
A proess algebra for InterworkingsS. Mauw and M. A. ReniersFaulty of Mathematis and Computing Siene,Eindhoven University of Tehnology,P.O. Box 513, NL-5600 MB Eindhoven, The NetherlandsCWI,P.O. Box 94079, NL-1090 GB Amsterdam, The NetherlandsEmail: sjouke�win.tue.nl, M.A.Reniers�tue.nlAbstratThe Interworking language (IW) is a graphial formalism for displaying the om-muniation behaviour of system omponents. In this hapter, we develop a formalsemantis for the Interworking language. This semantis must support the analysisof (olletions of) Interworking diagrams and allow to express the relation betweendiagrams. We will explain how tehniques from proess algebra an be suessfullyapplied to this problem. Thereto, we introdue proess operators for expressing therelationship between Interworking diagrams. We de�ne a number of proess algebraswith inreasing omplexity. For eah of these we prove ompleteness with respet toan operational semantis.Keywords: proess algebra, Interworkings, semantis, omposition operators.Note: To appear as a hapter in Handbook of Proess Algebra, editors A. Ponse andS. Smolka, Elsevier Siene Publishers B.V.1 Introdution1.1 History and motivationThe Interworking language (IW) is a graphial formalism for displaying the ommuniation be-haviour of system omponents. It was developed in order to support the informal diagrams usedat Philips Kommunikations Industrie (N�urnberg) whih were used for requirements spei�ationand design. Before disussing the rationale behind the IW language, we �rst show a simple Inter-working diagram1 in Figure 1. The name of the Interworking is displayed in the upper left orner1The Interworking diagrams in this hapter are drawn with the MSC Maro pakage whih an beobtained at http://www.win.tue.nl/~sjouke/mspakage.html.1



2 1 INTRODUCTIONof the diagram. This Interworking desribes the interation behaviour of three entities, whihare alled s, medium and r. Eah entity is represented by a vertial line, whih, when read fromtop to bottom, desribes the suessive interations in whih this entity takes part. A messageexhange is represented by an arrow. The diagram shows that the three entities exhange fourmessages. First, s sends a req message to medium. Next, the same message is being sent frommedium to r. Then, r sends a message reply bak to medium, whih sends the same message to s.s medium rreq reqreplyreply
Example

Figure 1: An example Interworking diagramThis example shows the basi use of Interworkings. It desribes one senario of interationbetween ommuniating entities. In general, when using IW for requirements spei�ation, aolletion of Interworkings is needed, ontaining a desription of the most interesting senarios.Often there is one main senario, omplemented with a number of senarios desribing exeptionalbehaviour. Using Interworkings in this way, the senarios express alternative behaviours.There are, however, more reasons for having to deal with large olletions of Interworkings forthe desription of a distributed system. First, the spei�ed senario an be too long to physiallyor logially �t in one diagram. Suh a large senario is then deomposed into a number of subsenarios whih are \sequentially" linked to eah other.A seond reason is that the horizontal size of the system, or more preisely the number of distintentities, may be too large to �t in a single diagram. This gives rise to a olletion of subsenarios whih denote the behaviour of di�erent parts of the system. Eah part then desribesthe behaviour of just a number of (logially related) entities. Of ourse, there must be a meansto express that entities from distint parts exhange messages with eah other. The senarios ofthese parts are linked to eah other in a parallel way.Due to the above mentioned reasons, in pratie a system desription using Interworkings oftenonsists of a large olletion of diagrams. Pratial experiene showed that it was very hard tomaintain suh large olletions by hand. First of all, manually drawing and updating diagrams isan expensive ativity. Seondly, the relation between the diagrams in a olletion is only impliit.Some diagrams desribe alternatives, some desribe suessive behaviour, and some desribeparallel behaviour. The third problem, assuming the relation between the diagrams to be known,is that if one diagram hanges also several related diagrams must be updated. A onsistent updateof a large olletion of Interworkings ould not be ahieved manually. A �nal problem was thatthere existed di�erent interpretations of the meaning of even simple Interworkings.



1.2 Interworkings and similar languages 3These observations lead to the onlusion that when using Interworkings in the traditional and in-formal way it was not possible to take full advantage of the language. Therefore, the Interworkinglanguage needs a omplete and expliit de�nition.Not only the development of an expliit language is motivated in this way, but also the need fora formal semantis of Interworkings. This semantis must support the analysis of (olletions of)Interworking diagrams and allow to express the relation between diagrams. Moreover, sine toolsupport is needed, the semantis must allow for easy derivation of (prototype) tools.In this hapter, we will explain how tehniques from proess algebra an be suessfully ap-plied to this problem. Thereto, we introdue proess operators for expressing the relationshipbetween Interworking diagrams. As explained above, there are three possible relations betweenInterworkings: alternative omposition, sequential omposition, and parallel omposition. Themost interesting is the interworking sequening operator for omposing Interworkings sequen-tially. Later in this hapter it will be explained why the standard proess algebra operator forsequening is not appropriate for Interworkings. The operator for parallel omposition of In-terworkings, is derived from the standard interleaving operator with synhronisation. For thealternative omposition operator there are di�erent hoies. For a disussion on this hoie werefer to Setion 2.3.1.2 Interworkings and similar languagesThe Interworking language is not a unique and isolated language. It is very natural and intuitiveto express the behaviour of a distributed system in suh a graphial way. In fat, informal IW-likedrawings are enountered very often in system design.Therefore, the Interworking language is a member of a large lass of similar graphial notations,most of whih are only informally de�ned, suh as Signal Sequene Charts, Use Cases, InformationFlow Diagrams, Message Flow and Arrow Diagrams. In objet oriented design, a similar notation,alled Sequene Diagrams, is used. They play an important role in the desription of Use Casesin UML [RJB99℄. Interworkings are also related to Message Sequene Charts (MSC), see [IT93℄,whih are standardised by the International Teleommuniation Union (ITU). The main di�ereneis that Interworkings desribe synhronous ommuniation, whereas Message Sequene Chartsdesribe asynhronous ommuniation. The semantis of MSC as desribed in [MR99, Ren99℄ isalso very similar to the semantis of IW.Traditionally, the main appliation area for IW and similar languages is the �eld of teleommu-niation systems. This is mainly due to the distributed nature of these systems. However, moreand more appliations outside the teleommuniation world an be found, e.g. the desription ofwork ows in business organisations [Aal99℄.The main reason why IW-like diagrams are so popular is the fat that they an be understoodeasily. This is due to their intuitive and graphial appearane. The diagrams an be used indi�erent stages of the design of a software system. The main appliation is during requirementsengineering, where they are used to apture initial requirements about the interations in asystem. Furthermore, they play a role in doumentation, simulation and testing.



4 1 INTRODUCTIONThe results of this hapter annot ompletely be transferred to similar languages. This is mainlybeause IW desribes synhronous ommuniation, whereas most similar languages onsider asyn-hronous ommuniation. Nevertheless, the approah taken in this hapter is generi. It is atthe basis of the semantis de�nition of Message Sequene Charts, as standardised by the ITU inAnnex B to Reommendation Z.120 [IT95℄.1.3 Purpose and struture of this hapterThis hapter serves several purposes. First, it shows the proess algebrai approah in de�ningthe semantis of a senario language. This typially entails the use of a number of operatorswhih desribe the ways in whih senarios or fragments of senarios are ombined. The meaningof suh a diagram is then desribed by a proess algebrai expression, whih an be analysedusing standard tehniques.Seondly, this hapter shows the development of non-standard operators in proess algebra,needed for some domain spei� appliation. These newly introdued operators will probablyhave little appliation outside the realm of senarios. On the other hand, the interworking se-quening operator already reeived attention in a more general ontext, and was named weaksequential omposition (see [RW94℄).Thirdly, we show in detail whih (proof) obligations our when introduing new operators. Weboth give an operational and an algebrai de�nition, and prove their orrespondene.This hapter is subdivided as follows.First, we will introdue the Interworking language and the operators for ombining Interworkings(Setion 2). Next, we formally de�ne the operators involved. We will not simply give one proessalgebra ontaining all operators, but we will formalise the operators in a modular way. Thisyields a olletion of proess algebras, for whih we obtain some additional proof obligations,suh as onservativity. The �rst proess algebra (de�ned in Setion 3) only ontains the operatorfor sequential omposition. This operator suÆes to give a formal semantis of Interworkingdiagrams. In Setion 4 we de�ne the theory of the basi proess algebra operators (+ and �)whih we enrih with partial deadloks. Next, in Setion 5, these proess algebras are ombined.The following two setions deal with the introdution of the interworking merge operator. InSetion 6 we �rst de�ne a parameterised version of this operator, the E-interworking merge. Thegeneral interworking merge operator is de�ned in Setion 7, whih yields the �nal proess algebrafor Interworkings.Every operator is both de�ned algebraially and by means of an operational semantis. Therelation between these desriptions is given in several soundness and ompleteness theorems.The treatment of Interworkings in the urrent hapter is mainly on a theoreti level. We will notintrodue graphial and linear syntax of the language, and we will not present a mapping fromInterworking diagrams to proess algebra expressions (for a thorough treatment see [MvWW92℄).Our main goal is to de�ne the theory needed to formally understand Interworkings. Neitherwill we explain methodologial aspets of the use of Interworkings or supporting tools. For a



5desription of a prototype tool set based on these semantial de�nitions, we refer to [MW93℄.2 InterworkingsAn Interworking spei�ation onsists of a olletion of Interworking diagrams. The relationbetween these diagrams is de�ned by means of operators. An Interworking diagram spei�es(part of) a single senario and the operators an be used to ompose simple senarios into moreomplex senarios. We onsider operators for sequential omposition, alternative ompositionand parallel omposition of Interworkings.In this setion we will only give an informal explanation of syntax and semantis of Interworkings.Simple examples show the relevant properties, whih are formalised in the setions to ome.We will not give a formal de�nition of the graphial syntax of Interworkings, sine for our pur-poses an informal and intuitive mapping from Interworkings to the semantial domain suÆes.There exists a textual representation of Interworkings too, but we will not disuss this. Con-sult [MvWW92℄ for more information on this topi.2.1 Interworking diagramsAn example of an Interworking diagram is shown in Figure 2. Suh a diagram onsists of a numberof vertial lines and horizontal arrows, surrounded by a frame. The name of the Interworkingdiagram (Co-operation) is in the upper left orner of the frame. The vertial lines denote theentities of whih (part of) the behaviour is being desribed. Above the lines are the names ofthese entities. Here we have four entities, alled a, b, , and d.a b  dk lmn oCo-operation
Figure 2: An example Interworking diagramThe arrows denote the exhange of messages between the entities. Interworkings desribe syn-hronous ommuniation, whih means that an arrow represents one single event. The order inwhih the ommuniations take plae is also expressed in the diagram. On every entity axis, timeruns from top to bottom and the events onneted to an entity axis are ausally ordered in thisway. However, there is no global time axis and the only way to synhronise the behaviour of theentities is by means of a message exhange. So, message k ausally preedes message m. And



6 2 INTERWORKINGSbeause m preedes o, we have that k also preedes o. Messages k and l are not ausally related;they may our in any order. In our semantial treatment we assume an interleaved model ofoperation, whih means that k and l annot our simultaneously.The fat that the time lines of all entities are independent, implies that the vertial plaementof two messages whih are not ausally related has no semantial meaning. Therefore, the Inter-workings from Figure 3 have idential semantis.a b  dk lPlaement 1 a b  dlkPlaement 2
Figure 3: Two semantially equivalent InterworkingsA speial ase in our semantis is the empty Interworking. This is an Interworking whih desribesno behaviour at all and ontains no entities. In the next setions the empty Interworking isdenoted by ".2.2 SequeningSequential omposition is the easiest way to ompose two Interworkings. Intuitively, sequentialomposition an be onsidered as the onatenation of two Interworkings, thereby onneting theorresponding entity axes. Figure 4 shows the sequential omposition of two Interworkings. Theirle denotes the sequening operator.a b k lPart 1 Æ a b mnPart 2 = a b k lmn

Sequening
Figure 4: Sequential omposition of two InterworkingsOne must take into aount that there is no (impliit) synhronisation between the entities at thepoint where the two Interworkings are onatenated. For this reason, the operator for sequentialomposition of Interworkings is alled the weak sequential omposition operator (or interworkingsequening). Although we will also introdue an operator for strong sequential omposition



2.3 Alternatives 7of Interworkings in our semantial treatment, this operator is not part of the Interworkingslanguage. Figure 5 shows that the weak sequential omposition of two unrelated messages givesan Interworking where these two messages still are unordered.a b  dkFrom a to b Æ a b  dlFrom  to d = a b  dk lNosyn
Figure 5: No synhronisation through sequential ompositionIn the previous examples, the two omposed Interworkings ontained the same set of entities. Thisis not a requirement for sequential omposition. The Interworking resulting from a sequentialomposition simply ontains all entities from its onstituents, as shown in Figure 6.a bkLeft Æ b lRight = a b k lResult
Figure 6: Sequential omposition with di�erent entity setsGiven the above interpretation of Interworking diagrams and sequential omposition, the followingobservation is apparent. Every Interworking diagram is equivalent to the sequential ompositionof all its events. Look e.g. at Interworking Co-operation (Figure 2) whih is the sequentialomposition of �ve simple Interworking diagrams, eah ontaining one arrow. The order inwhih these Interworkings are omposed should of ourse orrespond to the ausal ordering ofthe original Interworking. So, if K, L, M, N, and O are Interworking diagrams ontaining themessages k, l, m, n, and o, respetively, then L ÆK ÆM ÆN ÆO would be an example of suh anexpression. An alternative for this expression is K Æ L ÆM ÆO ÆN .2.3 AlternativesIn theoretial approahes to MSC-related languages di�erent operators for alternative ompositionare used. These are the delayed hoie operator (�, see [BM95℄) and the non-deterministi hoieoperator (+, see [BW90℄). In the standardised semantis of MSC [Ren99℄ the delayed hoieoperator is used. The essential di�erene between these two operators is that non-deterministihoie determines the moment of hoie between the alternatives at the plae where it ours,whereas the delayed hoie postpones the moment of hoie to the plae where the alternativesstart to di�er. The latter leads to a trae semantis (if non-deterministi hoie is not present as



8 2 INTERWORKINGSwell). As a onsequene also all other operators in whih a hoie is manifest (suh as parallelomposition) must be hanged to adopt the delayed interpretation of hoies [Ren99℄. In ouropinion the use of the delayed hoie is only interesting if non-deterministi hoie is present too.If the delayed hoie is the only alternative omposition operator of interest, then a better solutionis to adopt a trae theoretial approah towards the semantis. In the proess algebra approahof this handbook it seems more appropriate to study the non-deterministi hoie operator.Hene, the operator whih expresses the fat that two Interworkings desribe alternative senariosis denoted by +. Figure 7 ontains an example of the hoie between two alternative Interworkingdiagrams. This expression desribes the non-deterministi hoie between the two given senarios.Both senarios start with message k, but the �rst ontinues with message l and the seond withmessages m and n. a b k lalt1 + a b km nalt2
Figure 7: Alternative omposition of two Interworking diagramsNotie that the lass of Interworking diagrams is not losed under appliation of the +-operator.The behaviour de�ned in Figure 7 annot be expressed without appliation of the +.2.4 MergeWhereas the sequening operator is used for vertial omposition of Interworkings, the mergeoperator is used for horizontal omposition.In the ase that the two operands have no entities in ommon, the merge of two Interworkingdiagrams is simply their juxtaposition, as illustrated in Figure 8.a b k lMerge1 k d emnMerge2 = a b  d ek ml nMerge
Figure 8: Merge of Interworking diagrams without shared entitiesIn the ase that the two operands do share some entities, the situation is a bit more ompliated.



2.4 Merge 9Suppose, for example, that the two Interworking diagrams have two entities in ommon, as inFigure 9. Then the messages exhanged between the shared entities must be idential for bothoperands. The resulting Interworking ontains only one ourrene of every shared entity. Alsothe messages exhanged between the shared entities, whih must our in the same order in bothoperands, appear only one in the resulting Interworking. In Figure 9 the two operands sharethe entities  and d with shared messages m and n.a b  dk l mno
IW1 k  d epm qn r

IW2 = a b  d ek pl m qn ro
IWall

Figure 9: Merge of Interworking diagrams with two shared entitiesIn the ase that the two operands do not desribe idential behaviour with respet to the sharedentities, as in Figure 10, a deadlok ours. The resulting Interworking ontains the parallelbehaviour of the operands, up to the point where the behaviours on the shared entities start todiverge. At this point the deadlok ours, denoted by two horizontal bars. Suh a deadlok onlyovers entities whih are bloked. This means that we do not have the global deadlok as usedelsewhere, but a partial deadlok. We refer to this partial deadlok as deadlok. An entity showsno behaviour after it has entered a deadlok situation. All behaviour whih is ausally dependenton a ommuniation whih auses the deadlok, is also bloked. In Figure 10 this means that,sine messages x and n do not math, a deadlok ours on entities  and d. Moreover, sinemessage r is ausally dependent upon message n, the deadlok extends to entity e. In the followingsetions, suh a deadlok will be denoted by ÆE , where E is the set of deadloked entities. If adeadlok ours as a onsequene of merging two Interworkings, we say that the two operandsare merge-inonsistent.This explanation of the merge operator generalises easily to the ase where the operands havemore than two entities in ommon. However, the ase where they share only one entity yieldsa di�erent situation. It is lear that this shared entity should our only one in the resultingInterworking, but what happens with the events that this entity takes part in? This situationours in Figure 11. There is no reason to introdue a ausal ordering between the messages land m, and therefore the result annot be a single Interworking diagram. The result of the mergein Figure 11 ontains two alternative Interworking diagrams, whih together desribe all possibleorderings of l and m.Care has to be taken to orretly handle entities whih are inluded in an Interworking diagrambut whih do not take part in any ommuniation, so-alled empty entities. In the ase that suhan entity ours in the set of shared entities, it annot be disarded. Figure 12 shows an example.



10 3 SEMANTICS OF INTERWORKINGSa b  dk l mxo
I1 k  d epm qn r

I2 = a b  d ek pl m qo
Inonsistent

Figure 10: Merge of two inonsistent Interworking diagramsa b k lM1 k  d em nM2 =
a b  d ek l m n
M3 + a b  d ek ml nM4

Figure 11: Consistent mergeEntity b ours in both operands, but in the seond operand there is no behaviour assoiated tob. Beause in the �rst operand a message l is sent to b, a deadlok ours.The situation would be quite di�erent if we would omit entity b from the seond operand. Thenthe two operands would be merge-onsistent. This is shown in Figure 13.3 Semantis of interworkingsIn this setion we will present a simple proess algebra that an be used for reasoning aboutthe equality of Interworking diagrams. Based on the textual syntax of Interworking diagrams aproess term is generated as follows. With every message in the Interworking diagram an atomi



11a b k lX1 k b  dmX2 = a b  dk mX3
Figure 12: Inonsistent Interworking diagrams with empty entitya b k lX1 k  dmX2' = a b  dk l mX4 + a b  dk mlX5

Figure 13: Empty entity removedation is assoiated. A deadlok that overs the entities from a set E is denoted by ÆE . Theatomi ations are ombined by means of interworking sequening. The proess algebra is alledIWD(Æ).We assume the existene of sets EID and MID of names of entities and messages, respetively.Atually, these an be onsidered as parameters of the proess algebra. A message is haraterisedby the name of the sender, the name of the reeiver, and the message name. These messagesform the set of atomi ations.De�nition 1 (Atomi ations) The set A of atomi ations is given byA = f(i; j;m) j i; j 2 EID ;m 2 MIDg:De�nition 2 (Signature of IWD(Æ)) The signature �IWD of the proess algebra IWD(Æ) on-sists of the atomi ations a 2 A, the deadlok onstants ÆE (E � EID), the empty proess ",and the binary operation interworking sequening Æiw.The set of all (open) terms over the signature �IWD is denoted as O(�IWD). The set of all losedterms over the signature �IWD is denoted as C(�IWD). We will use similar notations for othersignatures.We provide the proess algebra with an operational semantis by assoiating a term dedutionsystem to it. We will �rst summarise the terminology related to term dedution systems. Fora formal de�nition of term dedution systems and related notions we refer to [BV95℄. A termdedution system is a struture (�;D) where � is a signature and D a set of dedution rules.The set of dedution rules is parameterised by a set of relation symbols and a set of prediatesymbols. If P is suh a prediate symbol, R suh a relation symbol, and s; t 2 O(�), then the



12 3 SEMANTICS OF INTERWORKINGSexpressions Ps and sRt are alled formulas. A dedution rule is of the form HC where H is a setof formulas, alled hypotheses, and C is a formula, alled the onlusion.In the term dedution systems used in this hapter we use relations ! � O(�) � A � O(�)and the prediate #� O(�). The formula x a!x0 expresses that the proess x an perform anation a and thereby evolves into the proess x0. The formula x # expresses that proess x hasan option to terminate immediately and suessfully.In the remainder of this hapter we use the following shorthands: x a! represents the prediatethat x a!x0 for some x0, x a
9x0 represents the proposition that x a!x0 is not derivable from thededution system, x a

9 represents :(x a! ), and x9 represents x a
9 for all a 2 A. Similarly weuse x 6# to represent :(x #).A proof of a formula � is a well-founded upwardly branhing tree of whih the nodes are labeledby formulas suh that the root is labeled by the formula � and if � is the label of a node andf�i j i 2 Ig is the set of labels belonging to the nodes diretly above it, thenf�i j i 2 Ig�is an instantiation of a dedution rule.The term dedution system for the proess algebra IWD(Æ) onsists of the signature �IWD andthe dedution rules given in Table 1.Before we an give the operational desription of the interworking sequening operator we �rstde�ne the ative entities assoiated with a proess term representing an Interworking diagram.The ative entities of an Interworking diagram are those entities whih are involved in a ommu-niation or in a deadlok.De�nition 3 (Ative entities) For i; j 2 EID , m 2 MID, E � EID , and x; y 2 C(�IWD) wede�ne the mapping AE : C(�IWD)! IP(EID) indutively as follows:AE((i; j;m)) = fi; jg;AE(") = ;;AE(ÆE) = E;AE(x Æiw y) = AE(x) [AE(y):The operational semantis of the proess algebra IWD(Æ) is given by the dedution rules inTable 1 and the equations de�ning the ative entities in De�nition 3. These equations an easilybe written as dedution rules. The empty proess does not exeute any ations, but it terminatessuessfully and immediately. The fat that it does not exeute any ation is visible by theimpossibility of deriving that it an exeute an ation. The proess a an exeute the ation aand in doing so evolves into the empty proess ". The proess ÆE annot exeute any ationsnor an it terminate suessfully. The interworking sequening of two proesses terminates ifand only if both proesses an terminate. The proess x Æiw y exeutes an ation a if x anexeute ation a or if y an exeute a and this ation is not related to an ative entity of x



13(AE (a)\AE(x) = ;). This expresses the intuition that the �rst operand may always perform itsations, while the seond operand may only perform ations whih are not bloked beause theyare ausally dependent on ations from the �rst operand.
" # a a! " x # y #x Æiw y #x a! x0x Æiw y a! x0 Æiw y AE (a) \ AE (x) = ; y a! y0x Æiw y a!x Æiw y0Table 1: Dedution rules for interworking sequening (a 2 A)p q r sm onA

Figure 14: Example of an Interworking diagramThe Interworking from Figure 14 an semantially be represented by the proess term(p; q;m) Æiw ((r; s; o) Æiw (q; r; n)):Then the following is a derivation of the fat that �rst the ommuniation of message o an takeplae: AE ((r; s; o)) \AE((p; q;m)) = ; (r; s; o) (r;s;o)! "(r; s; o) Æiw (q; r; n) (r;s;o)! " Æiw (q; r; n)(p; q;m) Æiw ((r; s; o) Æiw (q; r; n)) (r;s;o)! (p; q;m) Æiw (" Æiw (q; r; n))Two proesses x and y are onsidered equivalent if they an mimi eah others behaviour in termsof the prediates and relations that are used in the term dedution system. In this ase these arethe exeution of ations, the termination of a proess, and the ative entities of a proess. As aonsequene of introduing partial deadlok onstants, we must be able to distinguish deadloksover di�erent sets of entities. This is the reason that we require that two proesses are equivalentonly if they have the same ative entities. This type of equivalene is usually alled strongbisimilarity, but we all it IWD-bisimilarity.



14 3 SEMANTICS OF INTERWORKINGSDe�nition 4 (IWD-bisimilarity) Let � be a signature. A symmetri relationR � C(�)�C(�)is alled an IWD-bisimulation i� for all p; q suh that pRq we have1. AE(p) = AE(q);2. if p #, then q #;3. if p a! p0 for some a 2 A and p0, then there exists a q0 suh that q a! q0 and p0Rq0.Two proesses x and y are alled IWD-bisimilar, notation x $iwd y, i� there exists an IWD-bisimulation R suh that xRy. The notation R : x $iwd y expresses that R is an IWD-bisimulation that relates x and y.Theorem 1 (Equivalene) IWD-bisimilarity is an equivalene relation.Proof. We must prove that IWD-bisimilarity is reexive, symmetri, and transitive.1. $iwd is reexive. Let R = f(p; p) j p 2 C(�IWD)g. Clearly, R is an IWD-bisimulation.2. $iwd is symmetri. Suppose that p $iwd q. This means that there exists an IWD-bisimulation R suh that pRq. Sine any IWD-bisimulation is symmetrial we also haveqRp. Hene q $iwd p.3. $iwd is transitive. Suppose p $iwd q and q $iwd r. Thus there exist IWD-bisimulationsR1 and R2 suh that pR1q and qR2r. Let R = (R1 Æ R2)S . For a relation � on X, thenotation �S denotes the symmetri losure of �. It is not hard to show that R is anIWD-bisimulation and pRr. Hene p $iwd r.
⊠Theorem 2 (Congruene) IWD-bisimilarity is a ongruene for interworking sequening.Proof. The term dedution system for IWD(Æ) is in path format. From [BV93℄, we then havethat IWD-bisimilarity is a ongruene for interworking sequening. The path format is a synta-tial restrition on the form of the dedution rules and an be easily heked. ⊠In Table 2 we present the axioms of the proess algebra IWD(Æ).



15
Idem. Æiw " Æiw x = xComm. Æiw x Æiw y = y Æiw x if AE(x) \AE(y) = ;Ass. Æiw (x Æiw y) Æiw z = x Æiw (y Æiw z)Æiw1 ÆE Æiw a = ÆE[AE(a) if AE(a) \E 6= ;Æiw3 ÆE Æiw ÆF = ÆE[FTable 2: Axioms of IWD(Æ) (a 2 A, E; F 2 EID)The �rst three axioms express straightforward properties. The axioms Æiw1 and Æiw3 desribethe propagation of partial deadloks through the Interworking diagram. The �rst of these isillustrated in Figure 15 for E = fp; qg and a = (q; r;m).p qA Æ q rmB = p q rC

Figure 15: Propagation of partial deadloksFor deriving equalities between proess terms we an use all instantiations of the axioms and theusual laws of equational logi. These are reexivity, symmetry, transitivity, and Leibniz's rule.As a simple example, we present the derivation that the empty proess is a right unit for inter-working sequening. The fat that it is a left unit is put forward as an axiom.Lemma 1 (Properties) For x 2 O(�IWD) we have x Æiw " = x.Proof. As AE(") = ;, we have AE(x) \ AE(") = ;. Then, using the axioms Comm. Æiw andIdem. Æiw, we have x Æiw " = " Æiw x = x. ⊠Thus far we have presented an operational semantis and a proess algebra on the signature �IWD.Ideally, there is a strong onnetion between these. In this ase we will �rst show that every pairof derivably equal losed IWD(Æ)-terms is IWD-bisimilar. This relation between an equationaltheory and its model is usually referred to as soundness of the equational theory with respetto the operational semantis. It an also be stated from the point of view of the operationalsemantis: the set of losed IWD(Æ)-terms modulo IWD-bisimilarity is a model of the equationaltheory. Later we will also present a relation in the other diretion: every pair of IWD-bisimilarlosed IWD(Æ)-terms is also derivably equal. This result is referred to as ompleteness.



16 3 SEMANTICS OF INTERWORKINGSTheorem 3 (Soundness) IWD(Æ) is a sound axiomatisation of IWD-bisimilarity on losedIWD(Æ)-terms.Proof. Due to the ongruene of IWD-bisimilarity with respet to all operators from the signatureof IWD(Æ), it suÆes to prove soundness of all losed instantiations of the axioms in isolation.We give an IWD-bisimulation for eah of the axioms. These are the following� for axiom Idem. Æiw: R = f(" Æiw p; p) j p 2 C(�IWD)gS ;� for axiom Comm. Æiw: R = f(p Æiw q; q Æiw p) j p; q 2 C(�IWD);AE(p) \AE(q) = ;gS ;� for axiom Ass. Æiw: R = f(p Æiw (q Æiw r); (p Æiw q) Æiw r) j p; q; r 2 C(�IWD)gS ;� for axiom Æiw1: R = f(ÆE Æiw a; ÆE[AE(a)) j AE(a) \E 6= ;gS ;� For axiom Æiw3: R = f(ÆE Æiw ÆF ; ÆE[F ) j E;F � EIDgS .
⊠The proof of ompleteness onsists of a number of steps. First we de�ne the notion of basi termand prove that every losed term is derivably equal to some basi term. The introdution of basiterms makes it easier to perform indutive reasoning on the struture of a losed term.De�nition 5 (Basi terms) The set of basi terms is the smallest set suh that1. " is a basi term;2. for E � EID, ÆE is a basi term;3. for a 2 A and x a basi term, a Æiw x is a basi term.The set of all basi terms over the signature �IWD is denoted B(�IWD).Theorem 4 (Elimination) For every losed term there is a basi term whih is derivably equal.Proof. By indution on the struture of losed term x.1. x � ". This is a basi term.2. x � ÆE for some E � EID . This is a basi term.3. x � a for some a 2 A. Then, using Lemma 1, a = a Æiw " whih is a basi term.4. x � x1 Æiw x2 for some x1; x2 2 C(�IWD). By indution we have the existene of basi termsb1 and b2 suh that x1 = b1 and x2 = b2. By indution on the struture of basi term b1.



17(a) b1 = ". Then x = x Æiw y = b1 Æiw b2 = " Æiw b2 = b2 whih is a basi term.(b) b1 = ÆE for some E � EID . By indution on the struture of basi term b2.i. b2 = ". Then x = x1 Æiw x2 = ÆE Æiw " = ÆE , whih is a basi term.ii. b2 = ÆF for some F � EID . Then x = x1 Æiw x2 = b1 Æiw b2 = ÆE Æiw ÆF = ÆE[F ,whih is a basi term.iii. b2 = a2 Æiw b02 for some a2 2 A and b02 2 B(�IWD). By indution we have theexistene of a basi term  suh that ÆE Æiw b02 = . Also by indution we have theexistene of a basi term 0 suh that ÆE[AE(a2)Æiwb02 = 0. If AE (a2)\E 6= ;, thenx = x1Æiwx2 = b1Æiwb2 = ÆEÆiw(a2Æiwb02) = (ÆEÆiwa2)Æiwb02 = ÆE[AE(a2)Æiwb02 = 0,whih is a basi term. If AE(a) \ E = ;, then x = x1 Æiw x2 = b1 Æiw b2 =ÆE Æiw (a2Æiw b02) = (ÆE Æiwa2)Æiw b02 = (a2ÆiwÆE)Æiw b02 = a2Æiw (ÆE Æiw b02) = a2Æiw whih is a basi term.() b1 = a1 Æiw b01 for some a1 2 A and b01 2 B(�IWD). By indution we have theexistene of a basi term  suh that b01 Æiw b2 = . Then x = x1 Æiw x2 = b1 Æiw b2 =(a1 Æiw b01) Æiw b2 = a1 Æiw (b01 Æiw b2) = a1 Æiw , whih is a basi term.
⊠The next step towards the proof of ompleteness is the following lemma. It provides a linkbetween axiomati reasoning and reasoning in the (operational) model. The proof of this lemmarequires the notion of norm of a losed term. It ounts the number of ations and sequeningoperators ourring in the term.De�nition 6 (Norm) For E � EID , a 2 A, and x; y 2 C(�IWD) we de�ne the mapping j j :C(�IWD)! IN indutively as follows:j"j = 0;jÆE j = 0;jaj = 1;jx Æiw yj = jxj+ jyj+ 1:Lemma 2 For all x; x0 2 C(�IWD) and a 2 A we have1. if x a!x0, then jx0j < jxj;2. if x #, then x = ";3. if x a!x0, then x = a Æiw x0;4. if x 6#, x9 , then x = ÆAE (x).Proof.1. By indution on the struture of losed term x. Suppose x a!x0.



