergstra, S. Mauw, and F. Wiedijk. Uniform algebraic speci�cationsof �nite sets with equality. Int. J. of Foundations of Computer Science,1(2):43{65, 1991.[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts inTheoretical Computer Science 18. Cambridge University Press, 1990.[ISO89] ISO - International Organization for Standardization. Information process-ing systems - Open systems interconnection - LOTOS - A formal descrip-tion technique based on the temporal ordering of observational behaviour,IS 8807. 1989.[IT88] ITU-TS. ITU-TS Recommendation Z.100: Speci�cation and DescriptionLanguage (SDL). ITU-TS, Geneva, 1988.[Mos92] P. D. Mosses. Action Semantics. Cambridge Tracts in Theoretical Com-puter Science 26. Cambridge University Press, 1992.[MV93] S. Mauw and G.J. Veltink, editors. Algebraic speci�cation of communi-cation protocols. Cambridge Tracts in Theoretical Computer Science 36.Cambridge University Press, 1993.[Vel93] G.J. Veltink. The PSF Toolkit. Computer Networks and ISDN Systems,25(7):875{898, 1993.[vW93] J.J. van Wamel. A library for PSF. Report P9301, Programming ResearchGroup, University of Amsterdam, 1993.


