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tThe Interworking language (IW) is a graphi
al formalism for displaying the 
om-muni
ation behaviour of system 
omponents. In this 
hapter, we develop a formalsemanti
s for the Interworking language. This semanti
s must support the analysisof (
olle
tions of) Interworking diagrams and allow to express the relation betweendiagrams. We will explain how te
hniques from pro
ess algebra 
an be su

essfullyapplied to this problem. Thereto, we introdu
e pro
ess operators for expressing therelationship between Interworking diagrams. We de�ne a number of pro
ess algebraswith in
reasing 
omplexity. For ea
h of these we prove 
ompleteness with respe
t toan operational semanti
s.Keywords: pro
ess algebra, Interworkings, semanti
s, 
omposition operators.Note: To appear as a 
hapter in Handbook of Pro
ess Algebra, editors A. Ponse andS. Smolka, Elsevier S
ien
e Publishers B.V.1 Introdu
tion1.1 History and motivationThe Interworking language (IW) is a graphi
al formalism for displaying the 
ommuni
ation be-haviour of system 
omponents. It was developed in order to support the informal diagrams usedat Philips Kommunikations Industrie (N�urnberg) whi
h were used for requirements spe
i�
ationand design. Before dis
ussing the rationale behind the IW language, we �rst show a simple Inter-working diagram1 in Figure 1. The name of the Interworking is displayed in the upper left 
orner1The Interworking diagrams in this 
hapter are drawn with the MSC Ma
ro pa
kage whi
h 
an beobtained at http://www.win.tue.nl/~sjouke/ms
pa
kage.html.1



2 1 INTRODUCTIONof the diagram. This Interworking des
ribes the intera
tion behaviour of three entities, whi
hare 
alled s, medium and r. Ea
h entity is represented by a verti
al line, whi
h, when read fromtop to bottom, des
ribes the su

essive intera
tions in whi
h this entity takes part. A messageex
hange is represented by an arrow. The diagram shows that the three entities ex
hange fourmessages. First, s sends a req message to medium. Next, the same message is being sent frommedium to r. Then, r sends a message reply ba
k to medium, whi
h sends the same message to s.s medium rreq reqreplyreply
Example

Figure 1: An example Interworking diagramThis example shows the basi
 use of Interworkings. It des
ribes one s
enario of intera
tionbetween 
ommuni
ating entities. In general, when using IW for requirements spe
i�
ation, a
olle
tion of Interworkings is needed, 
ontaining a des
ription of the most interesting s
enarios.Often there is one main s
enario, 
omplemented with a number of s
enarios des
ribing ex
eptionalbehaviour. Using Interworkings in this way, the s
enarios express alternative behaviours.There are, however, more reasons for having to deal with large 
olle
tions of Interworkings forthe des
ription of a distributed system. First, the spe
i�ed s
enario 
an be too long to physi
allyor logi
ally �t in one diagram. Su
h a large s
enario is then de
omposed into a number of subs
enarios whi
h are \sequentially" linked to ea
h other.A se
ond reason is that the horizontal size of the system, or more pre
isely the number of distin
tentities, may be too large to �t in a single diagram. This gives rise to a 
olle
tion of subs
enarios whi
h denote the behaviour of di�erent parts of the system. Ea
h part then des
ribesthe behaviour of just a number of (logi
ally related) entities. Of 
ourse, there must be a meansto express that entities from distin
t parts ex
hange messages with ea
h other. The s
enarios ofthese parts are linked to ea
h other in a parallel way.Due to the above mentioned reasons, in pra
ti
e a system des
ription using Interworkings often
onsists of a large 
olle
tion of diagrams. Pra
ti
al experien
e showed that it was very hard tomaintain su
h large 
olle
tions by hand. First of all, manually drawing and updating diagrams isan expensive a
tivity. Se
ondly, the relation between the diagrams in a 
olle
tion is only impli
it.Some diagrams des
ribe alternatives, some des
ribe su

essive behaviour, and some des
ribeparallel behaviour. The third problem, assuming the relation between the diagrams to be known,is that if one diagram 
hanges also several related diagrams must be updated. A 
onsistent updateof a large 
olle
tion of Interworkings 
ould not be a
hieved manually. A �nal problem was thatthere existed di�erent interpretations of the meaning of even simple Interworkings.



1.2 Interworkings and similar languages 3These observations lead to the 
on
lusion that when using Interworkings in the traditional and in-formal way it was not possible to take full advantage of the language. Therefore, the Interworkinglanguage needs a 
omplete and expli
it de�nition.Not only the development of an expli
it language is motivated in this way, but also the need fora formal semanti
s of Interworkings. This semanti
s must support the analysis of (
olle
tions of)Interworking diagrams and allow to express the relation between diagrams. Moreover, sin
e toolsupport is needed, the semanti
s must allow for easy derivation of (prototype) tools.In this 
hapter, we will explain how te
hniques from pro
ess algebra 
an be su

essfully ap-plied to this problem. Thereto, we introdu
e pro
ess operators for expressing the relationshipbetween Interworking diagrams. As explained above, there are three possible relations betweenInterworkings: alternative 
omposition, sequential 
omposition, and parallel 
omposition. Themost interesting is the interworking sequen
ing operator for 
omposing Interworkings sequen-tially. Later in this 
hapter it will be explained why the standard pro
ess algebra operator forsequen
ing is not appropriate for Interworkings. The operator for parallel 
omposition of In-terworkings, is derived from the standard interleaving operator with syn
hronisation. For thealternative 
omposition operator there are di�erent 
hoi
es. For a dis
ussion on this 
hoi
e werefer to Se
tion 2.3.1.2 Interworkings and similar languagesThe Interworking language is not a unique and isolated language. It is very natural and intuitiveto express the behaviour of a distributed system in su
h a graphi
al way. In fa
t, informal IW-likedrawings are en
ountered very often in system design.Therefore, the Interworking language is a member of a large 
lass of similar graphi
al notations,most of whi
h are only informally de�ned, su
h as Signal Sequen
e Charts, Use Cases, InformationFlow Diagrams, Message Flow and Arrow Diagrams. In obje
t oriented design, a similar notation,
alled Sequen
e Diagrams, is used. They play an important role in the des
ription of Use Casesin UML [RJB99℄. Interworkings are also related to Message Sequen
e Charts (MSC), see [IT93℄,whi
h are standardised by the International Tele
ommuni
ation Union (ITU). The main di�eren
eis that Interworkings des
ribe syn
hronous 
ommuni
ation, whereas Message Sequen
e Chartsdes
ribe asyn
hronous 
ommuni
ation. The semanti
s of MSC as des
ribed in [MR99, Ren99℄ isalso very similar to the semanti
s of IW.Traditionally, the main appli
ation area for IW and similar languages is the �eld of tele
ommu-ni
ation systems. This is mainly due to the distributed nature of these systems. However, moreand more appli
ations outside the tele
ommuni
ation world 
an be found, e.g. the des
ription ofwork 
ows in business organisations [Aal99℄.The main reason why IW-like diagrams are so popular is the fa
t that they 
an be understoodeasily. This is due to their intuitive and graphi
al appearan
e. The diagrams 
an be used indi�erent stages of the design of a software system. The main appli
ation is during requirementsengineering, where they are used to 
apture initial requirements about the intera
tions in asystem. Furthermore, they play a role in do
umentation, simulation and testing.



4 1 INTRODUCTIONThe results of this 
hapter 
annot 
ompletely be transferred to similar languages. This is mainlybe
ause IW des
ribes syn
hronous 
ommuni
ation, whereas most similar languages 
onsider asyn-
hronous 
ommuni
ation. Nevertheless, the approa
h taken in this 
hapter is generi
. It is atthe basis of the semanti
s de�nition of Message Sequen
e Charts, as standardised by the ITU inAnnex B to Re
ommendation Z.120 [IT95℄.1.3 Purpose and stru
ture of this 
hapterThis 
hapter serves several purposes. First, it shows the pro
ess algebrai
 approa
h in de�ningthe semanti
s of a s
enario language. This typi
ally entails the use of a number of operatorswhi
h des
ribe the ways in whi
h s
enarios or fragments of s
enarios are 
ombined. The meaningof su
h a diagram is then des
ribed by a pro
ess algebrai
 expression, whi
h 
an be analysedusing standard te
hniques.Se
ondly, this 
hapter shows the development of non-standard operators in pro
ess algebra,needed for some domain spe
i�
 appli
ation. These newly introdu
ed operators will probablyhave little appli
ation outside the realm of s
enarios. On the other hand, the interworking se-quen
ing operator already re
eived attention in a more general 
ontext, and was named weaksequential 
omposition (see [RW94℄).Thirdly, we show in detail whi
h (proof) obligations o

ur when introdu
ing new operators. Weboth give an operational and an algebrai
 de�nition, and prove their 
orresponden
e.This 
hapter is subdivided as follows.First, we will introdu
e the Interworking language and the operators for 
ombining Interworkings(Se
tion 2). Next, we formally de�ne the operators involved. We will not simply give one pro
essalgebra 
ontaining all operators, but we will formalise the operators in a modular way. Thisyields a 
olle
tion of pro
ess algebras, for whi
h we obtain some additional proof obligations,su
h as 
onservativity. The �rst pro
ess algebra (de�ned in Se
tion 3) only 
ontains the operatorfor sequential 
omposition. This operator suÆ
es to give a formal semanti
s of Interworkingdiagrams. In Se
tion 4 we de�ne the theory of the basi
 pro
ess algebra operators (+ and �)whi
h we enri
h with partial deadlo
ks. Next, in Se
tion 5, these pro
ess algebras are 
ombined.The following two se
tions deal with the introdu
tion of the interworking merge operator. InSe
tion 6 we �rst de�ne a parameterised version of this operator, the E-interworking merge. Thegeneral interworking merge operator is de�ned in Se
tion 7, whi
h yields the �nal pro
ess algebrafor Interworkings.Every operator is both de�ned algebrai
ally and by means of an operational semanti
s. Therelation between these des
riptions is given in several soundness and 
ompleteness theorems.The treatment of Interworkings in the 
urrent 
hapter is mainly on a theoreti
 level. We will notintrodu
e graphi
al and linear syntax of the language, and we will not present a mapping fromInterworking diagrams to pro
ess algebra expressions (for a thorough treatment see [MvWW92℄).Our main goal is to de�ne the theory needed to formally understand Interworkings. Neitherwill we explain methodologi
al aspe
ts of the use of Interworkings or supporting tools. For a



5des
ription of a prototype tool set based on these semanti
al de�nitions, we refer to [MW93℄.2 InterworkingsAn Interworking spe
i�
ation 
onsists of a 
olle
tion of Interworking diagrams. The relationbetween these diagrams is de�ned by means of operators. An Interworking diagram spe
i�es(part of) a single s
enario and the operators 
an be used to 
ompose simple s
enarios into more
omplex s
enarios. We 
onsider operators for sequential 
omposition, alternative 
ompositionand parallel 
omposition of Interworkings.In this se
tion we will only give an informal explanation of syntax and semanti
s of Interworkings.Simple examples show the relevant properties, whi
h are formalised in the se
tions to 
ome.We will not give a formal de�nition of the graphi
al syntax of Interworkings, sin
e for our pur-poses an informal and intuitive mapping from Interworkings to the semanti
al domain suÆ
es.There exists a textual representation of Interworkings too, but we will not dis
uss this. Con-sult [MvWW92℄ for more information on this topi
.2.1 Interworking diagramsAn example of an Interworking diagram is shown in Figure 2. Su
h a diagram 
onsists of a numberof verti
al lines and horizontal arrows, surrounded by a frame. The name of the Interworkingdiagram (Co-operation) is in the upper left 
orner of the frame. The verti
al lines denote theentities of whi
h (part of) the behaviour is being des
ribed. Above the lines are the names ofthese entities. Here we have four entities, 
alled a, b, 
, and d.a b 
 dk lmn oCo-operation
Figure 2: An example Interworking diagramThe arrows denote the ex
hange of messages between the entities. Interworkings des
ribe syn-
hronous 
ommuni
ation, whi
h means that an arrow represents one single event. The order inwhi
h the 
ommuni
ations take pla
e is also expressed in the diagram. On every entity axis, timeruns from top to bottom and the events 
onne
ted to an entity axis are 
ausally ordered in thisway. However, there is no global time axis and the only way to syn
hronise the behaviour of theentities is by means of a message ex
hange. So, message k 
ausally pre
edes message m. And



6 2 INTERWORKINGSbe
ause m pre
edes o, we have that k also pre
edes o. Messages k and l are not 
ausally related;they may o

ur in any order. In our semanti
al treatment we assume an interleaved model ofoperation, whi
h means that k and l 
annot o

ur simultaneously.The fa
t that the time lines of all entities are independent, implies that the verti
al pla
ementof two messages whi
h are not 
ausally related has no semanti
al meaning. Therefore, the Inter-workings from Figure 3 have identi
al semanti
s.a b 
 dk lPla
ement 1 a b 
 dlkPla
ement 2
Figure 3: Two semanti
ally equivalent InterworkingsA spe
ial 
ase in our semanti
s is the empty Interworking. This is an Interworking whi
h des
ribesno behaviour at all and 
ontains no entities. In the next se
tions the empty Interworking isdenoted by ".2.2 Sequen
ingSequential 
omposition is the easiest way to 
ompose two Interworkings. Intuitively, sequential
omposition 
an be 
onsidered as the 
on
atenation of two Interworkings, thereby 
onne
ting the
orresponding entity axes. Figure 4 shows the sequential 
omposition of two Interworkings. The
ir
le denotes the sequen
ing operator.a b 
k lPart 1 Æ a b 
mnPart 2 = a b 
k lmn

Sequen
ing
Figure 4: Sequential 
omposition of two InterworkingsOne must take into a

ount that there is no (impli
it) syn
hronisation between the entities at thepoint where the two Interworkings are 
on
atenated. For this reason, the operator for sequential
omposition of Interworkings is 
alled the weak sequential 
omposition operator (or interworkingsequen
ing). Although we will also introdu
e an operator for strong sequential 
omposition



2.3 Alternatives 7of Interworkings in our semanti
al treatment, this operator is not part of the Interworkingslanguage. Figure 5 shows that the weak sequential 
omposition of two unrelated messages givesan Interworking where these two messages still are unordered.a b 
 dkFrom a to b Æ a b 
 dlFrom 
 to d = a b 
 dk lNosyn

Figure 5: No syn
hronisation through sequential 
ompositionIn the previous examples, the two 
omposed Interworkings 
ontained the same set of entities. Thisis not a requirement for sequential 
omposition. The Interworking resulting from a sequential
omposition simply 
ontains all entities from its 
onstituents, as shown in Figure 6.a bkLeft Æ b 
lRight = a b 
k lResult
Figure 6: Sequential 
omposition with di�erent entity setsGiven the above interpretation of Interworking diagrams and sequential 
omposition, the followingobservation is apparent. Every Interworking diagram is equivalent to the sequential 
ompositionof all its events. Look e.g. at Interworking Co-operation (Figure 2) whi
h is the sequential
omposition of �ve simple Interworking diagrams, ea
h 
ontaining one arrow. The order inwhi
h these Interworkings are 
omposed should of 
ourse 
orrespond to the 
ausal ordering ofthe original Interworking. So, if K, L, M, N, and O are Interworking diagrams 
ontaining themessages k, l, m, n, and o, respe
tively, then L ÆK ÆM ÆN ÆO would be an example of su
h anexpression. An alternative for this expression is K Æ L ÆM ÆO ÆN .2.3 AlternativesIn theoreti
al approa
hes to MSC-related languages di�erent operators for alternative 
ompositionare used. These are the delayed 
hoi
e operator (�, see [BM95℄) and the non-deterministi
 
hoi
eoperator (+, see [BW90℄). In the standardised semanti
s of MSC [Ren99℄ the delayed 
hoi
eoperator is used. The essential di�eren
e between these two operators is that non-deterministi

hoi
e determines the moment of 
hoi
e between the alternatives at the pla
e where it o

urs,whereas the delayed 
hoi
e postpones the moment of 
hoi
e to the pla
e where the alternativesstart to di�er. The latter leads to a tra
e semanti
s (if non-deterministi
 
hoi
e is not present as



8 2 INTERWORKINGSwell). As a 
onsequen
e also all other operators in whi
h a 
hoi
e is manifest (su
h as parallel
omposition) must be 
hanged to adopt the delayed interpretation of 
hoi
es [Ren99℄. In ouropinion the use of the delayed 
hoi
e is only interesting if non-deterministi
 
hoi
e is present too.If the delayed 
hoi
e is the only alternative 
omposition operator of interest, then a better solutionis to adopt a tra
e theoreti
al approa
h towards the semanti
s. In the pro
ess algebra approa
hof this handbook it seems more appropriate to study the non-deterministi
 
hoi
e operator.Hen
e, the operator whi
h expresses the fa
t that two Interworkings des
ribe alternative s
enariosis denoted by +. Figure 7 
ontains an example of the 
hoi
e between two alternative Interworkingdiagrams. This expression des
ribes the non-deterministi
 
hoi
e between the two given s
enarios.Both s
enarios start with message k, but the �rst 
ontinues with message l and the se
ond withmessages m and n. a b 
k lalt1 + a b 
km nalt2
Figure 7: Alternative 
omposition of two Interworking diagramsNoti
e that the 
lass of Interworking diagrams is not 
losed under appli
ation of the +-operator.The behaviour de�ned in Figure 7 
annot be expressed without appli
ation of the +.2.4 MergeWhereas the sequen
ing operator is used for verti
al 
omposition of Interworkings, the mergeoperator is used for horizontal 
omposition.In the 
ase that the two operands have no entities in 
ommon, the merge of two Interworkingdiagrams is simply their juxtaposition, as illustrated in Figure 8.a b 
k lMerge1 k d emnMerge2 = a b 
 d ek ml nMerge
Figure 8: Merge of Interworking diagrams without shared entitiesIn the 
ase that the two operands do share some entities, the situation is a bit more 
ompli
ated.



2.4 Merge 9Suppose, for example, that the two Interworking diagrams have two entities in 
ommon, as inFigure 9. Then the messages ex
hanged between the shared entities must be identi
al for bothoperands. The resulting Interworking 
ontains only one o

urren
e of every shared entity. Alsothe messages ex
hanged between the shared entities, whi
h must o

ur in the same order in bothoperands, appear only on
e in the resulting Interworking. In Figure 9 the two operands sharethe entities 
 and d with shared messages m and n.a b 
 dk l mno
IW1 k 
 d epm qn r

IW2 = a b 
 d ek pl m qn ro
IWall

Figure 9: Merge of Interworking diagrams with two shared entitiesIn the 
ase that the two operands do not des
ribe identi
al behaviour with respe
t to the sharedentities, as in Figure 10, a deadlo
k o

urs. The resulting Interworking 
ontains the parallelbehaviour of the operands, up to the point where the behaviours on the shared entities start todiverge. At this point the deadlo
k o

urs, denoted by two horizontal bars. Su
h a deadlo
k only
overs entities whi
h are blo
ked. This means that we do not have the global deadlo
k as usedelsewhere, but a partial deadlo
k. We refer to this partial deadlo
k as deadlo
k. An entity showsno behaviour after it has entered a deadlo
k situation. All behaviour whi
h is 
ausally dependenton a 
ommuni
ation whi
h 
auses the deadlo
k, is also blo
ked. In Figure 10 this means that,sin
e messages x and n do not mat
h, a deadlo
k o

urs on entities 
 and d. Moreover, sin
emessage r is 
ausally dependent upon message n, the deadlo
k extends to entity e. In the followingse
tions, su
h a deadlo
k will be denoted by ÆE , where E is the set of deadlo
ked entities. If adeadlo
k o

urs as a 
onsequen
e of merging two Interworkings, we say that the two operandsare merge-in
onsistent.This explanation of the merge operator generalises easily to the 
ase where the operands havemore than two entities in 
ommon. However, the 
ase where they share only one entity yieldsa di�erent situation. It is 
lear that this shared entity should o

ur only on
e in the resultingInterworking, but what happens with the events that this entity takes part in? This situationo

urs in Figure 11. There is no reason to introdu
e a 
ausal ordering between the messages land m, and therefore the result 
annot be a single Interworking diagram. The result of the mergein Figure 11 
ontains two alternative Interworking diagrams, whi
h together des
ribe all possibleorderings of l and m.Care has to be taken to 
orre
tly handle entities whi
h are in
luded in an Interworking diagrambut whi
h do not take part in any 
ommuni
ation, so-
alled empty entities. In the 
ase that su
han entity o

urs in the set of shared entities, it 
annot be dis
arded. Figure 12 shows an example.



10 3 SEMANTICS OF INTERWORKINGSa b 
 dk l mxo
I1 k 
 d epm qn r

I2 = a b 
 d ek pl m qo
In
onsistent

Figure 10: Merge of two in
onsistent Interworking diagramsa b 
k lM1 k 
 d em nM2 =
a b 
 d ek l m n
M3 + a b 
 d ek ml nM4

Figure 11: Consistent mergeEntity b o

urs in both operands, but in the se
ond operand there is no behaviour asso
iated tob. Be
ause in the �rst operand a message l is sent to b, a deadlo
k o

urs.The situation would be quite di�erent if we would omit entity b from the se
ond operand. Thenthe two operands would be merge-
onsistent. This is shown in Figure 13.3 Semanti
s of interworkingsIn this se
tion we will present a simple pro
ess algebra that 
an be used for reasoning aboutthe equality of Interworking diagrams. Based on the textual syntax of Interworking diagrams apro
ess term is generated as follows. With every message in the Interworking diagram an atomi




11a b 
k lX1 k b 
 dmX2 = a b 
 dk mX3
Figure 12: In
onsistent Interworking diagrams with empty entitya b 
k lX1 k 
 dmX2' = a b 
 dk l mX4 + a b 
 dk mlX5

Figure 13: Empty entity removeda
tion is asso
iated. A deadlo
k that 
overs the entities from a set E is denoted by ÆE . Theatomi
 a
tions are 
ombined by means of interworking sequen
ing. The pro
ess algebra is 
alledIWD(Æ).We assume the existen
e of sets EID and MID of names of entities and messages, respe
tively.A
tually, these 
an be 
onsidered as parameters of the pro
ess algebra. A message is 
hara
terisedby the name of the sender, the name of the re
eiver, and the message name. These messagesform the set of atomi
 a
tions.De�nition 1 (Atomi
 a
tions) The set A of atomi
 a
tions is given byA = f
(i; j;m) j i; j 2 EID ;m 2 MIDg:De�nition 2 (Signature of IWD(Æ)) The signature �IWD of the pro
ess algebra IWD(Æ) 
on-sists of the atomi
 a
tions a 2 A, the deadlo
k 
onstants ÆE (E � EID), the empty pro
ess ",and the binary operation interworking sequen
ing Æiw.The set of all (open) terms over the signature �IWD is denoted as O(�IWD). The set of all 
losedterms over the signature �IWD is denoted as C(�IWD). We will use similar notations for othersignatures.We provide the pro
ess algebra with an operational semanti
s by asso
iating a term dedu
tionsystem to it. We will �rst summarise the terminology related to term dedu
tion systems. Fora formal de�nition of term dedu
tion systems and related notions we refer to [BV95℄. A termdedu
tion system is a stru
ture (�;D) where � is a signature and D a set of dedu
tion rules.The set of dedu
tion rules is parameterised by a set of relation symbols and a set of predi
atesymbols. If P is su
h a predi
ate symbol, R su
h a relation symbol, and s; t 2 O(�), then the



12 3 SEMANTICS OF INTERWORKINGSexpressions Ps and sRt are 
alled formulas. A dedu
tion rule is of the form HC where H is a setof formulas, 
alled hypotheses, and C is a formula, 
alled the 
on
lusion.In the term dedu
tion systems used in this 
hapter we use relations ! � O(�) � A � O(�)and the predi
ate #� O(�). The formula x a!x0 expresses that the pro
ess x 
an perform ana
tion a and thereby evolves into the pro
ess x0. The formula x # expresses that pro
ess x hasan option to terminate immediately and su

essfully.In the remainder of this 
hapter we use the following shorthands: x a! represents the predi
atethat x a!x0 for some x0, x a
9x0 represents the proposition that x a!x0 is not derivable from thededu
tion system, x a

9 represents :(x a! ), and x9 represents x a
9 for all a 2 A. Similarly weuse x 6# to represent :(x #).A proof of a formula � is a well-founded upwardly bran
hing tree of whi
h the nodes are labeledby formulas su
h that the root is labeled by the formula � and if � is the label of a node andf�i j i 2 Ig is the set of labels belonging to the nodes dire
tly above it, thenf�i j i 2 Ig�is an instantiation of a dedu
tion rule.The term dedu
tion system for the pro
ess algebra IWD(Æ) 
onsists of the signature �IWD andthe dedu
tion rules given in Table 1.Before we 
an give the operational des
ription of the interworking sequen
ing operator we �rstde�ne the a
tive entities asso
iated with a pro
ess term representing an Interworking diagram.The a
tive entities of an Interworking diagram are those entities whi
h are involved in a 
ommu-ni
ation or in a deadlo
k.De�nition 3 (A
tive entities) For i; j 2 EID , m 2 MID, E � EID , and x; y 2 C(�IWD) wede�ne the mapping AE : C(�IWD)! IP(EID) indu
tively as follows:AE(
(i; j;m)) = fi; jg;AE(") = ;;AE(ÆE) = E;AE(x Æiw y) = AE(x) [AE(y):The operational semanti
s of the pro
ess algebra IWD(Æ) is given by the dedu
tion rules inTable 1 and the equations de�ning the a
tive entities in De�nition 3. These equations 
an easilybe written as dedu
tion rules. The empty pro
ess does not exe
ute any a
tions, but it terminatessu

essfully and immediately. The fa
t that it does not exe
ute any a
tion is visible by theimpossibility of deriving that it 
an exe
ute an a
tion. The pro
ess a 
an exe
ute the a
tion aand in doing so evolves into the empty pro
ess ". The pro
ess ÆE 
annot exe
ute any a
tionsnor 
an it terminate su

essfully. The interworking sequen
ing of two pro
esses terminates ifand only if both pro
esses 
an terminate. The pro
ess x Æiw y exe
utes an a
tion a if x 
anexe
ute a
tion a or if y 
an exe
ute a and this a
tion is not related to an a
tive entity of x



13(AE (a)\AE(x) = ;). This expresses the intuition that the �rst operand may always perform itsa
tions, while the se
ond operand may only perform a
tions whi
h are not blo
ked be
ause theyare 
ausally dependent on a
tions from the �rst operand.
" # a a! " x # y #x Æiw y #x a! x0x Æiw y a! x0 Æiw y AE (a) \ AE (x) = ; y a! y0x Æiw y a!x Æiw y0Table 1: Dedu
tion rules for interworking sequen
ing (a 2 A)p q r sm onA

Figure 14: Example of an Interworking diagramThe Interworking from Figure 14 
an semanti
ally be represented by the pro
ess term
(p; q;m) Æiw (
(r; s; o) Æiw 
(q; r; n)):Then the following is a derivation of the fa
t that �rst the 
ommuni
ation of message o 
an takepla
e: AE (
(r; s; o)) \AE(
(p; q;m)) = ; 
(r; s; o) 
(r;s;o)! "
(r; s; o) Æiw 
(q; r; n) 
(r;s;o)! " Æiw 
(q; r; n)
(p; q;m) Æiw (
(r; s; o) Æiw 
(q; r; n)) 
(r;s;o)! 
(p; q;m) Æiw (" Æiw 
(q; r; n))Two pro
esses x and y are 
onsidered equivalent if they 
an mimi
 ea
h others behaviour in termsof the predi
ates and relations that are used in the term dedu
tion system. In this 
ase these arethe exe
ution of a
tions, the termination of a pro
ess, and the a
tive entities of a pro
ess. As a
onsequen
e of introdu
ing partial deadlo
k 
onstants, we must be able to distinguish deadlo
ksover di�erent sets of entities. This is the reason that we require that two pro
esses are equivalentonly if they have the same a
tive entities. This type of equivalen
e is usually 
alled strongbisimilarity, but we 
all it IWD-bisimilarity.



14 3 SEMANTICS OF INTERWORKINGSDe�nition 4 (IWD-bisimilarity) Let � be a signature. A symmetri
 relationR � C(�)�C(�)is 
alled an IWD-bisimulation i� for all p; q su
h that pRq we have1. AE(p) = AE(q);2. if p #, then q #;3. if p a! p0 for some a 2 A and p0, then there exists a q0 su
h that q a! q0 and p0Rq0.Two pro
esses x and y are 
alled IWD-bisimilar, notation x $iwd y, i� there exists an IWD-bisimulation R su
h that xRy. The notation R : x $iwd y expresses that R is an IWD-bisimulation that relates x and y.Theorem 1 (Equivalen
e) IWD-bisimilarity is an equivalen
e relation.Proof. We must prove that IWD-bisimilarity is re
exive, symmetri
, and transitive.1. $iwd is re
exive. Let R = f(p; p) j p 2 C(�IWD)g. Clearly, R is an IWD-bisimulation.2. $iwd is symmetri
. Suppose that p $iwd q. This means that there exists an IWD-bisimulation R su
h that pRq. Sin
e any IWD-bisimulation is symmetri
al we also haveqRp. Hen
e q $iwd p.3. $iwd is transitive. Suppose p $iwd q and q $iwd r. Thus there exist IWD-bisimulationsR1 and R2 su
h that pR1q and qR2r. Let R = (R1 Æ R2)S . For a relation � on X, thenotation �S denotes the symmetri
 
losure of �. It is not hard to show that R is anIWD-bisimulation and pRr. Hen
e p $iwd r.
⊠Theorem 2 (Congruen
e) IWD-bisimilarity is a 
ongruen
e for interworking sequen
ing.Proof. The term dedu
tion system for IWD(Æ) is in path format. From [BV93℄, we then havethat IWD-bisimilarity is a 
ongruen
e for interworking sequen
ing. The path format is a synta
-ti
al restri
tion on the form of the dedu
tion rules and 
an be easily 
he
ked. ⊠In Table 2 we present the axioms of the pro
ess algebra IWD(Æ).
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Idem. Æiw " Æiw x = xComm. Æiw x Æiw y = y Æiw x if AE(x) \AE(y) = ;Ass. Æiw (x Æiw y) Æiw z = x Æiw (y Æiw z)Æiw1 ÆE Æiw a = ÆE[AE(a) if AE(a) \E 6= ;Æiw3 ÆE Æiw ÆF = ÆE[FTable 2: Axioms of IWD(Æ) (a 2 A, E; F 2 EID)The �rst three axioms express straightforward properties. The axioms Æiw1 and Æiw3 des
ribethe propagation of partial deadlo
ks through the Interworking diagram. The �rst of these isillustrated in Figure 15 for E = fp; qg and a = 
(q; r;m).p qA Æ q rmB = p q rC

Figure 15: Propagation of partial deadlo
ksFor deriving equalities between pro
ess terms we 
an use all instantiations of the axioms and theusual laws of equational logi
. These are re
exivity, symmetry, transitivity, and Leibniz's rule.As a simple example, we present the derivation that the empty pro
ess is a right unit for inter-working sequen
ing. The fa
t that it is a left unit is put forward as an axiom.Lemma 1 (Properties) For x 2 O(�IWD) we have x Æiw " = x.Proof. As AE(") = ;, we have AE(x) \ AE(") = ;. Then, using the axioms Comm. Æiw andIdem. Æiw, we have x Æiw " = " Æiw x = x. ⊠Thus far we have presented an operational semanti
s and a pro
ess algebra on the signature �IWD.Ideally, there is a strong 
onne
tion between these. In this 
ase we will �rst show that every pairof derivably equal 
losed IWD(Æ)-terms is IWD-bisimilar. This relation between an equationaltheory and its model is usually referred to as soundness of the equational theory with respe
tto the operational semanti
s. It 
an also be stated from the point of view of the operationalsemanti
s: the set of 
losed IWD(Æ)-terms modulo IWD-bisimilarity is a model of the equationaltheory. Later we will also present a relation in the other dire
tion: every pair of IWD-bisimilar
losed IWD(Æ)-terms is also derivably equal. This result is referred to as 
ompleteness.



16 3 SEMANTICS OF INTERWORKINGSTheorem 3 (Soundness) IWD(Æ) is a sound axiomatisation of IWD-bisimilarity on 
losedIWD(Æ)-terms.Proof. Due to the 
ongruen
e of IWD-bisimilarity with respe
t to all operators from the signatureof IWD(Æ), it suÆ
es to prove soundness of all 
losed instantiations of the axioms in isolation.We give an IWD-bisimulation for ea
h of the axioms. These are the following� for axiom Idem. Æiw: R = f(" Æiw p; p) j p 2 C(�IWD)gS ;� for axiom Comm. Æiw: R = f(p Æiw q; q Æiw p) j p; q 2 C(�IWD);AE(p) \AE(q) = ;gS ;� for axiom Ass. Æiw: R = f(p Æiw (q Æiw r); (p Æiw q) Æiw r) j p; q; r 2 C(�IWD)gS ;� for axiom Æiw1: R = f(ÆE Æiw a; ÆE[AE(a)) j AE(a) \E 6= ;gS ;� For axiom Æiw3: R = f(ÆE Æiw ÆF ; ÆE[F ) j E;F � EIDgS .
⊠The proof of 
ompleteness 
onsists of a number of steps. First we de�ne the notion of basi
 termand prove that every 
losed term is derivably equal to some basi
 term. The introdu
tion of basi
terms makes it easier to perform indu
tive reasoning on the stru
ture of a 
losed term.De�nition 5 (Basi
 terms) The set of basi
 terms is the smallest set su
h that1. " is a basi
 term;2. for E � EID, ÆE is a basi
 term;3. for a 2 A and x a basi
 term, a Æiw x is a basi
 term.The set of all basi
 terms over the signature �IWD is denoted B(�IWD).Theorem 4 (Elimination) For every 
losed term there is a basi
 term whi
h is derivably equal.Proof. By indu
tion on the stru
ture of 
losed term x.1. x � ". This is a basi
 term.2. x � ÆE for some E � EID . This is a basi
 term.3. x � a for some a 2 A. Then, using Lemma 1, a = a Æiw " whi
h is a basi
 term.4. x � x1 Æiw x2 for some x1; x2 2 C(�IWD). By indu
tion we have the existen
e of basi
 termsb1 and b2 su
h that x1 = b1 and x2 = b2. By indu
tion on the stru
ture of basi
 term b1.



17(a) b1 = ". Then x = x Æiw y = b1 Æiw b2 = " Æiw b2 = b2 whi
h is a basi
 term.(b) b1 = ÆE for some E � EID . By indu
tion on the stru
ture of basi
 term b2.i. b2 = ". Then x = x1 Æiw x2 = ÆE Æiw " = ÆE , whi
h is a basi
 term.ii. b2 = ÆF for some F � EID . Then x = x1 Æiw x2 = b1 Æiw b2 = ÆE Æiw ÆF = ÆE[F ,whi
h is a basi
 term.iii. b2 = a2 Æiw b02 for some a2 2 A and b02 2 B(�IWD). By indu
tion we have theexisten
e of a basi
 term 
 su
h that ÆE Æiw b02 = 
. Also by indu
tion we have theexisten
e of a basi
 term 
0 su
h that ÆE[AE(a2)Æiwb02 = 
0. If AE (a2)\E 6= ;, thenx = x1Æiwx2 = b1Æiwb2 = ÆEÆiw(a2Æiwb02) = (ÆEÆiwa2)Æiwb02 = ÆE[AE(a2)Æiwb02 = 
0,whi
h is a basi
 term. If AE(a) \ E = ;, then x = x1 Æiw x2 = b1 Æiw b2 =ÆE Æiw (a2Æiw b02) = (ÆE Æiwa2)Æiw b02 = (a2ÆiwÆE)Æiw b02 = a2Æiw (ÆE Æiw b02) = a2Æiw 
whi
h is a basi
 term.(
) b1 = a1 Æiw b01 for some a1 2 A and b01 2 B(�IWD). By indu
tion we have theexisten
e of a basi
 term 
 su
h that b01 Æiw b2 = 
. Then x = x1 Æiw x2 = b1 Æiw b2 =(a1 Æiw b01) Æiw b2 = a1 Æiw (b01 Æiw b2) = a1 Æiw 
, whi
h is a basi
 term.
⊠The next step towards the proof of 
ompleteness is the following lemma. It provides a linkbetween axiomati
 reasoning and reasoning in the (operational) model. The proof of this lemmarequires the notion of norm of a 
losed term. It 
ounts the number of a
tions and sequen
ingoperators o

urring in the term.De�nition 6 (Norm) For E � EID , a 2 A, and x; y 2 C(�IWD) we de�ne the mapping j j :C(�IWD)! IN indu
tively as follows:j"j = 0;jÆE j = 0;jaj = 1;jx Æiw yj = jxj+ jyj+ 1:Lemma 2 For all x; x0 2 C(�IWD) and a 2 A we have1. if x a!x0, then jx0j < jxj;2. if x #, then x = ";3. if x a!x0, then x = a Æiw x0;4. if x 6#, x9 , then x = ÆAE (x).Proof.1. By indu
tion on the stru
ture of 
losed term x. Suppose x a!x0.



18 3 SEMANTICS OF INTERWORKINGS(a) x � ". This 
ase 
annot o

ur.(b) x � ÆE for some E � EID . This 
ase 
annot o

ur.(
) x � b for some b 2 A. Then ne
essarily b � a and x0 � ". Observe thatjx0j = j"j = 0 < 1 = jbj = jxj:(d) x � x1 Æiw x2 for some x1; x2 2 C(�IWD). We 
an distinguish two 
ases for x1 Æiwx2 a!x0.i. x1 a! x01 for some x01 2 C(�IWD) su
h that x0 � x01 Æiw x2. By indu
tion we havethat jx01j < jx1j. Thus we obtainjx0j = jx01 Æiw x2j = jx01j+ jx2j+ 1 < jx1j+ jx2j+ 1 = jx1 Æiw x2j = jxj:ii. AE(a)\AE(x1) = ; and x2 a!x02 for some x02 2 C(�IWD) su
h that x0 � x1Æiwx02.By indu
tion we have that jx02j < jx2j. Thus we obtainjx0j = jx1 Æiw x02j = jx1j+ jx02j+ 1 < jx1j+ jx2j+ 1 = jx1 Æiw x2j = jxj:2. By indu
tion on the stru
ture of 
losed term x. Suppose x #.(a) x � ". Trivial.(b) x � ÆE for some E � EID . This 
ase 
annot o

ur.(
) x � a for some a 2 A. This 
ase 
annot o

ur.(d) x � x1 Æiwx2 for some x1; x2 2 C(�IWD). As x #, we have x1 # and x2 #. By indu
tionwe then have x1 = " and x2 = ". Then x = x1 Æiw x2 = " Æiw " = ".3. By indu
tion on the stru
ture of 
losed term x. Suppose x a!x0.(a) x � ". This 
ase 
annot o

ur.(b) x � ÆE for some E � EID . This 
ase 
annot o

ur.(
) x � b for some b 2 A. Then ne
essarily b � a and x0 � ". Then,x = b = a = a Æiw " = a Æiw x0:(d) x � x1 Æiw x2 for some x1; x2 2 C(�IWD). For x1 Æiw x2 a!x0 two 
ases 
an be distin-guished:i. x1 a! x01 for some x01 2 C(�IWD) su
h that x0 � x01 Æiw x2. By indu
tion we thenhave x1 = a Æiw x01. Then,x = x1 Æiw x2 = (a Æiw x01) Æiw x2 = a Æiw (x01 Æiw x2) = a Æiw x0:ii. x2 a! x02 and AE(a)\AE(x1) = ; for some x02 2 C(�IWD) su
h that x0 � x1Æiwx02.By indu
tion we have x2 = a Æiw x02. Then,x = x1 Æiw x2 = x1 Æiw (a Æiw x02) = (x1 Æiw a) Æiw x02= (a Æiw x1) Æiw x02 = a Æiw (x1 Æiw x02) = a Æiw x0:



194. By indu
tion on jxj and 
ase analysis on the stru
ture of x. Suppose x 6# and x9 .(a) x � ". This 
ase 
annot o

ur.(b) x � ÆE for some E � EID . Trivial as AE(x) = AE(ÆE) = E and x = ÆE = ÆAE(x).(
) x � b for some b 2 A. This 
ase 
annot o

ur as b b! 
ontradi
ts the assumption thatx9 .(d) x � x1 Æiw x2 for some x1; x2 2 C(�IWD). If x1 # then we �nd x1 = ". As x 6#, wealso �nd x2 6#. As x1 Æiw x29 , we �nd x19 , and x2 a
9 _ AE (a) \ AE(x1) 6= ; forall a 2 A. As x1 = ", we �nd AE (a) \ AE(x1) = AE(a) \ AE(") = ". Therefore,we must have x2 a

9 . By indu
tion (note that jx2j < jxj) we thus have x2 = ÆAE(x2).Then x = x1 Æiw x2 = " Æiw ÆAE(x2) = ÆAE(x2) = ÆAE(x1)[AE(x2) = ÆAE(x):If x1 6#, then we have by indu
tion x1 = ÆAE(x1) as we also have x1 a
9 . First, supposethat x2 #. Then x2 = " and we obtain x = x1 Æiw x2 = ÆAE (x1) Æiw " = ÆAE (x1) =ÆAE (x1)[AE(x2) = ÆAE(x). Se
ond, suppose x2 6#. Again we 
an distinguish two 
ases:i. x2 a

9 for all a 2 A. As jx2j < jxj, we 
an apply the indu
tion hypothesis andobtain x2 = ÆAE (x2). Thus,x = x1 Æiw x2 = ÆAE(x1) Æiw ÆAE (x2) = ÆAE (x1)[AE (x2) = ÆAE (x):ii. x2 a! x02 for some a 2 A. Then we have x2 = a Æiw x02. As x1 Æiw x2 a
9 , we musthave AE (a) \AE (x1) 6= ;. Then,x = x1 Æiw x2 = ÆAE (x1) Æiw (a Æiw x02) = (ÆAE (x1) Æiw a) Æiw x02= ÆAE(x1)[AE(a) Æiw x02:Note that jx02j < jx2j. Observe thatjÆAE (x1)[AE(a) Æiw x02j = jx02j+ 1 < jx2j+ 1 � jx1j+ jx2j+ 1= jx1 Æiw x2j:Hen
e we 
an apply the indu
tion hypothesis to obtainÆAE (x1)[AE (a) Æiw x02 = ÆAE (x1)[AE(a)[AE (x02) = ÆAE(x1)[AE(x2)= ÆAE (x):

⊠Theorem 5 (Completeness) IWD(Æ) is a 
omplete axiomatisation of IWD-bisimilarity on
losed IWD(Æ)-terms.



20 4 SEQUENTIAL AND ALTERNATIVE COMPOSITIONProof. Suppose that x $iwd y. Then we must prove that x = y. By the elimination theorem wehave the existen
e of a basi
 term x0 su
h that x = x0. As the axioms are sound, we also havex $iwd x0. Hen
e it suÆ
es to prove x0 = y. We do this by indu
tion on the stru
ture of basi
term x0.1. x0 = ". Then x0 #. Sin
e x0 $iwd y, we also have y #. By Lemma 2.2 we then have y = ".Hen
e x0 = " = y.2. x0 = ÆE for some E � EID . Then x0 6# and x0 a
9 for all a 2 A. As x0 $iwd y, also y 6# andy a

9 . We also have AE(y) = AE(x0) = AE (ÆE) = E. By Lemma 2.4 we have y = ÆE . Sox0 = ÆE = y.3. x0 = a Æiw x00 for some a 2 A and x00 2 B(�IWD). Then x0 a! " Æiw x00. Sin
e x0 $iwd ywe also have y a! y0 for some y0 su
h that " Æiw x00 $iwd y0. Then, using transitivity ofIWD-bisimilarity and the soundness of Idem. Æiw, also x00 $iwd y0. By indu
tion we thenhave x00 = y0. By Lemma 2.3 we have y = a Æiw y0. Then x0 = a Æiw x00 = a Æiw y0 = y.
⊠

4 Sequential and alternative 
ompositionIn the previous se
tion we have de�ned a sound and 
omplete axiomatisation of Interworkingdiagrams. For this purpose we needed to introdu
e the interworking sequen
ing operator only. Ifwe want to extend this theory with other operators, we �rst have to introdu
e the Basi
 Pro
essAlgebra operators + and �. This se
tion is devoted to the development of the pro
ess algebraBPA(ÆE) without interworking sequen
ing. In the next se
tion, the interworking sequen
ing isadded to this algebra.The + is 
alled alternative 
omposition and � is 
alled sequential 
omposition. The pro
ess x+ y
an exe
ute either pro
ess x or pro
ess y, but not both. The pro
ess x �y starts exe
uting pro
essx, and upon termination thereof starts the exe
ution of pro
ess y. Operationally these operatorsare des
ribed by the dedu
tion rules given in Table 3. In this table we assume that a 2 A andE � EID. The theory presented in this se
tion is very similar to standard Basi
 Pro
ess Algebrawith deadlo
k and empty pro
ess BPAÆ" (see e.g. [BV95℄).De�nition 7 (A
tive entities) For i; j 2 EID , m 2 MID , E � EID , x; y 2 C(�BPA(ÆE)), and� 2 f+; �g, we de�ne the mapping AE : C(�BPA(ÆE))! IP(EID) indu
tively as follows:AE(
(i; j;m)) = fi; jg;AE(") = ;;AE(ÆE) = E;AE(x� y) = AE(x) [AE(y):



21The alternative 
omposition of two terms 
an terminate if either one of these terms 
an terminate.It 
an perform every a
tion that its operands 
an perform, but by doing so a 
hoi
e is made. Asequential 
omposition 
an terminate if both operands 
an terminate. It 
an perform all a
tionsfrom its �rst operand and if the �rst operand 
an terminate, it 
an perform the a
tions from these
ond operand.
x #x+ y # y #x + y # x # y #x � y #x a!x0x + y a!x0 y a! y0x+ y a! y0 x a!x0x � y a!x0 � y x # y a! y0x � y a! y0Table 3: Dedu
tion rules for alternative and sequential 
omposition (a 2 A)

Again, we �rst need to prove that IWD-bisimilarity is a 
ongruen
e for all operators in the pro
essalgebra.
Theorem 6 (Congruen
e) IWD-bisimilarity is a 
ongruen
e for alternative 
omposition andsequential 
omposition.
Proof. The term dedu
tion system for BPA(ÆE) is in path format. From [BV93℄, we then havethat IWD-bisimilarity is a 
ongruen
e for all operators. ⊠These operators are axiomatised by the axioms from Table 4. In these axioms the variables x, yand z denote arbitrary pro
ess terms. In order to redu
e the number of parentheses in pro
esses wehave the following priorities on operators: unary operators bind stronger that binary operators; �binds stronger than all other binary operators and + binds weaker than all other binary operators.



22 4 SEQUENTIAL AND ALTERNATIVE COMPOSITION
A1 x+ y = y + xA2 (x+ y) + z = x+ (y + z)A3 x+ x = xA4 (x+ y) � z = x � z + y � zA5 (x � y) � z = x � (y � z)A6 x+ ÆE = x if E � AE(x)A7 ÆE � x = ÆE[AE(x)A8 " � x = xA9 x � " = xTable 4: Axioms of alternative and sequential 
omposition (E � EID)Axioms A1-A5 express straightforward properties, su
h as 
ommutativity, asso
iativity, and idem-poten
y of alternative 
omposition, distributivity of alternative 
omposition over sequential 
om-position, and asso
iativity of sequential 
omposition. Axioms A6 and A7 
hara
terise the deadlo
k
onstant. A6 states that if an entity has the 
hoi
e between performing an a
tion and deadlo
k-ing, it will never deadlo
k. Axiom A7 expresses that after a deadlo
k no more a
tions 
an o

ur.The s
ope of the deadlo
k is thereby extended to in
lude all entities on whi
h blo
ked a
tionso

ur. Axioms A8 and A9 express the standard behaviour of the empty pro
ess.The proof of soundness is straightforward.Theorem 7 (Soundness) BPA(ÆE) is a sound axiomatisation of IWD-bisimilarity on 
losedBPA(ÆE)-terms.Proof. In this and other soundness proofs we use I to denote the diagonal relation. If \s = t if b"represents either one of A1, A2, A3, A4, A6, A7, or A8, then the relation R = f(s; t); (t; s) j bg[Iis an IWD-bisimulation for that axiom. For the axioms A5 and A9 the IWD-bisimulations aregiven by R = f((p � y) � z; p � (y � z)) j p 2 C(�BPA(ÆE))gS [ I and R = f(p � "; p) j p 2 C(�BPA(ÆE))gSrespe
tively. ⊠The proof of 
ompleteness 
onsists of a number of steps. First we de�ne basi
 terms and provethe elimination property. Next, we formulate a lemma whi
h relates semanti
al properties toequational properties, and, �nally, we prove 
ompleteness.De�nition 8 (Basi
 terms) The set of basi
 terms is the smallest set that satis�es:1. " is a basi
 term;2. for E � EID, ÆE is a basi
 term;



233. for a 2 A and x a basi
 term, a � x is a basi
 term;4. if x and y are basi
 terms, then x+ y is a basi
 term.The set of all basi
 terms of the pro
ess algebra BPA(ÆE) is denoted by B(�BPA(ÆE)).The following lemma expresses that we 
an always 
ombine multiple deadlo
k alternatives intoone deadlo
k alternative.Lemma 3 For E;F � EID we have ÆE + ÆF = ÆE[F .Proof. Consider the following derivation: ÆE + ÆF = (ÆE + ÆF ) + ÆE[F = ÆE[F + (ÆE + ÆF ) =(ÆE[F + ÆE) + ÆF = ÆE[F + ÆF = ÆE[F : ⊠As alternative 
omposition is idempotent, 
ommutative and asso
iative, and Æ; is a zero elementfor it, we 
an de�ne a generalised alternative 
omposition operator. For �nite index set I, thenotation ∑i2I xi represents the alternative 
omposition of the pro
ess terms xi. If I = ;, then
∑i2I xi = Æ;. If I = fi1; � � � ; ing for n � 1, then

∑i2I xi = xi1 + xi2 + � � �+ xin :Then we 
an easily establish that every basi
 term is of the form
∑i2I ai � xi +∑j2J ÆEj +∑k2K "for some �nite index sets I, J , K, ai 2 A, Ej � EID and basi
 terms xi of a similar form. For
onvenien
e in proofs to follow we 
ombine the deadlo
k alternatives into one alternative by usingLemma 3:
∑i2I ai � xi + ÆE +∑k2K ";where E = ⋃j2JEj . The summand ∑k2K " is only used to indi
ate presen
e (K 6= ;) or absen
e(K = ;) of a termination option.Theorem 8 (Elimination) For every 
losed term there is a derivably equal basi
 term.Proof. We prove this theorem by indu
tion on the stru
ture of 
losed term x.1. x � ". Trivial as " is a basi
 term.2. x � ÆE for some E � EID . Trivial as ÆE is a basi
 term.



24 4 SEQUENTIAL AND ALTERNATIVE COMPOSITION3. x � a for some a 2 A. Then x = a = a � ", whi
h is a basi
 term.4. x � x1 � x2 for some x1; x2 2 C(�BPA(ÆE)). By indu
tion we have the existen
e of basi
terms b1 and b2 su
h that x1 = b1 and x2 = b2. By indu
tion on the stru
ture of basi
 termb1 we will prove that there exists a basi
 term 
 su
h that b1 � b2 = 
.(a) b1 � ". Then b1 � b2 = " � b2 = b2.(b) b1 � ÆE for some E � EID . Then b1 � b2 = ÆE � b2 = ÆE[AE(b2).(
) b1 � a � b01 for some a 2 A and b01 2 B(�BPA(ÆE)). By indu
tion we have the existen
eof basi
 term 
0 su
h that b01 � b2 = 
01. Then b1 � b2 = (a � b01) � b2 = a � (b01 � b2) = a � 
01.(d) b1 � b01 + b001 for some b01; b001 2 B(�BPA(ÆE)). By indu
tion we have the existen
e ofbasi
 terms 
0 and 
00 su
h that b01 �b2 = 
0 and b001 �b2 = 
2. Then b1 �b2 = (b01+b001) �b2 =b01 � b2 + b001 � b2 = 
0 + 
00.Observe that in ea
h 
ase we have the existen
e of basi
 term 
 su
h that b1 � b2 = 
. Hen
ex = x1 � x2 = b1 � b2 = 
, whi
h is a basi
 term.5. x � x1 + x2 for some x1; x2 2 C(�BPA(ÆE)). By indu
tion we have the existen
e of basi
terms b1 and b2 su
h that x1 = b1 and x2 = b2. Then x = x1 + x2 = b1 + b2, whi
h is abasi
 term.
⊠Lemma 4 For all x; x0 2 C(�BPA(ÆE)) and a 2 A we have1. if x #, then x = "+ x;2. if x a!x0, then x = a � x0 + x.Proof.1. We will prove this by indu
tion on the stru
ture of x. Suppose x #.(a) x � ". Then trivially x = " = "+ " = "+ x.(b) x � ÆE for some E � EID . Then we have a 
ontradi
tion as ÆE 6#.(
) x � a for some a 2 A. Then we also have a 
ontradi
tion as a 6#.(d) x � x1 + x2 for some x1; x2 2 C(�BPA(ÆE)). Then we have x1 # or x2 #. By indu
tionwe then have x1 = " + x1 or x2 = " + x2. In both 
ases we �nd x = x1 + x2 ="+ x1 + x2 = "+ x.(e) x � x1 � x2 for some x1; x2 2 C(�BPA(ÆE)). Then we have x1 # and x2 #. By indu
tionwe then have x1 = " + x1 and x2 = " + x2. Therefore, x = x1 � x2 = (" + x1) � x2 =" �x2+x1 �x2 = x2+x1 �x2 = "+x2+x1 �x2 = "+ " �x2+x1 �x2 = "+("+x1) �x2 ="+ x1 � x2 = "+ x.



252. We will prove this by indu
tion on the stru
ture of x. Suppose x a! x0.(a) x � ". Then we have a 
ontradi
tion as " a
9 .(b) x � ÆE for some E � EID . Then we also have a 
ontradi
tion as ÆE a

9 .(
) x � b for some b 2 A. Then ne
essarily b � a and x0 � ". Hen
e x = b = b + b =a+ b = a � "+ b = a � x0 + x.(d) x � x1 + x2 for some x1; x2 2 C(�BPA(ÆE)). Then we have x1 a!x0 or x2 a!x0. Byindu
tion we then have x1 = a � x0 + x1 or x2 = a � x0 + x2. Then x = x1 + x2 =a � x0 + x1 + x2 = a � x0 + x.(e) If x � x1 � x2 for some x1; x2 2 C(�BPA(ÆE)). We 
an distinguish two 
ases.First, x1 a!x01 for some x01 2 C(�BPA(ÆE)) su
h that x0 � x01 �x2. By indu
tion we thenhave x1 = a �x01+x1. Therefore, x = x1 �x2 = (a �x01+x1) �x2 = (a �x01) �x2+x1 �x2 =a � (x01 � x2) + x = a � x0 + x.Se
ond, x1 # and x2 a!x0. By indu
tion we have x2 = a �x0+x2. From the �rst part ofthis lemma we have x1 = "+x1. Therefore, x = x1 �x2 = ("+x1) �x2 = " �x2+x1 �x2 =x2 + x1 � x2 = a � x0 + x2 + x1 � x2 = a � x0 + " � x2 + x1 � x2 = a � x0 + (" + x1) � x2 =a � x0 + x1 � x2 = a � x0 + x.
⊠Theorem 9 (Completeness) BPA(ÆE) is a 
omplete axiomatisation of IWD-bisimilarity on
losed BPA(ÆE)-terms.Proof. Suppose that x $iwd y. By the elimination theorem and the soundness of the axioms we
an assume, without loss of generality, that x is a basi
 term. By 
ongruen
e and the soundnessof axiom A3 it suÆ
es to prove that if x+ y $iwd y then x+ y = y. This 
an be seen as follows.From x $iwd y we obtain x + y $iwd y + y using 
ongruen
e of $iwd with respe
t to +, andre
exivity of $iwd . Using the soundness of axiom A3 we have y + y $iwd y. By transitivity of$iwd we obtain x+ y $iwd y. Then x+ y = y. Similarly we 
an obtain y + x = x. Therefore,x = y + x = x+ y = y.We prove this by indu
tion on the stru
ture of basi
 term x.1. x � ". Then x #. So x+ y #. Therefore, y #. Then, by Lemma 4.1, we have y = "+ y. Sowe �nd x+ y = "+ y = y.2. x � ÆE . Then AE (x+ y) = AE (ÆE + y) = E [AE(y). As x+ y $iwd y, we must also haveAE(y) = AE(x + y) = E [ AE(y). Thus we obtain E � AE(y). Then x + y = ÆE + y =y + ÆE = y.3. x � a � x0. Then x a! " � x0. So x + y a! " � x0. Therefore, y a! y0 for some y0 su
h that" � x0 $iwd y0. By the soundness of axiom A8 we �nd x0 $iwd y0. By indu
tion we thenhave x0 = y0. By Lemma 4.2 we have y = a � y0+ y. Then x+ y = a � x0+ y = a � y0+ y = y.



26 5 THE INTERWORKING SEQUENCING4. x � x1+x2. Using x1+x2+y $iwd y implies x1+y $iwd y and x2+y $iwd y. By indu
tionwe then have x1+y = y and x2+y = y. Then x+y = (x1+x2)+y = x1+(x2+y) = x1+y = y.
⊠

5 The interworking sequen
ingIn Se
tion 3 we have introdu
ed the interworking sequen
ing and in Se
tion 4 we have de�nedalternative and sequential 
omposition operators. When 
ombining these operators into one singletheory, we need to express the relation between the interworking sequen
ing on the one hand andalternative and sequential 
omposition on the other hand. By introdu
ing the auxiliary operatorsLÆiw and RÆiw, we 
an express the interworking sequen
ing in terms of the alternative andsequential 
omposition operators. The pro
ess algebra obtained in this way is 
alled IWD(Æ; �;+).It is a 
onservative extension of both the pro
ess algebra IWD(Æ) from Se
tion 3 and the pro
essalgebra BPA(ÆE) from Se
tion 4. Furthermore, all axioms formulated for interworking sequen
ingin the theory IWD(Æ) 
an now be derived for 
losed terms.The intuition of the auxiliary operators is as follows. The pro
ess xLÆiwy behaves like the pro
essx Æiw y with the restri
tion that the �rst a
tion to be exe
uted must originate from pro
ess x.The pro
ess xRÆiwy also behaves like the pro
ess x Æiw y but this time with the restri
tion thatthe �rst a
tion to be exe
uted must be from pro
ess y. In this 
ase, the �rst a
tion from y 
anonly be exe
uted if it is not blo
ked by any of the a
tions from x.These de�nitions resemble the use of the left-merge operator in PA to de�ne the merge operator.That we need two auxiliary operators instead of one is 
aused by the fa
t that interworkingsequen
ing is not 
ommutative.De�nition 9 (A
tive entities) For i; j 2 EID , m 2 MID, E � EID , x; y 2 C(�IWD(Æ; �;+)),and � 2 fÆiw; LÆiw; RÆiw;+; �g, we de�ne the mapping AE : C(�IWD(Æ; �;+))! IP(EID) indu
-tively as follows: AE(
(i; j;m)) = fi; jg;AE(") = ;;AE(ÆE) = E;AE(x� y) = AE(x) [AE(y):The operational semanti
s of the interworking sequen
ing is given already in Table 1. The opera-tional semanti
s of the auxiliary operators is given in Table 5. The rules follow from the intuitiveexplanation above. The termination behaviour of the interworking sequen
ing is in
orporatedin both auxiliary operators. This is not ne
essary but fa
ilitates the axiomatisation of theseoperators and the proof of the auxiliary proposition in the proof of Proposition 1.
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x # y #xLÆiwy # x # y #xRÆiwy #x a! x0xLÆiwy a!x0 Æiw y AE (a) \ AE (x) = ; y a! y0xRÆiwy a!x Æiw y0Table 5: Dedu
tion rules for auxiliary operators for interworking sequen
ing (a 2 A)Theorem 10 (Congruen
e) IWD-bisimilarity is a 
ongruen
e for LÆiw and RÆiw.Proof. The term dedu
tion system is in path format and hen
e IWD-bisimilarity is a 
ongruen
efor all operators. ⊠

S x Æiw y = xLÆiwy + xRÆiwyL1 "LÆiw" = "L2 "LÆiwÆE = ÆEL3 "LÆiwa � x = ÆAE (a�x)L4 "LÆiw(x+ y) = "LÆiwx+ "LÆiwyL5 ÆE LÆiwx = ÆE[AE(x)L6 a � xLÆiwy = a � (x Æiw y)L7 (x+ y)LÆiwz = xLÆiwz + yLÆiwzR1-4 xRÆiw" = "LÆiwxR5 xRÆiwÆE = ÆE[AE(x)R6a xRÆiwa � y = a � (x Æiw y) if AE(a) \AE(x) = ;R6b xRÆiwa � y = ÆAE (x)[AE(a�y) if AE(a) \AE(x) 6= ;R7 xRÆiw(y + z) = xRÆiwy + xRÆiwzTable 6: Axioms for interworking sequen
ing and auxiliary operators (a 2 A, E � EID)The axioms de�ning the interworking sequen
ing in terms of alternative and sequential 
omposi-tion are given in Table 6. The �rst axiom, S, states that the �rst a
tion from x Æiw y 
an either
ome from x (via the term xLÆiwy) or from y (via the term xRÆiwy). Axioms L1-L7 de�ne



28 5 THE INTERWORKING SEQUENCINGthe operator LÆiw using the stru
ture of basi
 terms. As stated before, xLÆiwy behaves like thepro
ess x Æiw y with the restri
tion that the �rst a
tion to be exe
uted 
omes from x. This isexpressed 
learly in axiom L6. The relation between LÆiw and Æiw also explains the distributivelaw L7 and the absorption law L5. Axioms L1-L4 de�ne the termination behaviour of LÆiw:xLÆiwy 
an only terminate if both operands 
an terminate. A deadlo
k o

urs if the left operandis " and the right operand 
annot terminate (axioms L2, L3).The de�nition of RÆiw is similar. The intuition behind the operator RÆiw is that the rightoperand may only exe
ute a
tions whi
h are not blo
ked by the left operand. Therefore, we makea distin
tion using the 
ondition AE(a) \AE(x) = ; (see axioms R6a and R6b).Theorem 11 (Soundness) The axioms given in Table 6 are sound with respe
t to IWD-bisimilarity on 
losed IWD(Æ; �;+)-terms.Proof. If \s = t if b" represents either one of S, L1-L5, L7, R1-4, R5, R6b, or R7, then therelation R = f(s; t); (t; s) j bg [ I is an IWD-bisimulation for that axiom.For the axioms L6 and R6a the IWD-bisimulations are given byR = f(a � xLÆiwy; a � (x Æiw y)); (" � x Æiw y; " � (x Æiw y)); (" � x Æiw q; x Æiw q)j q 2 C(�IWD(Æ; �;+))gS [ Iand R = f(xRÆiwa � y; a � (x Æiw y)); (x Æiw " � y; " � (x Æiw y)); (p Æiw " � q; p Æiw q)j p; q 2 C(�IWD(Æ; �;+));AE (a) \AE (x) = ;gS [ Irespe
tively. ⊠We will 
onsider basi
 terms as in De�nition 8 of Se
tion 4. To prove the elimination propertywe will need the following lemma.Lemma 5 For arbitrary basi
 terms b1 and b2 we have the existen
e of basi
 terms 
1, 
2 and 
3su
h that b1 LÆiwb2 = 
1, b1RÆiwb2 = 
2 and b1 Æiw b2 = 
3.Proof. These statements are proven simultaneously with indu
tion on the stru
ture of basi
terms b1 and b2. The details of the proofs are omitted. ⊠Theorem 12 (Elimination) For every 
losed IWD(Æ; �;+)-term x there is a derivably equalbasi
 term s.Proof. This theorem is proven by indu
tion on the stru
ture of 
losed IWD(Æ; �;+)-term x. Theonly interesting 
ases are the following: x � x0 LÆiwx00, x � x0RÆiwx00, and x � x0 Æiw x00 for 
losedIWD(Æ; �;+)-terms x0 and x00. In all 
ases we �nd the existen
e of basi
 terms b1 and b2 su
h thatx1 = b1 and x2 = b2. Using the previous lemma we �nd the desired result. ⊠



29Next, we prove that the pro
ess algebra IWD(Æ; �;+) is a 
onservative extension of the pro
essalgebra BPA(ÆE). This means that every equality between 
losed terms from the signature ofBPA(ÆE) is also derivable from the pro
ess algebra IWD(Æ; �;+), and also that in the pro
essalgebra IWD(Æ; �;+) only those equalities are derivable. The proof of this theorem uses theapproa
h of [Ver95℄.Theorem 13 (Conservativity) The pro
ess algebra IWD(Æ; �;+) is a 
onservative extensionof the pro
ess algebra BPA(ÆE).Proof. The 
onservativity follows from the following observations:1. IWD-bisimilarity is de�nable in terms of predi
ate and relation symbols only,2. BPA(ÆE) is a 
omplete axiomatisation of IWD-bisimilarity on 
losed BPA(ÆE)-terms,3. IWD(Æ; �;+) is a sound axiomatisation of IWD-bisimilarity on 
losed IWD(Æ; �;+)-terms(see Theorem 11),4. The term dedu
tion system for BPA(ÆE) is pure, well-founded and in path format, and5. The term dedu
tion system for IWD(Æ; �;+) is in path format.
⊠Theorem 14 (Completeness) The pro
ess algebra IWD(Æ; �;+) is a 
omplete axiomatisationof IWD-bisimilarity on 
losed IWD(Æ; �;+)-terms.Proof. By the General Completeness Theorem of [Ver94℄, the 
ompleteness of the pro
ess algebraIWD(Æ; �;+) follows immediately from the properties mentioned in the proof of Theorem 13 andthe fa
t that IWD(Æ; �;+) has the elimination property for BPA(ÆE)(see Theorem 8). ⊠In Se
tion 3 we have given a dire
t axiomatisation of interworking sequen
ing, while in this se
tionwe have expressed interworking sequen
ing in terms of alternative and sequential 
omposition.We will prove that the axioms used in the dire
t axiomatisation are still valid in the 
urrentsetting for 
losed terms.As a 
onsequen
e of the fa
t that IWD-bisimilarity is a 
ongruen
e for all operators in thesignature and the fa
t that for every 
losed term there exists a derivably equal basi
 term, we
an prove equalities for 
losed terms with indu
tion.Proposition 1 (Commutativity of Æiw) For arbitrary 
losed IWD(Æ; �;+)-terms x and y su
hthat AE(x) \AE(y) = ; we have x Æiw y = y Æiw x:



30 5 THE INTERWORKING SEQUENCINGProof. Suppose that AE(x) \ AE(y) = ;. We prove the statements xLÆiwy = yRÆiwx andx Æiw y = y Æiw x simultaneously with indu
tion on the stru
ture of basi
 terms x and y. First wepresent the proof of xLÆiwy = yRÆiwx.1. x � ". Trivial by axiom R1-4.2. x � ÆE for some E � EID . Then xLÆiwy = ÆE LÆiwy = ÆE[AE(y) = yRÆiwÆE = yRÆiwx.3. x � a � x0 for some a 2 A and x0 2 B(�IWD(Æ; �;+)). As AE(a � x0) \ AE(y) = ; impliesAE(x0) \AE(y) = ;, we have by indu
tion that x0 Æiw y = y Æiw x0. ThenxLÆiwy = a � x0 LÆiwy = a � (x0 Æiw y) = a � (y Æiw x0)= yRÆiwa � x0 = yRÆiwx:Note that we have also used that AE(a � x0) \AE(y) = ; implies AE(a) \AE(y) = ;.4. x � x0 + x00 for some x0; x00 2 B(�IWD(Æ; �;+)). As AE (x0 + x00) \ AE(y) = ; impliesAE(x0) \ AE(y) = ; and AE(x00) \ AE(y) = ;, we have by indu
tion x0 LÆiwy = yRÆiwx0and x00 LÆiwy = yRÆiwx00. ThenxLÆiwy = (x0 + x00)LÆiwy = x0 LÆiwy + x00 LÆiwy = yRÆiwx0 + yRÆiwx00= yRÆiw(x0 + x00) = yRÆiwx:Then we have x Æiw y = xLÆiwy + xRÆiwy = yRÆiwx+ yLÆiwx = y Æiw x. ⊠Proposition 2 (Unit element) For 
losed IWD(Æ; �;+)-terms x we have" Æiw x = x Æiw " = x:Proof. First, we prove " Æiw x = x with indu
tion on the stru
ture of basi
 term x.1. x � ". Then " Æiw x = " Æiw " = "LÆiw"+ "RÆiw" = "+ " = " = x.2. x � ÆE for some E � EID . Then "Æiwx = "Æiw ÆE = "LÆiwÆE+"RÆiwÆE = ÆE+ÆE[AE(") =ÆE = x.3. x � a � x0 for some a 2 A and x0 2 B(�IWD(Æ; �;+)). By indu
tion we have " Æiw x0 = x0.Then "Æiwx = "Æiwa�x0 = "LÆiwa�x0+"RÆiwa�x0 = ÆAE(a�x0)+a�("Æiwx0) = ÆAE(a�x0)+a�x0 =a � x0.4. x � x1 + x2 for some x1; x2 2 B(�IWD(Æ; �;+)). By indu
tion we have " Æiw x1 = x1and " Æiw x2 = x2. Then " Æiw x = " Æiw (x1 + x2) = "LÆiw(x1 + x2) + "RÆiw(x1 + x2) ="LÆiwx1 + "LÆiwx2 + "RÆiwx1 + "RÆiwx2 = " Æiw x1 + " Æiw x2 = x1 + x2 = x.



31Then, using the 
ommutativity of Æiw and the fa
t that AE(x) \ AE(") = ; we easily �ndx Æiw " = " Æiw x = x. ⊠

Proposition 3 (Asso
iativity of Æiw) For 
losed IWD(Æ; �;+)-terms x, y, and z, we have(x Æiw y) Æiw z = x Æiw (y Æiw z):Proof. Without loss of generality we 
an assume that x, y, and z are basi
 terms. To prove thistheorem the following propositions are proven simultaneously with indu
tion on the general formof the basi
 terms x, y, and z. (xLÆiwy)LÆiwz = xLÆiw(y Æiw z) (1)(xRÆiwy)LÆiwz = xRÆiw(y LÆiwz) (2)(x Æiw y)RÆiwz = xRÆiw(yRÆiwz) (3)(x Æiw y) Æiw z = x Æiw (y Æiw z) (4)This way of proving asso
iativity of interworking sequen
ing is similar to the way in whi
hasso
iativity of parallel 
omposition is proven in ACP . Similar equations in the setting of ACPare usually 
alled the Axioms of Standard Con
urren
y [BW90℄.Let x =∑i2I ai � xi + ÆE +∑k2K ";y =∑l2L bl � yl + ÆF +∑n2N ";z =∑o2O 
o � zo + ÆG +∑q2Q ";for some �nite index sets I;K;L;N;O;Q, ai; bl; 
o 2 A, E;F;G � EID and basi
 terms xi; yl; zo.The following identities are used in the proofs of these four equations. Their proofs are omitted.("LÆiwy)LÆiwz = "LÆiw(y Æiw z) (a)(xRÆiw")LÆiwz = xRÆiw("LÆiwz) (b)(x Æiw y)RÆiw" = xRÆiw(yRÆiw") (
)



32 5 THE INTERWORKING SEQUENCINGProof of (1):
(xLÆiwy)LÆiwz= fass. x; distribution lawsg
∑i2I(ai � xi LÆiwy)LÆiwz + (ÆE LÆiwy)LÆiwz + ∑k2K("LÆiwy)LÆiwz= fL6; L5g
∑i2I ai � ((xi Æiw y) Æiw z) + ÆE[AE(y)[AE (z) +∑k2K("LÆiwy)LÆiwz= fIndu
tion hypothesis (4); AE (y) [AE(z) = AE (y Æiw z); (a)g
∑i2I ai � (xi Æiw (y Æiw z)) + ÆE[AE(yÆiwz) +∑k2K "LÆiw(y Æiw z)= fL6; L5g
∑i2I ai � xi Æiw (y Æiw z) + ÆE LÆiw(y Æiw z) +∑k2K "LÆiw(y Æiw z)= fdistribution laws; ass. xgxLÆiw(y Æiw z)

Proof of (2): Let L0 = fl 2 L j AE(bl) \AE(x) = ;g and L00 = L n L0.
(xRÆiwy)LÆiwz= fass. y; distribution lawsg
∑l2L(xRÆiwbl � yl)LÆiwz + (xRÆiwÆF )LÆiwz + ∑n2N(xRÆiw")LÆiwz= fR6a; R6b; L6; R5; L5g
∑l2L0 bl � ((x Æiw yl) Æiw z) + ∑l2L00 ÆAE(x)[AE (bl�yl)[AE(z) + ÆF[AE(x)[AE (z)+ ∑n2N(xRÆiw")LÆiwz= fIndu
tion hypothesis (4); (b)g
∑l2L0 bl � (x Æiw (yl Æiw z)) + ∑l2L00 ÆAE(x)[AE (bl�yl)[AE(z) + ÆF[AE(x)[AE (z)+ ∑n2N xRÆiw("LÆiwz)= fR6a; R6b; L6; R5; L5g
∑l2L xRÆiw(bl � yl LÆiwz) + xRÆiw(ÆF LÆiwz) + ∑n2N xRÆiw("LÆiwz)= fdistribution laws; ass. ygxRÆiw(yRÆiwz)



33Proof of (3): Let O0 = fo 2 O j AE(
o) \AE (x Æiw y) = ;g and O00 = O n O0.(x Æiw y)RÆiwz= fass. z; distribution lawsg
∑o2O(x Æiw y)RÆiw
o � zo + (x Æiw y)RÆiwÆG + ∑q2Q(x Æiw y)RÆiw"= fR6a; R6b;R5g
∑o2O0 
o � ((x Æiw y) Æiw zo) + ∑o2O00 ÆAE (xÆiwy)[AE (
o�zo) + ÆG[AE (xÆiwy)+ ∑q2Q(x Æiw y)RÆiw"= fIndu
tion hypothesis (4); AE(x Æiw y) = AE(x) [AE(y); (
)g
∑o2O0 
o � (x Æiw (y Æiw zo)) + ∑o2O00 ÆAE (x)[AE(y)[AE (
o�zo)+ ÆG[AE(x)[AE (y) + ∑q2QxRÆiw(yRÆiw")= fR6a; R6b; R5g
∑o2O xRÆiw(yRÆiw
o � zo) + xRÆiw(yRÆiwÆG) + ∑q2QxRÆiw(yRÆiw")= fdistribution laws; ass. zgxRÆiw(yRÆiwz)Proof of (4): (x Æiw y) Æiw z= fSg(x Æiw y)LÆiwz + (x Æiw y)RÆiwz= fSg(xLÆiwy + xRÆiwy)LÆiwz + (x Æiw y)RÆiwz= fL7g(xLÆiwy)LÆiwz + (xRÆiwy)LÆiwz + (x Æiw y)RÆiwz= fIndu
tion hypotheses (1), (2), (3)gxLÆiw(y Æiw z) + xRÆiw(yLÆiwz) + xRÆiw(yRÆiwz)= fR7gxLÆiw(y Æiw z) + xRÆiw(yLÆiwz + yRÆiwz)= fSgxLÆiw(y Æiw z) + xRÆiw(y Æiw z)= fSgx Æiw (y Æiw z)

⊠Finally we give two more identities. They 
orrespond to the axioms Æiw1 and Æiw3 from Table 2.Proposition 4 For E;F � EID and a 2 A su
h that AE(a) \E 6= ; we haveÆE Æiw a = ÆE[AE(a);ÆE Æiw ÆF = ÆE[F :



34 6 THE E-INTERWORKING MERGEProof. For the �rst identity 
onsiderÆE Æiw a = ÆE LÆiwa+ ÆERÆiwa = ÆE[AE(a) + ÆERÆiwa � "= ÆE[AE(a) + ÆE[AE(a) = ÆE[AE(a);and for the se
ond 
onsiderÆE Æiw ÆF = ÆE LÆiwÆF + ÆERÆiwÆF = ÆE[F + ÆE[F = ÆE[F :
⊠Observe that we have now shown that all identities on 
losed IWD(Æ)-terms that are derivablyequal in the pro
ess algebra IWD(Æ), are also derivably equal in the pro
ess algebra IWD(Æ; �;+).6 The E-interworking mergeNow that we have de�ned the pro
ess algebras BPA(ÆE) and IWD(Æ; �;+) whi
h in
lude operatorsfor alternative and sequential 
omposition, we aim at extending them with the merge operator.For te
hni
al reasons, we do this in two steps: First we will de�ne the E-interworking merge inthis se
tion and in the next se
tion we will extend the obtained pro
ess algebra to its �nal shape.The E-interworking merge of x and y, denoted by x kEiw y, is the parallel exe
ution of the pro
essesx and y with the restri
tion that the pro
esses must syn
hronise on all atomi
 a
tions whi
h arede�ned on entities from the set E. This set E is stati
, whi
h means that it remains un
hangedduring 
al
ulations on a term whi
h 
ontains the E-interworking merge operator. The resultingpro
ess algebra is 
alled IWD(Æ;+; �; kE).The dedu
tion rules de�ning the operational semanti
s of the E-interworking merge are given inTable 7. The E-interworking merge of two pro
esses 
an terminate if and only if both operands
an terminate. The se
ond and third rule in Table 7 say that if an operand 
an perform an a
tion,the merge 
an perform the same a
tion, provided that the a
tion is not supposed to syn
hronise(i.e. the sender and re
eiver are not both in E). The fourth rule expresses the behaviour of amerge in 
ase a syn
hronised a
tion is possible.De�nition 10 (A
tive entities) For arbitrary i; j 2 EID, m 2 MID, E � EID , x; y 2C(�IWD(Æ;+; �; kE)), and � 2 fÆiw; LÆiw; RÆiw;+; �; kEiw ; kEiw ; jEiw j E � EIDg, we de�ne themapping AE : C(�IWD(Æ;+; �; kE))! IP(EID) indu
tively as follows:AE(
(i; j;m)) = fi; jg;AE(") = ;;AE(ÆE) = E;AE(x� y) = AE(x) [AE(y):



35x # y #x kEiw y # x a!x0 AE (a) 6� Ex kEiw y a!x0 kEiw y y a! y0 AE (a) 6� Ex kEiw y a!x kEiw y0x a!x0 y a! y0 AE (a) � Ex kEiw y a! x0 kEiw y0Table 7: Dedu
tion rules for E-interworking merge (a 2 A, E � EID)For the axiomatisation of the E-interworking merge we need two auxiliary operators, similar tothe axiomatisation of the 
ommuni
ation merge of ACP . These additional operators are kEiw (E-interworking left-merge) and jEiw (E-interworking syn
hronisation merge). The pro
ess xkEiw ybehaves like the pro
ess x kEiw y with the restri
tion that the �rst a
tion must 
ome from pro
essx and that a
tion 
annot syn
hronise with an a
tion from y. The pro
ess x jEiw y behaves asthe pro
ess x kEiw y with the restri
tion that the �rst a
tion must be a syn
hronisation. This isformalised by the dedu
tion rules in Table 8. The term dedu
tion system T (IWD(Æ;+; �; kE))
onsists of the dedu
tion rules of Tables 1, 3, 5, 7 and 8.x # y #xkEiw y # x a!x0 AE (a) 6� ExkEiw y a!x0 kEiw yx a!x0 y a! y0 AE (a) � Ex jEiw y a!x0 kEiw y0Table 8: Dedu
tion rules for auxiliary operators of E-interworking merge (a 2 A, E � EID)Table 9 presents the axioms de�ning the E-interworking merge and its auxiliary operators. AxiomM states that either one of the two operands exe
utes a non-syn
hronised a
tion (xkEiw y+ykEiw x),or that a syn
hronised a
tion takes pla
e (x jEiw y). The de�nition of the kEiw operator (LM1-LM7) is very similar to the de�nition of the LÆiw operator in Se
tion 5 (Table 6, axioms L1-L7).The only di�eren
e is that axiom L6 is un
onditional, whereas axiom LM6b has to take 
areof eliminating a
tions whi
h are supposed to syn
hronise. Axioms CM1-CM7 de�ne the jEiwoperator. This operator enables all a
tions that 
an be performed by both operands and whi
hmust syn
hronise. In all other 
ases it yields a deadlo
k, where the s
ope of the deadlo
k 
an bederived from the operands.It turns out that IWD-bisimilarity is a 
ongruen
e for the operators in the signature of the pro
essalgebra IWD(Æ;+; �; kE). Furthermore, IWD(Æ;+; �; kE) is a sound and 
omplete axiomatisationof IWD-bisimilarity on 
losed IWD(Æ;+; �; kE)-terms. The proofs are based on the meta-theory
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M x kEiw y = xkEiw y + ykEiw x+ x jEiw yLM1 "kEiw " = "LM2 "kEiw ÆF = ÆFLM3 "kEiw a � x = ÆAE(a�x)LM4 "kEiw (x + y) = "kEiw x+ "kEiw yLM5 ÆF kEiw x = ÆF[AE(x)LM6a a � xkEiw y = a � (x kEiw y) if AE (a) 6� ELM6b a � xkEiw y = ÆAE(a�x)[AE(y) if AE (a) � ELM7 (x + y)kEiw z = xkEiw z + ykEiw zCM1 " jEiw x = ÆAE(x)CM2 x jEiw " = ÆAE(x)CM3 ÆF jEiw x = ÆF[AE(x)CM4 x jEiw ÆF = ÆF[AE(x)CM5a a � x jEiw b � y = a � (x kEiw y) if a � b ^ AE (a) � ECM5b a � x jEiw b � y = ÆAE(a�x)[AE (b�y) if a 6� b _ AE (a) 6� ECM6 (x + y) jEiw z = x jEiw z + y jEiw zCM7 x jEiw (y + z) = x jEiw y + x jEiw zTable 9: Axioms of E-interworking merge (a; b 2 A, E; F 2 EID)



37presented in [BV95, Ver95℄.Theorem 15 (Congruen
e) IWD-bisimilarity is a 
ongruen
e for E-interworking merge andthe auxiliary operators.Proof. The term dedu
tion system is in path format and hen
e IWD-bisimilarity is a 
ongruen
efor all operators. ⊠Theorem 16 (Soundness) The pro
ess algebra IWD(Æ;+; �; kE) is a sound axiomatisation ofIWD-bisimilarity on 
losed IWD(Æ;+; �; kE)-terms.Proof. For the axioms LM1-LM5, LM6b, CM1-CM4, and CM5b the IWD-bisimulations thatwitness the soundness are trivial. If \s = t if b" represents su
h an axiom, then the IWD-bisimulation is R = f(s; t); (t; s) j bg.For the axioms M, LM7, CM6, and CM7 the IWD-bisimulation is given by R = f(s; t); (t; s) j bg[Iif the axiom is given as \s = t if b".For the axioms LM6a and CM5a the IWD-bisimulations areR = f(a � xkEiw y; a � (x kEiw y)); (" � x kEiw y; " � (x kEiw y)); (" � x kEiw q; x kEiw q)j AE(a) 6� E; q 2 C(�IWD(Æ;+; �; kE))gS [ Iand R = f(a � x jEiw b � y; a � (x kEiw y)); (" � x kEiw " � y; " � (x kEiw y));(p kEiw " � y; p kEiw y); (" � x kEiw q; x kEiw q)j a � b;AE (a) � E; p; q 2 C(�IWD(Æ;+; �; kE))gS [ Irespe
tively. ⊠Lemma 6 For arbitrary basi
 terms b1 and b2 we have the existen
e of basi
 terms 
1, 
2, and
3 su
h that b1kEiw b2 = 
1, b1 jEiw b2 = 
2 and b1 kEiw b2 = 
3.Proof. These statements are proven simultaneously with indu
tion on the total number ofsymbols of the basi
 terms b1 and b2.1. By 
ase distin
tion on the stru
ture of basi
 term b1.(a) b1 � ". By 
ase distin
tion on the stru
ture of basi
 term b2.i. b2 � ". Then b1kEiw b2 = "kEiw " = ".ii. b2 � ÆF2 for some F2 � EID . Then b1kEiw b2 = "kEiw ÆF2 = ÆF2 .



38 6 THE E-INTERWORKING MERGEiii. b2 � a2 � b02 for some a2 2 A and b02 2 B(�IWD(Æ;+; �; kE)). Thenb1kEiw b2 = "kEiw a2 � b02 = ÆAE(a2�b02):iv. b2 � b02 + b002 for some b02; b002 2 B(�IWD(Æ;+; �; kE)). By indu
tion we have theexisten
e of basi
 terms 
01 and 
001 su
h that "kEiw b02 = 
01 and "kEiw b002 = 
001 . Thenb1kEiw b2 = "kEiw (b02 + b002) = "kEiw b02 + "kEiw b002 = 
01 + 
001:(b) b1 � ÆF1 for some F1 � EID . Then b1kEiw b2 = ÆF1kEiw b2 = ÆF1[AE(b2).(
) b1 � a1 � b01 for some a1 2 A and b01 2 B(�IWD(Æ;+; �; kE)). By indu
tion we have theexisten
e of basi
 term 
01 su
h that b01 kEiw b2 = 
01. Then, if AE(a) 6� E,b1kEiw b2 = a1 � b01kEiw b2 = a1 � (b01 kEiw b2) = a1 � 
01:If AE (a1) � E, then b1kEiw b2 = a1 � b01kEiw b2 = ÆAE (a1�b01)[AE (b2).(d) b1 � b01+b001 for some b01; b001 2 B(�IWD(Æ;+; �; kE)). By indu
tion we have the existen
eof basi
 terms 
01 and 
001 su
h that b01kEiw b2 = 
01 and b001kEiw b2 = 
001 . Thenb1kEiw b2 = (b01 + b001)kEiw b2 = b01kEiw b2 + b001kEiw b2 = 
01 + 
001 :2. By 
ase distin
tion on the stru
ture of basi
 term b1.(a) b1 � ". Then b1 jEiw b2 = " jEiw b2 = ÆAE (b2).(b) b1 � ÆF1 for some F1 � EID . Then b1 jEiw b2 = ÆF1 jEiw b2 = ÆF1[AE(b2).(
) b1 � a1 � b01 for some a1 2 A and b01 2 B(�IWD(Æ;+; �; kE)). By 
ase distin
tion onthe stru
ture of basi
 term b2.i. b2 � ". Then b1 jEiw b2 = b1 jEiw " = ÆAE(b1).ii. b2 � ÆF2 for some F2 � EID . Then b1 jEiw b2 = b1 jEiw ÆF2 = ÆAE(b1)[F2 .iii. b2 � a2 � b02 for some a2 2 A and b02 2 B(�IWD(Æ;+; �; kE)). By indu
tionwe have the existen
e of basi
 term 
3 su
h that b01 kEiw b02 = 
3. Then, if a1 �a2 ^AE (a1) � E,b1 jEiw b2 = a1 � b01 jEiw a2 � b02 = a1 � (b01 kEiw b02) = a1 � 
3:If a1 6� a2 _AE(a1) 6� E, thenb1 jEiw b2 = a1 � b01 jEiw a2 � b02 = ÆAE(a1 �b01)[AE(a1�b02):iv. b2 � b02 + b002 for some b02; b002 2 B(�IWD(Æ;+; �; kE)). By indu
tion we have theexisten
e of basi
 terms 
02 and 
002 su
h that b1 jEiw b02 = 
02 and b1 jEiw b002 = 
002 . Thenb1 jEiw b2 = b1 jEiw (b02 + b002) = b1 jEiw b02 + b1 jEiw b002 = 
02 + 
002 :



39(d) b1 � b01+b001 for some b01; b001 2 B(�IWD(Æ;+; �; kE)). By indu
tion we have the existen
eof basi
 terms 
02 and 
002 su
h that b01 jEiw b2 = 
02 and b001 jEiw b2 = 
002. Thenb1 jEiw b2 = (b01 + b001) jEiw b2 = b01 jEiw b2 + b001 jEiw b2 = 
02 + 
002 :3. By the previous two items we have the existen
e of basi
 terms 
01, 
001, and 
2 su
h thatb1kEiw b2 = 
01, b2kEiw b1 = 
001 , and b1 jEiw b2 = 
2. Then,b1 kEiw b2 = b1kEiw b2 + b2kEiw b1 + b1 jEiw b2 = 
01 + 
001 + 
2:
⊠Theorem 17 (Elimination) For every 
losed IWD(Æ;+; �; kE)-term x there is a derivably equalbasi
 term s.Proof. This theorem is proven by indu
tion on the stru
ture of 
losed IWD(Æ;+; �; kE)-term x.All 
ases ex
ept for x � x0kEiw x00, x � x0 jEiw x00, and x � x0 kEiw x00 have already been treated in theproof of Theorem 12. In the remaining three 
ases we �nd the existen
e of basi
 terms b1 and b2su
h that x1 = b1 and x2 = b2. Using the previous lemma we �nd the desired result. ⊠Theorem 18 (Conservativity) The pro
ess algebra IWD(Æ;+; �; kE) is a 
onservative exten-sion of the pro
ess algebra IWD(Æ; �;+).Proof. The proof of this theorem uses the approa
h of [Ver95℄. The 
onservativity follows fromthe following observations:1. IWD-bisimilarity is de�nable in terms of predi
ate and relation symbols only,2. IWD(Æ; �;+) is a 
omplete axiomatisation of IWD-bisimilarity on 
losed IWD(Æ; �;+)-terms,3. IWD(Æ;+; �; kE) is a sound axiomatisation of IWD-bisimilarity on 
losed IWD(Æ;+; �; kE)-terms (see Theorem 16),4. the term dedu
tion system for IWD(Æ; �;+) is pure, well-founded and in path format, and5. the term dedu
tion system for IWD(Æ;+; �; kE) is in path format.
⊠Theorem 19 (Completeness) The pro
ess algebra IWD(Æ;+; �; kE) is a 
omplete axiomatisa-tion of IWD-bisimilarity on 
losed IWD(Æ;+; �; kE)-terms.



40 6 THE E-INTERWORKING MERGEProof. By the General Completeness Theorem of [Ver94℄, the 
ompleteness of the pro
ess algebraIWD(Æ;+; �; kE) follows immediately from the properties mentioned in the proof of Theorem 18and the fa
t that IWD(Æ;+; �; kE) has the elimination property for BPA(ÆE)(see Theorem 8) andhen
e also for IWD(Æ; �;+). ⊠When de�ning an operator for parallel 
omposition, several properties are desirable, su
h as
ommutativity, the existen
e of a unit element, and asso
iativity (under some 
ondition). Theproof of asso
iativity in the pro
ess algebra is quite 
ompli
ated.Proposition 5 (Commutativity kEiw ) For 
losed IWD(Æ;+; �; kE)-terms x, y, and a set ofentities E we have x jEiw y = y jEiw x;x kEiw y = y kEiw x:Proof. The propositions are proven simultaneously with indu
tion on the general stru
ture ofbasi
 terms x and y. Letx =∑i2I ai � xi + ÆE +∑k2K "; y =∑l2L bl � yl + ÆF +∑n2N ";for some �nite index sets I;K;L;N , ai; bl 2 A, E;F � EID and basi
 terms xi; yl. Then,x jEiw y =∑i2I∑l2L ai � xi jEiw bl � yl + x jEiw ÆF +∑n2N x jEiw "+ ÆE jEiw y +∑k2K " jEiw y=∑i2I ∑l2L;ai�bl;AE(ai)�E ai � (xi kEiw yl)+∑i2I ∑l2L;ai 6�bl_AE(ai)6�E ÆAE(ai�xi)[AE (bl�yl)+ ÆAE(x)[F +∑n2N ÆAE(x) + ÆE[AE(y) +∑k2K ÆAE(y)=∑l2L ∑i2I;bl�ai;AE(bl)�E bl � (yl kEiw xi)+∑l2L ∑i2I;bl 6�ai_AE(bl)6�E ÆAE(bl�yl)[AE (ai�xi)+ ÆF jEiw x+∑n2N " jEiw x+ y jEiw ÆE +∑k2K y jEiw "=∑l2L∑i2I bl � yl jEiw ai � xi + ÆF jEiw x+∑n2N " jEiw x+ y jEiw ÆE +∑k2K y jEiw "=y jEiw xand x kEiw y =xkEiw y + ykEiw x+ x jEiw y = ykEiw x+ xkEiw y + y jEiw x = y kEiw x:
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⊠Proposition 6 For 
losed IWD(Æ;+; �; kE)-terms x we havex k;iw " = x;" k;iw x = x:Proof. The �rst proposition is proven with indu
tion on the general stru
ture of basi
 term x.Let x =∑i2I ai � xi + ÆE +∑k2K ";for some �nite index sets I;K, ai 2 A, E � EID and basi
 terms xi. The indu
tion hypothesisis xi k;iw " = xi for all i 2 I. Then,xk ;iw " =∑i2I ai � xik ;iw "+ ÆEk ;iw "+∑k2K "k ;iw "=∑i2I ai � (xi k;iw ") + ÆE +∑k2K "=∑i2I ai � xi + ÆE +∑k2K "= xand "k ;iw x = "k ;iw (∑i2I ai � xi + ÆE +∑k2K ")=∑i2I "k ;iw ai � xi + "k ;iw ÆE +∑k2K "k ;iw "=∑i2I ÆAE(ai�xi) + ÆE +∑k2K ":Using these two sub
omputations we obtain:x k;iw " = xk ;iw "+ "k ;iw x+ x j;iw "= x+∑i2I ÆAE(ai �xi) + ÆE +∑k2K "+ ÆAE (x)= x:The other part of the proposition is obtained using the 
ommutativity of k;iw . ⊠The following proposition serves our needs in proving interworking merge asso
iative in the nextse
tion.



42 6 THE E-INTERWORKING MERGEProposition 7 (Asso
iativity of kEiw ) For 
losed IWD(Æ;+; �; kE)-terms x, y, and z, and setsof entities E1, E2, and E3 su
h that AE(x) � E1, AE(y) � E2, and AE (z) � E3, we have(x kE1\E2iw y) k(E1[E2)\E3iw z = x kE1\(E2[E3)iw (y kE2\E3iw z):Proof. Without loss of generality we 
an assume that x, y, and z are basi
 terms. We usethe following shorthands: S = E1 \ E2 \ E3, E12 = (E1 \ E2) n S, E23 = (E2 \ E3) n S, andE13 = (E1 \E3) n S. In Figure 16 these sets are indi
ated in a Venn diagram.E1 E2
E3

E12E13 E23S
Figure 16: Explanation of shorthandsWe prove the following propositions simultaneously with indu
tion on the stru
ture of the basi
terms x, y, and z. (xkE12[Siw y)kE13[E23[Siw z = xkE12[E13[Siw (y kE23[Siw z) (5)(x jE12[Siw y) jE13[E23[Siw z = x jE12[E13[Siw (y jE23[Siw z) (6)(x jE12[Siw y)kE13[E23[Siw z = x jE12[E13[Siw (ykE23[Siw z) (7)(x kE12[Siw y) kE13[E23[Siw z = x kE12[E13[Siw (y kE23[Siw z) (8)Let x =∑i2I ai � xi + ÆE +∑k2K ";y =∑l2L bl � yl + ