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Abstract

The Interworking language (IW) is a graphical formalism for displaying the com-
munication behaviour of system components. In this chapter, we develop a formal
semantics for the Interworking language. This semantics must support the analysis
of (collections of) Interworking diagrams and allow to express the relation between
diagrams. We will explain how techniques from process algebra can be successfully
applied to this problem. Thereto, we introduce process operators for expressing the
relationship between Interworking diagrams. We define a number of process algebras
with increasing complexity. For each of these we prove completeness with respect to
an operational semantics.

Keywords: process algebra, Interworkings, semantics, composition operators.

Note: To appear as a chapter in Handbook of Process Algebra, editors A. Ponse and
S. Smolka, Elsevier Science Publishers B.V.

1 Introduction

1.1 History and motivation

The Interworking language (IW) is a graphical formalism for displaying the communication be-
haviour of system components. It was developed in order to support the informal diagrams used
at Philips Kommunikations Industrie (Niirnberg) which were used for requirements specification
and design. Before discussing the rationale behind the IW language, we first show a simple Inter-
working diagram' in Figure 1. The name of the Interworking is displayed in the upper left corner

!The Interworking diagrams in this chapter are drawn with the MSC Macro package which can be
obtained at http://www.win.tue.nl/"sjouke/mscpackage.html.
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of the diagram. This Interworking describes the interaction behaviour of three entities, which
are called s, medium and r. Each entity is represented by a vertical line, which, when read from
top to bottom, describes the successive interactions in which this entity takes part. A message
exchange is represented by an arrow. The diagram shows that the three entities exchange four
messages. First, s sends a req message to medium. Next, the same message is being sent from
medium to r. Then, r sends a message reply back to medium, which sends the same message to s.

Ezample
S medium r
req
req
reply
reply

Figure 1: An example Interworking diagram

This example shows the basic use of Interworkings. It describes one scenario of interaction
between communicating entities. In general, when using IW for requirements specification, a
collection of Interworkings is needed, containing a description of the most interesting scenarios.
Often there is one main scenario, complemented with a number of scenarios describing exceptional
behaviour. Using Interworkings in this way, the scenarios express alternative behaviours.

There are, however, more reasons for having to deal with large collections of Interworkings for
the description of a distributed system. First, the specified scenario can be too long to physically
or logically fit in one diagram. Such a large scenario is then decomposed into a number of sub
scenarios which are “sequentially” linked to each other.

A second reason is that the horizontal size of the system, or more precisely the number of distinct
entities, may be too large to fit in a single diagram. This gives rise to a collection of sub
scenarios which denote the behaviour of different parts of the system. Each part then describes
the behaviour of just a number of (logically related) entities. Of course, there must be a means
to express that entities from distinct parts exchange messages with each other. The scenarios of
these parts are linked to each other in a parallel way.

Due to the above mentioned reasons, in practice a system description using Interworkings often
consists of a large collection of diagrams. Practical experience showed that it was very hard to
maintain such large collections by hand. First of all, manually drawing and updating diagrams is
an expensive activity. Secondly, the relation between the diagrams in a collection is only implicit.
Some diagrams describe alternatives, some describe successive behaviour, and some describe
parallel behaviour. The third problem, assuming the relation between the diagrams to be known,
is that if one diagram changes also several related diagrams must be updated. A consistent update
of a large collection of Interworkings could not be achieved manually. A final problem was that
there existed different interpretations of the meaning of even simple Interworkings.
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These observations lead to the conclusion that when using Interworkings in the traditional and in-
formal way it was not possible to take full advantage of the language. Therefore, the Interworking
language needs a complete and explicit definition.

Not only the development of an explicit language is motivated in this way, but also the need for
a formal semantics of Interworkings. This semantics must support the analysis of (collections of)
Interworking diagrams and allow to express the relation between diagrams. Moreover, since tool
support is needed, the semantics must allow for easy derivation of (prototype) tools.

In this chapter, we will explain how techniques from process algebra can be successfully ap-
plied to this problem. Thereto, we introduce process operators for expressing the relationship
between Interworking diagrams. As explained above, there are three possible relations between
Interworkings: alternative composition, sequential composition, and parallel composition. The
most interesting is the interworking sequencing operator for composing Interworkings sequen-
tially. Later in this chapter it will be explained why the standard process algebra operator for
sequencing is not appropriate for Interworkings. The operator for parallel composition of In-
terworkings, is derived from the standard interleaving operator with synchronisation. For the
alternative composition operator there are different choices. For a discussion on this choice we
refer to Section 2.3.

1.2 Interworkings and similar languages

The Interworking language is not a unique and isolated language. It is very natural and intuitive
to express the behaviour of a distributed system in such a graphical way. In fact, informal ITW-like
drawings are encountered very often in system design.

Therefore, the Interworking language is a member of a large class of similar graphical notations,
most of which are only informally defined, such as Signal Sequence Charts, Use Cases, Information
Flow Diagrams, Message Flow and Arrow Diagrams. In object oriented design, a similar notation,
called Sequence Diagrams, is used. They play an important role in the description of Use Cases
in UML [RJB99]. Interworkings are also related to Message Sequence Charts (MSC), see [IT93],
which are standardised by the International Telecommunication Union (ITU). The main difference
is that Interworkings describe synchronous communication, whereas Message Sequence Charts
describe asynchronous communication. The semantics of MSC as described in [MR99, Ren99] is
also very similar to the semantics of IW.

Traditionally, the main application area for IW and similar languages is the field of telecommu-
nication systems. This is mainly due to the distributed nature of these systems. However, more
and more applications outside the telecommunication world can be found, e.g. the description of
work flows in business organisations [Aal99].

The main reason why IW-like diagrams are so popular is the fact that they can be understood
easily. This is due to their intuitive and graphical appearance. The diagrams can be used in
different stages of the design of a software system. The main application is during requirements
engineering, where they are used to capture initial requirements about the interactions in a
system. Furthermore, they play a role in documentation, simulation and testing.
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The results of this chapter cannot completely be transferred to similar languages. This is mainly
because IW describes synchronous communication, whereas most similar languages consider asyn-
chronous communication. Nevertheless, the approach taken in this chapter is generic. It is at
the basis of the semantics definition of Message Sequence Charts, as standardised by the ITU in
Annex B to Recommendation Z.120 [IT95].

1.3 Purpose and structure of this chapter

This chapter serves several purposes. First, it shows the process algebraic approach in defining
the semantics of a scenario language. This typically entails the use of a number of operators
which describe the ways in which scenarios or fragments of scenarios are combined. The meaning
of such a diagram is then described by a process algebraic expression, which can be analysed
using standard techniques.

Secondly, this chapter shows the development of non-standard operators in process algebra,
needed for some domain specific application. These newly introduced operators will probably
have little application outside the realm of scenarios. On the other hand, the interworking se-
quencing operator already received attention in a more general context, and was named weak
sequential composition (see [RW94]).

Thirdly, we show in detail which (proof) obligations occur when introducing new operators. We
both give an operational and an algebraic definition, and prove their correspondence.

This chapter is subdivided as follows.

First, we will introduce the Interworking language and the operators for combining Interworkings
(Section 2). Next, we formally define the operators involved. We will not simply give one process
algebra containing all operators, but we will formalise the operators in a modular way. This
yields a collection of process algebras, for which we obtain some additional proof obligations,
such as conservativity. The first process algebra (defined in Section 3) only contains the operator
for sequential composition. This operator suffices to give a formal semantics of Interworking
diagrams. In Section 4 we define the theory of the basic process algebra operators (4 and -)
which we enrich with partial deadlocks. Next, in Section 5, these process algebras are combined.
The following two sections deal with the introduction of the interworking merge operator. In
Section 6 we first define a parameterised version of this operator, the E-interworking merge. The
general interworking merge operator is defined in Section 7, which yields the final process algebra
for Interworkings.

Every operator is both defined algebraically and by means of an operational semantics. The
relation between these descriptions is given in several soundness and completeness theorems.

The treatment of Interworkings in the current chapter is mainly on a theoretic level. We will not
introduce graphical and linear syntax of the language, and we will not present a mapping from
Interworking diagrams to process algebra expressions (for a thorough treatment see [MvWW92]).
Our main goal is to define the theory needed to formally understand Interworkings. Neither
will we explain methodological aspects of the use of Interworkings or supporting tools. For a



description of a prototype tool set based on these semantical definitions, we refer to [MW93].

2 Interworkings

An Interworking specification consists of a collection of Interworking diagrams. The relation
between these diagrams is defined by means of operators. An Interworking diagram specifies
(part of) a single scenario and the operators can be used to compose simple scenarios into more
complex scenarios. We consider operators for sequential composition, alternative composition
and parallel composition of Interworkings.

In this section we will only give an informal explanation of syntax and semantics of Interworkings.
Simple examples show the relevant properties, which are formalised in the sections to come.

We will not give a formal definition of the graphical syntax of Interworkings, since for our pur-
poses an informal and intuitive mapping from Interworkings to the semantical domain suffices.
There exists a textual representation of Interworkings too, but we will not discuss this. Con-
sult [MvWW92] for more information on this topic.

2.1 Interworking diagrams

An example of an Interworking diagram is shown in Figure 2. Such a diagram consists of a number
of vertical lines and horizontal arrows, surrounded by a frame. The name of the Interworking
diagram (Co-operation) is in the upper left corner of the frame. The vertical lines denote the
entities of which (part of) the behaviour is being described. Above the lines are the names of
these entities. Here we have four entities, called a, b, ¢, and d.

Co-operation
a b ¢ d
k [

Figure 2: An example Interworking diagram

The arrows denote the exchange of messages between the entities. Interworkings describe syn-
chronous communication, which means that an arrow represents one single event. The order in
which the communications take place is also expressed in the diagram. On every entity axis, time
runs from top to bottom and the events connected to an entity axis are causally ordered in this
way. However, there is no global time axis and the only way to synchronise the behaviour of the
entities is by means of a message exchange. So, message k causally precedes message m. And



6 2 INTERWORKINGS

because m precedes o, we have that k also precedes 0. Messages k and [ are not causally related;
they may occur in any order. In our semantical treatment we assume an interleaved model of
operation, which means that £ and [ cannot occur simultaneously.

The fact that the time lines of all entities are independent, implies that the vertical placement
of two messages which are not causally related has no semantical meaning. Therefore, the Inter-
workings from Figure 3 have identical semantics.

Placement 1 Placement 2

a b ¢ d a b ¢ d

k [
M k

Figure 3: Two semantically equivalent Interworkings

A special case in our semantics is the empty Interworking. This is an Interworking which describes
no behaviour at all and contains no entities. In the next sections the empty Interworking is
denoted by e.

2.2 Sequencing

Sequential composition is the easiest way to compose two Interworkings. Intuitively, sequential
composition can be considered as the concatenation of two Interworkings, thereby connecting the
corresponding entity axes. Figure 4 shows the sequential composition of two Interworkings. The
circle denotes the sequencing operator.

Part 1 Part 2 Sequencing
a b ¢ a b ¢ a b ¢
I O n = I
m
n

Figure 4: Sequential composition of two Interworkings

One must take into account that there is no (implicit) synchronisation between the entities at the
point where the two Interworkings are concatenated. For this reason, the operator for sequential
composition of Interworkings is called the weak sequential composition operator (or interworking
sequencing). Although we will also introduce an operator for strong sequential composition
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of Interworkings in our semantical treatment, this operator is not part of the Interworkings
language. Figure 5 shows that the weak sequential composition of two unrelated messages gives
an Interworking where these two messages still are unordered.

From a to b From ¢ to d Nosync

a b c d | O | a b ¢ d | —

RN RN I Y

Figure 5: No synchronisation through sequential composition

In the previous examples, the two composed Interworkings contained the same set of entities. This
is not a requirement for sequential composition. The Interworking resulting from a sequential
composition simply contains all entities from its constituents, as shown in Figure 6.

Left Right Result
a b b ¢ a b ¢
k O [ — k

Figure 6: Sequential composition with different entity sets

Given the above interpretation of Interworking diagrams and sequential composition, the following
observation is apparent. Every Interworking diagram is equivalent to the sequential composition
of all its events. Look e.g. at Interworking Co-operation (Figure 2) which is the sequential
composition of five simple Interworking diagrams, each containing one arrow. The order in
which these Interworkings are composed should of course correspond to the causal ordering of
the original Interworking. So, if K, L, M, N, and O are Interworking diagrams containing the
messages k, [, m, n, and o, respectively, then L o K o M o N o O would be an example of such an
expression. An alternative for this expression is Ko Lo M o (O o N.

2.3 Alternatives

In theoretical approaches to MSC-related languages different operators for alternative composition
are used. These are the delayed choice operator (F, see [BM95]) and the non-deterministic choice
operator (+, see [BW90]). In the standardised semantics of MSC [Ren99] the delayed choice
operator is used. The essential difference between these two operators is that non-deterministic
choice determines the moment of choice between the alternatives at the place where it occurs,
whereas the delayed choice postpones the moment of choice to the place where the alternatives
start to differ. The latter leads to a trace semantics (if non-deterministic choice is not present as
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well). As a consequence also all other operators in which a choice is manifest (such as parallel
composition) must be changed to adopt the delayed interpretation of choices [Ren99]. In our
opinion the use of the delayed choice is only interesting if non-deterministic choice is present too.
If the delayed choice is the only alternative composition operator of interest, then a better solution
is to adopt a trace theoretical approach towards the semantics. In the process algebra approach
of this handbook it seems more appropriate to study the non-deterministic choice operator.

Hence, the operator which expresses the fact that two Interworkings describe alternative scenarios
is denoted by +. Figure 7 contains an example of the choice between two alternative Interworking
diagrams. This expression describes the non-deterministic choice between the two given scenarios.
Both scenarios start with message k, but the first continues with message [ and the second with
messages m and n.

alt1 alt2
a b ¢ a b ¢

k k
[ —I_ m

Figure 7: Alternative composition of two Interworking diagrams

Notice that the class of Interworking diagrams is not closed under application of the +-operator.
The behaviour defined in Figure 7 cannot be expressed without application of the +.

2.4 Merge

Whereas the sequencing operator is used for vertical composition of Interworkings, the merge
operator is used for horizontal composition.

In the case that the two operands have no entities in common, the merge of two Interworking
diagrams is simply their juxtaposition, as illustrated in Figure 8.

Mergel Merge2 Merge
a b ¢ d e a b ¢ d e
[ n [ n
|

Figure 8: Merge of Interworking diagrams without shared entities

In the case that the two operands do share some entities, the situation is a bit more complicated.
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Suppose, for example, that the two Interworking diagrams have two entities in common, as in
Figure 9. Then the messages exchanged between the shared entities must be identical for both
operands. The resulting Interworking contains only one occurrence of every shared entity. Also
the messages exchanged between the shared entities, which must occur in the same order in both
operands, appear only once in the resulting Interworking. In Figure 9 the two operands share
the entities ¢ and d with shared messages m and n.

W1 w2 IWall
a b c d c d e a b ¢ d e
k P k )
l l
q q
n n n
0 r 0 T

Figure 9: Merge of Interworking diagrams with two shared entities

In the case that the two operands do not describe identical behaviour with respect to the shared
entities, as in Figure 10, a deadlock occurs. The resulting Interworking contains the parallel
behaviour of the operands, up to the point where the behaviours on the shared entities start to
diverge. At this point the deadlock occurs, denoted by two horizontal bars. Such a deadlock only
covers entities which are blocked. This means that we do not have the global deadlock as used
elsewhere, but a partial deadlock. We refer to this partial deadlock as deadlock. An entity shows
no behaviour after it has entered a deadlock situation. All behaviour which is causally dependent
on a communication which causes the deadlock, is also blocked. In Figure 10 this means that,
since messages = and n do not match, a deadlock occurs on entities ¢ and d. Moreover, since
message r is causally dependent upon message n, the deadlock extends to entity e. In the following
sections, such a deadlock will be denoted by 0, where E is the set of deadlocked entities. If a
deadlock occurs as a consequence of merging two Interworkings, we say that the two operands
are merge-inconsistent.

This explanation of the merge operator generalises easily to the case where the operands have
more than two entities in common. However, the case where they share only one entity yields
a different situation. It is clear that this shared entity should occur only once in the resulting
Interworking, but what happens with the events that this entity takes part in? This situation
occurs in Figure 11. There is no reason to introduce a causal ordering between the messages [
and m, and therefore the result cannot be a single Interworking diagram. The result of the merge
in Figure 11 contains two alternative Interworking diagrams, which together describe all possible
orderings of [ and m.

Care has to be taken to correctly handle entities which are included in an Interworking diagram
but which do not take part in any communication, so-called empty entities. In the case that such
an entity occurs in the set of shared entities, it cannot be discarded. Figure 12 shows an example.
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11 12 Inconsistent
a b ¢ d c d e a b ¢ d e
k P k )
[ [
q q
z n
0 r 0

Figure 10: Merge of two inconsistent Interworking diagrams

Figure 11: Consistent merge

Entity b occurs in both operands, but in the second operand there is no behaviour associated to
b. Because in the first operand a message [ is sent to b, a deadlock occurs.

The situation would be quite different if we would omit entity b from the second operand. Then
the two operands would be merge-consistent. This is shown in Figure 13.

3 Semantics of interworkings

In this section we will present a simple process algebra that can be used for reasoning about
the equality of Interworking diagrams. Based on the textual syntax of Interworking diagrams a
process term is generated as follows. With every message in the Interworking diagram an atomic
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X1 X2’ a b ¢ d a b ¢ d
a b ¢ ¢ d k k
k || — [ _I_ m

Figure 13: Empty entity removed

action is associated. A deadlock that covers the entities from a set F is denoted by dr. The
atomic actions are combined by means of interworking sequencing. The process algebra is called
IWD(o).

We assume the existence of sets EID and MID of names of entities and messages, respectively.
Actually, these can be considered as parameters of the process algebra. A message is characterised
by the name of the sender, the name of the receiver, and the message name. These messages
form the set of atomic actions.

Definition 1 (Atomic actions) The set A of atomic actions is given by
A={c(i,j,m) |i,j € EID,m € MID}.

Definition 2 (Signature of IWD(o)) The signature ¥ wp of the process algebra IWD(o) con-
sists of the atomic actions a € A, the deadlock constants dp (E C EID), the empty process &,
and the binary operation interworking sequencing oj,,.

The set of all (open) terms over the signature Y yp is denoted as O(Xwp). The set of all closed
terms over the signature X,y p is denoted as C(X;wp). We will use similar notations for other
signatures.

We provide the process algebra with an operational semantics by associating a term deduction
system to it. We will first summarise the terminology related to term deduction systems. For
a formal definition of term deduction systems and related notions we refer to [BV95]. A term
deduction system is a structure (3, D) where X is a signature and D a set of deduction rules.
The set of deduction rules is parameterised by a set of relation symbols and a set of predicate
symbols. If P is such a predicate symbol, R such a relation symbol, and s,t € O(X), then the
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expressions Ps and sRt are called formulas. A deduction rule is of the form % where H is a set

of formulas, called hypotheses, and C' is a formula, called the conclusion.

In the term deduction systems used in this chapter we use relations _. = _ C O(X) x A x O(X)
and the predicate _ |[C O(X). The formula z % 2/ expresses that the process z can perform an
action a and thereby evolves into the process z'. The formula = | expresses that process z has
an option to terminate immediately and successfully.

In the remainder of this chapter we use the following shorthands: = — represents the predicate
that 2 2’ for some z', 2 - 2’ represents the proposition that 2 — 2’ is not derivable from the
deduction system, z + represents —(z — ), and z - represents z + for all a € A. Similarly we
use = J/ to represent —(z ).

A proof of a formula ¢ is a well-founded upwardly branching tree of which the nodes are labeled
by formulas such that the root is labeled by the formula ¢ and if y is the label of a node and
{xi | i € I} is the set of labels belonging to the nodes directly above it, then

{xiliel}
X
is an instantiation of a deduction rule.

The term deduction system for the process algebra IWD(o) consists of the signature X,y p and
the deduction rules given in Table 1.

Before we can give the operational description of the interworking sequencing operator we first
define the active entities associated with a process term representing an Interworking diagram.
The active entities of an Interworking diagram are those entities which are involved in a commu-
nication or in a deadlock.

Definition 3 (Active entities) For i,j € EID, m € MID, E C EID, and z,y € C(X;wp) we
define the mapping AE : C(Xrwp) — IP(FID) inductively as follows:

AE(c(i,j,m)) = {i,j},

AE(e) = 0

AE(6p) = FE,

AE(x oiw y) = AFE(z)U AE(y).

The operational semantics of the process algebra IWD(o) is given by the deduction rules in
Table 1 and the equations defining the active entities in Definition 3. These equations can easily
be written as deduction rules. The empty process does not execute any actions, but it terminates
successfully and immediately. The fact that it does not execute any action is visible by the
impossibility of deriving that it can execute an action. The process a can execute the action a
and in doing so evolves into the empty process €. The process dr cannot execute any actions
nor can it terminate successfully. The interworking sequencing of two processes terminates if
and only if both processes can terminate. The process z o, y executes an action a if z can
execute action a or if y can execute a and this action is not related to an active entity of =
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(AE(a)N AE(xz) = (). This expresses the intuition that the first operand may always perform its
actions, while the second operand may only perform actions which are not blocked because they
are causally dependent on actions from the first operand.

vl yd

el ae T Oiw Y |
x5 AE(@)NAE(z) =0 y>y
T O Y 7' Oty Y T Oiy Y~ T Oiy '

Table 1: Deduction rules for interworking sequencing (a € A)

Figure 14: Example of an Interworking diagram

The Interworking from Figure 14 can semantically be represented by the process term

C(pa q, m) Oiw (C(Ta S, 0) Oiw C(Qa T, n))'

Then the following is a derivation of the fact that first the communication of message o can take
place:

AE(c(r,s,0)) NAE(¢(p,q,m)) =0

c(r,s,0)
C(Ira S, 0) Oiw C(Qa T, ’I’L) — € Oiw C(Qa T, ’I’L)

( bt )
C(pa q, m) Oiw (C(Tu S, 0) Oiw C(qa T, TL)) ‘ 73)0 C(p7 q, m) Oiw (8 Ojw C(qa T, TL))

Two processes  and y are considered equivalent if they can mimic each others behaviour in terms
of the predicates and relations that are used in the term deduction system. In this case these are
the execution of actions, the termination of a process, and the active entities of a process. As a
consequence of introducing partial deadlock constants, we must be able to distinguish deadlocks
over different sets of entities. This is the reason that we require that two processes are equivalent
only if they have the same active entities. This type of equivalence is usually called strong
bisimilarity, but we call it IWD-bisimilarity.
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Definition 4 (IWD-bisimilarity) Let X be a signature. A symmetric relation R C C(X)xC(X)
is called an ITWD-bisimulation iff for all p,q such that pRq we have

1. AE(p) = AE(q);
2. if p |, then ¢ |;

3. if p5 ¢ for some a € A and p/, then there exists a ¢’ such that ¢ = ¢’ and p'Rq’.

Two processes z and y are called IWD-bisimilar, notation z < 4 v, iff there exists an ITWD-
bisimulation R such that zRy. The notation R : x ;,q vy expresses that R is an IWD-
bisimulation that relates = and y.

Theorem 1 (Equivalence) IWD-bisimilarity is an equivalence relation.
Proof. We must prove that IWD-bisimilarity is reflexive, symmetric, and transitive.

1. ©uq isreflexive. Let R = {(p,p) |p € C(X1wn)}. Clearly, R is an IWD-bisimulation.

2. ©iwq 18 symmetric. Suppose that p <,q ¢- This means that there exists an IWD-
bisimulation R such that pRq. Since any IWD-bisimulation is symmetrical we also have
qRp. Hence q ;4 P-

3. ©iwq 1s transitive. Suppose p <i.q ¢ and q 4,4 7- Thus there exist IWD-bisimulations
Ry and Ry such that pRyq and qRsr. Let R = (Ry o RQ)S. For a relation p on X, the
notation p° denotes the symmetric closure of p. It is not hard to show that R is an
IWD-bisimulation and pRr. Hence p ;g T

Theorem 2 (Congruence) IWD-bisimilarity is a congruence for interworking sequencing.

Proof. The term deduction system for IWD(o) is in path format. From [BV93], we then have
that IWD-bisimilarity is a congruence for interworking sequencing. The path format is a syntac-
tical restriction on the form of the deduction rules and can be easily checked. X

In Table 2 we present the axioms of the process algebra IWD(o).
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Idem. ojy EQiw L =1

Comm. oj, 1 Ojw Y = Y Ojw T if AE(z)NAE(y) =10
Ass. oy (Z %iw Y) Oiw 2 = T Ojw (Y 04w 2)

Ojw 1 O Oiwa:(SEUAE(a,) ifAE(a)ﬂE#@
Ojw3 0 Oiw Op = 0puF

Table 2: Axioms of IWD(o) (a € A, E, F € EID)

The first three axioms express straightforward properties. The axioms o1 and o3 describe
the propagation of partial deadlocks through the Interworking diagram. The first of these is
illustrated in Figure 15 for E = {p,q} and a = ¢(q,r,m).

A B C

U I N IR T B
1 1 }_m,{ I
T T T T T

Figure 15: Propagation of partial deadlocks

For deriving equalities between process terms we can use all instantiations of the axioms and the
usual laws of equational logic. These are reflexivity, symmetry, transitivity, and Leibniz’s rule.

As a simple example, we present the derivation that the empty process is a right unit for inter-
working sequencing. The fact that it is a left unit is put forward as an axiom.

Lemma 1 (Properties) For x € O(X;wp) we have z oy, € = x.

Proof. As AE(e) = (), we have AFE(xz) N AE(e) = (. Then, using the axioms Comm. o;y, and
Idem. ojy,, we have x ojy € = € 0jyy & = 7. X

Thus far we have presented an operational semantics and a process algebra on the signature X ryp.
Ideally, there is a strong connection between these. In this case we will first show that every pair
of derivably equal closed IWD(o)-terms is IWD-bisimilar. This relation between an equational
theory and its model is usually referred to as soundness of the equational theory with respect
to the operational semantics. It can also be stated from the point of view of the operational
semantics: the set of closed IWD(o)-terms modulo IWD-bisimilarity is a model of the equational
theory. Later we will also present a relation in the other direction: every pair of IWD-bisimilar
closed IWD(o)-terms is also derivably equal. This result is referred to as completeness.
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Theorem 3 (Soundness) /WD(o) is a sound axiomatisation of ITWD-bisimilarity on closed
IWD(o)-terms.

Proof. Due to the congruence of IWD-bisimilarity with respect to all operators from the signature
of IWD(o), it suffices to prove soundness of all closed instantiations of the axioms in isolation.
We give an IWD-bisimulation for each of the axioms. These are the following

for axiom Idem. ojy: R = {(¢ ojw p,p) | p € C(Z1wp)}”;

o for axiom Comm. ojy: R = {(poiw ¢.qoiwp) | p,q € C(X1wp), AE(p) N AE(q) = Q)}S;

for axiom Ass. oj: R = {(p oiw (qoiw ), (P oiw q) 0iw ) | g7 € C(Erwp)}7;
o for axiom o, 1: R = {(0p oiw @,050ap()) | AE(a) N E # 0}

e For axiom oj,3: R = {(0g o 0r,dpur) | E,F C EID}.

The proof of completeness consists of a number of steps. First we define the notion of basic term
and prove that every closed term is derivably equal to some basic term. The introduction of basic
terms makes it easier to perform inductive reasoning on the structure of a closed term.

Definition 5 (Basic terms) The set of basic terms is the smallest set such that

1. ¢ is a basic term;
2. for £ C EID, g is a basic term;

3. for a € A and x a basic term, a oy = is a basic term.

The set of all basic terms over the signature Y wp is denoted B(Xwp).

Theorem 4 (Elimination) For every closed term there is a basic term which is derivably equal.
Proof. By induction on the structure of closed term z.

1. © = ¢e. This is a basic term.
2. £ = 0 for some E C EID. This is a basic term.
3. = a for some a € A. Then, using Lemma 1, a = a oj ¢ which is a basic term.

4. 1 = 11 o4y x9 for some 1,19 € C(X;wp). By induction we have the existence of basic terms
b1 and by such that z1 = by and z9 = by. By induction on the structure of basic term b;.
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(a) by = e. Then x = x ojy y = by ojy by = € 0y bo = by which is a basic term.
(b) by = 0p for some E C EID. By induction on the structure of basic term by.

i. by =e. Then x = z1 ojy T2 = dg ojw € = d, which is a basic term.
ii. by = g for some F' C EID. Then x = x1 ojy 2o = by 0jyw bs = 0 oiw 0p = dpuF,
which is a basic term.

iii. by = ag ojy b)), for some ay € A and by, € B(X;wp). By induction we have the
existence of a basic term ¢ such that dg ojy by = ¢. Also by induction we have the
existence of a basic term ¢’ such that dpy g (a,)0iwby = ¢'. If AE(ag)NE # (), then
T = T10iwT2 = b10iwby = 0poiw(azoiwbh) = (Eoiwa2)oiwby = 0puAR(as)Ciwby = ¢,
which is a basic term. If AE(a) N E = (), then x = 21 ojy 9 = by o4y by =
0 Oiw (a2 0iw by) = (0 0w @2) Oiy by = (a2 0t Ok ) Oty by = a2 0iy (05 0iw bhy) = ag0iy C
which is a basic term.

(c) by = ay oiy b} for some a; € A and b} € B(X;wp). By induction we have the
existence of a basic term ¢ such that b} ojy, bo = ¢. Then & = x1 ojy, 29 = by 04y, by =
(a1 oiw b)) oiw by = a1 oiw (b ciw b2) = a1 ojyw ¢, which is a basic term.

The next step towards the proof of completeness is the following lemma. It provides a link
between axiomatic reasoning and reasoning in the (operational) model. The proof of this lemma
requires the notion of norm of a closed term. It counts the number of actions and sequencing
operators occurring in the term.

Definition 6 (Norm) For £ C EID, a € A, and z,y € C(Xwp) we define the mapping || :
C(3X;wp) — IN inductively as follows:

|6‘ - Oa
|5F)‘ - 07
|al = 1
[zoiwyl = |z[+y[+1.

Lemma 2 For all 2,2’ € C(Xwp) and a € A we have

. a
1. if z =2/, then |2/| < |z];
2. if x |, then z = ¢;
3. if 54/, then 2 = a oy 2';
. ifx =2’ then £ = a oy, 2';

4. ifz )z, then £ =045,
Proof.

1. By induction on the structure of closed term z. Suppose = — z'.
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(a) x = e. This case cannot occur.
(b) 2 = dp for some E C EID. This case cannot occur.

(¢c) z = b for some b € A. Then necessarily b = a and 2’ = . Observe that

7| =lef =0<1=]p| =

(d) 2 = =z ojw 22 for some 1,29 € C(Xwp). We can distinguish two cases for z1 ojy
[
To —T'.
. Q . .
i. 21 — ) for some 2} € C(X;wp) such that 2’ = 2} ojy 2. By induction we have
that |z)| < |z1]. Thus we obtain

|7'| = |2} oiw 2| = || + |22 + 1 < |21] + |22| + 1 = |21 04y 72| = |7].

ii. AE(a)NAE(x1) = 0 and x5 % 2}, for some 25, € C(X;wp) such that 2’ = 2 ojy, 7).
By induction we have that |z}| < |z2]. Thus we obtain

|| = |21 oiw 2| = |z1| + |25 + 1 < |z1| + |72] + 1 = |21 01y T2| = ||
2. By induction on the structure of closed term x. Suppose z |.
z = €. Trivial.
2 = g for some E C EID. This case cannot occur.