18 3 SEMANTICS OF INTERWORKINGS(a) x � ". This ase annot our.(b) x � ÆE for some E � EID . This ase annot our.() x � b for some b 2 A. Then neessarily b � a and x0 � ". Observe thatjx0j = j"j = 0 < 1 = jbj = jxj:(d) x � x1 Æiw x2 for some x1; x2 2 C(�IWD). We an distinguish two ases for x1 Æiwx2 a!x0.i. x1 a! x01 for some x01 2 C(�IWD) suh that x0 � x01 Æiw x2. By indution we havethat jx01j < jx1j. Thus we obtainjx0j = jx01 Æiw x2j = jx01j+ jx2j+ 1 < jx1j+ jx2j+ 1 = jx1 Æiw x2j = jxj:ii. AE(a)\AE(x1) = ; and x2 a!x02 for some x02 2 C(�IWD) suh that x0 � x1Æiwx02.By indution we have that jx02j < jx2j. Thus we obtainjx0j = jx1 Æiw x02j = jx1j+ jx02j+ 1 < jx1j+ jx2j+ 1 = jx1 Æiw x2j = jxj:2. By indution on the struture of losed term x. Suppose x #.(a) x � ". Trivial.(b) x � ÆE for some E � EID . This ase annot our.() x � a for some a 2 A. This ase annot our.(d) x � x1 Æiwx2 for some x1; x2 2 C(�IWD). As x #, we have x1 # and x2 #. By indutionwe then have x1 = " and x2 = ". Then x = x1 Æiw x2 = " Æiw " = ".3. By indution on the struture of losed term x. Suppose x a!x0.(a) x � ". This ase annot our.(b) x � ÆE for some E � EID . This ase annot our.() x � b for some b 2 A. Then neessarily b � a and x0 � ". Then,x = b = a = a Æiw " = a Æiw x0:(d) x � x1 Æiw x2 for some x1; x2 2 C(�IWD). For x1 Æiw x2 a!x0 two ases an be distin-guished:i. x1 a! x01 for some x01 2 C(�IWD) suh that x0 � x01 Æiw x2. By indution we thenhave x1 = a Æiw x01. Then,x = x1 Æiw x2 = (a Æiw x01) Æiw x2 = a Æiw (x01 Æiw x2) = a Æiw x0:ii. x2 a! x02 and AE(a)\AE(x1) = ; for some x02 2 C(�IWD) suh that x0 � x1Æiwx02.By indution we have x2 = a Æiw x02. Then,x = x1 Æiw x2 = x1 Æiw (a Æiw x02) = (x1 Æiw a) Æiw x02= (a Æiw x1) Æiw x02 = a Æiw (x1 Æiw x02) = a Æiw x0:



194. By indution on jxj and ase analysis on the struture of x. Suppose x 6# and x9 .(a) x � ". This ase annot our.(b) x � ÆE for some E � EID . Trivial as AE(x) = AE(ÆE) = E and x = ÆE = ÆAE(x).() x � b for some b 2 A. This ase annot our as b b! ontradits the assumption thatx9 .(d) x � x1 Æiw x2 for some x1; x2 2 C(�IWD). If x1 # then we �nd x1 = ". As x 6#, wealso �nd x2 6#. As x1 Æiw x29 , we �nd x19 , and x2 a
9 _ AE (a) \ AE(x1) 6= ; forall a 2 A. As x1 = ", we �nd AE (a) \ AE(x1) = AE(a) \ AE(") = ". Therefore,we must have x2 a

9 . By indution (note that jx2j < jxj) we thus have x2 = ÆAE(x2).Then x = x1 Æiw x2 = " Æiw ÆAE(x2) = ÆAE(x2) = ÆAE(x1)[AE(x2) = ÆAE(x):If x1 6#, then we have by indution x1 = ÆAE(x1) as we also have x1 a
9 . First, supposethat x2 #. Then x2 = " and we obtain x = x1 Æiw x2 = ÆAE (x1) Æiw " = ÆAE (x1) =ÆAE (x1)[AE(x2) = ÆAE(x). Seond, suppose x2 6#. Again we an distinguish two ases:i. x2 a

9 for all a 2 A. As jx2j < jxj, we an apply the indution hypothesis andobtain x2 = ÆAE (x2). Thus,x = x1 Æiw x2 = ÆAE(x1) Æiw ÆAE (x2) = ÆAE (x1)[AE (x2) = ÆAE (x):ii. x2 a! x02 for some a 2 A. Then we have x2 = a Æiw x02. As x1 Æiw x2 a
9 , we musthave AE (a) \AE (x1) 6= ;. Then,x = x1 Æiw x2 = ÆAE (x1) Æiw (a Æiw x02) = (ÆAE (x1) Æiw a) Æiw x02= ÆAE(x1)[AE(a) Æiw x02:Note that jx02j < jx2j. Observe thatjÆAE (x1)[AE(a) Æiw x02j = jx02j+ 1 < jx2j+ 1 � jx1j+ jx2j+ 1= jx1 Æiw x2j:Hene we an apply the indution hypothesis to obtainÆAE (x1)[AE (a) Æiw x02 = ÆAE (x1)[AE(a)[AE (x02) = ÆAE(x1)[AE(x2)= ÆAE (x):

⊠Theorem 5 (Completeness) IWD(Æ) is a omplete axiomatisation of IWD-bisimilarity onlosed IWD(Æ)-terms.



20 4 SEQUENTIAL AND ALTERNATIVE COMPOSITIONProof. Suppose that x $iwd y. Then we must prove that x = y. By the elimination theorem wehave the existene of a basi term x0 suh that x = x0. As the axioms are sound, we also havex $iwd x0. Hene it suÆes to prove x0 = y. We do this by indution on the struture of basiterm x0.1. x0 = ". Then x0 #. Sine x0 $iwd y, we also have y #. By Lemma 2.2 we then have y = ".Hene x0 = " = y.2. x0 = ÆE for some E � EID . Then x0 6# and x0 a
9 for all a 2 A. As x0 $iwd y, also y 6# andy a

9 . We also have AE(y) = AE(x0) = AE (ÆE) = E. By Lemma 2.4 we have y = ÆE . Sox0 = ÆE = y.3. x0 = a Æiw x00 for some a 2 A and x00 2 B(�IWD). Then x0 a! " Æiw x00. Sine x0 $iwd ywe also have y a! y0 for some y0 suh that " Æiw x00 $iwd y0. Then, using transitivity ofIWD-bisimilarity and the soundness of Idem. Æiw, also x00 $iwd y0. By indution we thenhave x00 = y0. By Lemma 2.3 we have y = a Æiw y0. Then x0 = a Æiw x00 = a Æiw y0 = y.
⊠

4 Sequential and alternative ompositionIn the previous setion we have de�ned a sound and omplete axiomatisation of Interworkingdiagrams. For this purpose we needed to introdue the interworking sequening operator only. Ifwe want to extend this theory with other operators, we �rst have to introdue the Basi ProessAlgebra operators + and �. This setion is devoted to the development of the proess algebraBPA(ÆE) without interworking sequening. In the next setion, the interworking sequening isadded to this algebra.The + is alled alternative omposition and � is alled sequential omposition. The proess x+ yan exeute either proess x or proess y, but not both. The proess x �y starts exeuting proessx, and upon termination thereof starts the exeution of proess y. Operationally these operatorsare desribed by the dedution rules given in Table 3. In this table we assume that a 2 A andE � EID. The theory presented in this setion is very similar to standard Basi Proess Algebrawith deadlok and empty proess BPAÆ" (see e.g. [BV95℄).De�nition 7 (Ative entities) For i; j 2 EID , m 2 MID , E � EID , x; y 2 C(�BPA(ÆE)), and� 2 f+; �g, we de�ne the mapping AE : C(�BPA(ÆE))! IP(EID) indutively as follows:AE((i; j;m)) = fi; jg;AE(") = ;;AE(ÆE) = E;AE(x� y) = AE(x) [AE(y):



21The alternative omposition of two terms an terminate if either one of these terms an terminate.It an perform every ation that its operands an perform, but by doing so a hoie is made. Asequential omposition an terminate if both operands an terminate. It an perform all ationsfrom its �rst operand and if the �rst operand an terminate, it an perform the ations from theseond operand.
x #x+ y # y #x + y # x # y #x � y #x a!x0x + y a!x0 y a! y0x+ y a! y0 x a!x0x � y a!x0 � y x # y a! y0x � y a! y0Table 3: Dedution rules for alternative and sequential omposition (a 2 A)

Again, we �rst need to prove that IWD-bisimilarity is a ongruene for all operators in the proessalgebra.
Theorem 6 (Congruene) IWD-bisimilarity is a ongruene for alternative omposition andsequential omposition.
Proof. The term dedution system for BPA(ÆE) is in path format. From [BV93℄, we then havethat IWD-bisimilarity is a ongruene for all operators. ⊠These operators are axiomatised by the axioms from Table 4. In these axioms the variables x, yand z denote arbitrary proess terms. In order to redue the number of parentheses in proesses wehave the following priorities on operators: unary operators bind stronger that binary operators; �binds stronger than all other binary operators and + binds weaker than all other binary operators.



22 4 SEQUENTIAL AND ALTERNATIVE COMPOSITION
A1 x+ y = y + xA2 (x+ y) + z = x+ (y + z)A3 x+ x = xA4 (x+ y) � z = x � z + y � zA5 (x � y) � z = x � (y � z)A6 x+ ÆE = x if E � AE(x)A7 ÆE � x = ÆE[AE(x)A8 " � x = xA9 x � " = xTable 4: Axioms of alternative and sequential omposition (E � EID)Axioms A1-A5 express straightforward properties, suh as ommutativity, assoiativity, and idem-poteny of alternative omposition, distributivity of alternative omposition over sequential om-position, and assoiativity of sequential omposition. Axioms A6 and A7 haraterise the deadlokonstant. A6 states that if an entity has the hoie between performing an ation and deadlok-ing, it will never deadlok. Axiom A7 expresses that after a deadlok no more ations an our.The sope of the deadlok is thereby extended to inlude all entities on whih bloked ationsour. Axioms A8 and A9 express the standard behaviour of the empty proess.The proof of soundness is straightforward.Theorem 7 (Soundness) BPA(ÆE) is a sound axiomatisation of IWD-bisimilarity on losedBPA(ÆE)-terms.Proof. In this and other soundness proofs we use I to denote the diagonal relation. If \s = t if b"represents either one of A1, A2, A3, A4, A6, A7, or A8, then the relation R = f(s; t); (t; s) j bg[Iis an IWD-bisimulation for that axiom. For the axioms A5 and A9 the IWD-bisimulations aregiven by R = f((p � y) � z; p � (y � z)) j p 2 C(�BPA(ÆE))gS [ I and R = f(p � "; p) j p 2 C(�BPA(ÆE))gSrespetively. ⊠The proof of ompleteness onsists of a number of steps. First we de�ne basi terms and provethe elimination property. Next, we formulate a lemma whih relates semantial properties toequational properties, and, �nally, we prove ompleteness.De�nition 8 (Basi terms) The set of basi terms is the smallest set that satis�es:1. " is a basi term;2. for E � EID, ÆE is a basi term;



233. for a 2 A and x a basi term, a � x is a basi term;4. if x and y are basi terms, then x+ y is a basi term.The set of all basi terms of the proess algebra BPA(ÆE) is denoted by B(�BPA(ÆE)).The following lemma expresses that we an always ombine multiple deadlok alternatives intoone deadlok alternative.Lemma 3 For E;F � EID we have ÆE + ÆF = ÆE[F .Proof. Consider the following derivation: ÆE + ÆF = (ÆE + ÆF ) + ÆE[F = ÆE[F + (ÆE + ÆF ) =(ÆE[F + ÆE) + ÆF = ÆE[F + ÆF = ÆE[F : ⊠As alternative omposition is idempotent, ommutative and assoiative, and Æ; is a zero elementfor it, we an de�ne a generalised alternative omposition operator. For �nite index set I, thenotation ∑i2I xi represents the alternative omposition of the proess terms xi. If I = ;, then
∑i2I xi = Æ;. If I = fi1; � � � ; ing for n � 1, then

∑i2I xi = xi1 + xi2 + � � �+ xin :Then we an easily establish that every basi term is of the form
∑i2I ai � xi +∑j2J ÆEj +∑k2K "for some �nite index sets I, J , K, ai 2 A, Ej � EID and basi terms xi of a similar form. Foronveniene in proofs to follow we ombine the deadlok alternatives into one alternative by usingLemma 3:
∑i2I ai � xi + ÆE +∑k2K ";where E = ⋃j2JEj . The summand ∑k2K " is only used to indiate presene (K 6= ;) or absene(K = ;) of a termination option.Theorem 8 (Elimination) For every losed term there is a derivably equal basi term.Proof. We prove this theorem by indution on the struture of losed term x.1. x � ". Trivial as " is a basi term.2. x � ÆE for some E � EID . Trivial as ÆE is a basi term.



24 4 SEQUENTIAL AND ALTERNATIVE COMPOSITION3. x � a for some a 2 A. Then x = a = a � ", whih is a basi term.4. x � x1 � x2 for some x1; x2 2 C(�BPA(ÆE)). By indution we have the existene of basiterms b1 and b2 suh that x1 = b1 and x2 = b2. By indution on the struture of basi termb1 we will prove that there exists a basi term  suh that b1 � b2 = .(a) b1 � ". Then b1 � b2 = " � b2 = b2.(b) b1 � ÆE for some E � EID . Then b1 � b2 = ÆE � b2 = ÆE[AE(b2).() b1 � a � b01 for some a 2 A and b01 2 B(�BPA(ÆE)). By indution we have the existeneof basi term 0 suh that b01 � b2 = 01. Then b1 � b2 = (a � b01) � b2 = a � (b01 � b2) = a � 01.(d) b1 � b01 + b001 for some b01; b001 2 B(�BPA(ÆE)). By indution we have the existene ofbasi terms 0 and 00 suh that b01 �b2 = 0 and b001 �b2 = 2. Then b1 �b2 = (b01+b001) �b2 =b01 � b2 + b001 � b2 = 0 + 00.Observe that in eah ase we have the existene of basi term  suh that b1 � b2 = . Henex = x1 � x2 = b1 � b2 = , whih is a basi term.5. x � x1 + x2 for some x1; x2 2 C(�BPA(ÆE)). By indution we have the existene of basiterms b1 and b2 suh that x1 = b1 and x2 = b2. Then x = x1 + x2 = b1 + b2, whih is abasi term.
⊠Lemma 4 For all x; x0 2 C(�BPA(ÆE)) and a 2 A we have1. if x #, then x = "+ x;2. if x a!x0, then x = a � x0 + x.Proof.1. We will prove this by indution on the struture of x. Suppose x #.(a) x � ". Then trivially x = " = "+ " = "+ x.(b) x � ÆE for some E � EID . Then we have a ontradition as ÆE 6#.() x � a for some a 2 A. Then we also have a ontradition as a 6#.(d) x � x1 + x2 for some x1; x2 2 C(�BPA(ÆE)). Then we have x1 # or x2 #. By indutionwe then have x1 = " + x1 or x2 = " + x2. In both ases we �nd x = x1 + x2 ="+ x1 + x2 = "+ x.(e) x � x1 � x2 for some x1; x2 2 C(�BPA(ÆE)). Then we have x1 # and x2 #. By indutionwe then have x1 = " + x1 and x2 = " + x2. Therefore, x = x1 � x2 = (" + x1) � x2 =" �x2+x1 �x2 = x2+x1 �x2 = "+x2+x1 �x2 = "+ " �x2+x1 �x2 = "+("+x1) �x2 ="+ x1 � x2 = "+ x.



252. We will prove this by indution on the struture of x. Suppose x a! x0.(a) x � ". Then we have a ontradition as " a
9 .(b) x � ÆE for some E � EID . Then we also have a ontradition as ÆE a

9 .() x � b for some b 2 A. Then neessarily b � a and x0 � ". Hene x = b = b + b =a+ b = a � "+ b = a � x0 + x.(d) x � x1 + x2 for some x1; x2 2 C(�BPA(ÆE)). Then we have x1 a!x0 or x2 a!x0. Byindution we then have x1 = a � x0 + x1 or x2 = a � x0 + x2. Then x = x1 + x2 =a � x0 + x1 + x2 = a � x0 + x.(e) If x � x1 � x2 for some x1; x2 2 C(�BPA(ÆE)). We an distinguish two ases.First, x1 a!x01 for some x01 2 C(�BPA(ÆE)) suh that x0 � x01 �x2. By indution we thenhave x1 = a �x01+x1. Therefore, x = x1 �x2 = (a �x01+x1) �x2 = (a �x01) �x2+x1 �x2 =a � (x01 � x2) + x = a � x0 + x.Seond, x1 # and x2 a!x0. By indution we have x2 = a �x0+x2. From the �rst part ofthis lemma we have x1 = "+x1. Therefore, x = x1 �x2 = ("+x1) �x2 = " �x2+x1 �x2 =x2 + x1 � x2 = a � x0 + x2 + x1 � x2 = a � x0 + " � x2 + x1 � x2 = a � x0 + (" + x1) � x2 =a � x0 + x1 � x2 = a � x0 + x.
⊠Theorem 9 (Completeness) BPA(ÆE) is a omplete axiomatisation of IWD-bisimilarity onlosed BPA(ÆE)-terms.Proof. Suppose that x $iwd y. By the elimination theorem and the soundness of the axioms wean assume, without loss of generality, that x is a basi term. By ongruene and the soundnessof axiom A3 it suÆes to prove that if x+ y $iwd y then x+ y = y. This an be seen as follows.From x $iwd y we obtain x + y $iwd y + y using ongruene of $iwd with respet to +, andreexivity of $iwd . Using the soundness of axiom A3 we have y + y $iwd y. By transitivity of$iwd we obtain x+ y $iwd y. Then x+ y = y. Similarly we an obtain y + x = x. Therefore,x = y + x = x+ y = y.We prove this by indution on the struture of basi term x.1. x � ". Then x #. So x+ y #. Therefore, y #. Then, by Lemma 4.1, we have y = "+ y. Sowe �nd x+ y = "+ y = y.2. x � ÆE . Then AE (x+ y) = AE (ÆE + y) = E [AE(y). As x+ y $iwd y, we must also haveAE(y) = AE(x + y) = E [ AE(y). Thus we obtain E � AE(y). Then x + y = ÆE + y =y + ÆE = y.3. x � a � x0. Then x a! " � x0. So x + y a! " � x0. Therefore, y a! y0 for some y0 suh that" � x0 $iwd y0. By the soundness of axiom A8 we �nd x0 $iwd y0. By indution we thenhave x0 = y0. By Lemma 4.2 we have y = a � y0+ y. Then x+ y = a � x0+ y = a � y0+ y = y.



26 5 THE INTERWORKING SEQUENCING4. x � x1+x2. Using x1+x2+y $iwd y implies x1+y $iwd y and x2+y $iwd y. By indutionwe then have x1+y = y and x2+y = y. Then x+y = (x1+x2)+y = x1+(x2+y) = x1+y = y.
⊠

5 The interworking sequeningIn Setion 3 we have introdued the interworking sequening and in Setion 4 we have de�nedalternative and sequential omposition operators. When ombining these operators into one singletheory, we need to express the relation between the interworking sequening on the one hand andalternative and sequential omposition on the other hand. By introduing the auxiliary operatorsLÆiw and RÆiw, we an express the interworking sequening in terms of the alternative andsequential omposition operators. The proess algebra obtained in this way is alled IWD(Æ; �;+).It is a onservative extension of both the proess algebra IWD(Æ) from Setion 3 and the proessalgebra BPA(ÆE) from Setion 4. Furthermore, all axioms formulated for interworking sequeningin the theory IWD(Æ) an now be derived for losed terms.The intuition of the auxiliary operators is as follows. The proess xLÆiwy behaves like the proessx Æiw y with the restrition that the �rst ation to be exeuted must originate from proess x.The proess xRÆiwy also behaves like the proess x Æiw y but this time with the restrition thatthe �rst ation to be exeuted must be from proess y. In this ase, the �rst ation from y anonly be exeuted if it is not bloked by any of the ations from x.These de�nitions resemble the use of the left-merge operator in PA to de�ne the merge operator.That we need two auxiliary operators instead of one is aused by the fat that interworkingsequening is not ommutative.De�nition 9 (Ative entities) For i; j 2 EID , m 2 MID, E � EID , x; y 2 C(�IWD(Æ; �;+)),and � 2 fÆiw; LÆiw; RÆiw;+; �g, we de�ne the mapping AE : C(�IWD(Æ; �;+))! IP(EID) indu-tively as follows: AE((i; j;m)) = fi; jg;AE(") = ;;AE(ÆE) = E;AE(x� y) = AE(x) [AE(y):The operational semantis of the interworking sequening is given already in Table 1. The opera-tional semantis of the auxiliary operators is given in Table 5. The rules follow from the intuitiveexplanation above. The termination behaviour of the interworking sequening is inorporatedin both auxiliary operators. This is not neessary but failitates the axiomatisation of theseoperators and the proof of the auxiliary proposition in the proof of Proposition 1.



27
x # y #xLÆiwy # x # y #xRÆiwy #x a! x0xLÆiwy a!x0 Æiw y AE (a) \ AE (x) = ; y a! y0xRÆiwy a!x Æiw y0Table 5: Dedution rules for auxiliary operators for interworking sequening (a 2 A)Theorem 10 (Congruene) IWD-bisimilarity is a ongruene for LÆiw and RÆiw.Proof. The term dedution system is in path format and hene IWD-bisimilarity is a ongruenefor all operators. ⊠

S x Æiw y = xLÆiwy + xRÆiwyL1 "LÆiw" = "L2 "LÆiwÆE = ÆEL3 "LÆiwa � x = ÆAE (a�x)L4 "LÆiw(x+ y) = "LÆiwx+ "LÆiwyL5 ÆE LÆiwx = ÆE[AE(x)L6 a � xLÆiwy = a � (x Æiw y)L7 (x+ y)LÆiwz = xLÆiwz + yLÆiwzR1-4 xRÆiw" = "LÆiwxR5 xRÆiwÆE = ÆE[AE(x)R6a xRÆiwa � y = a � (x Æiw y) if AE(a) \AE(x) = ;R6b xRÆiwa � y = ÆAE (x)[AE(a�y) if AE(a) \AE(x) 6= ;R7 xRÆiw(y + z) = xRÆiwy + xRÆiwzTable 6: Axioms for interworking sequening and auxiliary operators (a 2 A, E � EID)The axioms de�ning the interworking sequening in terms of alternative and sequential omposi-tion are given in Table 6. The �rst axiom, S, states that the �rst ation from x Æiw y an eitherome from x (via the term xLÆiwy) or from y (via the term xRÆiwy). Axioms L1-L7 de�ne



28 5 THE INTERWORKING SEQUENCINGthe operator LÆiw using the struture of basi terms. As stated before, xLÆiwy behaves like theproess x Æiw y with the restrition that the �rst ation to be exeuted omes from x. This isexpressed learly in axiom L6. The relation between LÆiw and Æiw also explains the distributivelaw L7 and the absorption law L5. Axioms L1-L4 de�ne the termination behaviour of LÆiw:xLÆiwy an only terminate if both operands an terminate. A deadlok ours if the left operandis " and the right operand annot terminate (axioms L2, L3).The de�nition of RÆiw is similar. The intuition behind the operator RÆiw is that the rightoperand may only exeute ations whih are not bloked by the left operand. Therefore, we makea distintion using the ondition AE(a) \AE(x) = ; (see axioms R6a and R6b).Theorem 11 (Soundness) The axioms given in Table 6 are sound with respet to IWD-bisimilarity on losed IWD(Æ; �;+)-terms.Proof. If \s = t if b" represents either one of S, L1-L5, L7, R1-4, R5, R6b, or R7, then therelation R = f(s; t); (t; s) j bg [ I is an IWD-bisimulation for that axiom.For the axioms L6 and R6a the IWD-bisimulations are given byR = f(a � xLÆiwy; a � (x Æiw y)); (" � x Æiw y; " � (x Æiw y)); (" � x Æiw q; x Æiw q)j q 2 C(�IWD(Æ; �;+))gS [ Iand R = f(xRÆiwa � y; a � (x Æiw y)); (x Æiw " � y; " � (x Æiw y)); (p Æiw " � q; p Æiw q)j p; q 2 C(�IWD(Æ; �;+));AE (a) \AE (x) = ;gS [ Irespetively. ⊠We will onsider basi terms as in De�nition 8 of Setion 4. To prove the elimination propertywe will need the following lemma.Lemma 5 For arbitrary basi terms b1 and b2 we have the existene of basi terms 1, 2 and 3suh that b1 LÆiwb2 = 1, b1RÆiwb2 = 2 and b1 Æiw b2 = 3.Proof. These statements are proven simultaneously with indution on the struture of basiterms b1 and b2. The details of the proofs are omitted. ⊠Theorem 12 (Elimination) For every losed IWD(Æ; �;+)-term x there is a derivably equalbasi term s.Proof. This theorem is proven by indution on the struture of losed IWD(Æ; �;+)-term x. Theonly interesting ases are the following: x � x0 LÆiwx00, x � x0RÆiwx00, and x � x0 Æiw x00 for losedIWD(Æ; �;+)-terms x0 and x00. In all ases we �nd the existene of basi terms b1 and b2 suh thatx1 = b1 and x2 = b2. Using the previous lemma we �nd the desired result. ⊠



29Next, we prove that the proess algebra IWD(Æ; �;+) is a onservative extension of the proessalgebra BPA(ÆE). This means that every equality between losed terms from the signature ofBPA(ÆE) is also derivable from the proess algebra IWD(Æ; �;+), and also that in the proessalgebra IWD(Æ; �;+) only those equalities are derivable. The proof of this theorem uses theapproah of [Ver95℄.Theorem 13 (Conservativity) The proess algebra IWD(Æ; �;+) is a onservative extensionof the proess algebra BPA(ÆE).Proof. The onservativity follows from the following observations:1. IWD-bisimilarity is de�nable in terms of prediate and relation symbols only,2. BPA(ÆE) is a omplete axiomatisation of IWD-bisimilarity on losed BPA(ÆE)-terms,3. IWD(Æ; �;+) is a sound axiomatisation of IWD-bisimilarity on losed IWD(Æ; �;+)-terms(see Theorem 11),4. The term dedution system for BPA(ÆE) is pure, well-founded and in path format, and5. The term dedution system for IWD(Æ; �;+) is in path format.
⊠Theorem 14 (Completeness) The proess algebra IWD(Æ; �;+) is a omplete axiomatisationof IWD-bisimilarity on losed IWD(Æ; �;+)-terms.Proof. By the General Completeness Theorem of [Ver94℄, the ompleteness of the proess algebraIWD(Æ; �;+) follows immediately from the properties mentioned in the proof of Theorem 13 andthe fat that IWD(Æ; �;+) has the elimination property for BPA(ÆE)(see Theorem 8). ⊠In Setion 3 we have given a diret axiomatisation of interworking sequening, while in this setionwe have expressed interworking sequening in terms of alternative and sequential omposition.We will prove that the axioms used in the diret axiomatisation are still valid in the urrentsetting for losed terms.As a onsequene of the fat that IWD-bisimilarity is a ongruene for all operators in thesignature and the fat that for every losed term there exists a derivably equal basi term, wean prove equalities for losed terms with indution.Proposition 1 (Commutativity of Æiw) For arbitrary losed IWD(Æ; �;+)-terms x and y suhthat AE(x) \AE(y) = ; we have x Æiw y = y Æiw x:



30 5 THE INTERWORKING SEQUENCINGProof. Suppose that AE(x) \ AE(y) = ;. We prove the statements xLÆiwy = yRÆiwx andx Æiw y = y Æiw x simultaneously with indution on the struture of basi terms x and y. First wepresent the proof of xLÆiwy = yRÆiwx.1. x � ". Trivial by axiom R1-4.2. x � ÆE for some E � EID . Then xLÆiwy = ÆE LÆiwy = ÆE[AE(y) = yRÆiwÆE = yRÆiwx.3. x � a � x0 for some a 2 A and x0 2 B(�IWD(Æ; �;+)). As AE(a � x0) \ AE(y) = ; impliesAE(x0) \AE(y) = ;, we have by indution that x0 Æiw y = y Æiw x0. ThenxLÆiwy = a � x0 LÆiwy = a � (x0 Æiw y) = a � (y Æiw x0)= yRÆiwa � x0 = yRÆiwx:Note that we have also used that AE(a � x0) \AE(y) = ; implies AE(a) \AE(y) = ;.4. x � x0 + x00 for some x0; x00 2 B(�IWD(Æ; �;+)). As AE (x0 + x00) \ AE(y) = ; impliesAE(x0) \ AE(y) = ; and AE(x00) \ AE(y) = ;, we have by indution x0 LÆiwy = yRÆiwx0and x00 LÆiwy = yRÆiwx00. ThenxLÆiwy = (x0 + x00)LÆiwy = x0 LÆiwy + x00 LÆiwy = yRÆiwx0 + yRÆiwx00= yRÆiw(x0 + x00) = yRÆiwx:Then we have x Æiw y = xLÆiwy + xRÆiwy = yRÆiwx+ yLÆiwx = y Æiw x. ⊠Proposition 2 (Unit element) For losed IWD(Æ; �;+)-terms x we have" Æiw x = x Æiw " = x:Proof. First, we prove " Æiw x = x with indution on the struture of basi term x.1. x � ". Then " Æiw x = " Æiw " = "LÆiw"+ "RÆiw" = "+ " = " = x.2. x � ÆE for some E � EID . Then "Æiwx = "Æiw ÆE = "LÆiwÆE+"RÆiwÆE = ÆE+ÆE[AE(") =ÆE = x.3. x � a � x0 for some a 2 A and x0 2 B(�IWD(Æ; �;+)). By indution we have " Æiw x0 = x0.Then "Æiwx = "Æiwa�x0 = "LÆiwa�x0+"RÆiwa�x0 = ÆAE(a�x0)+a�("Æiwx0) = ÆAE(a�x0)+a�x0 =a � x0.4. x � x1 + x2 for some x1; x2 2 B(�IWD(Æ; �;+)). By indution we have " Æiw x1 = x1and " Æiw x2 = x2. Then " Æiw x = " Æiw (x1 + x2) = "LÆiw(x1 + x2) + "RÆiw(x1 + x2) ="LÆiwx1 + "LÆiwx2 + "RÆiwx1 + "RÆiwx2 = " Æiw x1 + " Æiw x2 = x1 + x2 = x.



31Then, using the ommutativity of Æiw and the fat that AE(x) \ AE(") = ; we easily �ndx Æiw " = " Æiw x = x. ⊠

Proposition 3 (Assoiativity of Æiw) For losed IWD(Æ; �;+)-terms x, y, and z, we have(x Æiw y) Æiw z = x Æiw (y Æiw z):Proof. Without loss of generality we an assume that x, y, and z are basi terms. To prove thistheorem the following propositions are proven simultaneously with indution on the general formof the basi terms x, y, and z. (xLÆiwy)LÆiwz = xLÆiw(y Æiw z) (1)(xRÆiwy)LÆiwz = xRÆiw(y LÆiwz) (2)(x Æiw y)RÆiwz = xRÆiw(yRÆiwz) (3)(x Æiw y) Æiw z = x Æiw (y Æiw z) (4)This way of proving assoiativity of interworking sequening is similar to the way in whihassoiativity of parallel omposition is proven in ACP . Similar equations in the setting of ACPare usually alled the Axioms of Standard Conurreny [BW90℄.Let x =∑i2I ai � xi + ÆE +∑k2K ";y =∑l2L bl � yl + ÆF +∑n2N ";z =∑o2O o � zo + ÆG +∑q2Q ";for some �nite index sets I;K;L;N;O;Q, ai; bl; o 2 A, E;F;G � EID and basi terms xi; yl; zo.The following identities are used in the proofs of these four equations. Their proofs are omitted.("LÆiwy)LÆiwz = "LÆiw(y Æiw z) (a)(xRÆiw")LÆiwz = xRÆiw("LÆiwz) (b)(x Æiw y)RÆiw" = xRÆiw(yRÆiw") ()



32 5 THE INTERWORKING SEQUENCINGProof of (1):
(xLÆiwy)LÆiwz= fass. x; distribution lawsg
∑i2I(ai � xi LÆiwy)LÆiwz + (ÆE LÆiwy)LÆiwz + ∑k2K("LÆiwy)LÆiwz= fL6; L5g
∑i2I ai � ((xi Æiw y) Æiw z) + ÆE[AE(y)[AE (z) +∑k2K("LÆiwy)LÆiwz= fIndution hypothesis (4); AE (y) [AE(z) = AE (y Æiw z); (a)g
∑i2I ai � (xi Æiw (y Æiw z)) + ÆE[AE(yÆiwz) +∑k2K "LÆiw(y Æiw z)= fL6; L5g
∑i2I ai � xi Æiw (y Æiw z) + ÆE LÆiw(y Æiw z) +∑k2K "LÆiw(y Æiw z)= fdistribution laws; ass. xgxLÆiw(y Æiw z)

Proof of (2): Let L0 = fl 2 L j AE(bl) \AE(x) = ;g and L00 = L n L0.
(xRÆiwy)LÆiwz= fass. y; distribution lawsg
∑l2L(xRÆiwbl � yl)LÆiwz + (xRÆiwÆF )LÆiwz + ∑n2N(xRÆiw")LÆiwz= fR6a; R6b; L6; R5; L5g
∑l2L0 bl � ((x Æiw yl) Æiw z) + ∑l2L00 ÆAE(x)[AE (bl�yl)[AE(z) + ÆF[AE(x)[AE (z)+ ∑n2N(xRÆiw")LÆiwz= fIndution hypothesis (4); (b)g
∑l2L0 bl � (x Æiw (yl Æiw z)) + ∑l2L00 ÆAE(x)[AE (bl�yl)[AE(z) + ÆF[AE(x)[AE (z)+ ∑n2N xRÆiw("LÆiwz)= fR6a; R6b; L6; R5; L5g
∑l2L xRÆiw(bl � yl LÆiwz) + xRÆiw(ÆF LÆiwz) + ∑n2N xRÆiw("LÆiwz)= fdistribution laws; ass. ygxRÆiw(yRÆiwz)



33Proof of (3): Let O0 = fo 2 O j AE(o) \AE (x Æiw y) = ;g and O00 = O n O0.(x Æiw y)RÆiwz= fass. z; distribution lawsg
∑o2O(x Æiw y)RÆiwo � zo + (x Æiw y)RÆiwÆG + ∑q2Q(x Æiw y)RÆiw"= fR6a; R6b;R5g
∑o2O0 o � ((x Æiw y) Æiw zo) + ∑o2O00 ÆAE (xÆiwy)[AE (o�zo) + ÆG[AE (xÆiwy)+ ∑q2Q(x Æiw y)RÆiw"= fIndution hypothesis (4); AE(x Æiw y) = AE(x) [AE(y); ()g
∑o2O0 o � (x Æiw (y Æiw zo)) + ∑o2O00 ÆAE (x)[AE(y)[AE (o�zo)+ ÆG[AE(x)[AE (y) + ∑q2QxRÆiw(yRÆiw")= fR6a; R6b; R5g
∑o2O xRÆiw(yRÆiwo � zo) + xRÆiw(yRÆiwÆG) + ∑q2QxRÆiw(yRÆiw")= fdistribution laws; ass. zgxRÆiw(yRÆiwz)Proof of (4): (x Æiw y) Æiw z= fSg(x Æiw y)LÆiwz + (x Æiw y)RÆiwz= fSg(xLÆiwy + xRÆiwy)LÆiwz + (x Æiw y)RÆiwz= fL7g(xLÆiwy)LÆiwz + (xRÆiwy)LÆiwz + (x Æiw y)RÆiwz= fIndution hypotheses (1), (2), (3)gxLÆiw(y Æiw z) + xRÆiw(yLÆiwz) + xRÆiw(yRÆiwz)= fR7gxLÆiw(y Æiw z) + xRÆiw(yLÆiwz + yRÆiwz)= fSgxLÆiw(y Æiw z) + xRÆiw(y Æiw z)= fSgx Æiw (y Æiw z)

⊠Finally we give two more identities. They orrespond to the axioms Æiw1 and Æiw3 from Table 2.Proposition 4 For E;F � EID and a 2 A suh that AE(a) \E 6= ; we haveÆE Æiw a = ÆE[AE(a);ÆE Æiw ÆF = ÆE[F :



34 6 THE E-INTERWORKING MERGEProof. For the �rst identity onsiderÆE Æiw a = ÆE LÆiwa+ ÆERÆiwa = ÆE[AE(a) + ÆERÆiwa � "= ÆE[AE(a) + ÆE[AE(a) = ÆE[AE(a);and for the seond onsiderÆE Æiw ÆF = ÆE LÆiwÆF + ÆERÆiwÆF = ÆE[F + ÆE[F = ÆE[F :
⊠Observe that we have now shown that all identities on losed IWD(Æ)-terms that are derivablyequal in the proess algebra IWD(Æ), are also derivably equal in the proess algebra IWD(Æ; �;+).6 The E-interworking mergeNow that we have de�ned the proess algebras BPA(ÆE) and IWD(Æ; �;+) whih inlude operatorsfor alternative and sequential omposition, we aim at extending them with the merge operator.For tehnial reasons, we do this in two steps: First we will de�ne the E-interworking merge inthis setion and in the next setion we will extend the obtained proess algebra to its �nal shape.The E-interworking merge of x and y, denoted by x kEiw y, is the parallel exeution of the proessesx and y with the restrition that the proesses must synhronise on all atomi ations whih arede�ned on entities from the set E. This set E is stati, whih means that it remains unhangedduring alulations on a term whih ontains the E-interworking merge operator. The resultingproess algebra is alled IWD(Æ;+; �; kE).The dedution rules de�ning the operational semantis of the E-interworking merge are given inTable 7. The E-interworking merge of two proesses an terminate if and only if both operandsan terminate. The seond and third rule in Table 7 say that if an operand an perform an ation,the merge an perform the same ation, provided that the ation is not supposed to synhronise(i.e. the sender and reeiver are not both in E). The fourth rule expresses the behaviour of amerge in ase a synhronised ation is possible.De�nition 10 (Ative entities) For arbitrary i; j 2 EID, m 2 MID, E � EID , x; y 2C(�IWD(Æ;+; �; kE)), and � 2 fÆiw; LÆiw; RÆiw;+; �; kEiw ; kEiw ; jEiw j E � EIDg, we de�ne themapping AE : C(�IWD(Æ;+; �; kE))! IP(EID) indutively as follows:AE((i; j;m)) = fi; jg;AE(") = ;;AE(ÆE) = E;AE(x� y) = AE(x) [AE(y):



35x # y #x kEiw y # x a!x0 AE (a) 6� Ex kEiw y a!x0 kEiw y y a! y0 AE (a) 6� Ex kEiw y a!x kEiw y0x a!x0 y a! y0 AE (a) � Ex kEiw y a! x0 kEiw y0Table 7: Dedution rules for E-interworking merge (a 2 A, E � EID)For the axiomatisation of the E-interworking merge we need two auxiliary operators, similar tothe axiomatisation of the ommuniation merge of ACP . These additional operators are kEiw (E-interworking left-merge) and jEiw (E-interworking synhronisation merge). The proess xkEiw ybehaves like the proess x kEiw y with the restrition that the �rst ation must ome from proessx and that ation annot synhronise with an ation from y. The proess x jEiw y behaves asthe proess x kEiw y with the restrition that the �rst ation must be a synhronisation. This isformalised by the dedution rules in Table 8. The term dedution system T (IWD(Æ;+; �; kE))onsists of the dedution rules of Tables 1, 3, 5, 7 and 8.x # y #xkEiw y # x a!x0 AE (a) 6� ExkEiw y a!x0 kEiw yx a!x0 y a! y0 AE (a) � Ex jEiw y a!x0 kEiw y0Table 8: Dedution rules for auxiliary operators of E-interworking merge (a 2 A, E � EID)Table 9 presents the axioms de�ning the E-interworking merge and its auxiliary operators. AxiomM states that either one of the two operands exeutes a non-synhronised ation (xkEiw y+ykEiw x),or that a synhronised ation takes plae (x jEiw y). The de�nition of the kEiw operator (LM1-LM7) is very similar to the de�nition of the LÆiw operator in Setion 5 (Table 6, axioms L1-L7).The only di�erene is that axiom L6 is unonditional, whereas axiom LM6b has to take areof eliminating ations whih are supposed to synhronise. Axioms CM1-CM7 de�ne the jEiwoperator. This operator enables all ations that an be performed by both operands and whihmust synhronise. In all other ases it yields a deadlok, where the sope of the deadlok an bederived from the operands.It turns out that IWD-bisimilarity is a ongruene for the operators in the signature of the proessalgebra IWD(Æ;+; �; kE). Furthermore, IWD(Æ;+; �; kE) is a sound and omplete axiomatisationof IWD-bisimilarity on losed IWD(Æ;+; �; kE)-terms. The proofs are based on the meta-theory



36 6 THE E-INTERWORKING MERGE

M x kEiw y = xkEiw y + ykEiw x+ x jEiw yLM1 "kEiw " = "LM2 "kEiw ÆF = ÆFLM3 "kEiw a � x = ÆAE(a�x)LM4 "kEiw (x + y) = "kEiw x+ "kEiw yLM5 ÆF kEiw x = ÆF[AE(x)LM6a a � xkEiw y = a � (x kEiw y) if AE (a) 6� ELM6b a � xkEiw y = ÆAE(a�x)[AE(y) if AE (a) � ELM7 (x + y)kEiw z = xkEiw z + ykEiw zCM1 " jEiw x = ÆAE(x)CM2 x jEiw " = ÆAE(x)CM3 ÆF jEiw x = ÆF[AE(x)CM4 x jEiw ÆF = ÆF[AE(x)CM5a a � x jEiw b � y = a � (x kEiw y) if a � b ^ AE (a) � ECM5b a � x jEiw b � y = ÆAE(a�x)[AE (b�y) if a 6� b _ AE (a) 6� ECM6 (x + y) jEiw z = x jEiw z + y jEiw zCM7 x jEiw (y + z) = x jEiw y + x jEiw zTable 9: Axioms of E-interworking merge (a; b 2 A, E; F 2 EID)



37presented in [BV95, Ver95℄.Theorem 15 (Congruene) IWD-bisimilarity is a ongruene for E-interworking merge andthe auxiliary operators.Proof. The term dedution system is in path format and hene IWD-bisimilarity is a ongruenefor all operators. ⊠Theorem 16 (Soundness) The proess algebra IWD(Æ;+; �; kE) is a sound axiomatisation ofIWD-bisimilarity on losed IWD(Æ;+; �; kE)-terms.Proof. For the axioms LM1-LM5, LM6b, CM1-CM4, and CM5b the IWD-bisimulations thatwitness the soundness are trivial. If \s = t if b" represents suh an axiom, then the IWD-bisimulation is R = f(s; t); (t; s) j bg.For the axioms M, LM7, CM6, and CM7 the IWD-bisimulation is given by R = f(s; t); (t; s) j bg[Iif the axiom is given as \s = t if b".For the axioms LM6a and CM5a the IWD-bisimulations areR = f(a � xkEiw y; a � (x kEiw y)); (" � x kEiw y; " � (x kEiw y)); (" � x kEiw q; x kEiw q)j AE(a) 6� E; q 2 C(�IWD(Æ;+; �; kE))gS [ Iand R = f(a � x jEiw b � y; a � (x kEiw y)); (" � x kEiw " � y; " � (x kEiw y));(p kEiw " � y; p kEiw y); (" � x kEiw q; x kEiw q)j a � b;AE (a) � E; p; q 2 C(�IWD(Æ;+; �; kE))gS [ Irespetively. ⊠Lemma 6 For arbitrary basi terms b1 and b2 we have the existene of basi terms 1, 2, and3 suh that b1kEiw b2 = 1, b1 jEiw b2 = 2 and b1 kEiw b2 = 3.Proof. These statements are proven simultaneously with indution on the total number ofsymbols of the basi terms b1 and b2.1. By ase distintion on the struture of basi term b1.(a) b1 � ". By ase distintion on the struture of basi term b2.i. b2 � ". Then b1kEiw b2 = "kEiw " = ".ii. b2 � ÆF2 for some F2 � EID . Then b1kEiw b2 = "kEiw ÆF2 = ÆF2 .



38 6 THE E-INTERWORKING MERGEiii. b2 � a2 � b02 for some a2 2 A and b02 2 B(�IWD(Æ;+; �; kE)). Thenb1kEiw b2 = "kEiw a2 � b02 = ÆAE(a2�b02):iv. b2 � b02 + b002 for some b02; b002 2 B(�IWD(Æ;+; �; kE)). By indution we have theexistene of basi terms 01 and 001 suh that "kEiw b02 = 01 and "kEiw b002 = 001 . Thenb1kEiw b2 = "kEiw (b02 + b002) = "kEiw b02 + "kEiw b002 = 01 + 001:(b) b1 � ÆF1 for some F1 � EID . Then b1kEiw b2 = ÆF1kEiw b2 = ÆF1[AE(b2).() b1 � a1 � b01 for some a1 2 A and b01 2 B(�IWD(Æ;+; �; kE)). By indution we have theexistene of basi term 01 suh that b01 kEiw b2 = 01. Then, if AE(a) 6� E,b1kEiw b2 = a1 � b01kEiw b2 = a1 � (b01 kEiw b2) = a1 � 01:If AE (a1) � E, then b1kEiw b2 = a1 � b01kEiw b2 = ÆAE (a1�b01)[AE (b2).(d) b1 � b01+b001 for some b01; b001 2 B(�IWD(Æ;+; �; kE)). By indution we have the existeneof basi terms 01 and 001 suh that b01kEiw b2 = 01 and b001kEiw b2 = 001 . Thenb1kEiw b2 = (b01 + b001)kEiw b2 = b01kEiw b2 + b001kEiw b2 = 01 + 001 :2. By ase distintion on the struture of basi term b1.(a) b1 � ". Then b1 jEiw b2 = " jEiw b2 = ÆAE (b2).(b) b1 � ÆF1 for some F1 � EID . Then b1 jEiw b2 = ÆF1 jEiw b2 = ÆF1[AE(b2).() b1 � a1 � b01 for some a1 2 A and b01 2 B(�IWD(Æ;+; �; kE)). By ase distintion onthe struture of basi term b2.i. b2 � ". Then b1 jEiw b2 = b1 jEiw " = ÆAE(b1).ii. b2 � ÆF2 for some F2 � EID . Then b1 jEiw b2 = b1 jEiw ÆF2 = ÆAE(b1)[F2 .iii. b2 � a2 � b02 for some a2 2 A and b02 2 B(�IWD(Æ;+; �; kE)). By indutionwe have the existene of basi term 3 suh that b01 kEiw b02 = 3. Then, if a1 �a2 ^AE (a1) � E,b1 jEiw b2 = a1 � b01 jEiw a2 � b02 = a1 � (b01 kEiw b02) = a1 � 3:If a1 6� a2 _AE(a1) 6� E, thenb1 jEiw b2 = a1 � b01 jEiw a2 � b02 = ÆAE(a1 �b01)[AE(a1�b02):iv. b2 � b02 + b002 for some b02; b002 2 B(�IWD(Æ;+; �; kE)). By indution we have theexistene of basi terms 02 and 002 suh that b1 jEiw b02 = 02 and b1 jEiw b002 = 002 . Thenb1 jEiw b2 = b1 jEiw (b02 + b002) = b1 jEiw b02 + b1 jEiw b002 = 02 + 002 :



39(d) b1 � b01+b001 for some b01; b001 2 B(�IWD(Æ;+; �; kE)). By indution we have the existeneof basi terms 02 and 002 suh that b01 jEiw b2 = 02 and b001 jEiw b2 = 002. Thenb1 jEiw b2 = (b01 + b001) jEiw b2 = b01 jEiw b2 + b001 jEiw b2 = 02 + 002 :3. By the previous two items we have the existene of basi terms 01, 001, and 2 suh thatb1kEiw b2 = 01, b2kEiw b1 = 001 , and b1 jEiw b2 = 2. Then,b1 kEiw b2 = b1kEiw b2 + b2kEiw b1 + b1 jEiw b2 = 01 + 001 + 2:
⊠Theorem 17 (Elimination) For every losed IWD(Æ;+; �; kE)-term x there is a derivably equalbasi term s.Proof. This theorem is proven by indution on the struture of losed IWD(Æ;+; �; kE)-term x.All ases exept for x � x0kEiw x00, x � x0 jEiw x00, and x � x0 kEiw x00 have already been treated in theproof of Theorem 12. In the remaining three ases we �nd the existene of basi terms b1 and b2suh that x1 = b1 and x2 = b2. Using the previous lemma we �nd the desired result. ⊠Theorem 18 (Conservativity) The proess algebra IWD(Æ;+; �; kE) is a onservative exten-sion of the proess algebra IWD(Æ; �;+).Proof. The proof of this theorem uses the approah of [Ver95℄. The onservativity follows fromthe following observations:1. IWD-bisimilarity is de�nable in terms of prediate and relation symbols only,2. IWD(Æ; �;+) is a omplete axiomatisation of IWD-bisimilarity on losed IWD(Æ; �;+)-terms,3. IWD(Æ;+; �; kE) is a sound axiomatisation of IWD-bisimilarity on losed IWD(Æ;+; �; kE)-terms (see Theorem 16),4. the term dedution system for IWD(Æ; �;+) is pure, well-founded and in path format, and5. the term dedution system for IWD(Æ;+; �; kE) is in path format.
⊠Theorem 19 (Completeness) The proess algebra IWD(Æ;+; �; kE) is a omplete axiomatisa-tion of IWD-bisimilarity on losed IWD(Æ;+; �; kE)-terms.



40 6 THE E-INTERWORKING MERGEProof. By the General Completeness Theorem of [Ver94℄, the ompleteness of the proess algebraIWD(Æ;+; �; kE) follows immediately from the properties mentioned in the proof of Theorem 18and the fat that IWD(Æ;+; �; kE) has the elimination property for BPA(ÆE)(see Theorem 8) andhene also for IWD(Æ; �;+). ⊠When de�ning an operator for parallel omposition, several properties are desirable, suh asommutativity, the existene of a unit element, and assoiativity (under some ondition). Theproof of assoiativity in the proess algebra is quite ompliated.Proposition 5 (Commutativity kEiw ) For losed IWD(Æ;+; �; kE)-terms x, y, and a set ofentities E we have x jEiw y = y jEiw x;x kEiw y = y kEiw x:Proof. The propositions are proven simultaneously with indution on the general struture ofbasi terms x and y. Letx =∑i2I ai � xi + ÆE +∑k2K "; y =∑l2L bl � yl + ÆF +∑n2N ";for some �nite index sets I;K;L;N , ai; bl 2 A, E;F � EID and basi terms xi; yl. Then,x jEiw y =∑i2I∑l2L ai � xi jEiw bl � yl + x jEiw ÆF +∑n2N x jEiw "+ ÆE jEiw y +∑k2K " jEiw y=∑i2I ∑l2L;ai�bl;AE(ai)�E ai � (xi kEiw yl)+∑i2I ∑l2L;ai 6�bl_AE(ai)6�E ÆAE(ai�xi)[AE (bl�yl)+ ÆAE(x)[F +∑n2N ÆAE(x) + ÆE[AE(y) +∑k2K ÆAE(y)=∑l2L ∑i2I;bl�ai;AE(bl)�E bl � (yl kEiw xi)+∑l2L ∑i2I;bl 6�ai_AE(bl)6�E ÆAE(bl�yl)[AE (ai�xi)+ ÆF jEiw x+∑n2N " jEiw x+ y jEiw ÆE +∑k2K y jEiw "=∑l2L∑i2I bl � yl jEiw ai � xi + ÆF jEiw x+∑n2N " jEiw x+ y jEiw ÆE +∑k2K y jEiw "=y jEiw xand x kEiw y =xkEiw y + ykEiw x+ x jEiw y = ykEiw x+ xkEiw y + y jEiw x = y kEiw x:



41
⊠Proposition 6 For losed IWD(Æ;+; �; kE)-terms x we havex k;iw " = x;" k;iw x = x:Proof. The �rst proposition is proven with indution on the general struture of basi term x.Let x =∑i2I ai � xi + ÆE +∑k2K ";for some �nite index sets I;K, ai 2 A, E � EID and basi terms xi. The indution hypothesisis xi k;iw " = xi for all i 2 I. Then,xk ;iw " =∑i2I ai � xik ;iw "+ ÆEk ;iw "+∑k2K "k ;iw "=∑i2I ai � (xi k;iw ") + ÆE +∑k2K "=∑i2I ai � xi + ÆE +∑k2K "= xand "k ;iw x = "k ;iw (∑i2I ai � xi + ÆE +∑k2K ")=∑i2I "k ;iw ai � xi + "k ;iw ÆE +∑k2K "k ;iw "=∑i2I ÆAE(ai�xi) + ÆE +∑k2K ":Using these two subomputations we obtain:x k;iw " = xk ;iw "+ "k ;iw x+ x j;iw "= x+∑i2I ÆAE(ai �xi) + ÆE +∑k2K "+ ÆAE (x)= x:The other part of the proposition is obtained using the ommutativity of k;iw . ⊠The following proposition serves our needs in proving interworking merge assoiative in the nextsetion.



42 6 THE E-INTERWORKING MERGEProposition 7 (Assoiativity of kEiw ) For losed IWD(Æ;+; �; kE)-terms x, y, and z, and setsof entities E1, E2, and E3 suh that AE(x) � E1, AE(y) � E2, and AE (z) � E3, we have(x kE1\E2iw y) k(E1[E2)\E3iw z = x kE1\(E2[E3)iw (y kE2\E3iw z):Proof. Without loss of generality we an assume that x, y, and z are basi terms. We usethe following shorthands: S = E1 \ E2 \ E3, E12 = (E1 \ E2) n S, E23 = (E2 \ E3) n S, andE13 = (E1 \E3) n S. In Figure 16 these sets are indiated in a Venn diagram.E1 E2
E3

E12E13 E23S
Figure 16: Explanation of shorthandsWe prove the following propositions simultaneously with indution on the struture of the basiterms x, y, and z. (xkE12[Siw y)kE13[E23[Siw z = xkE12[E13[Siw (y kE23[Siw z) (5)(x jE12[Siw y) jE13[E23[Siw z = x jE12[E13[Siw (y jE23[Siw z) (6)(x jE12[Siw y)kE13[E23[Siw z = x jE12[E13[Siw (ykE23[Siw z) (7)(x kE12[Siw y) kE13[E23[Siw z = x kE12[E13[Siw (y kE23[Siw z) (8)Let x =∑i2I ai � xi + ÆE +∑k2K ";y =∑l2L bl � yl + ÆF +∑n2N ";z =∑o2O o � zo + ÆG +∑q2Q ";for some �nite index sets I;K;L;N;O;Q, ai; bl; o 2 A, E;F;G � EID and basi terms xi; yl; zo.We only give the proofs for (6) and (8). The proof for (6) uses indution on the general form ofbasi terms x, y, and z.



43From AE(x) � E1, AE(y) � E2, and AE(z) � E3 we obtain AE(xi) � E1, AE(yl) � E2, andAE(zo) � E3 for all i 2 I, l 2 L, and o 2 O. This means that we are allowed to use(xi kE12[Siw yl) kE13[E23[Siw zo = xi kE12[E13[Siw (yl kE23[Siw zo):First, we give a number of subomputations. These are used in proving equation (6).Subomputation 1:(ai � xi jE12[Siw bl � yl) jE13[E23[Siw o � zo={ai � (xi kE12[Siw yl) jE13[E23[Siw o � zo if ai � bl ^AE(ai) � E12 [ SÆAE(ai �xi)[AE (bl�yl) jE13[E23[Siw o � zo otherwise=














ai � ((xi kE12[Siw yl) kE13[E23[Siw zo) if ai � bl ^AE(ai) � E12 [ S^ ai � o ^AE (ai) � E13 [E23 [ SÆAE(ai)[AE (xi)[AE(yl)[AE(o�zo) if ai � bl ^AE(ai) � E12 [ S^ (ai 6� o _AE(ai) 6� E13 [E23 [ S)ÆAE(ai�xi)[AE(bl�yl)[AE(o�zo) otherwise=




ai � ((xi kE12[Siw yl) kE13[E23[Siw zo) if ai � bl ^AE(ai) � E12 [ S^ ai � o ^AE (ai) � E13 [E23 [ SÆAE(ai�xi)[AE(bl�yl)[AE(o�zo) otherwise={ai � ((xi kE12[Siw yl) kE13[E23[Siw zo) if ai � bl � o ^AE(ai) � SÆAE(ai �xi)[AE (bl�yl)[AE (o�zo) otherwise={ai � (xi kE12[E13[Siw (yl kE23[Siw zo)) if ai � bl � o ^AE(ai) � SÆAE(ai �xi)[AE (bl�yl)[AE (o�zo) otherwise=














ai � (xi kE12[E13[Siw (yl kE23[Siw zo)) if ai � bl ^AE(ai) � E12 [E13 [ S^ bl � o ^AE(bl) � E23 [ SÆAE(ai�xi)[AE(bl)[AE(yl)[AE(zo) if (ai 6� bl _AE(ai) 6� E12 [E13 [ S)^ bl � o ^AE(bl) � E23 [ SÆAE(ai�xi)[AE(bl�yl)[AE(o�zo) otherwise={ai � xi jE12[E13[Siw bl � (yl kE23[Siw zo) if bl � o ^AE(bl) � E23 [ Sai � xi jE12[E13[Siw ÆAE(bl�yl)[AE(o�zo) otherwise=ai � xi jE12[E13[Siw (bl � yl jE23[Siw o � zo)Subomputation 2: (ÆE jE12[Siw y) jE13[E23[Siw z = ÆE[AE(y) jE13[E23[Siw z= ÆE[AE(y)[AE (z)= ÆE jE12[E13[Siw (y jE23[Siw z)



44 6 THE E-INTERWORKING MERGESimilarly we obtain (x jE12[Siw ÆF ) jE13[E23[Siw z = x jE12[E13[Siw (ÆF jE23[Siw z)and (x jE12[Siw y) jE13[E23[Siw ÆG = x jE12[E13[Siw (y jE23[Siw ÆG):Subomputation 3: (" jE12[Siw y) jE13[E23[Siw z = ÆAE(y) jE13[E23[Siw z= ÆAE(y)[AE (z)= " jE12[E13[Siw (y jE23[Siw z)Similarly we obtain (x jE12[Siw ") jE13[E23[Siw z = x jE12[E13[Siw (" jE23[Siw z)and (x jE12[Siw y) jE13[E23[Siw " = x jE12[E13[Siw (y jE23[Siw "):Then, using these subomputations, we obtain(x jE12[Siw y) jE13[E23[Siw z=∑i2I∑l2L∑o2O(ai � xi jE12[Siw bl � yl) jE13[E23[Siw o � zo+ (ÆE jE12[Siw y) jE13[E23[Siw z + (x jE12[Siw ÆF ) jE13[E23[Siw z+ (x jE12[Siw y) jE13[E23[Siw ÆG +∑k2K(" jE12[Siw y) jE13[E23[Siw z+∑n2N(x jE12[Siw ") jE13[E23[Siw z +∑q2Q(x jE12[Siw y) jE13[E23[Siw "=∑i2I∑l2L∑o2O ai � xi jE12[E13[Siw (bl � yl jE23[Siw o � zo)+ ÆE jE12[E13[Siw (y jE23[Siw z) + x jE12[E13[Siw (ÆF jE23[Siw z)+ x jE12[E13[Siw (y jE23[Siw ÆG) +∑k2K " jE12[E13[Siw (y jE23[Siw z)+∑n2N x jE12[E13[Siw (" jE23[Siw z) +∑q2Qx jE12[E13[Siw (y jE23[Siw ")=x jE12[E13[Siw (y jE23[Siw z):Finally, equation (8) is proven as follows:



45(x kE12[Siw y) kE13[E23[Siw z=(x kE12[Siw y)kE13[E23[Siw z + zkE13[E23[Siw (x kE12[Siw y) + (x kE12[Siw y) jE13[E23[Siw z=(xkE12[Siw y + ykE12[Siw x+ x jE12[Siw y)kE13[E23[Siw z + zkE13[E23[Siw (x kE12[Siw y)+ (xkE12[Siw y + ykE12[Siw x+ x jE12[Siw y) jE13[E23[Siw z=(xkE12[Siw y)kE13[E23[Siw z + (ykE12[Siw x)kE13[E23[Siw z + (x jE12[Siw y)kE13[E23[Siw z+ zkE13[E23[Siw (x kE12[Siw y) + (xkE12[Siw y) jE13[E23[Siw z + (ykE12[Siw x) jE13[E23[Siw z+ (x jE12[Siw y) jE13[E23[Siw z=xkE12[E13[Siw (y kE23[Siw z) + ykE12[E23[Siw (x kE13[Siw z) + x jE12[E13[Siw (ykE23[Siw z)+ zkE13[E23[Siw (y kE12[Siw x) + z jE13[E23[Siw (xkE12[Siw y) + z jE13[E23[Siw (ykE12[Siw x)+ x jE12[E13[Siw (y jE23[Siw z)=xkE12[E13[Siw (y kE23[Siw z) + ykE12[E23[Siw (z kE13[Siw x) + x jE12[E13[Siw (ykE23[Siw z)+ (zkE23[Siw y)kE12[E13[Siw x+ (z jE13[Siw x)kE12[E23[Siw y + (z jE23[Siw y)kE12[E13[Siw x+ x jE12[E13[Siw (y jE23[Siw z)=xkE12[E13[Siw (y kE23[Siw z) + (ykE23[Siw z)kE12[E13[Siw x+ x jE12[E13[Siw (ykE23[Siw z)+ (zkE23[Siw y)kE12[E13[Siw x+ (x jE13[Siw z)kE12[E23[Siw y + (y jE23[Siw z)kE12[E13[Siw x+ x jE12[E13[Siw (y jE23[Siw z)=xkE12[E13[Siw (y kE23[Siw z) + (ykE23[Siw z + zkE23[Siw y + y jE23[Siw z)kE12[E13[Siw x+ x jE12[E13[Siw (ykE23[Siw z) + x jE12[E13[Siw (zkE23[Siw y) + x jE12[E13[Siw (y jE23[Siw z)=xkE12[E13[Siw (y kE23[Siw z) + (y kE23[Siw z)kE12[E13[Siw x+ x jE12[E13[Siw (ykE23[Siw z + zkE23[Siw y + y jE23[Siw z)=xkE12[E13[Siw (y kE23[Siw z) + (y kE23[Siw z)kE12[E13[Siw x+ x jE12[E13[Siw (y kE23[Siw z)=x kE12[E13[Siw (y kE23[Siw z):
⊠By taking E1 = E2 = E3 we obtain assoiativity of kEiw .The �nal property whih we prove is the orrespondene between the Æiw and kEiw operators. Thisformalises the resemblane between the axiomati de�nitions of these operators.Proposition 8 For losed IWD(Æ;+; �; kE)-terms x and y suh that AE (x)\AE(y) = ; we havex k;iw y = x Æiw y:Proof. Let x =∑i2I ai � xi + ÆE +∑k2K ";



46 6 THE E-INTERWORKING MERGEy =∑l2L bl � yl + ÆF +∑n2N "for some �nite index sets I;K;L;N , ai; bl 2 A, E;F � EID and basi terms xi; yl. The indutionhypotheses are xi k;iw y = xi Æiw y for all i 2 I and x k;iw yl = x Æiw yl for all l 2 L. Thenxk ;iw y =∑i2I ai � xik ;iw y + ÆEk ;iw y +∑k2K "k ;iw y=∑i2I ai � (xi k;iw y) + ÆE[AE(y) +∑k2K "k ;iw y=∑i2I ai � (xi Æiw y) + ÆE[AE(y) +∑k2K∑n2N "+ ÆAE(y)=∑i2I ai � (xi Æiw y) + ÆE LÆiwy +∑k2K "LÆiwy=∑i2I ai � xi LÆiwy + ÆE LÆiwy +∑k2K "LÆiwy=xLÆiwy:In the following omputations we use that AE(bl) � AE(y) and AE(x) \ AE(y) = ; implyAE(bl) \AE(x) = ;:yk ;iw x =∑l2L bl � ylk ;iw x+ ÆF k ;iw x+∑n2N "k ;iw x=∑l2L bl � (yl k;iw x) + ÆF[AE(x) +∑n2N∑k2K "+ ÆAE (x)=∑l2L bl � (x k;iw yl) + ÆF[AE(x) +∑n2N∑k2K "+ ÆAE (x)=∑l2L bl � (x Æiw yl) + xRÆiwÆF +∑n2N xRÆiw"=∑l2L xRÆiwbl � yl + xRÆiwÆF +∑n2N xRÆiw"=xRÆiwy;x j;iw y =∑i2I∑l2L ai � xi j;iw bl � yl + ÆE j;iw y + x j;iw ÆF +∑k2K " j;iw y +∑n2N x j;iw "=∑i2I∑l2L ÆAE(ai �xi)[AE (bl�yl) + ÆE[AE(y) + ÆF[AE(x) + ÆAE(y) + ÆAE (x)=ÆAE(x)[AE (y);and therefore x k;iw y =xk ;iw y + yk ;iw x+ x j;iw y=xLÆiwy + xRÆiwx+ ÆAE(x)[AE (y)=x Æiw y + ÆAE(x)[AE (y)



47=x Æiw y:
⊠

7 Proess Algebra for InterworkingsIn the previous setion we introdued the E-interworking merge. This operator was parameterisedwith the set of entities on whih the proesses should synhronise. In order for the interwork-ing merge to be generally appliable, the set E must be determined from the atual operandsof the interworking merge. Therefore, we have to generalise the E-interworking merge to theinterworking merge operator.There is a tehnial ompliation whih makes this generalisation non-trivial: we have to expliitlyattribute every proess term with the set of entities that it ontains. The reason for this is revealedby the examples in Figures 12 and 13 (see Setion 2.4).Using the de�nitions from the previous setions, interworkingX2 from Figure 12 has the followingsemantial representation: (; d;m). There is no expliit mention of the empty entity b. Indeed,this interpretation is exatly the same as the interpretation of interworking X20 from Figure 13.In a ontext with only + and Æiw operators, this identi�ation would be ompletely harmless,however Figures 12 and 13 show that there is a merge ontext whih makes a distintion betweenX2 and X20.The reason for this anomaly is that we did not take empty entities into onsideration. Therefore, inorder to properly de�ne the interworking merge, we have to extend our semantial representationwith information about the entities ontained.There are several ways to ahieve this. A �rst option would be to attribute the empty proess "with a set of entities. Empty entity b would then be represented by "fbg. A seond option wouldbe to label a omplete proess term with the set of entities whih it ranges over. The semantialrepresentation of X2 would then beome h(; d;m); fb; ; dgi, whereas X20 would be representedby h(; d;m); f; dgi.For tehnial reasons we hoose to elaborate on the seond option. An Interworking with adynamial behaviour denoted by x over the entities from E is denoted by hx;Ei. Suh a tuplehx;Ei will be alled an entity-labeled proess.De�nition 11 (Signature) The signature of the proess algebra IWE(Æ;+; k) onsists of theoperators h ; i, +, Æiw, and kiw .For hx;Ei to be a well-formed expression we do not require that the ative entities from x areall ontained in E. All entities in E whih are not ative entities in x are empty entities. The



48 7 PROCESS ALGEBRA FOR INTERWORKINGSative entities of hx;Ei an be determined from x solely. The omplete set of entities of hx;Ei,denoted by Ent(hx;Ei), ontains the ative entities from x and the entities from E.
De�nition 12 (Ative entities, entities) For losed IWD(Æ;+; �; kE)-term x, E � EID , andlosed IWE(Æ;+; k)-terms s and t we de�ne the mappings AE : C(�IWE(Æ;+; k))! IP(EID) andEnt : C(�IWE(Æ;+; k))! IP(EID) indutively as follows:

AE(hx;Ei) = AE(x);AE(s+ t) = AE(s) [AE (t);AE(s Æiw t) = AE(s) [AE (t);AE(s kiw t) = AE(s) [AE (t);Ent(hx;Ei) = E [AE(x);Ent(s+ t) = Ent(s) [ Ent(t);Ent(s Æiw t) = Ent(s) [ Ent(t);Ent(s kiw t) = Ent(s) [ Ent(t):
On entity-labeled proesses we de�ne the operators interworking sequening and interworkingmerge. The set of all entity-labeled proesses is alled IWE(Æ;+; k). The de�nition of the inter-working sequening on entity-labeled proesses is straightforward.Before we give axioms for the proess algebra IWE(Æ;+; k), we de�ne a operational semantis.The operational semantis of entity-labeled proesses, as expressed in Table 10, is similar to theoperational semantis of non-labeled proesses.The �rst two rules relate the domains of non-labeled proesses and entity labeled proesses. In theseond rule we have to take are that we do not loose information about the involved entities afterexeuting an ation. It may happen that some ative entity from x whih does not our in E isnot ative anymore in x0 sine the last ation from that entity has been exeuted. Therefore, wehave to extend the entity label of x0 with the ative entities of x. The rules for the interworkingmerge orrespond to the rules for the E-interworking merge but the ondition AE(a) � E isreplaed by AE(a) � Ent(s) \ Ent(t). The set Ent(s) \ Ent(t) ontains the shared entities froms and t, so this is the set of entities whih should synhronise.
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x #hx; Ei # x a!x0hx; Ei a!hx0; E [ AE (x)is #s+ t # t #s+ t # s a! s0s + t a! s0 Æiw h";Ent(t)i t a! t0s+ t a! t0 Æiw h";Ent(s)is # t #s Æiw t # s a! s0s Æiw t a! s0 Æiw t AE (a) \ AE (s) = ; t a! t0s Æiw t a! s Æiw t0s a! s0 AE (a) 6� Ent(s) \ Ent(t)s kiw t a! s0 kiw t t a! t0 AE (a) 6� Ent(s) \ Ent(t)s kiw t a! s kiw t0s # t #s kiw t # s a! s0 t a! t0 AE (a) � Ent(s) \ Ent(t)s kiw t a! s0 kiw t0Table 10: Operational semantis of entity-labeled proesses (a 2 A, E � EID , x; x0IWD(Æ;+; �; kE)-terms, s; s0; t; t0 entity-labeled proesses)For the \orretness" of the dedution rules for interworking merge it is neessary that the setof entities of a proess does not hange by exeuting ations (Lemma 8). This is guaranteed bythe dedution rules. We �rst prove that the set of ative entities does not expand due to theexeution of ations.Lemma 7 For all a 2 A and losed IWD(Æ;+; �; kE)-terms x and x0 we have: if x a!x0, thenAE(x) � AE(x0).Proof. This lemma is proven with indution on the struture of losed IWD(Æ;+; �; kE)-term x.Suppose that x a!x0.1. x � ". This ase annot our as " a

9 .2. x � ÆE for some E � EID . This ase annot our as ÆE a
9 .3. x � b for some b 2 A. Then it must be the ase that b � a and x0 � ". ClearlyAE(x) = AE(b) � ; = AE(") = AE(x0).4. x � x1 + x2 for some losed IWD(Æ;+; �; kE)-terms x1 and x2. Then it must be the asethat either x1 a!x0 or x2 a!x0. By indution we thus have either AE (x1) � AE (x0) orAE(x2) � AE (x0). In either ase we have AE(x) = AE(x1 + x2) = AE(x1) [ AE(x2) �AE(x0).



50 7 PROCESS ALGEBRA FOR INTERWORKINGS5. x � x1 � x2 for some losed IWD(Æ;+; �; kE)-terms x1 and x2. Then we an distinguish twoases. First, x1 a!x01 for some losed IWD(Æ;+; �; kE)-term x01 suh that x0 � x01 � x2. Byindution we have AE(x1) � AE (x01). Then AE(x) = AE(x1 � x2) = AE(x1) [ AE(x2) �AE(x01)[AE(x2) = AE(x01 �x2) = AE(x0). Seond, x1 # and x2 a!x0. By indution we haveAE(x2) � AE (x0). Then AE(x) = AE(x1 � x2) = AE(x1) [AE(x2) � AE(x1) [AE(x0) �AE(x0).6. x � x1Æiwx2 for some losed IWD(Æ;+; �; kE)-terms x1 and x2. Then we an distinguish twoases. First, x1 a!x01 for some losed IWD(Æ;+; �; kE)-term x01 suh that x0 � x01 Æiw x2. Byindution we have AE(x1) � AE(x01). Then AE (x) = AE (x1 Æiw x2) = AE(x1)[AE(x2) �AE(x01) [ AE(x2) = AE(x01 Æiw x2) = AE(x0). Seond, AE (a) \ AE(x1) = ; and x2 a!x02for some losed IWD(Æ;+; �; kE)-term x02 suh that x0 � x1 Æiw x02. By indution we haveAE(x2) � AE(x02). Then AE(x) = AE(x1 Æiw x2) = AE(x1) [ AE(x2) � AE(x1) [AE(x02) = AE (x1 Æiw x02) = AE(x0).7. x � x1 kEiw x2 for some E � EID and losed IWD(Æ;+; �; kE)-terms x1 and x2. Then we andistinguish three ases. First, AE(a) 6� E and x1 a!x01 for some losed IWD(Æ;+; �; kE)-term x01 suh that x0 � x01 kEiw x2. By indution we have AE(x1) � AE (x01). Then AE(x) =AE(x1 kEiw x2) = AE(x1)[AE (x2) � AE(x01)[AE (x2) = AE(x01 kEiw x2) = AE (x0). Seond,AE(a) 6� E and x2 a!x02 for some losed IWD(Æ;+; �; kE)-term x02 suh that x0 � x1 kEiw x02.By indution we have AE(x2) � AE(x02). Then AE(x) = AE (x1 kEiw x2) = AE(x1) [AE(x2) � AE(x1) [AE(x02) = AE(x1 kEiw x02) = AE(x0). Third, AE (a) � E, x1 a!x01, andx2 a!x02 for some losed IWD(Æ;+; �; kE)-terms x01 and x02 suh that x0 � x01 kEiw x02. By indu-tion we have AE(x1) � AE(x01) and AE(x2) � AE(x02). Then AE(x) = AE(x1 kEiw x2) =AE(x1) [AE(x2) � AE(x01) [AE(x02) = AE (x01 kEiw x02) = AE(x0).
⊠Lemma 8 For all losed IWE(Æ;+; k)-terms s and t and all a 2 A we have: if s a! s0, thenEnt(s) = Ent(s0).Proof. This lemma is proven with indution on the struture of losed IWE(Æ;+; k)-term s.1. s � hx;Ei for some losed IWD(Æ;+; �; kE)-term x and E � EID . Then s a! s0 must bedue to x a!x0 for some x0 suh that s0 � hx0; E [ AE(x)i. Clearly we have Ent(s) =Ent(hx;Ei) = E [ AE (x) and Ent(s0) = Ent(hx0; E [ AE(x)i) = E [ AE (x) [ AE(x0).Using Lemma 7 we obtain Ent(s) = Ent(s0).2. s � s1 + s2 for some losed IWE(Æ;+; k)-terms s1 and s2. We an distinguish two ases.First, s1 a! s01 for some losed IWE(Æ;+; k)-term s01 suh that s0 � s01 Æiw h";Ent(s2)i. Byindution we have Ent(s1) = Ent(s01). Therefore, Ent(s) = Ent(s1 + s2) = Ent(s1) [Ent(s2) = Ent(s01) [ Ent(s2) = Ent(s01) [ Ent(h";Ent (s2)i) = Ent(s01 Æiw h";Ent(s2)i) =Ent(s0). Seond, s2 a! s02 for some losed IWE(Æ;+; k)-term s02 suh that s0 � s02 Æiwh";Ent(s1)i. This ase is symmetrial to the �rst ase.



513. s � s1 Æiw s2 for some losed IWE(Æ;+; k)-terms s1 and s2. We an distinguish two ases.First, s1 a! s01 for some losed IWE(Æ;+; k)-term s01 suh that s0 � s01 Æiw s2. By indutionwe have Ent(s1) = Ent(s01). Therefore, Ent(s) = Ent(s1 Æiw s2) = Ent(s1) [ Ent(s2) =Ent(s01) [ Ent(s2) = Ent(s01 Æiw s2) = Ent(s0). Seond, AE(a) \ AE(s2) = ; and s2 a! s02for some losed IWE(Æ;+; k)-term s02 suh that s0 � s1 Æiw s02. By indution we haveEnt(s2) = Ent(s02). Therefore, Ent(s) = Ent(s1 Æiw s2) = Ent(s1) [ Ent(s2) = Ent(s1) [Ent(s02) = Ent(s1 Æiw s02) = Ent(s0).4. s � s1 kiw s2 for some losed IWE(Æ;+; k)-terms s1 and s2. We an distinguish threeases. First, AE(a) 6� Ent(s1) \ Ent(s2) and s1 a! s01 for some losed IWE(Æ;+; k)-term s01suh that s0 � s01 kiw s2. By indution we have Ent(s1) = Ent(s01). Therefore, Ent(s) =Ent(s1 kiw s2) = Ent(s1) [ Ent(s2) = Ent(s01) [ Ent(s2) = Ent(s01 kiw s2) = Ent(s0). Se-ond, AE(a) 6� Ent(s1) \ Ent(s2) and s2 a! s02 for some losed IWE(Æ;+; k)-term s02 suhthat s0 � s1 kiw s02. By indution we have Ent(s2) = Ent(s02). Therefore, Ent(s) =Ent(s1 kiw s2) = Ent(s1) [ Ent(s2) = Ent(s1) [ Ent(s02) = Ent(s1 kiw s02) = Ent(s0).Third, AE(a) � Ent(s1) \ Ent(s2), s1 a! s01, and s2 a! s02 for some losed IWE(Æ;+; k)-terms s01 and s02 suh that s0 � s01 kiw s02. By indution we have Ent(s1) = Ent(s01)and Ent(s02) = Ent(s2). Therefore, Ent(s) = Ent(s1 kiw s2) = Ent(s1) [ Ent(s2) =Ent(s01) [ Ent(s02) = Ent(s01 kiw s02) = Ent(s0).
⊠Next, we adapt the de�nition of IWD-bisimilarity to take into aount the set of entities of aproess.De�nition 13 (Entity bisimilarity) A symmetri relation R on losed IWE(Æ;+; k)-terms isan entity bisimulation, if and only if, for every pair (s; t) 2 R and a 2 A, the following onditionshold:1. AE(s) = AE(t),2. if s #, then t #,3. if s a! s0, then there is a losed IWE(Æ;+; k)-term t0 suh that t a! t0 and (s0; t0) 2 R,4. Ent(s) = Ent(t).The losed IWE(Æ;+; k)-terms s and t are entity bisimilar, notation s $ t, if and only if thereexists an entity bisimulation R relating them.Theorem 20 (Equivalene) Entity bisimilarity is an equivalene relation.Proof. The proof is similar to the proof that IWD-bisimilarity is an equivalene (Theorem 1)and therefore omitted. ⊠



52 7 PROCESS ALGEBRA FOR INTERWORKINGSTheorem 21 (Congruene) Entity bisimilarity is a ongruene for the funtion symbols in thesignature of IWE(Æ;+; k) whih are de�ned on IWE(Æ;+; k)-terms.Proof. Suppose R : x $iwd y and Ex = Ey. Now we must prove that there exists an entitybisimulation R0 suh that R0 : hx;Exi $ hy;Eyi. Let R0 = f(hp;Ei; hq; F i) j pRq;E = Fg. Let pand q be losed IWD(Æ;+; �; kE)-terms suh that pRq and E;F � EID suh that E = F . Sinep $iwd q we have AE(p) = AE(q).1. AE(hp;Ei) = AE(p) = AE(q) = AE(hq; F i).2. Suppose that hp;Ei a! s for some losed IWE(Æ;+; k)-term s. This must be due to p a! p0for some losed IWD(Æ;+; �; kE)-term p0 suh that s � hp0; E [ AE(p)i. As p $iwd q, wehave the existene of losed IWD(Æ;+; �; kE)-term q0 suh that q a! q0 and p0Rq0. Then wealso obtain hq; F i a!hq0; F [AE(q)i. Clearly hp0; E [AE(p)iR0hq0; F [AE(q)i.3. Suppose that hp;Ei #. This must be due to p #. As p $iwd q, we have q #. Therefore,hq; F i #.4. Ent(hp;Ei) = E [AE(p) = F [AE(q) = AE(hq; F i).SupposeR1 : s1 $ t1 andR2 : s2 $ t2. Let R = f(s1+t1; s2+t2); (p1Æiwh";Ei; q1Æiwh";Ei); (p2Æiwh";Ei; q2Æiwh";Ei) j p1R1q1; p2R2q2; E � EIDg. Obviously, this relation is an entity bisimulation.SupposeR1 : s1 $ t1 and R2 : s2 $ t2. Let R = f(p1Æiwp2; q1Æiwq2) j p1R1q1; p2R2q2g. Obviouslythis relation R is an entity bisimulation. The proof is similar to the proof that IWD-bisimilarityis a ongruene for interworking sequening (see Theorem 2).Suppose R1 : s1 $ t1 and R2 : s2 $ t2. Let R = f(p1 kiw p2; q1 kiw q2) j p1R1q1; p2R2q2g. Obvi-ously this relation R is an entity bisimulation. ⊠As was done in [MvWW93℄, the interworking merge is expressed in terms of the E-interworkingmerge operator and the ommon entities of the operands. The axioms for entity-labeled proessesare given in Table 11 for E;F � EID . The extension of IWD(Æ; �;+) with entity-labeled proessesis denoted by IWE(Æ;+; k).Axiom IWE1 desribes the onvention disussed before that the entity-part of an IWE(Æ;+; k)-term ontains at least the empty entities of the Interworking. Axioms IWE2-IWE4 desribehow the other operators on IWE(Æ;+; k)-terms an be de�ned in terms of their ounterpartson IWD(Æ;+; �; kE)-terms. It is also possible to de�ne entity bisimulation in terms of IWD-bisimilarity of the proess-parts and set equality of the entity-parts. Also for our �nal proessalgebra, IWE(Æ;+; k), we prove soundness and ompleteness.Theorem 22 (Soundness) The proess algebra IWE(Æ;+; k) is a sound axiomatisation of IWD-bisimilarity on losed IWD(Æ;+; �; kE)-terms. The proess algebra IWE(Æ;+; k) is a sound ax-iomatisation of entity bisimulation on losed IWE(Æ;+; k)-terms.



53IWE1 hx; Ei = hx; E [ AE (x)iIWE2 hx; Ei+ hy; F i = hx+ y; E [ F iIWE3 hx; Ei Æiw hy; F i = hx Æiw y; E [ F iIWE4 hx; Ei kiw hy; F i = hx kE\Fiw y; E [ F i if AE (x) � Eand AE (y) � FTable 11: Axioms of entity-labeled proesses (E; F � EID)Proof. For the proof of the �rst proposition observe that we did not add any axioms relatinglosed IWD(Æ;+; �; kE)-terms. We will prove the seond proposition. Sine entity bisimulationis a ongruene for the losed IWE(Æ;+; k)-terms (Theorem 21) we only have to show that theaxioms from Table 11 are sound. Thereto, we provide an entity bisimulation relation for eahaxiom. For IWE1, the relation R = f(hx;Ei; hx;E [AE(x)i)gS [ I is an entity bisimulation. Forthe axiom IWE2 the relation R = f(hp;Ei+ hq; F i; hp+ q;E [F i); (hp;Ei Æiw h"; F i; hp;E [F i) jp; q 2 C(�IWD(Æ;+; �; kE)); E; F � EIDgS is an entity bisimulation. For axiom IWE3 the rela-tion R = f(hp;E0iÆiw hy; F i; hpÆiwy;E0[F [AE(y)i); (hx;EiÆiw hq; F 0i; hxÆiw q;E0[F 0[AE(x)i) jp; q 2 C(�IWD(Æ;+; �; kE)); E0; F 0 � EIDgS is an entity bisimulation. For IWE4, the relationR = f(hp;Ei kiw hq; F i; hp kE\Fiw q;E [ F i j p; q 2 C(�IWD(Æ;+; �; kE)); E; F � EID ;AE(p) �E;AE (q) � FgS is an entity bisimulation. ⊠De�nition 14 (Basi terms) The set of basi terms is the smallest set that satis�es: if xis a losed IWD(Æ;+; �; kE)-term and E � EID suh that AE(x) � E, then hx;Ei is a basiIWE(Æ;+; k)-term. The set of all basi terms over the signature of IWE(Æ;+; k) is denoted byB(�IWE(Æ;+; k)).Theorem 23 (Elimination) For every losed IWE(Æ;+; k)-term s we have the existene of abasi IWE(Æ;+; k)-term t suh that IWE(Æ;+; k) ` s = t.Proof. This theorem is proven with indution on the struture of a losed IWE(Æ;+; k)-term.First, onsider the ase s � hx;Ei for some losed IWD(Æ;+; �; kE)-term x and E � EID . Thens = hx;Ei = hx;E [ AE(x)i. Clearly AE(x) � E [ AE(x) and hene hx;E [ AE(x)i is abasi IWE(Æ;+; k)-term. Then, onsider the ase s � s1 + s2 for some losed IWE(Æ;+; k)-terms s1 and s2. By indution we have the existene of basi terms hx1; E1i and hx2; E2ifor some losed IWD(Æ;+; �; kE)-terms x1 and x2 and E1; E2 � EID suh that AE(x1) � E1and AE(x2) � E2. Then, s = s1 + s2 = hx1; E1i + hx2; E2i = hx1 + x2; E1 [ E2i. ClearlyAE(x1 + x2) � E1 [ E2. Next, onsider the ase s � s1 Æiw s2 for some losed IWE(Æ;+; k)-terms s1 and s2. By indution we have the existene of basi terms hx1; E1i and hx2; E2i forsome losed IWD(Æ;+; �; kE)-terms x1 and x2 and E1; E2 � EID suh that AE(x1) � E1 andAE(x2) � E2. Then s = s1 Æiw s2 = hx1; E1i Æiw hx2; E2i = hx1 Æiw x2; E1 [ E2i. Clearly



54 7 PROCESS ALGEBRA FOR INTERWORKINGSAE(x1Æiwx2) = AE (x1)[AE(x2) � E1[E2. Finally, onsider the ase s � s1 kiw s2 for some s1; s2losed IWE(Æ;+; k)-terms. By indution we have the existene of basi terms hx1; E1i and hx2; E2ifor some losed IWD(Æ;+; �; kE)-terms x1 and x2 and E1; E2 � EID suh that AE(x1) � E1 andAE(x2) � E2. Then s = s1 kiw s2 = hx1; E1i kiw hx2; E2i = hx1 kE1\E2iw x2; E1 [ E2i. ClearlyAE(x1 kiw x2) = AE (x1) [AE(x2) � E1 [E2. ⊠Lemma 9 For basi IWE(Æ;+; k)-terms hx;Ei and hy; F i we havehx;Ei $ hy; F i i� x $iwd y and E = F:Proof. First, suppose that R : hx;Ei $ hy; F i. Let R0 = f(p; q) j hp;E0iRhq; F 0i; E0 = F 0g. Ashx;EiRhy; F i, AE (x) � E, and AE(y) � F , we have E = E [ AE(x) = Ent(x) = Ent(y) =F [AE(y) = F . We will prove that R0 is an IWD-bisimulation.1. AE(p) = AE(hp;E0i) = AE(hq; F 0i) = AE(q).2. p # i� hp;E0i # i� hq; F 0i # i� q #.3. Suppose that p a! p0 for some losed IWD(Æ;+; �; kE)-term p0. Then hp;E0i a!hp0; E0 [AE(p)i. So we have hq; F 0i a!hq0; F 0[AE(q0)i for some losed IWD(Æ;+; �; kE)-term q0 suhthat hp0; E0[AE(p)iRhq0; F 0[AE(q0)i. From this we obtain that E0[AE(p0) = F 0[AE(q0).Thus p0R0q0.The proof in the other diretion is trivial. ⊠Theorem 24 (Completeness) The proess algebra IWE(Æ;+; k) is a omplete axiomatisationof entity bisimulation on losed IWE(Æ;+; k)-terms.Proof. By the elimination theorem (Theorem 23) we only have to prove this theorem for ba-si IWE(Æ;+; k)-terms. Let hx;E1i and hy;E2i be arbitrary basi IWE(Æ;+; k)-terms suh thathx;E1i $ hy;E2i. By Lemma 9 we have x $iwd y and E1 = E2. Sine IWD(Æ;+; �; kE) is aomplete axiomatisation of IWD(Æ)-bisimilarity on losed IWD(Æ;+; �; kE)-terms, we have x = y,and hene hx;E1i = hy;E2i. ⊠Theorem 25 (Conservativity) The proess algebra IWE(Æ;+; k) is a onservative extensionof the proess algebra IWD(Æ;+; �; kE).Proof. With respet to IWD(Æ;+; �; kE)-terms, the proess algebra IWE(Æ;+; k) and the proessalgebra IWD(Æ;+; �; kE)have exatly the same axioms. Then learly the same equalities an bederived between losed IWD(Æ;+; �; kE)-terms. ⊠



55We end our treatment of the semantis of Interworkings with some properties of Interworkings.The interworking sequening is ommutative under the assumption that the ative entities of theoperands are disjoint. Furthermore, it is assoiative. The interworking merge is both ommutativeand assoiative.Proposition 9 (Unit elements) For losed IWE(Æ;+; k) terms s,s Æiw h"; ;i = s; (9)h"; ;i Æiw s = s; (10)s kiw h"; ;i = s; (11)h"; ;i kiw s = s: (12)Proof. By the elimination theorem it is allowed to restrit the proof of the statements tobasi terms. Let s = hx;Ei for some losed IWD(Æ;+; �; kE)-term x and E � EID suh thatAE(x) � E. Thens Æiw h"; ;i = hx;Ei Æiw h"; ;i = hx Æiw ";E [ ;i = hx;Ei = s;h"; ;i Æiw s = h"; ;i Æiw hx;Ei = h" Æiw x; ; [Ei = hx;Ei = s;s kiw h"; ;i = hx;Ei kiw h"; ;i = hx kE\;iw ";E [ ;i = hx k;iw ";Ei = hx;Ei = s;h"; ;i kiw s = h"; ;i kiw hx;Ei = h" k;\Eiw x; ; [Ei = h" k;iw x;Ei = hx;Ei = s:
⊠Proposition 10 (Commutativity and assoiativity of Æiw and kiw ) For arbitrary losedIWE(Æ;+; k)-terms s, t, u we haves Æiw t = t Æiw s; if AE(s) \AE (t) = ; (13)(s Æiw t) Æiw u = s Æiw (t Æiw u); (14)s kiw t = t kiw s; (15)(s kiw t) kiw u = s kiw (t kiw u): (16)Proof. By the elimination theorem it is allowed to restrit the proof of the statements to basiterms. Let s = hx1; E1i, t = hx2; E2i, and u = hx3; E3i for some E1; E2; E3 � EID and losedIWD(Æ;+; �; kE)-terms x1, x2, and x3 suh that AE(x1) � E1, AE(x2) � E2, and AE(x3) � E3.Then s Æiw t = hx1; E1i Æiw hx2; E2i= hx1 Æiw x2; E1 [E2i= hx2 Æiw x1; E2 [E1i



56 7 PROCESS ALGEBRA FOR INTERWORKINGS= hx2; E2i Æiw hx1; E1i= t Æiw s;(s Æiw t) Æiw u = (hx1; E1i Æiw hx2; E2i) Æiw hx3; E3i= hx1 Æiw x2; E1 [E2i Æiw hx3; E3i= h(x1 Æiw x2) Æiw x3; (E1 [E2) [E3i= hx1 Æiw (x2 Æiw x3); E1 [ (E2 [E3)i= hx1; E1i Æiw hx2 Æiw x3; E2 [E3i= hx1; E1i Æiw (hx2; E2i Æiw hx3; E3i)= s Æiw (t Æiw u);s kiw t = hx1; E1i kiw hx2; E2i= hx1 kE1\E2iw x2; E1 [E2i= hx2 kE2\E1iw x1; E2 [E1i= hx2; E2i kiw hx1; E1i= t kiw s;(s kiw t) kiw u = (hx1; E1i kiw hx2; E2i) kiw hx3; E3i= hx1 kE1\E2iw x2; E1 [E2i kiw hx3; E3i= h(x1 kE1\E2iw x2) k(E1[E2)\E3iw x3; (E1 [E2) [E3i= hx1 kE1\(E2[E3)iw (x2 kE2\E3iw x3); (E1 [E2) [E3i= hx1; E1i kiw hx2 kE2\E3iw x3; E2 [E3i= hx1; E1i kiw (hx2; E2i kiw hx3; E3i)= s kiw (t kiw u):
⊠Proposition 11 For losed IWE(Æ;+; k)-terms s and t suh that Ent(s) \ Ent(t) = ; we haves kiw t = s Æiw t:Proof. By the elimination theorem it is allowed to restrit the proof of the statements to basiterms. Let s = hx;Ei and t = hy; F i for some E;F � EID and losed IWD(Æ;+; �; kE)-terms xand y suh that AE(x) � E and AE (y) � F .s kiw t = hx;Ei kiw hy; F i= hx k;iw y;E [ F i= hx Æiw y;E [ F i



57= hx;Ei Æiw hy; F i:
⊠

8 ConlusionsThe starting point of the appliation desribed in this hapter was the informal drawing tehnique,alled Interworkings. After analysing the informal meaning of the language and the way in whihusers applied this language, our aim was to formalise the Interworking language.The assets of having a formal semantis are well-known. We mention the following. Formalisationyields a thorough understanding of the language and the aspets of the appliation domain whihan be modeled; it allows for an unambiguous interpretation of expressions in the language; itenables formal analysis; and it an be used to derive, or even automatially generate supportingtools.These points diretly addressed the problems that users were onfronted with when applying thelanguage. The language organially grew from a olletion of examples and it was not lear whihonstruts were exatly part of the language. For some diagrams even speialists disagreed on theexat interpretation. It was not lear under whih preise onditions two Interworkings ould bemerged. And, �nally, in order to eÆiently work with olletions of Interworkings tool supportwas required.The researh arried out helped to solve these issues to a large extent. The kernel of the workwas the desription of the formal semantis of the language by means of proess algebra. This isthe part of the researh overed in this hapter.Our hoie was to use proess algebra for the formal de�nition of Interworkings. This worked outquite suessfully. The proess algebrai approah even proved suitable to de�ne the semantisof a similar, but muh larger language (MSC'96). Although it showed very bene�ial, we donot advoate that the proess algebrai approah is the best or even the only suitable approahtowards the formalisation of sequene hart languages. Other tehniques, suh as Petri netsand partial orders, have also been suessfully applied, and when onsidering only the ore ofthese sequene hart languages, the several approahes do not di�er too muh with respet toexpressivity and simpliity. Only when extending the sequene hart language with spei�features, suh as reursion and interrupts, some approahes o�er a more natural way of modeling.The work presented here only desribes the part of the projet whih has to do with the theoretialfoundations of the projet. The main point here was to identify the basi Interworking onstrutsand operators, and to give their operational and algebrai semantis. The extension with a theoryof re�nement or the derivation of omputer tools is not in the fous of this handbook.Although already an overwhelming variety of operators has been desribed in proess algebraliterature, we have introdued yet more operators. This is typial for the proess algebrai



58 9 BIBLIOGRAPHICAL NOTESapproah. For a spei� appliation domain a spei� algebra is needed. In the ase of sequeneharts, the standard operators for sequential and parallel omposition do not properly desribethe user's intuition. Beause the synhronisation implied by strong sequential omposition is inontradition with intuition, we developed the interworking sequening. Beause the standardparallel omposition operator ould not deal with overlapping areas of an Interworking, we hadto investigate a variation: interworking merge. Even though these are newly invented operators,their de�nitions resemble the de�nition of well-studied operators.This approah of de�ning new operators and variations on existing operators has been illustratedin this hapter. We have treated all proof obligations, suh as soundness and ompleteness in fulldetail. We have espeially taken are of setting up our theory in a modular way. This means thatwe have �rst de�ned the kernel of the theory (i.e. the semantis of single Interworking diagrams)and subsequently extended this with other operators.The kernel of our theory just onsists of the interworking sequening operator. This singleoperator already allows for the de�nition of the semantis of Interworking diagrams. After that,we de�ned the basi proess algebra onsisting of the standard operators for alternative andsequential omposition, extended with a speial onstant for expressing partial deadloks. Thealternative omposition operator is used to express alternative senarios. This proess algebra isindependent of the previous one, and the next module simply onsisted of the ombination of thesetwo theories. The interworking sequening an now be expressed in terms of the other operators.The axioms de�ning the interworking sequening in the �rst proess algebra are now derivableproperties. Finally, we extended this algebra with the interworking merge operator. This requiredtwo separate steps. First we introdued the E-interworking merge, whih is parameterised by theset of entities whih should synhronise. And next, we extended the semantial interpretationof Interworkings in order to be able to de�ne the unparameterised interworking merge. Thismodular approah is illustrated in Figure 17.In our opinion, suh a modular approah brings several assets. A mathematial theory, justlike a piee of software, requires maintenane. Parts of the theory may beome obsolete dueto new insights or new extensions may be required due to additional user requirements. Amodular theory makes it easier to isolate the parts of the theory whih are a�eted by suhmodi�ations. A modular design also redues the impat of a misdesign of one or more onepts.The modules de�ning the other onepts an easily be reused, while replaing the inappropriateonepts. An example of suh a misdesign ould be the interworking merge. Contrary to theinterworking sequening, whih seems to be very stable and well aepted, several alternatives forthe interworking merge have been proposed in literature (suh as the environmental gate merge,see [RGG95℄). The part of the algebra desribing the interworking merge an easily be replaedby a de�nition of another similar operator.9 Bibliographial notesIn this setion we will give a omprehensive overview of the relevant literature on Interworkingsand the related language Message Sequene Chart (MSC).



59IWD(Æ) BPA(ÆE)
IWD(Æ; �;+)

IWD(Æ;+; �; kE)
IWE(Æ;+; k)Figure 17: Overview of onservative extensionsInterworkingsIn [MvWW92℄, Mauw, Van Wijk and Winter give a onrete textual syntax for the language IWand present both an informal and a formal de�nition of its semantis. The formal semantis doesnot onsider entities without events (empty entities). A short version appeared as [MvWW93℄.Based on the work on the formal semantis several prototype tools have been developed. Adesription of the prototype tool set is given in [MW93℄. This tool set onsists of three parts, theinterworking proessor (IWP), the intermediate language ompiler (ILC) and a term rewritingsystem (TRS).The formal semantis of Interworkings is not able to deal with empty entities and re�nement.This has been solved in [MR95a, MR95b, MR96℄.The dedution rules for kEiw are di�erent from the dedution rules used in [MR96℄ in the sense thatthe termination behaviour of kEiw is oded in the termination behaviour of kEiw instead of usingthe termination operator p used there to desribe the termination behaviour of E-interworkingmerge. There are two reasons for this hange. First, in [Vra97℄ and [Ver97℄ also the terminationbehaviour is desribed with the left-merge operator. Seond, it is easier to de�ne the set of ativeentities of a proess term xkEiw y in this ase.In [MR96℄ we reported the following. For losed IWD(Æ;+; �; kE)-terms x, y, z, and sets of entitiesE1, E2, E3 we have (x kE1\E2iw y) k(E1[E2)\E3iw z = x kE1\(E2[E3)iw (y kE2\E3iw z):



60 9 BIBLIOGRAPHICAL NOTESThis is not true. In the ase that x an exeute an ation a suh that AE(a) 6� E1 and AE(a) �E2 \E3 the equation does not hold.This an be explained as follows. The sets E1, E2, and E3 are intended to model the instanesof x, y, and z respetively. In the situation skethed above we have that x exeutes an ationde�ned on an instane that does not belong to x! Here we presented an improved and orretversion of this proposition.The interworking merge as de�ned in [MvWW93℄ did not have the assoiativity property. Thisdi�erene is a diret onsequene of our deision to maintain the entities of an Interworkingstatially.In [BG95℄ the language Interworking is extended with disrete absolute time features. Eventsan have a disrete time stamp or a disrete time interval assoiated with them. The authorsdesribe the timed versions of interworking sequening and interworking merge.In [Fei99℄, Feijs uses Interworkings as a starting point for generating �nite state mahines. This isuseful for obtaining feedbak from a set of senarios (Interworkings) during a system's de�nitionphase or test phase.In [Fei97℄, possibilities and impossibilities of using Interworkings are studied in the ontext ofdesribing a servie, a protool, or a protool entity in the OSI referene model on di�erentlevels of abstration. The author onludes that Interworkings are useful for analysing a limitednumber of interesting ases suh as test runs, simulation runs, and debug sessions, but also thatInterworkings lak suÆient power to at as a spei�ation formalism.Message Sequene ChartsFrom the vast amount of graphial languages that resemble Interworking the language MessageSequene Chart, whih is standardised by Study Group 10 of Question 9 of the Teleommuni-ations Standardisation Setor of the International Teleommuniation Union, is best known.The language MSC desribes the asynhronous ommuniation between instanes (entities). Thelanguage is very rih in its syntax and has a standardised formal semantis [IT95, Ren99℄. Thisformal semantis is inspired by the work on the formal semantis of Interworking. In [MR94a℄ aproess algebra semantis of Basi MSC (only simple diagrams) is given. In [MvdM95℄, prototypetools are de�ned based on this formal semantis. In [Ren94, MR94b℄ the formal semantis of Ba-si MSCs is extended to the language MSC92 exept for instane deomposition and onditions.Later, this semantis is standardised as Annex B to Reommendation Z.120 [IT95℄. Also DeMan [Man93℄ gives a proess algebra semantis for Basi MSC. In [MR97℄, High-level MessageSequene Charts are treated. In [MR99, Ren99℄, an operational semantis for a large fragmentof MSC96 is presented.Besides the literature on the semantis of MSC based on proess algebra, we also mention someother approahes. In [GGR93℄, an MSC is transformed into a Petri net. In [LL95℄, a semantis ofMessage Flow Graphs is presented that translates an MSC into a B�uhi automaton. In [AHP96℄,Alur, Holzmann and Peled, present a partial order semantis for Basi Message Sequene Charts.
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