2 = a for some a € A. This case cannot occur.

X = 1 04y Lo for some x1, 29 € C(Xwp). As z |, we have z1 | and z9 |. By induction
we then have 21 = ¢ and 29 = €. Then 2 = 21 ojy L9 = € 0jy € = €.

. . a,
3. By induction on the structure of closed term x. Suppose z — z’.

(a) x = e. This case cannot occur.
(b) & = 0 for some E C FID. This case cannot occur.

(¢) 2 =0b for some b € A. Then necessarily b = a and 2’ = ¢. Then,
!
T=b=a=a0jyE=0a0jyx.

[} . .
(d) = = 1 oiw T2 for some z1,x9 € C(X1wp). For z1 ojyy 9 — z' two cases can be distin-
guished:
. ¢} . .
i. z1 — 2! for some 2 € C(Xwp) such that ' = 2 ojy, z2. By induction we then
have 11 = a ojy z}. Then,

! ! !
T = X1 Ojy T2 = (@ Ojy T]) Ojw T2 = G Oy (T] Ojy T2) = @ Ojy .

il. 29 i)’r'Q and AE(a)NAE(x1) = 0 for some 2, € C(Xwp) such that 2/ = zq 05, ).
By induction we have 9 = a ojy x},. Then,

T = T Ojyw T2 = T1 Oiy (@ Oy Th) = (T1 Oiy @) Oiyy TH

= (@ Ojw T1) Oiw Th = @ Oiy (T1 Oiyy TH) = @ Ojyy .
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4. By induction on |z| and case analysis on the structure of x. Suppose z Jand z - .

This case cannot occur.

(a) z =e.
(b) x = dp for some E C EID. Trivial as AE(z) = AE(dg) = E and 2 = d = d4p(a)-
(¢c) = = b for some b € A. This case cannot occur as b-% contradicts the assumption that

xr .

(d) = = x1 ojw @9 for some x1,29 € C(Xrwp). If 21 | then we find 21 = . As z J, we
also find x5 [, As x oy 22 =, we find 1 -, and 29 % V AE(a) N AE(x,) # 0 for
all a € A. As z; = ¢, we find AFE(a) N AE(z1) = AE(a) N AE(e) = €. Therefore,
we must have zo + . By induction (note that |z5| < |z|) we thus have zy = O AB (22)-
Then

T = T Oiw T2 = € Oiw OAL(zs) = OAB(z2) = OAE(21)UAE(z2) = OAE(x)-

If z; J/, then we have by induction 1 = d 45(,,) as we also have z; <% . First, suppose
that z9 |. Then 29 = ¢ and we obtain z = z1 ojy T3 = 5AE($1) Ojw € = 5AE($1) =
O AE(21)UAE(z2) = 0aE(x)- Second, suppose zo J. Again we can distinguish two cases:

i. z9+% for all a € A. As |z3| < |z|, we can apply the induction hypothesis and
obtain xy = d4p(s,)- Thus,

T = X1 Oiw T2 = 0AR(2,) Ciw OAE(22) = OAE(21)UAE (12) = OAE(2)-

.. a a
ii. 29— !, for some a € A. Then we have 9 = a ojy x}. AS 2 04y T2+, we must
have AE(a) N AE(z1) # 0. Then,

— . =4 . oy = (6 . !
T = X1 Ciw T2 = OAR(x,) Ciw (a oiw z5) = ( AE(z1) Ciw a) Oiy T
!
= 0 AR(21)UAR(a) Oiw T2

Note that |z5| < |z2|. Observe that

04B(21)UAB(a) Oiw Tal = |25 + 1 <[22 + 1 < [z + |22 + 1

= |21 oiw 2.
Hence we can apply the induction hypothesis to obtain

0 AB(21)UAE(a) Oiw T2 = OAB(21)UAB(Q)UAE (zy) = O AB(z1)UAE x2)

= 0AR(x)-

Theorem 5 (Completeness) IWD(o) is a complete axiomatisation of IWD-bisimilarity on
closed IWD(o)-terms.
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Proof. Suppose that z <4
have the existence of a basic term 2’ such that x = /. As the axioms are sound, we also have
T iwq ©'- Hence it suffices to prove 2z’ = y. We do this by induction on the structure of basic
term z’.

y. Then we must prove that x = y. By the elimination theorem we

1. 2’ = e. Then ' |. Since ' <, ¥, we also have y |. By Lemma 2.2 we then have y = ¢.
Hence ' = e = y.

2. ' = dp for some E C EID. Then z' Jand ' % for all a € A. As 2/ <4 ¥, also y J/ and
y . We also have AE(y) = AE(z') = AE(ép) = E. By Lemma 2.4 we have y = d5. So
' =0 =y.

3. 2’ = aojy 2" for some a € A and 2" € B(X;wp). Then 2/ % ¢ oy 2. Since 2’ <4 ¥
we also have y %y for some y' such that € oy, 2" ;g ¥'. Then, using transitivity of
IWD-bisimilarity and the soundness of Idem. ojy, also " < 4
have 7" = ¢y/. By Lemma 2.3 we have y = a oj, '. Then 2’ = a o, 2"’ =a oy = 9.

y'. By induction we then

4 Sequential and alternative composition

In the previous section we have defined a sound and complete axiomatisation of Interworking
diagrams. For this purpose we needed to introduce the interworking sequencing operator only. If
we want to extend this theory with other operators, we first have to introduce the Basic Process
Algebra operators + and -. This section is devoted to the development of the process algebra
BPA(dg) without interworking sequencing. In the next section, the interworking sequencing is
added to this algebra.

The + is called alternative composition and - is called sequential composition. The process x 4+ y
can execute either process x or process y, but not both. The process z -y starts executing process
z, and upon termination thereof starts the execution of process y. Operationally these operators
are described by the deduction rules given in Table 3. In this table we assume that ¢ € A and
E C EID. The theory presented in this section is very similar to standard Basic Process Algebra
with deadlock and empty process BPAs. (see e.g. [BV95]).

Definition 7 (Active entities) For i,j € EID, m € MID, E C EID, z,y € C(Xppa(s,)), and
® € {+,}, we define the mapping AE : C(Xppa(s,)) — P(EID) inductively as follows:

AE(c(i,j,m)) = {ij},
(€) 0,
AE(0g) = E,
AE(x ©y) = AE(z)UAE(y).
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The alternative composition of two terms can terminate if either one of these terms can terminate.
It can perform every action that its operands can perform, but by doing so a choice is made. A
sequential composition can terminate if both operands can terminate. It can perform all actions
from its first operand and if the first operand can terminate, it can perform the actions from the
second operand.

x| yl rl yl

r+yd r+yl z-y
T Yy L tl oy
T+y->a T+ySy Ty -y Ty

Table 3: Deduction rules for alternative and sequential composition (a € A)

Again, we first need to prove that IWD-bisimilarity is a congruence for all operators in the process
algebra.

Theorem 6 (Congruence) IWD-bisimilarity is a congruence for alternative composition and
sequential composition.

Proof. The term deduction system for BPA(dg) is in path format. From [BV93], we then have
that IWD-bisimilarity is a congruence for all operators. X

These operators are axiomatised by the axioms from Table 4. In these axioms the variables z, y
and z denote arbitrary process terms. In order to reduce the number of parentheses in processes we
have the following priorities on operators: unary operators bind stronger that binary operators; -
binds stronger than all other binary operators and + binds weaker than all other binary operators.
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Al z+y=y+=x

A2 (z+4vy)+z=z+(y+2)
A3 z+zrx=2

Ad (z4y)-z=z-24+y-z
AS (z-y) z=uz-(y-2)

A6 z+0p =1 if EC AE(z)
AT 0p -7 =0puAR®)

AR ez =2

AY z-e=1z

Table 4: Axioms of alternative and sequential composition (F C EID)

Axioms A1-Ab express straightforward properties, such as commutativity, associativity, and idem-
potency of alternative composition, distributivity of alternative composition over sequential com-
position, and associativity of sequential composition. Axioms A6 and A7 characterise the deadlock
constant. A6 states that if an entity has the choice between performing an action and deadlock-
ing, it will never deadlock. Axiom A7 expresses that after a deadlock no more actions can occur.
The scope of the deadlock is thereby extended to include all entities on which blocked actions
occur. Axioms A8 and A9 express the standard behaviour of the empty process.

The proof of soundness is straightforward.

Theorem 7 (Soundness) BPA(dg) is a sound axiomatisation of IWD-bisimilarity on closed
BPA(dR)-terms.

Proof. In this and other soundness proofs we use I to denote the diagonal relation. If “s = ¢ if b”
represents either one of A1, A2, A3, A4, A6, A7, or A8, then the relation R = {(s,t),(¢,s) | b}UI
is an IWD-bisimulation for that axiom. For the axioms A5 and A9 the IWD-bisimulations are

given by R={((p-y)-2z,p-(y-2)) | p € C(Sppasy))} Ul and R = {(p-&,p) | p € C(Sppacsy))}”
respectively. X

The proof of completeness consists of a number of steps. First we define basic terms and prove
the elimination property. Next, we formulate a lemma which relates semantical properties to
equational properties, and, finally, we prove completeness.

Definition 8 (Basic terms) The set of basic terms is the smallest set that satisfies:

1. ¢ is a basic term;

2. for £ C EID, g is a basic term;
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3. for a € A and z a basic term, a - z is a basic term;

4. if x and y are basic terms, then z + y is a basic term.
The set of all basic terms of the process algebra BPA(0g) is denoted by B(Xppa(s,))-

The following lemma expresses that we can always combine multiple deadlock alternatives into
one deadlock alternative.

Lemma 3 For K, F C EID we have 6 + 0p = 0pur.

Proof. Consider the following derivation: dg + dp = (0g + 0p) + dpur = dpur + (0p + dp) =
(0rur +0E) +0r = 6pur + 0F = ORUF- X

As alternative composition is idempotent, commutative and associative, and Jp is a zero element
for it, we can define a generalised alternative composition operator. For finite index set I, the

notation > x; represents the alternative composition of the process terms z;. If I = (), then
el

Yoaj=20p. 1T =1{iy, - ,ip} for n > 1, then

i€l

E T =T +Ty+- -+ 1,
el

Then we can easily establish that every basic term is of the form

Z(Li-mi-FZ(sEj-FZ&

el jeJ keK

for some finite index sets I, J, K, a; € A, E; C EID and basic terms x; of a similar form. For
convenience in proofs to follow we combine the deadlock alternatives into one alternative by using

Lemma 3:
Zai'$i+5}?+28,

i€l keK

where £ = |J E;. The summand kz e is only used to indicate presence (K # ()) or absence
Jjed €K
(K = 0) of a termination option.

Theorem 8 (Elimination) For every closed term there is a derivably equal basic term.
Proof. We prove this theorem by induction on the structure of closed term z.

1. z = e. Trivial as ¢ is a basic term.

2. £ =0 for some E C EID. Trivial as 0g is a basic term.
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3. x =a for some a € A. Then £ = a = a - ¢, which is a basic term.

4. x = z1 - x9 for some x1, 19 € C(ZBPA((;E)). By induction we have the existence of basic
terms by and by such that 1 = b; and x9 = by. By induction on the structure of basic term
b1 we will prove that there exists a basic term ¢ such that by - by = c.
(a) blEé‘. Thenbl'bQZ(‘:'bQ:bQ.
(b) by = 0p for some E C EID. Then by - by = 0 - by = OBUAE(b)-

(c) b1 =a b for some a € A and b} € B(Xppa(s,)). By induction we have the existence
of basic term ¢ such that b} - by = ¢|. Then by -by = (a-b)) by =a- (b} -b2) =a-c}.

(d) by = by + b for some by, b] € B(Xppacs,))- By induction we have the existence of
basic terms ¢ and ¢ such that b -by = ¢ and b} -by = co. Then by -by = (b} +bY)-by =
bllbg—l-blllbg =+

Observe that in each case we have the existence of basic term ¢ such that by - b = ¢. Hence
T = x1-1x9 = by - by = ¢, which is a basic term.

5. ¢ = x1 + xo for some z1,19 € C(EBPA((SE))- By induction we have the existence of basic
terms by and by such that 1 = b; and z9 = by. Then x = z1 + 9 = by + by, which is a
basic term.

Lemma 4 For all z,z" € C(¥ppa(s,)) and a € A we have

1. if ¢ |, then z = ¢ + ;

2. ifx 54’ thenz =a 2’ + z.
Proof.

1. We will prove this by induction on the structure of x. Suppose x |.

(a) x =¢e. Then trivially z =e =e+ec=¢c+z.

(b) & = g for some E C FID. Then we have a contradiction as dg J.

(¢) z = a for some a € A. Then we also have a contradiction as a J.

(d) 2 = 21 + z2 for some x1, 22 € C(Xppa(s,)). Then we have 21 | or x5 |. By induction

we then have 1 = € + 21 or 9 = € + x9. In both cases we find £ = 21 + 29 =
E+x1 +29 =€+ .

(e) @ = x1- 29 for some z1, 72 € C(Xppa(s,)). Then we have z1 | and 22 |. By induction
we then have £1 = ¢ + 21 and xy = € + x9. Therefore, z = z1 - 29 = (e + x1) - 22 =
6-.7:2+.7;1-.7;2:.7;2+.7;1-.7;2:6+m2+m1-m2:6+6-m2+m1-m2:6+(6+.7;1)-m2:
E+Ty a9 =€+
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2. We will prove this by induction on the structure of z. Suppose z — z'.

(a) 2 =e. Then we have a contradiction as & - .
(b) 2 = g for some E C EID. Then we also have a contradiction as §p - .

()

= b for some b € A. Then necessarily b = a and 2’ = ¢. Hence z = b=b+b =
a+b=a-ce+b=a 2’ +z.

8

a Q
(d) = = 1 + xy for some 1,79 € C(Xppa(s,))- Then we have z; —x' or z9—x'. By
induction we then have z; = a-2' + 21 or 29 = a-2' +29. Then ¢ = z; + 29 =
a-¢ +x1+T0 =0 -7 + 7.

(e) If z = x1 - o for some 1,79 € C(Xppa(sy))- We can distinguish two cases.

First, z1 - 2} for some z € C(Xppa(sp)) such that z' = 27 -x5. By induction we then
have z1 = a2 +x1. Therefore, z = 1 29 = (a- 2| +21) 29 = (a-2}) -2+ 21 - 29 =
a (- z)+x=0a 1+

Second, z; | and z9 = z’. By induction we have 29 = a-z'+ z9. From the first part of
this lemma we have x1 = e+x1. Therefore, z = z1 29 = (e4x1) w2 = - X2+ 1 -T2 =
To+xi o =a-2' +r9+x1 29 =0 -2 +e-xot+m-19=0a 2 +(e+x1) 29 =
a-¢ +x1-190=0- -2+

Theorem 9 (Completeness) BPA(dp) is a complete axiomatisation of TWD-bisimilarity on
closed BPA(dp)-terms.

Proof. Suppose that z <, 4 y. By the elimination theorem and the soundness of the axioms we
can assume, without loss of generality, that z is a basic term. By congruence and the soundness
of axiom A3 it suffices to prove that if z +y <;,q v then x +y = y. This can be seen as follows.
From z ;.4 y we obtain z 4+ y <4 ¥ + v using congruence of <; 4 with respect to 4, and
reflexivity of ;.4 . Using the soundness of axiom A3 we have y + y <4 y. By transitivity of
“iwd We obtain x + y ©,q y- Then £ 4+ y = y. Similarly we can obtain y + z = x. Therefore,

r=y+r=x+y=uy.

We prove this by induction on the structure of basic term .

1. x =¢e. Then = |. So z + y |. Therefore, y |. Then, by Lemma 4.1, we have y =+ y. So
wefinde +y=c+y=uy.

2. £ =0p. Then AE(z+y) = AE(dp +y) = EUAE(y). As £+ Yy ©,q Y, we must also have
AE(y) = AE(x +vy) = EU AE(y). Thus we obtain £ C AE(y). Then x +y =0 +y =

Yy+op=y.
3. z=a-2'. Then z5¢-12'. Soz +y—e-z'. Therefore, y—y' for some y' such that

e 1" ©4.q Y. By the soundness of axiom A8 we find 2’ ©;,4 ¢¥'. By induction we then
have ' = 4/. By Lemma 4.2 we have y =a-y' +vy. Thenz+y=a-2'+y=a-y +y =1y.
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4. v =xi1+x9. Using o1 +22+y g v implies 21 +y g ¥ and xz2+y £4,q ¥v- By induction
we then have x1+y = y and z9+y = y. Then z+y = (z14+22)+y = 21+ (22+y) = 114y = 9.

X

5 The interworking sequencing

In Section 3 we have introduced the interworking sequencing and in Section 4 we have defined
alternative and sequential composition operators. When combining these operators into one single
theory, we need to express the relation between the interworking sequencing on the one hand and
alternative and sequential composition on the other hand. By introducing the auxiliary operators
Loj,, and Rojy, we can express the interworking sequencing in terms of the alternative and
sequential composition operators. The process algebra obtained in this way is called IWD(o, -, +).
It is a conservative extension of both the process algebra IWD(o) from Section 3 and the process
algebra BPA(Jg) from Section 4. Furthermore, all axioms formulated for interworking sequencing
in the theory IWD(o) can now be derived for closed terms.

The intuition of the auxiliary operators is as follows. The process x Lo;yy behaves like the process
T ojy y with the restriction that the first action to be executed must originate from process x.
The process x Roiy also behaves like the process x ojy, y but this time with the restriction that
the first action to be executed must be from process y. In this case, the first action from y can
only be executed if it is not blocked by any of the actions from z.

These definitions resemble the use of the left-merge operator in PA to define the merge operator.
That we need two auxiliary operators instead of one is caused by the fact that interworking
sequencing is not commutative.

Definition 9 (Active entities) For i,j € EID, m € MID, E C EID, x,y € C(ZIWD(O . +)),
and ® € {ojy, Lojy, Roiy, +, -}, we define the mapping AE : C(EIWD(O ) +)) — IP(EID) induc-
tively as follows:

AE(C(Zajam)) = {’L,j},

AB(e) -0

AE(dp) = E,

AE(z ©y) = AE(z)UAE(y).

The operational semantics of the interworking sequencing is given already in Table 1. The opera-
tional semantics of the auxiliary operators is given in Table 5. The rules follow from the intuitive
explanation above. The termination behaviour of the interworking sequencing is incorporated
in both auxiliary operators. This is not necessary but facilitates the axiomatisation of these
operators and the proof of the auxiliary proposition in the proof of Proposition 1.
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T Loiwy \L T Roiwy \L

xS AE(a)NAE(x) =10

X I‘Oiwy i> xl Oiw Y

a
4y Rfoiwy — X Ojy Y

Y=y
!

Table 5: Deduction rules for auxiliary operators for interworking sequencing (a € A)

Theorem 10 (Congruence) ITWD-bisimilarity is a congruence for Lojy, and Rojy.
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Proof. The term deduction system is in path format and hence IWD-bisimilarity is a congruence

for all operators.

L1
L2
L3
L4
L5
L6
L7

R1-4
R5
R6a
R6b
R7

T oiw Y = = Lojwy + 1 Rojyy

elojwe = ¢

e Loiwop = 0g

elojwa - T = 04p(a)

£ Lojw (z 4+ y) = € Lojwz + € Lojyy
0r Loiw = 0puar()

a-zlojwy =a- (xoiwy)

(z 4+ y) Lojwz = x Lojwz + y Lojy 2

2 Rojwe = ¢ Lojwx

z Roiwdp = 0puan(a)

zRoiwa -y = a- (z oiy y)

T Roiwa Y = 0 4B (2)UAE(a-y)

2 Roiw (y + 2) = z Rojwy + 2 Rojy 2

if AE(a) N AE(z
if AE(a) N AE(x

Il

0
) £ 0

X

Table 6: Axioms for interworking sequencing and auxiliary operators (a € A, E C EID)

The axioms defining the interworking sequencing in terms of alternative and sequential composi-
tion are given in Table 6. The first axiom, S, states that the first action from z oy, y can either
come from z (via the term z Lojyy) or from y (via the term z Rojwy). Axioms L1-L7 define
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the operator Lojy using the structure of basic terms. As stated before, x Loy behaves like the
process x ojy y with the restriction that the first action to be executed comes from z. This is
expressed clearly in axiom L6. The relation between Lojy and oy, also explains the distributive
law L7 and the absorption law L5. Axioms L1-L4 define the termination behaviour of Lojy:
1 Lojwy can only terminate if both operands can terminate. A deadlock occurs if the left operand
is € and the right operand cannot terminate (axioms L2, L3).

The definition of Rpjy is similar. The intuition behind the operator Rojy is that the right
operand may only execute actions which are not blocked by the left operand. Therefore, we make
a distinction using the condition AE(a) N AE(x) = () (see axioms R6a and R6b).

Theorem 11 (Soundness) The axioms given in Table 6 are sound with respect to TWD-
bisimilarity on closed IWD(o, -, 4+)-terms.

Proof. 1If “s =t if b” represents either one of S, L1-L5, L7, R1-4, R5, R6b, or R7, then the
relation R = {(s,t), (¢,s) | b} UT is an IWD-bisimulation for that axiom.

For the axioms L6 and R6a the IWD-bisimulations are given by

R = {(a-zleiwy,a- (zoiwy)), (e -z oy, e (20w y)), (- T oiw ¢, 7 i q)
S
1€ CEWD(o,., +))7 U

and
R = {(zReiwva-y,a-(zoiwy)), (2 oiw ey, & (€ 0iwy)), (P oiw € - ¢, P O q)
12,0 €CCErywp(o,.. ) AB(a) NAE(z) = 0} U T

respectively. X

We will consider basic terms as in Definition 8 of Section 4. To prove the elimination property
we will need the following lemma.

Lemma 5 For arbitrary basic terms b; and by we have the existence of basic terms c¢1, ¢o and c3
such that by Lojwbo = ¢, by Rojwba = ¢o and by ojy by = c3.

Proof. These statements are proven simultaneously with induction on the structure of basic
terms b; and by. The details of the proofs are omitted. X

Theorem 12 (Elimination) For every closed IWD(o,-,+)-term z there is a derivably equal
basic term s.

Proof. This theorem is proven by induction on the structure of closed IWD(o, -, +)-term z. The
only interesting cases are the following: z = z’ Lojwz”, z = 2’ Rojwz”, and x = 2’ oj, 2" for closed
IWD(o,-,+)-terms z' and 2. In all cases we find the existence of basic terms by and b such that
x1 = by and z9 = by. Using the previous lemma we find the desired result. X
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Next, we prove that the process algebra IWD(o,-,+) is a conservative extension of the process
algebra BPA(0r). This means that every equality between closed terms from the signature of
BPA(dg) is also derivable from the process algebra IWD(o, -, +), and also that in the process
algebra IWD(o,-,+) only those equalities are derivable. The proof of this theorem uses the
approach of [Ver95].

Theorem 13 (Conservativity) The process algebra IWD(o, -, +) is a conservative extension
of the process algebra BPA(dg).

Proof. The conservativity follows from the following observations:

1. IWD-bisimilarity is definable in terms of predicate and relation symbols only,
2. BPA(dg) is a complete axiomatisation of IWD-bisimilarity on closed BPA(dg)-terms,

3. IWD(o,-,+) is a sound axiomatisation of IWD-bisimilarity on closed IWD(o, -, +)-terms
(see Theorem 11),

4. The term deduction system for BPA(dg) is pure, well-founded and in path format, and

5. The term deduction system for IWD(o, -, +) is in path format.

Theorem 14 (Completeness) The process algebra IWD(o, -, +) is a complete axiomatisation
of IWD-bisimilarity on closed IWD(o, -, +)-terms.

Proof. By the General Completeness Theorem of [Ver94], the completeness of the process algebra
IWD(o, -, +) follows immediately from the properties mentioned in the proof of Theorem 13 and
the fact that ITWD(o,-,+) has the elimination property for BPA(Jg)(see Theorem 8). X

In Section 3 we have given a direct axiomatisation of interworking sequencing, while in this section
we have expressed interworking sequencing in terms of alternative and sequential composition.
We will prove that the axioms used in the direct axiomatisation are still valid in the current
setting for closed terms.

As a consequence of the fact that TWD-bisimilarity is a congruence for all operators in the
signature and the fact that for every closed term there exists a derivably equal basic term, we
can prove equalities for closed terms with induction.

Proposition 1 (Commutativity of o;y) For arbitrary closed IWD(o, -, +)-terms x and y such
that AE(z) N AE(y) = 0 we have

L Oiw Y = Y Oiw L-
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Proof. Suppose that AE(z) N AE(y) = (). We prove the statements z Lo,y = y Rojwz and
T Ojw Y = ¥ Ojw & simultaneously with induction on the structure of basic terms z and y. First we
present the proof of x Loy = y Rojywx.

1. & = €. Trivial by axiom R1-4.

2. x =g for some E C EID. Then z Loiwy = 0p Loiwy = dpuany) = Y Reiwdr = y Roiwz.

3. z =a-1 for some a € A and 2’ € B(ZIWD(O _ +)) As AE(a-2') N AE(y) = 0 implies
AE(x') N AE(y) = 0, we have by induction that z’ ojy, y = y oj 2. Then

2 Lojwy =a-x' Lojwy = a- (' ojw y) = a- (y ojw x")
= yRojywa - 2’ = y Rojyx.

Note that we have also used that AE(a-z') N AE(y) = () implies AE(a) N AE(y) = 0.

4. x = 2’ + 2" for some ', 1" € B(EIWD(O,-,+))' As AE(z' + 2") N AE(y) = 0 implies

AE(Z' YN AE(y) = 0 and AE(z") N AE(y) = (), we have by induction z’ Lojwy = y Rojyz’
and 7" Lojwy = y Rojwz”. Then

z Loy = (2" + 2") Loiwy = o' Lojwy + 2" Lojwy = y Rojwz’ + y Rojex”
= yRojy (2" + ") = y Rojyz.

Then we have z ojy y = = Lojwy + = Roiwy = y Roiwz + y Lojwx = y oiyw 2. X

Proposition 2 (Unit element) For closed IWD(o, -, +)-terms = we have

ECiw X =T Ojw € = T.
Proof. First, we prove € oj, £ = = with induction on the structure of basic term z.

1. x=¢c. Thencojy x =cojy e =clojwe + cRojye =c+e =¢ = 1.

2. 2 = 0p for some E C EID. Then cojy,z = €0y 0 = € Lojwdn +e Roiwdr = 0p +0puane) =

3. z=a-x' for somea € A and ' € B(EIWD(O ) +)) By induction we have € o;y 2’ = 2.
Then eojy 2 = eojwa-7' = € Lojwa-2'+¢ Roja-2' = (5,4;;(a.$f)+a-(6oiwr1;’) = 6,4;;(,1.1;1)4—(1,-37' =
a-x.

4. © = 11 + 19 for some x1, 19 € B(EIWD(O ] +)) By induction we have € oj, £1 = 24

and € oy, 9 = m9. Then € ojy = € 04y (21 + m2) = € Lojyw(r1 + 22) + € Rojy (11 + 22) =
€ Lojwxy + € Lojwxo + € Rojwx1 + € Rojwxo = € 0y 1 + € 04y o = 1 + T9 = .
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Then, using the commutativity of oj, and the fact that AE(x) N AE(e) = () we easily find
T Ojw € = € Ojyy & = . X

Proposition 3 (Associativity of o;,) For closed IWD(o, -, +)-terms z, y, and z, we have

(.’I} Ojw U) Ojw 2 = T Ojw (U Oiw Z)

Proof. Without loss of generality we can assume that x, y, and z are basic terms. To prove this
theorem the following propositions are proven simultaneously with induction on the general form
of the basic terms z, y, and z.

(.’I,' Loiwy) Loin =T Loiw(y Oiw Z)
(.’I} Rpiwy) Loin =T R'oiw(y Loiwz)
(7 oiw ¥) Roiwz = = Royy, (y Rojy 2)

(.’I,' Ojw U) Ojw 2 = T Ojw (U Ofw Z)

—~ o~~~
(]
—_— — ~— ~—

This way of proving associativity of interworking sequencing is similar to the way in which
associativity of parallel composition is proven in ACP. Similar equations in the setting of ACP
are usually called the Axioms of Standard Concurrency [BW90].

Let

.’IJZZ(L,;-.’IJ,;-F(sE-FZ&,

iel keK
y=> by +or+ Y e

leL neN
z:ZcO-zO—I—(S(;—I—Z&,

0€0 qeQ

for some finite index sets I, K, L, N,O.Q, a;,b;,c, € A, E, F,G C EID and basic terms x;, y;, z,-

The following identities are used in the proofs of these four equations. Their proofs are omitted.

(8 Loiwy) Lojwz = ¢ Loiw(y Oiw Z) (a’)
(z Rojwe) Lojwz = z Rojy (€ Lojyw 2) (b)
($ Oiw y) Roiwe =z Rpiw(y R'Oiwg) (C)



32 5 THE INTERWORKING SEQUENCING

Proof of (1):

(.’I,' Loiwy) Loin
= {ass. z, distribution laws}

> (a; - 7 Lojyy) Lojwz + (g Lojwy) Lojwz + ) (e Lojyy) Lojyw 2

el keK
= {L6, L5}

Y icr @i ((Ti Oiw Y) Oiw 2) + 0puaB@)UAER) T Dkek (€ Loiwy) Loiy2
= {Induction hypothesis (4), AE(y) U AE(z) = AE(y oiw 2), (a)}

Zie] ag - (7;7 Oiw (U Oiw Z)) + 5E'UAE‘(yoiwz) + Zke[( €L°iw(?/ Oiw Z)
= {L6, L5}

D il @i - Ti Oty (Y Oiw 2) + 05 Loiw (y oiw 2) + D _pc i € Loiw (Y oiw 2)
= {distribution laws, ass. z}

z Loiy (Y oiw 2)

Proof of (2): Let L' ={le L | AE(bj)) N AE(z) =0} and L" = L\ L.

(.’I,' R'oiwy) Loin
= {ass. y, distribution laws}
> (zRoiwby - y1) Loiwz + (2 Roiwdp) Loiwz + 3 (7 Rojwe) Lojwz
leL nenN
— {R6a, R6b, L6, R5, L5}
> b ((w oiw Y1) Oiw 2) + D2 OAR()UAB(b-y)UAE(z) T OFUAR(2)UAR(2)
IEL 1L
+ > (2 Rojwe) Lojy 2z
neN
= {Induction hypothesis (4), (b)}
> b (T oiw (Y1 %iw 2)) + D0 OAE()UAE(biy)UAE(z) T OFUAR(2)UAE(2)
IEL IEL"
+ Z .’ERDiW(8LOiWZ)
neN
— {R6a, R6b, L6, R5, L5}
> 2 Roiw (b - 41 Loiwz) + 2 Roiw (05 Loiwz) + 3 2 Rejy (e Loiwz)
leL neN
= {distribution laws, ass. y}

2 Rojy (y Rojw2)
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Proof of (3): Let O' ={o€ O | AE(c,) N AE(z ojw y) = 0} and O" = O\ O'.

(z oiw y) Roiwz
= {ass. z, distribution laws}

Z (eT Ojw y) Roiwco - 20 + (-73 Ojw y) R'OiW(SG + Z (-73 Ojw y) Roiye
00 qeQ
—  {R6a, R6b,R5}

Y. Co ((T 0w Y) Oiw Z0) + D GAR(z01my)UAB(co-20) T OGUAR (z01wy)
0€0 0E0"

+ >~ (7 oiw y) Roiwe
qeQ
= {Induction hypothesis (4), AE(z oiy y) = AE(z) U AE(y), (c)}

Y. Co (T oiw (Y Oiw 20)) + D OAR@)UAR(YUAE(co-20)
0e0! 0c0"

+ 5GUAE(m)UAE(y) + Z xR'OiW(y R'Oiwg)

qeQ
= {R6a, R6b, R5}

> 2 Roiw (y Roiwe, - 20) + 2 Rojy (y Roiwda) + Y 2 Roiw (y Rojye)
00 qeqQ
= {distribution laws, ass. z}

T Rpiw(y Rpiwz)

Proof of (4):
(2 0w Y) Oiw 2
= {s}
(2 oiw ¥) Lojwz + (z oiw ) Rojwz
= {S}
(2 Loiwy + x Roiwy) Lojwz + (% oiyw y) Rojwz
= {L7}
(2 Lojwy) Loiwz + (2 Roiwy) Loiwz + (2 0w y) Rojwz
= {Induction hypotheses (1), (2), (3)}
x Loiyw (Y oiw 2) + & Rojy (y Loiwz) + & Roiy (y Roiyw 2)
= {RT7}
x Loiyw (Y oiw 2) + & Rojy (y Loiwz + y Rojyw2)
= {S}
x Loiyw (Y oiw 2) + & Roiw (y oiw 2)
= {s}

T Ojw (U Oiw Z)

Finally we give two more identities. They correspond to the axioms ojy1 and ojy3 from Table 2.
Proposition 4 For E, F C EID and a € A such that AE(a) N E # () we have

0E %iw @ = 0RUAE(a);
dr ciwdr = dRuUF-
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Proof. For the first identity consider

0p oiw a = 0p Loiwa + 0 Roiwa = dpuapa) + 0k Roiwa - €

= 0puAE(a) T OEUAR() = OBUAR(a)s
and for the second consider

0F oiw 0F = 0 Lojwdr + dr Roiwdr = drpur + 0pur = dRUF.

Observe that we have now shown that all identities on closed IWD(o)-terms that are derivably
equal in the process algebra IWD(o), are also derivably equal in the process algebra IWD(o, -, +).

6 The F-interworking merge

Now that we have defined the process algebras BPA(dg) and IWD(o, -, +) which include operators
for alternative and sequential composition, we aim at extending them with the merge operator.
For technical reasons, we do this in two steps: First we will define the E-interworking merge in
this section and in the next section we will extend the obtained process algebra to its final shape.

The E-interworking merge of  and y, denoted by z ||£ y, is the parallel execution of the processes
z and y with the restriction that the processes must synchronise on all atomic actions which are
defined on entities from the set £. This set F is static, which means that it remains unchanged
during calculations on a term which contains the E-interworking merge operator. The resulting
process algebra is called TWD(o, +, -, ||¥).

The deduction rules defining the operational semantics of the E-interworking merge are given in
Table 7. The FE-interworking merge of two processes can terminate if and only if both operands
can terminate. The second and third rule in Table 7 say that if an operand can perform an action,
the merge can perform the same action, provided that the action is not supposed to synchronise
(i.e. the sender and receiver are not both in E). The fourth rule expresses the behaviour of a
merge in case a synchronised action is possible.

Definition 10 (Active entities) For arbitrary i,5 € EID, m € MID, E C EID, z,y €
E
C(ZIWD(0,+,.’||E))= and ® € {oiy, Loiyw, Roiw, +,- [|£ | Ev | E C EID}, we define the

iw? Liw *
mapping AFE : C(EIWD(O, 4 ||E)) — IP(EID) inductively as follows:

AE(c(i,j,m)) = {ij},
(€) 0,
AE(0g) = E,
AE(x ©y) = AE(z)UAE(y).
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xrl yl 51 AE(a) ¢ E y>y AE(a) ¢ E

7yl AT vy lfy

52 ySy AE(e) CE

iy = iy

Table 7: Deduction rules for E-interworking merge (a € A, E C EID)

For the axiomatisation of the E-interworking merge we need two auxiliary operators, similar to
the axiomatisation of the communication merge of ACP. These additional operators are [LEV (E-
interworking left-merge) and |2 (E-interworking synchronisation merge). The process xul};y
behaves like the process z HEV y with the restriction that the first action must come from process
z and that action cannot synchronise with an action from y. The process z |£Vy behaves as
the process Hfjvy with the restriction that the first action must be a synchronisation. This is
formalised by the deduction rules in Table 8. The term deduction system T(IWD(o,+,-, ||¥))
consists of the deduction rules of Tables 1, 3, 5, 7 and 8.

zl yl 51 AE(a) ¢ E
zlli ol v iy

v 52 ySy AE(a) CE

zllvy=a |1y

Table 8: Deduction rules for auxiliary operators of E-interworking merge (a € A, E C EID)

Table 9 presents the axioms defining the F-interworking merge and its auxiliary operators. Axiom
M states that either one of the two operands executes a non-synchronised action (z L]fv y—l—yufv x),
or that a synchronised action takes place (| y). The definition of the [Lfv operator (LMI-
LMT) is very similar to the definition of the Loy, operator in Section 5 (Table 6, axioms L1-L7).
The only difference is that axiom L6 is unconditional, whereas axiom LM6b has to take care
of eliminating actions which are supposed to synchronise. Axioms CM1-CM7 define the \EV
operator. This operator enables all actions that can be performed by both operands and which
must synchronise. In all other cases it yields a deadlock, where the scope of the deadlock can be
derived from the operands.

It turns out that IWD-bisimilarity is a congruence for the operators in the signature of the process
algebra IWD(o, +, -, || ). Furthermore, IWD(o,+,-,||”) is a sound and complete axiomatisation
of IWD-bisimilarity on closed IWD(o, +, -, ||)-terms. The proofs are based on the meta-theory
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M el y=2| y+yll z+ally

LM1 dufve =¢

LM2 | 6p = dp

LM3 e[, a7 =B

LM4 e, (z+y) :5LL£V$+5LL£V?/

LM5 5FLL€V$ = 5FUAE(a:)

LM6a a-z||” y=a-(z]Zy) if AE(a) ¢ E
LM6b a - mui%y = 6AE(G.$)UAE@) if AE((I) g E
LM7 (v +y)|lL 2=zl z+yll 2

CM1 £ ‘va = 5AE‘(:1:)

CM2 T |1FV|V6 = 5AE‘(:1:)

CM3 op |1€VT = 5FuAE(m)

CM4 T |1€V op = 5FuAE(m)

CM5a a-z|Zb-y=a- (x| y) ifa=bAAE(a) C
CM5b a-z|b-y= O AR (a-2z)UAFE (by) ifaZbV AE(a) £
CM6 (z+y)|lz=zll2+y|l 2

CM7 =z|E(y+z2)=x|Ey+z|E2

iw

E
E

Table 9: Axioms of E-interworking merge (a,b € A, E, F' € FID)
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presented in [BV95, Ver95].

Theorem 15 (Congruence) IWD-bisimilarity is a congruence for E-interworking merge and
the auxiliary operators.

Proof. The term deduction system is in path format and hence IWD-bisimilarity is a congruence
for all operators. X

Theorem 16 (Soundness) The process algebra IWD(o, +, -, ||¥) is a sound axiomatisation of
IWD-bisimilarity on closed IWD(o, +, -, ||F)-terms.

Proof. For the axioms LM1-LM5, LM6b, CM1-CM4, and CM5b the IWD-bisimulations that
witness the soundness are trivial. If “s = ¢ if b” represents such an axiom, then the TWD-
bisimulation is R = {(s,t), (¢,s) | b}.

For the axioms M, LM7, CM6, and CM7 the IWD-bisimulation is given by R = {(s, 1), (,s) | b}UI
if the axiom is given as “s =t if b”.

For the axioms LM6a and CMba the IWD-bisimulations are

R = {(a'mliwy,a-(ml\ﬁvy))a(ﬁ'mllﬁvy,ﬁ-(fgllﬁvy)),(ﬁ-m!\ﬁvq,ml\ﬁvw
| AE(a) L E.q € C(ZIWD(O,—l—,-, HF))} Ul
and
R = {(aﬁx\ﬁb-y%a-(w||ﬂy)%(€-$LL{€v8-y,8-(wlli’fvy)),
(Plliwe-y.pliwy) (€ 2liy a2 i 9) ;
la=0b,AE(a) C E,p,q € C(ZIWD(O,—l—’-’ HF))} ur
respectively. X

Lemma 6 For arbitrary basic terms by and by we have the existence of basic terms cq, co, and
E
C3 such that b] HJW bQ = C1, b] ‘E bQ = C2 and b] ||£V bQ — C3.

iw

Proof. These statements are proven simultaneously with induction on the total number of
symbols of the basic terms by and b,.

1. By case distinction on the structure of basic term b;.

a) by = . By case distinction on the structure of basic term bs.
y
i. by =e. Then by||] by =c¢| [ e=ce.

ii. by = dp, for some Fy C EID. Then by||” by = €| o, = 0,
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iii. by = agy - bl for some ay € A and b, € B(X )) Then

IWD(O,—I—’ B HE

b] UEV bg — EUEV as - bIQ = 5AE(a2-b’2)-
iv. by = bl + bl for some b, b} € B(ZIWD(O,—I—, y Hp)) By induction we have the

existence of basic terms ¢ and ¢! such that 5LL.E b, = ¢ and 6\LE b = ¢!. Then
1 1 iw 72 1 iw 2 1
E E li " E 11 E in i Ui
bi|liy b2 = elliy, (b2 +b3) = ell;, by +ellj, by = 1 + 7.

(b) by = dp, for some Fy C EID. Then by |7 by = dp || bo = 5,0 am(hs)-
(c) by =aq-b) for some a; € Aand b € B(ZIWD(O, 4 Hp)) By induction we have the
existence of basic term ¢} such that b} ||£ by = ¢}. Then, if AE(a)  E,

bulLE by = ar -1 by = ar - (0] |15 bo) = a1 - ).

If AE(a1) C E, then by||” by = ay - B |7 b2 = 0 am(ar4)0am(bs)-
(d) by = b+ for some b}, b € B(ZIWD(O iy Hp)) By induction we have the existence

of basic terms ¢} and ¢/ such that b [Lf; by = ¢, and b/ [LEV by = ¢{. Then
bi |l by = (B + b)) (L7 bo = b L ba + B[ by = ) + .
2. By case distinction on the structure of basic term b;.

(a) by =e. Then by |¥ by = ¢ IEV by = 0 A (by)-

iw
(b) by = 6, for some Fy C EID. Then by [§, by = 0p, |f5, b2 = 60 am(by)-
(c) by = ay - b} for some a; € A and V)| € B(EIWD(O,—i—, § HE)) By case distinction on
the structure of basic term b,.
i. by =e. Then by || by = b1 |, e = dap@,).
ii. by = dp, for some Fy C EID. Then by |, ba = b1 |}, 05, = 0 ap(,)ur,-

iii. by = ay - b, for some ay € A and b, € B(ZIWD(O,—I—,-,HE))' By induction

we have the existence of basic term ¢z such that b | b}, = c3. Then, if a; =
as N\ AE((Il) CE,

b1 lfy bo = ar - by [ as - by = ax - (B ||}, b5) = ar - es.
Ifa; ZayVAE(a1) € E, then

b1 |{ b2 = a1 - by | a2 - by = 6 ap(ar-b, )uaB(ar b))

: — " 1o . .
iv. by = b, + bl for some b, b} € B(ZIWD(O,—I—, y Hp)) By induction we have the
existence of basic terms ¢}, and ¢} such that by |£ b, = ¢}, and b |£ b = cj. Then

iw iw

bi I by = by £ (B + b)) = by |5, by + by |56 = & + &b,

iw iw iw



39

(d) by = b+ for some b}, b € B(ZIWD(O, b Hp)) By induction we have the existence

of basic terms ¢} and ¢} such that b} |£ by = ¢} and b |2 by = ¢j. Then
b |£Vb2 = (b’I +b’1’) Evbg :bll Evbg—i-b’l’ Evbg = C,2+C’2’

3. By the previous two items we have the existence of basic terms ¢}, ¢/, and ¢y such that
E E ;
bi i, b2 = ¢, bo|li., b1 = ¢, and by | by = c5. Then,

by ||£Vb2:b]uzvb2+b2uzvb] + by |£Vb2:C’] +C’1’+CQ.

Theorem 17 (Elimination) For every closed IWD(o, +, -, ||¥)-term z there is a derivably equal
basic term s.

I

Proof. This theorem is proven by induction on the structure of closed IWD(o, +, -, ||")-term .
E

All cases except for z = 2/ [Lf; 2", z=12'|E 2" and z = 2’ ||E£ 2" have already been treated in the
proof of Theorem 12. In the remaining three cases we find the existence of basic terms b; and by

such that 1 = by and z9 = by. Using the previous lemma we find the desired result. X

Theorem 18 (Conservativity) The process algebra IWD(o, +,-, ||

sion of the process algebra IWD(o, -, +).

) is a conservative exten-

Proof. The proof of this theorem uses the approach of [Ver95]. The conservativity follows from
the following observations:

1. TWD-bisimilarity is definable in terms of predicate and relation symbols only,

2. IWD(o,-,+) is a complete axiomatisation of IWD-bisimilarity on closed IWD(o, -, +)-terms,

3. IWD(o,+,-,||”) is a sound axiomatisation of IWD-bisimilarity on closed IWD(o, +, -, ||¥)-
terms (see Theorem 16),

4. the term deduction system for IWD(o, -, +) is pure, well-founded and in path format, and

5. the term deduction system for IWD(o, +,, ||¥) is in path format.

Theorem 19 (Completeness) The process algebra IWD(o, +, -, |¥) is a complete axiomatisa-
tion of IWD-bisimilarity on closed IWD(o, +, -, ||¥)-terms.
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Proof. By the General Completeness Theorem of [Ver94], the completeness of the process algebra
IWD(o, +,-, ||”) follows immediately from the properties mentioned in the proof of Theorem 18
and the fact that IWD(o,+, -, |¥) has the elimination property for BPA(Jz)(see Theorem 8) and
hence also for IWD(o, -, +). X

When defining an operator for parallel composition, several properties are desirable, such as
commutativity, the existence of a unit element, and associativity (under some condition). The
proof of associativity in the process algebra is quite complicated.

Proposition 5 (Commutativity ||, ) For closed IWD(o,+,,||”)-terms z, y, and a set of

entities £ we have . .
m|i\é§y:y|i%ma
T iy =y lliy =

Proof. 'The propositions are proven simultaneously with induction on the general structure of
basic terms « and y. Let

x:Zai-xi+6E+Za, y:Zb;-yl+5F+Z8,

el keK leL neN

for some finite index sets I, K, L, N, a;,b; € A, E, FF C EID and basic terms z;,y;. Then,

',I;|iwy_ a‘ilmi‘iwbl'yl_‘_mhw(sF_i_ m|iwg+(sE‘iwy+ €|iwy
i€l lel, neN keK

= > ai - (zi |lfy w0)

1€l leL,a;=b;,AE(a;)CE

+ Z Z 6AF)(ai~:1:i)UAE(bl'yl)

1€l leL,a;ZbjVAE(a;)ZE

+ 0aB(z)ur + Z daB@) T OBUAE() T Z O AB(y)
neN keK

=y > b (yo I i)

leL iEI,blEai,AE(bl)gE

+ Z Z O AR by UAE (a;-2;)

I icT,bjZa;VAE(b)ZE
+op B+ el a+yllon+ ) ylte

neN keK
E E E E E
:E E bl'yl|iwai'$i+5}7|iwx+§ :E|iwx+y‘iW5E+§ :y|iW8
leL el neN keK

=yl @

and

E E E E
gl y =z y+yllz+zEy=yll z+z|ly+yltz=ylLz
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Proposition 6 For closed IWD(o, +, -, ||¥)-terms x we have

z H?Wa =z,

e z=u

Proof. The first proposition is proven with induction on the general structure of basic term z.

Let
{E:Z(Li-mi-l-(sE-FZ&,

el keK
for some finite index sets I, K, a; € A, E C EID and basic terms z;. The induction hypothesis
is x; ||?W6 = z; for all ¢ € 1. Then,

xu?we = Zai-xiu?wa—l—(?}?wwe%— Zeﬁ?we

el keK
= ai- (@il ) +ou+ > ¢

el keK
:Zai'$i+5}?+28

el keK
=7

and

6[?Wm:6LL?W(Za¢-m¢+5E+Za)

icl keK
= ZE[L?Wai -z + €U?W5E + Z 5U?W€
icl keK
=D daptaay T+ Y e
el keK

Using these two subcomputations we obtain:
0 0
z ||?wE =zl e el +x|?w5

=2+ ) San(aia) T OB+ Y €T 0an)
el keK

=XT.

The other part of the proposition is obtained using the commutativity of ||EZ]W . X

The following proposition serves our needs in proving interworking merge associative in the next
section.
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Proposition 7 (Associativity of ||£ ) For closed IWD(o,+,-, ||¥)-terms z, y, and z, and sets
of entities Ey, E9, and E3 such that AE(z) C Ey, AE(y) C Es, and AE(z) C E3, we have

FEiNE: (E1UE2)NE. E1N(E2UE3) FonNE
(2 [P ) [ 0 2 = PO (g 20 ),

 liw

Proof. Without loss of generality we can assume that z, y, and z are basic terms. We use
the fOllOWiIlg shorthands: S = E] N EQ N Eg, E]Q == (E] N Eg) \ S, E23 == (EQ N E3) \ S, and
Ei3 = (E1NE3)\ S. In Figure 16 these sets are indicated in a Venn diagram.

R
S

Figure 16: Explanation of shorthands

We prove the following propositions simultaneously with induction on the structure of the basic
terms z, y, and z.

(-’”LLQQUQ )uf@v;gu@gus* _ Tuf@v;zuEw,us( | 2008 ) (5)
( [E128S ) | ErabBnis g EUESUS () ExUS ) (6)
(z [F12U8 ) | PrsUPslS , — g FraUbralis (o) PS4 (7)

(2 || 1295 ) || BralBaS , — o || EraUBasUS (o) EasUS (8)

Let
{E:Z(Li-mi-l-(sE-FZ&,
i€l keK
y=> by+or+ > e
leL neN
z:ZcO-zo—l-é(;—l-Za,
0€0 qeQ

for some finite index sets I, K, L, N,O. Q, a;,b;,c, € A, E, F,G C EID and basic terms x;, y;, z,-

We only give the proofs for (6) and (8). The proof for (6) uses induction on the general form of
basic terms x, y, and z.
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E3 we obtain AE(LEl) - E], AE(yl) - EQ, and

AE(z,) C Ez foralli € I,1 € L, and o € O. This means that we are allowed to use

(7'7 ||E12Uq ) ||E13UE23U§'

2o = T |5

FEi12UE13US ( HE23U§'

o)

First, we give a number of subcomputations. These are used in proving equation (6).

Subcomputation 1:

E]QUqb ’U) |E13UE23U§1

(a; - x| - 2
[ G [ES g) [2S ,
= E1sUEsUS |,

S AR(are)UAB () a2 o - 24

E S Eq13UE S
ai - (i 1577 o) i * "7 o)

O A (i) UAE (2)UAE (y))UAE (co-20)

O A (ai-:)UAB(b-y1) UAE (co-20)

E S E E S
ai - (i 2 1) 7277 20)
O A (a;-2)UAE (b -y1)UAE (co-20)
E S E F: S
_ Jai- (i iy 297 [l 20)
5AE(a DVUAE by UAE (co-20)
E E S E: S
_ Jai- (il IS (g 1127 20))
5AE‘(a,—-m-)uAF‘(bl-yl)uAF‘(co~zo)

(ZEZ ||E12UE13U§' ( Es3US 0))

a; i i

O AE (a;-2;)UAE(b)UAE () UAE (20)

if a; = b A AE(aZ) C FipsUS
otherwise
ifa; =b A AE((J,) C EioUS
N a; ECO/\AE((M) C Fi3sUEy»US
ifa; =b A AE(al) C FipsUS
VAN (ai Z ¢, V AE(al) Z Fy3 U Fog U S)
otherwise
ifa; =b A AE(al) C FipsUS
N a; ECO/\AE((M) C Fi3sUEy» US

otherwise

ifa;=b =c, N AE(a;) C S
otherwise

ifa;=b =c, N AE(a;) C S
otherwise

ifa; =b A AE(al) C EioUE3US

ANb = CO/\AE(bl) C Ex3U S
if ((17 7‘é by v AE((J,) Z Eiy U FEi3U S)
ANb = CO/\AE(bZ) C Ey3US

OB (a5-2:) UAB (b)) UAE (co-20) otherwise

a; - i [L29EEUS (g [E2295 5 i by = ¢y A AE(D) C Epz U S
o E12UE13US .

@i Tl T O AB(b ) UAB(co-z,)  Otherwise
=a; - 2 ‘E12UE13U§1 (b Ui ‘Ezguq Z())

Subcomputation 2:
Eq12US Ei13UFE93US | FlengUS
(0 liw? " ) liw 2 = 05UAB) lin

= ORUAE(y)UAE(z)

E E S
_51| 12Uk 13U (y‘

Eo3US
iw

z)
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Similarly we obtain

(LE |E12U§' 5 ) |iEV‘V13UEggUS1 o iEV‘V12UE13US (517 ‘iEngUS' Z)

and

(ZE ‘E]QUS’ y) ‘EmuEggUg1 5

iw iw

EioUE13US (y ‘Eggug 5 )

*x‘ 1w

Subcomputation 3:

S S S
(8‘iEw12U ) ‘iEvJ3UE23U 5,4 |E13UE23U

= 5AF( JUAE(z)

= |E12UE13U§' (’U |E23Uq )
Similarly we obtain
(’I' |E12U§1 8) |1EV‘V13UE23U§1 - iEV‘V12UE13US (8 ‘iEWQgUS Z)
and
(’I' |E12qu) |iEV;,13UE23Uq€ — E12UE13U§1 (y ‘IEngUq 6)

Then, using these subcomputations, we obtain

E12US EisUE Uq
(,I,‘ 12 y) |1VV]3 23
_ ZZ Z a; - T |E12Uq bl ) |]EV‘V13UE23U§' -2,
i€l €L ocO
E12US E13UE 9 E12US EisUE 9
+ (B [£1205 y) [E0VESS 4 4y (g 125 g )|W;3“

(.',U |F12US ) ‘F‘r;UngUSé + Z F‘lgUS F‘r;UF'g';US

keK

2: EUS‘ EUEUS‘ E: EUS’ EUEUS‘
4 ’I"‘ 12 13 23 2z 4+ ’I'| 12 y 13 23

neN qeQ

_22201 T7|F‘12UF‘13US(b Y, |F23U5 Zo)

i€l lel. ocO
4 6 ‘F‘lZUF'l';US (y |E23US ) 1z ‘F‘lZUF'l';US (5F ‘E‘Q:}US Z)

iw iw

Tz ‘F‘lZUF'l';US (U |F23U55 + Z e ‘FUUFHUS ( ‘E‘Q:}US Z)

1w

keK
Zx‘EmuE]gUg( E23U§' Zx‘EmuEng( |]EV‘VQ3US E)
neN €Q
7x|E12UE13U9(y‘E23U9 )

Finally, equation (8) is proven as follows:
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E12US F‘l';UngUS
(@ iy y) i

E S E13UE S E13UFE23US E S E S E F: S

:(m HiWuU U)uiwlsU 23U Z+Z|_L 13Uko3U (,I, H 12U 1/) (,I, H 12U 1/) |1W13U 23U

:(mu@QUqU+qu12UQT+T|E12U§' )uﬁ3UE23Uq 42 uE13UE23Uq ||E12U§' )

E12US FE12US8 E S E13UE 9
LDy gL o [0 y) [P
:(xLLEleS y)uFlgUF23U5Z+ yLLFIZUS uFlgUE23U5z+(x|E12Ug )|_LFHUFBUS
1W 1w 1w 1W
E F: S E S 9 05 E S E F: S
+ 2 |.L 13UF23U ||F12US ) (xuiV;zU y) ‘i};ISUFZSUSZ_*_ y|.L 12U ‘lleU 23U
('I' ‘E12qu) |1EV‘V]3UE23U§'
7$uF12UF12US y||E23U§' +qu12UFggUS( ||E13U§1 )+$‘~E12UE13UQ yLLF'ggUS
+z LLFlgUngUS ||E12U§' ) Z|E13UE23U9($HF12US )+Z‘E13UE23U§'( “\-FIZUSLE)
iw iw iw
+ T|F12UF13US (U‘F‘ggus )
_,I'|-|‘E12UE13U§1 UHE23U§' +qu12UE23Ug( ||E13U§' )_'_m‘.E]gUEng UuEngg
FEa3US E E S S E Fa3US E S E E S
+ (ZLLWzsU ”quu 13U (Z|E13U x)LLiWuU 23U Y+ (Z| 23U )|LW12U 13U
+ T|F12UF13US (U‘F‘ggus )

_,I'|-|‘E12UE13U§1 UHE23U§' UuEgqu |-|‘E12UE13U§'T_’_,I;‘.E12UE13U§1 UuEggUg
+(Zuf‘ngUSU)LLQZUFl;;UST_i_(T‘E13Uq )\_L]FWIZUFZRUS (U‘Egguq )ulelgUF‘lzus
+x|F12UF13US (y‘F‘ggUS )

_,I'|-|‘E12UE13U§1 UHFBUS UuEgquz_i_ZuEgquU_'_y‘F'BUS )\LIEV‘VQUEHUQ T
+T|E]2UE]3UQ(ULLE23UQ )+T|E12UE]3UQ(ZLLE23U9U)+T|~E]2UE]3U§'(’[/‘E23UQ )

iw iw .  liw
E E S E S E S E E 5

_Tu 12UFk13U UH 23U ) (U H 23U )|_|4WUU 13U

+x|E12UE13U§'(qu‘ggUSz+Z|-LF'22USy+y|E23U§' )
1W
*e/ELLFIZUFl%US y”F‘ggUS ) (y ||F23US )LL{?VJZUFlgUSx+$‘F12UF12US( ||F23US )

— ||E12UE13U§1 ( HE23U§' )

By taking F; = E, = E3 we obtain associativity of ||Z

The final property which we prove is the correspondence between the o;,, and HEV operators. This
formalises the resemblance between the axiomatic definitions of these operators.

Proposition 8 For closed IWD(o, +, -, |¥)-terms 2 and y such that AF(z)NAE(y) = 0 we have

2]’y =104y

Proof. Let

{E:Z(Li-mi-l-(sE-FZ&,

el keK
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y:Zb;-y;—i-ép—i-Za

leL neN

for some finite index sets I, K, L, N, a;,b; € A, E. F' C EID and basic terms x;, y;. The induction
hypotheses are x; ||?Wy =x;oiwy forall s € I and x ||?W y; = x ojw yy for all [ € L. Then

slfoy = ai zll y+onlly+ > elly

icl keK
=Y ai - (@il y) + dnuany) + Y ellhy v
el keK
= i (w0 y) + Spuapw) + D Y €+ 0an)
iel kEK nEN
= "ai (zioiwy) + 0r Loy + Y eLoiyy
icl keK
= Z a; - T Loiwy +0p Loiwy + Z € Loiwy
el keK
=T Loiwy-

In the following computations we use that AE(b) C AFE(y) and AE(z) N AE(y) = ( imply
AE(b) N AE(z) = 0:

yll? = =3 "n |2 w4 op D a+ Zeu?wx

leEL neN
= b il 2) + Spian@ + Y D€+ ang
lel, neN kek
=Y b @l v) + Spuan@) + > D e+ danm)
leL nen kek
:Zbl - (x ojw y1) + 2 Rojy0p + Z x Rojye
leEL neN
:ZLER,Oinl “Yi + LERQiW5F + Z .’ERDiWE
lel nenN
=T Rpiwya

ey =3 ai-aillbm+opy+alfor+d clly+ ) zlhe

i€l IEL keEK neN

= Z Z OAE(a;-2))UAE () T OBUAE(Y) T OFUAE() T 04E() T 04K
icl Iel.

=0AR(x)UAE(y)>

and therefore
] ]
z |y =z y+ulli,r+zly
=z Loiwy + = RoiwT + d s p(2)uaE(y)

=T Oiw Y + O AR(2)UAE(y)
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= Oiw Y-

7 Process Algebra for Interworkings

In the previous section we introduced the E-interworking merge. This operator was parameterised
with the set of entities on which the processes should synchronise. In order for the interwork-
ing merge to be generally applicable, the set £ must be determined from the actual operands
of the interworking merge. Therefore, we have to generalise the FE-interworking merge to the
interworking merge operator.

There is a technical complication which makes this generalisation non-trivial: we have to explicitly
attribute every process term with the set of entities that it contains. The reason for this is revealed
by the examples in Figures 12 and 13 (see Section 2.4).

Using the definitions from the previous sections, interworking X2 from Figure 12 has the following
semantical representation: ¢(c¢,d, m). There is no explicit mention of the empty entity b. Indeed,
this interpretation is exactly the same as the interpretation of interworking X2’ from Figure 13.

In a context with only + and oj, operators, this identification would be completely harmless,
however Figures 12 and 13 show that there is a merge context which makes a distinction between
X2 and X2'.

The reason for this anomaly is that we did not take empty entities into consideration. Therefore, in
order to properly define the interworking merge, we have to extend our semantical representation
with information about the entities contained.

There are several ways to achieve this. A first option would be to attribute the empty process e
with a set of entities. Empty entity b would then be represented by £;;). A second option would
be to label a complete process term with the set of entities which it ranges over. The semantical
representation of X2 would then become (c(¢,d, m), {b, c,d}), whereas X2' would be represented

by (c(c,d, m),{c,d}).

For technical reasons we choose to elaborate on the second option. An Interworking with a
dynamical behaviour denoted by x over the entities from F is denoted by (z, F). Such a tuple
(z, E) will be called an entity-labeled process.

Definition 11 (Signature) The signature of the process algebra IWE(o,+,||) consists of the
operators (_,_), +, oiy, and ||;, -

For (z, E) to be a well-formed expression we do not require that the active entities from z are
all contained in E. All entities in ¥ which are not active entities in z are empty entities. The
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active entities of (z, EY) can be determined from z solely. The complete set of entities of (x, E),
denoted by Ent({x, E)), contains the active entities from z and the entities from E.

Definition 12 (Active entities, entities) For closed IWD(o, +, -, ||¥)-term z, E C EID, and
closed IWE(o, 4+, ||)-terms s and ¢ we define the mappings AFE : C(EIWE(O n ||)) — IP(EID) and

Ent : C(EIWE(O + ”)) — IP(EID) inductively as follows:

AE((z,E)) = AE(z),

AE(s+t) = AE(s)UAE(t),
AE(soiwt) = AE(s)UAE(t),
AE(s|,t) = AE(s)UAE(t),

Ent((z,E)) = EUAE(z),

(
Ent(s+t) = Ent(s)U Ent(t),
Ent(soiwt) = Ent(s)U Ent(t),
Ent(s |, t) = Ent(s)U Ent(t).

On entity-labeled processes we define the operators interworking sequencing and interworking
merge. The set of all entity-labeled processes is called IWE(o, +,|). The definition of the inter-
working sequencing on entity-labeled processes is straightforward.

Before we give axioms for the process algebra IWE(o,+,||), we define a operational semantics.
The operational semantics of entity-labeled processes, as expressed in Table 10, is similar to the
operational semantics of non-labeled processes.

The first two rules relate the domains of non-labeled processes and entity labeled processes. In the
second rule we have to take care that we do not loose information about the involved entities after
executing an action. It may happen that some active entity from z which does not occur in E is
not active anymore in z’ since the last action from that entity has been executed. Therefore, we
have to extend the entity label of 2’ with the active entities of z. The rules for the interworking
merge correspond to the rules for the E-interworking merge but the condition AE(a) C FE is
replaced by AE(a) C Ent(s) N Ent(t). The set Ent(s) N Ent(t) contains the shared entities from
s and t, so this is the set of entities which should synchronise.



49

x| x5!
(r,E) | (x,B) % (2!, EU AE(x))
s tl s t5 ¢
s+t s+t s+t 5 o (e, Ent(t)) s+t -5t oy (e, Ent(s))

st 5% s AE(@)NAE(s) =0 t5¢

[ a
SOiwt | 5 0iwt—> 8" Oy t 5 Ojyy t —> S Oy 1

s5s'" AE(a) € Ent(s) N Ent(t) t5t AE(a) € Ent(s) N Ent(t)
SHiwti)SIHth SHiwti)SHthl

sl td s5s' t5t AE(a) C Ent(s) N Ent(t)
SHiwt\L S||iwti>sl||iwt’

Table 10: Operational semantics of entity-labeled processes (a« € A, E C FID, x,2'
IWD(o,+,-, ||")-terms, s,s', ¢, entity-labeled processes)

For the “correctness” of the deduction rules for interworking merge it is necessary that the set
of entities of a process does not change by executing actions (Lemma 8). This is guaranteed by
the deduction rules. We first prove that the set of active entities does not expand due to the
execution of actions.

Lemma 7 For all a € A and closed IWD(o, +,-, |”)-terms = and 2’ we have: if 252/, then
AE(z) D AE(z").

Proof. This lemma is proven with induction on the structure of closed IWD(o, +, -, ||¥)-term z.
Suppose that z - 2.

. a
1. z = e. This case cannot occur as € - .

. a
2. © =0 for some E C EID. This case cannot occur as dg - .

z = b for some b € A. Then it must be the case that b = a and 2’ = £. Clearly
AE(z) = AE(b) D = AE(e) = AE(x').

4. x = m1 + w9 for some closed IWD(o,+,-,||¥)-terms z; and 3. Then it must be the case
that either z; %z’ or zo % 2’. By induction we thus have either AE(z;) O AE(z') or
AE(x9) D AE(2). In either case we have AE(z) = AE(x1 + x2) = AE(z1) U AE(z2) D
AE(x").
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5. © = x1 - zy for some closed IWD(o, +, -, ||[¥)-terms z; and z5. Then we can distinguish two
cases. First, 21 5 2 for some closed IWD(o, +, -, ||”)-term ! such that 2’ = 2} - 5. By
induction we have AE(z1) O AE(z}). Then AE(z) = AE(x1 - x9) = AE(z1) U AE(z2) D
AE(zh)UAE(zy) = AE(x)-z9) = AE(z'). Second, z1 | and zo % z’. By induction we have
AE(z9) D AE(z'). Then AE(z) = AE(x1 - 29) = AE(x1) U AE(z9) D AE(z1) UAE(2') D
AE(x").

6. = = x105w 29 for some closed IWD(o, +, -, || E)—terms 1 and 2. Then we can distinguish two
cases. First, z; = z! for some closed TWD(o, +, -, ||¥)-term 2! such that 2’ = 2/, o}y, z3. By
induction we have AE(z1) O AE(x)). Then AE(z) = AE (2 oiwx2) = AE(x1) UAE(x9) 2
AE(z)) U AE(zy) = AE(x) o1y 29) = AE(z'). Second, AE(a) N AE(z1) = § and zy %z},
for some closed IWD(o,+, -, ||)-term 2!, such that 2’ = 1 o;, #}. By induction we have
AE(zy) O AE(z)). Then AE(z) = AE(z oiw z2) = AE(z1) U AE(z9) 2 AE(z1) U
AE(zh) = AE(m1 oy ) = AE(2).

7. =z ||E 15 for some E C EID and closed IWD(o, +, -, ||¥)-terms z1 and z5. Then we can
distinguish three cases. First, AE(a) € E and z; =z for some closed IWD(o, +, -, ||¥)-
term 2 such that 2’ = 2 || 2. By induction we have AE(x1) D AE(z}). Then AE(z) =
AE(z ||E 29) = AE(21)UAE(22) D AE(z))UAE(35) = AE (2 ||E 29) = AE(2'). Second,
AE(a) € E and x5 - 2, for some closed IWD(o, +, -, || ¥)-term 2, such that ' = 21 |7 zb.
By induction we have AE(xy) D AE(z}). Then AE(z) = AE(z: ||E 22) = AE(z1) U
AE(z2) D AE(z1) U AE(zh) = AE(xy ||£ 24) = AE(2"). Third, AE(a) C E, 1 >z}, and
z9 % oy for some closed TWD(o, +, -, ||¥)-terms 2 and 2, such that =’ = «} ||Z z}. By induc-
tion we have AE(z1) 2 AE(z)) and AE(x2) D AE(z}). Then AE(z) = AE(z || x2) =
AE(z1) U AE(z9) D AE(x}) U AE(zh) = AE(z) | o) = AE(2).

Lemma 8 For all closed ITWE(o, +,]||)-terms s and ¢ and all a € A we have: if s-%5', then
Ent(s) = Ent(s").

Proof. This lemma is proven with induction on the structure of closed IWE(o, +, ||)-term s.

1. s = (z, E) for some closed IWD(o,+,-,||¥)-term & and E C EID. Then s s' must be
due to =%z’ for some 2’ such that s’ = (z/, E U AE(z)). Clearly we have Ent(s) =
Ent((z,E)) = EU AFE(z) and Ent(s') = Ent((z', E U AE(z))) = EU AE(z) U AE(z').
Using Lemma 7 we obtain Ent(s) = Ent(s').

2. s = s1 + s9 for some closed IWE(o, +,||)-terms s; and so. We can distinguish two cases.
First, s; — st for some closed IWE(o, +, ||)-term s} such that s’ = s/ oy, (g, Ent(s3)). By
induction we have Ent(s;) = Ent(s}). Therefore, Ent(s) = Ent(s1 + s2) = Ent(s;) U
Ent(sg) = Ent(s}) U Ent(se) = Ent(s}) U Ent((e, Ent(s2))) = Ent(s} oiw (g, Ent(s2))) =
Ent(s'). Second, sy s, for some closed IWE(o,+,||)-term s, such that s’ = s} oy,
(e, Ent(s1)). This case is symmetrical to the first case.
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S = 81 ojyw S92 for some closed IWE(o, +, ||)-terms s; and s. We can distinguish two cases.
First, s; — s} for some closed IWE(o, +, ||)-term s, such that s’ = s/ o3, s2. By induction
we have Ent(s1) = Ent(s}). Therefore, Ent(s) = Ent(sy oy s2) = Ent(s1) U Ent(sg) =
Ent(sh) U Ent(so) = Ent(s) oiw s2) = Ent(s'). Second, AE(a) N AE(sy) = ) and sy % sb
for some closed IWE(o,+,||)-term s}, such that s’ = s; ojy s,. By induction we have
Ent(sg) = Ent(s!,). Therefore, Ent(s) = Ent(s1 oiw s2) = Ent(s1) U Ent(s2) = Ent(s1) U
Ent(sh) = Ent(s1 oiw sy) = Ent(s').

s = 51 ||;y, 52 for some closed IWE(o,+,||)-terms s; and so. We can distinguish three
cases. First, AE(a) Z Ent(s1) N Ent(s2) and s — s, for some closed ITWE(o, +, ||)-term s/
such that s" = s/ ||;,, s2. By induction we have Ent(si) = Ent(s}). Therefore, Ent(s) =
Ent (s |;, s2) = Ent(s1) U Ent(s2) = Ent(s}]) U Ent(s2) = Ent(s} ||;,, s2) = Ent(s'). Sec-
ond, AE(a) ¢ Ent(si) N Ent(sy) and sy = s} for some closed IWE(o, +, ||)-term s} such
that s = s1||;, ). By induction we have Ent(sy) = Ent(s,). Therefore, Ent(s) =
Ent(s1 |y, $2) = Ent(s1) U Ent(s2) = Ent(s1) U Ent(sy) = Ent(s1|;, s5) = Ent(s').
Third, AE(a) C Ent(s1) N Ent(ss), 51— s}, and so > sb for some closed TWE(o, +, ||)-
terms s] and s} such that s’ = ||, sh. By induction we have Ent(s;) = Ent(s})
and Ent(sy) = Ent(s2). Therefore, Ent(s) = Ent(si |, s2) = Ent(s1) U Ent(sy) =
Ent(s}) U Ent(sh) = Ent(s} ||, s5) = Ent(s").

X

Next, we adapt the definition of IWD-bisimilarity to take into account the set of entities of a
process.

Definition 13 (Entity bisimilarity) A symmetric relation R on closed IWE(o, +, ||)-terms is

an entity bisimulation, if and only if, for every pair (s,t) € R and a € A, the following conditions
hold:
1. AE(s) = AE(t),

if s |, then ¢ |,
if s % s, then there is a closed IWE(o, 4, ||)-term #' such that ¢t %¢' and (s',t') € R,
Ent(s) = Ent(t).

The closed IWE(o,+,||)-terms s and t are entity bisimilar, notation s < ¢, if and only if there
exists an entity bisimulation R relating them.

Theorem 20 (Equivalence) Entity bisimilarity is an equivalence relation.

Proof. The proof is similar to the proof that IWD-bisimilarity is an equivalence (Theorem 1)
and therefore omitted. X
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Theorem 21 (Congruence) Entity bisimilarity is a congruence for the function symbols in the
signature of IWE(o, +,||) which are defined on IWE(o, +, ||)-terms.

Proof. Suppose R : x <;,q v and E, = FE,. Now we must prove that there exists an entity
bisimulation R’ such that R': (z, E;) < (y, Ey). Let R' = {((p, E), (¢, F)) | pRq, E = F'}. Let p
and ¢ be closed IWD(o,+, -, ||¥)-terms such that pRq and E, F C EID such that £ = F. Since
P ©iwa ¢ we have AE(p) = AE(q).

1. AE({p, E)) = AE(p) = AE(q) = AE((q, F')).

2. Suppose that (p, E) 5 s for some closed IWE(o, +, ||)-term s. This must be due to p—p’
for some closed IWD(o,+,-,||)-term p’ such that s = (p/, E U AE(p)). As p q ¢, We
have the existence of closed IWD(o, +, -, ||¥)-term ¢' such that ¢ % ¢’ and p'Rq’. Then we
also obtain (g, F) % (¢/, F U AE(q)). Clearly (¢, EU AE(p))R'(¢', F U AE(q)).

3. Suppose that (p, E) |. This must be due to p |. As p ©,q ¢, we have ¢ |. Therefore,
(q, F) L.

4. Ent((p,E)) = EUAE(p) = FUAE(q) = AE((¢, F)).

Suppose Ry : s1 < t; and Ry : s9 <> to. Let R = {(s1+11, sa+12), (p1oiw (e, E), q10iw (e, E)), (p20iw
(e, E),q20iw (e, E)) | p1R1q1,p2R2g2, E C EID}. Obviously, this relation is an entity bisimulation.

Suppose Ry : 51 < t; and Ry : s9 <> t9. Let R = {(p10oiwp2, ¢1°iwq2) | p1R1q1, p2 R2ga}. Obviously
this relation R is an entity bisimulation. The proof is similar to the proof that IWD-bisimilarity
is a congruence for interworking sequencing (see Theorem 2).

Suppose Ry : s1 &ty and Ry @ sy < ta. Let R = {(p1 |liy P2, 01 lliw @2) | P1R1G1, p2R2g2}. Obvi-
ously this relation R is an entity bisimulation. X

As was done in [MvWW93], the interworking merge is expressed in terms of the E-interworking
merge operator and the common entities of the operands. The axioms for entity-labeled processes
are given in Table 11 for E, F C EID. The extension of IWD(o, -, 4+) with entity-labeled processes
is denoted by IWE(o,+,|).

Axiom IWE1 describes the convention discussed before that the entity-part of an IWE(o, +, ||)-
term contains at least the empty entities of the Interworking. Axioms IWE2-IWE4 describe
how the other operators on IWE(o,+,||)-terms can be defined in terms of their counterparts
on IWD(o,+, -, ||¥)-terms. It is also possible to define entity bisimulation in terms of TWD-
bisimilarity of the process-parts and set equality of the entity-parts. Also for our final process
algebra, IWE(o,+. ||), we prove soundness and completeness.

Theorem 22 (Soundness) The process algebra IWE(o, +, ) is a sound axiomatisation of TWD-
bisimilarity on closed IWD(o, +,-, ||¥)-terms. The process algebra IWE(o,+,]|) is a sound ax-
iomatisation of entity bisimulation on closed IWE(o, +, ||)-terms.
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IWE1 (x,FE)=(x, EUAE(x))

IWE2 (x,E)+ (y,F)=(x+y,EUF)
IWE3 (z,E) o (y,F) ={(vowy, EUF)
IWE4 (. E) b

i (v, F) = (x ||EVFy, EUF) if AE(z) C E
-

and AE(y) C F

Table 11: Axioms of entity-labeled processes (F, F C EID)

Proof. For the proof of the first proposition observe that we did not add any axioms relating
closed IWD(o, +,-,||¥)-terms. We will prove the second proposition. Since entity bisimulation
is a congruence for the closed IWE(o, +, ||)-terms (Theorem 21) we only have to show that the
axioms from Table 11 are sound. Thereto, we provide an entity bisimulation relation for each
axiom. For IWE1, the relation R = {((z, E), (z, EUAE(z)))}* UT is an entity bisimulation. For
the axiom IWE2 the relation R = {((p, E) + (¢, F), (p+q, EUF)), ((p, E) oiw (¢, F), (p, EUF)) |
p,q € C(ZIWD(O, 4 HE)),E,F C EID}® is an entity bisimulation. For axiom IWE3 the rela-

tion B = {({p, E") oiw (y, F'), (poiwy. B'UFUAE(y))), ({z, E)oiw (q, F'), (z0iwq, E'UF'UAE(2))) |
p,q € C(ZIWD(O 4. H;r;)),E",F’ C EID}® is an entity bisimulation. For ITWE4, the relation

R={((p,B) i (a. F). (0" ¢, EUF) | p.q € CErwp(o, 4.2y B I S EID, AE(p) €
E,AE(q) C F}® is an entity bisimulation. X

Definition 14 (Basic terms) The set of basic terms is the smallest set that satisfies: if =
is a closed IWD(o,+,-,||¥)-term and E C EID such that AE(z) C F, then (z,E) is a basic
IWE(o,+, ||)-term. The set of all basic terms over the signature of IWE(o,+,||) is denoted by

BOIwE(, +, )

Theorem 23 (Elimination) For every closed IWE(o,+, ||)-term s we have the existence of a
basic IWE(o, +, ||)-term ¢ such that IWE(o,+,||) F s = 1.

Proof.  This theorem is proven with induction on the structure of a closed IWE(o, +, ||)-term.
First, consider the case s = (z, E) for some closed IWD(o, +, -, ||¥)-term 2 and E C EID. Then
s = (z,E) = (z,EU AE(z)). Clearly AE(z) C E U AE(z) and hence (z,E U AE(x)) is a
basic IWE(o,+,||)-term. Then, consider the case s = s; + so for some closed IWE(o,+, ||)-
terms s; and so. By induction we have the existence of basic terms (zi, Fy) and (x9, E9)
for some closed IWD(o, +,-, ||¥)-terms 2; and 29 and E;, By C EID such that AE(z) C E;
and AFE(z9) C Ey. Then, s = s1 + s9 = (x1, B1) + (29, Fy) = (x1 + 22, B4 U Ey). Clearly
AE(z1 + x9) C Ey U Ey. Next, consider the case s = s oy, s9 for some closed IWE(o, +,||)-
terms s; and s9. By induction we have the existence of basic terms (z1, F1) and (z9, Ey) for
some closed IWD(o, +,-, ||”)-terms x; and x5 and Ey, By C EID such that AE(z;) C E; and
AE(z9) C Ey. Then s = s1 ojy $2 = (21, F1) oiw (T2, Fo) = (21 oiw @2, E1 U Ey). Clearly
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AE(z10iwz2) = AE(z1)UAE(z2) C E1UE,. Finally, consider the case s = s [|;,, s2 for some s1, s9
closed IWE(o, +, ||)-terms. By induction we have the existence of basic terms (z1, E1) and (z9, Eg)
for some closed IWD(o, +, -, ||¥)-terms z; and x5 and E;, By C EID such that AE(z,) C F; and
AE(z3) C Ey. Then s = s1 ||, 82 = (w1, E1) |y, (w2, B2) = (z1 |27 29, By U Ey). Clearly
AE(’I’l Hiw .’1}2) = AE(’I’l) U AE(’I’Q) C F1 U Es. X

Lemma 9 For basic IWE(o, +, ||)-terms (z, E) and (y, F') we have

(z,E) & (y. F) if 2o

Tiwd

y and E=F.

Proof. First, suppose that R : (z, E) & (y, F). Let R' = {(p,q) | ({p, E')R{q, F'), E' = F'}. As
(z, EYR(y,F), AE(z) C E, and AE(y) C F, we have E = EU AE(z) = Ent(z) = Ent(y) =
FUAE(y) = F. We will prove that R’ is an IWD-bisimulation.

1. AE(p) = AE((p, E")) = AE({(q, F')) = AE(q).

2. pliff (p, E) | iff (g, F") | iff ¢ |.

3. Suppose that p—p' for some closed IWD(o,+,-, ||¥)-term p’. Then (p, E') S (p', E' U
AE(p)). So we have (g, F') % (¢, F'UAE(q")) for some closed IWD(o, +, -, ||)-term ¢’ such
that (p', E'"UAE(p))R{q', F"UAE(q")). From this we obtain that E'UAE(p') = F'UAE(q').
Thus p'R'q'.

The proof in the other direction is trivial. X

Theorem 24 (Completeness) The process algebra IWE(o, 4+, ||) is a complete axiomatisation
of entity bisimulation on closed IWE(o, +, ||)-terms.

Proof. By the elimination theorem (Theorem 23) we only have to prove this theorem for ba-
sic IWE(o,+,||)-terms. Let (z, E1) and (y, Fy) be arbitrary basic IWE(o, +, ||)-terms such that
(z,E1) © (y, E3). By Lemma 9 we have x <;,q y and E; = E;. Since IWD(o,+,-,[|¥) is a
complete axiomatisation of IWD(o)-bisimilarity on closed IWD(o, +, -, ||¥)-terms, we have z = ,
and hence (z, E1) = (y, F3). X

Theorem 25 (Conservativity) The process algebra IWE(o,+,||) is a conservative extension
of the process algebra IWD(o, +,-, ||*).

Proof. With respect to IWD(o, +, -, ||¥)-terms, the process algebra IWFE(o, +,]|) and the process
algebra IWD(o, +, -, ||¥ )have exactly the same axioms. Then clearly the same equalities can be
derived between closed IWD(o, +, -, ||¥)-terms. X
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We end our treatment of the semantics of Interworkings with some properties of Interworkings.
The interworking sequencing is commutative under the assumption that the active entities of the
operands are disjoint. Furthermore, it is associative. The interworking merge is both commutative
and associative.

Proposition 9 (Unit elements) For closed IWE(o, +, ||) terms s,

soiy (e,0) = s, 9)
(e,0) oiw s = s, (10)
5w (6,0) = s, (11)
(e,0) ||, s = s. (12)

Proof. By the elimination theorem it is allowed to restrict the proof of the statements to
basic terms. Let s = (z, E) for some closed IWD(o,+,-, |¥)-term z and E C EID such that
AE(z) C E. Then

0y =(zowe, EUD) = (z,E) =

= (ec0) o0y ) = {e s 0, 0U E) — {5, ) — .
) = (|5 e, EUD) = (x|}, e B) = (a, E) = s,
E) =

( 0
(llf” 2,0 UE) = (eI}, =, B) = (z,E) = s.

Proposition 10 (Commutativity and associativity of o; and |;,, ) For arbitrary closed
IWE(o, +, ||)-terms s, t, u we have

$oiwt = tojys, if AE(s)NAE(t) =0 (13)
(soiwt) oiw U = 8 0iy (t0iy u), (14)
$liwt = tlhyws (15)
(slhiwt) liwu = slliy (i w)- (16)

Proof. By the elimination theorem it is allowed to restrict the proof of the statements to basic
terms. Let s = (z1, Eh), t = (x9, Es), and u = (x3, F3) for some E;, Fy, F5 C EID and closed
IWD(o, +,-, ||¥)-terms z1, z2, and 23 such that AE(z,) C Ey, AE(x3) C Ey, and AE(z3) C Es.
Then

s oiw t = (21, E1) oiw (22, E2)
= (@1 ojw T2, Fh U Ey)
= (@9 ojw 1, Fo U Ey)
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(S Oiw t) Oiw U =

sl

(5 lliw ) lliw

iw

t=
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= (@9, Fy) oiyw (z1, F1)

—tOiW S,

((z1, E1) oiw (72, E2)) oiw (73, E3)
= (11 ojw %2, E1 U E3) ojy (z3, F3)

= ((71 ojw 72) Ojw 73, (E1 U Ea) U E3)
(71 ojw (w2 oiw 23), B1 U (Eo U E3))
= (21, E1) ojyw (22 04y 3, B U E3)
(21, En) oiw ({22, E2) oiw (23, E3))

1
S Oiw (t Oiw u)

(z1, B1) iy (72, Ea)
(21 111772 29, By U By)
(o |27 21, By U Ey)
= (72, B2) |y, (71, E1)

;

g ||1w S,

= ((z1, B1) |l;y (2, E2)) ll;y (73, E3)

= (21 {277 2o, By U By) ||y, (w3, Es)
(507 ) [ 2, (B U Bo) U By)
= (a1 [l " (a2 ||E2“E3x3),(E1UE2)UE3>
= (1, B1) Iy, (w2 |27 23, B U E3)

(21, B1) |l ({72, B2) |l;y, (73, E3))

8 [li (£l w)-

Proposition 11 For closed IWE(o, +, ||)-terms s and ¢ such that Ent(s) N Ent(t) = () we have

5|l t = S oiw t.

Proof. By the elimination theorem it is allowed to restrict the proof of the statements to basic

terms. Let s = (2, E) and t = (y,

F) for some E,F C EID and closed IWD(o, +,-, ||)-terms =

and y such that AE(x) C E and AE(y) C F.

$ lliwt = (2, E) lliw (v, F7)
= <xoiwy,EUF>



o7

= <LE,E> Oiw <y,F>

8 Conclusions

The starting point of the application described in this chapter was the informal drawing technique,
called Interworkings. After analysing the informal meaning of the language and the way in which
users applied this language, our aim was to formalise the Interworking language.

The assets of having a formal semantics are well-known. We mention the following. Formalisation
yields a thorough understanding of the language and the aspects of the application domain which
can be modeled; it allows for an unambiguous interpretation of expressions in the language; it
enables formal analysis; and it can be used to derive, or even automatically generate supporting
tools.

These points directly addressed the problems that users were confronted with when applying the
language. The language organically grew from a collection of examples and it was not clear which
constructs were exactly part of the language. For some diagrams even specialists disagreed on the
exact interpretation. It was not clear under which precise conditions two Interworkings could be
merged. And, finally, in order to efficiently work with collections of Interworkings tool support
was required.

The research carried out helped to solve these issues to a large extent. The kernel of the work
was the description of the formal semantics of the language by means of process algebra. This is
the part of the research covered in this chapter.

Our choice was to use process algebra for the formal definition of Interworkings. This worked out
quite successfully. The process algebraic approach even proved suitable to define the semantics
of a similar, but much larger language (MSC’96). Although it showed very beneficial, we do
not advocate that the process algebraic approach is the best or even the only suitable approach
towards the formalisation of sequence chart languages. Other techniques, such as Petri nets
and partial orders, have also been successfully applied, and when considering only the core of
these sequence chart languages, the several approaches do not differ too much with respect to
expressivity and simplicity. Only when extending the sequence chart language with specific
features, such as recursion and interrupts, some approaches offer a more natural way of modeling.

The work presented here only describes the part of the project which has to do with the theoretical
foundations of the project. The main point here was to identify the basic Interworking constructs
and operators, and to give their operational and algebraic semantics. The extension with a theory
of refinement or the derivation of computer tools is not in the focus of this handbook.

Although already an overwhelming variety of operators has been described in process algebra
literature, we have introduced yet more operators. This is typical for the process algebraic



28 9 BIBLIOGRAPHICAL NOTES

approach. For a specific application domain a specific algebra is needed. In the case of sequence
charts, the standard operators for sequential and parallel composition do not properly describe
the user’s intuition. Because the synchronisation implied by strong sequential composition is in
contradiction with intuition, we developed the interworking sequencing. Because the standard
parallel composition operator could not deal with overlapping areas of an Interworking, we had
to investigate a variation: interworking merge. Even though these are newly invented operators,
their definitions resemble the definition of well-studied operators.

This approach of defining new operators and variations on existing operators has been illustrated
in this chapter. We have treated all proof obligations, such as soundness and completeness in full
detail. We have especially taken care of setting up our theory in a modular way. This means that
we have first defined the kernel of the theory (i.e. the semantics of single Interworking diagrams)
and subsequently extended this with other operators.

The kernel of our theory just consists of the interworking sequencing operator. This single
operator already allows for the definition of the semantics of Interworking diagrams. After that,
we defined the basic process algebra consisting of the standard operators for alternative and
sequential composition, extended with a special constant for expressing partial deadlocks. The
alternative composition operator is used to express alternative scenarios. This process algebra is
independent of the previous one, and the next module simply consisted of the combination of these
two theories. The interworking sequencing can now be expressed in terms of the other operators.
The axioms defining the interworking sequencing in the first process algebra are now derivable
properties. Finally, we extended this algebra with the interworking merge operator. This required
two separate steps. First we introduced the E-interworking merge, which is parameterised by the
set of entities which should synchronise. And next, we extended the semantical interpretation
of Interworkings in order to be able to define the unparameterised interworking merge. This
modular approach is illustrated in Figure 17.

In our opinion, such a modular approach brings several assets. A mathematical theory, just
like a piece of software, requires maintenance. Parts of the theory may become obsolete due
to new insights or new extensions may be required due to additional user requirements. A
modular theory makes it easier to isolate the parts of the theory which are affected by such
modifications. A modular design also reduces the impact of a misdesign of one or more concepts.
The modules defining the other concepts can easily be reused, while replacing the inappropriate
concepts. An example of such a misdesign could be the interworking merge. Contrary to the
interworking sequencing, which seems to be very stable and well accepted, several alternatives for
the interworking merge have been proposed in literature (such as the environmental gate merge,
see [RGGY5]). The part of the algebra describing the interworking merge can easily be replaced
by a definition of another similar operator.

9 Bibliographical notes

In this section we will give a comprehensive overview of the relevant literature on Interworkings
and the related language Message Sequence Chart (MSC).
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IWE(o, +, )

Figure 17: Overview of conservative extensions

Interworkings

In [MvWW92], Mauw, Van Wijk and Winter give a concrete textual syntax for the language TW
and present both an informal and a formal definition of its semantics. The formal semantics does
not consider entities without events (empty entities). A short version appeared as [MvWW93].

Based on the work on the formal semantics several prototype tools have been developed. A
description of the prototype tool set is given in [MW93]. This tool set consists of three parts, the
interworking processor (IWP), the intermediate language compiler (ILC) and a term rewriting
system (TRS).

The formal semantics of Interworkings is not able to deal with empty entities and refinement.
This has been solved in [MR95a, MR95b, MR96].

The deduction rules for [LEV are different from the deduction rules used in [MR96] in the sense that
the termination behaviour of ||£ is coded in the termination behaviour of [u; instead of using
the termination operator y/ used there to describe the termination behaviour of E-interworking
merge. There are two reasons for this change. First, in [Vra97] and [Ver97] also the termination
behaviour is described with the left-merge operator. Second, it is easier to define the set of active
entities of a process term gc[Lf; y in this case.

In [MR96] we reported the following. For closed IWD(o, +, -, ||¥)-terms x, 1, 2, and sets of entities
E], EQ, E3 we have

E\NE (F1UF)NE F1N(F2UE3) EoNE
L e R ] )
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This is not true. In the case that x can execute an action a such that AE(a) € 1 and AE(a) C
E5 N E5 the equation does not hold.

This can be explained as follows. The sets F, F5, and F3 are intended to model the instances
of z, y, and z respectively. In the situation sketched above we have that z executes an action
defined on an instance that does not belong to ! Here we presented an improved and correct
version of this proposition.

The interworking merge as defined in [MvWW93] did not have the associativity property. This
difference is a direct consequence of our decision to maintain the entities of an Interworking
statically.

In [BGY5] the language Interworking is extended with discrete absolute time features. Events
can have a discrete time stamp or a discrete time interval associated with them. The authors
describe the timed versions of interworking sequencing and interworking merge.

In [Fei99], Feijs uses Interworkings as a starting point for generating finite state machines. This is
useful for obtaining feedback from a set of scenarios (Interworkings) during a system’s definition
phase or test phase.

In [Fei97], possibilities and impossibilities of using Interworkings are studied in the context of
describing a service, a protocol, or a protocol entity in the OSI reference model on different
levels of abstraction. The author concludes that Interworkings are useful for analysing a limited
number of interesting cases such as test runs, simulation runs, and debug sessions, but also that
Interworkings lack sufficient power to act as a specification formalism.

Message Sequence Charts

From the vast amount of graphical languages that resemble Interworking the language Message
Sequence Chart, which is standardised by Study Group 10 of Question 9 of the Telecommuni-
cations Standardisation Sector of the International Telecommunication Union, is best known.
The language MSC describes the asynchronous communication between instances (entities). The
language is very rich in its syntax and has a standardised formal semantics [IT95, Ren99]. This
formal semantics is inspired by the work on the formal semantics of Interworking. In [MR94a] a
process algebra semantics of Basic MSC (only simple diagrams) is given. In [MvdM95], prototype
tools are defined based on this formal semantics. In [Ren94, MR94b] the formal semantics of Ba-
sic MSCs is extended to the language MSC92 except for instance decomposition and conditions.
Later, this semantics is standardised as Annex B to Recommendation Z.120 [IT95]. Also De
Man [Man93] gives a process algebra semantics for Basic MSC. In [MR97], High-level Message
Sequence Charts are treated. In [MR99, Ren99], an operational semantics for a large fragment
of MSC96 is presented.

Besides the literature on the semantics of MSC based on process algebra, we also mention some
other approaches. In [GGRY3], an MSC is transformed into a Petri net. In [LL95], a semantics of
Message Flow Graphs is presented that translates an MSC into a Biichi automaton. In [AHP96],
Alur, Holzmann and Peled, present a partial order semantics for Basic Message Sequence Charts.
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In the ITU Recommendation Z.120, the only assumption about communication between entities is
that it is asynchronous and that sending of a message occurs before its receipt. In [EMRI7], com-
munication is discussed based on FIFO buffers. A variety of communication models is obtained by
considering different ways of connecting entities through buffers. A hierarchy of these communi-
cation models is presented based on the possibility of implementing MSCs in the communication
models. One of the communication models is identified with the synchronous communication in
Interworkings.
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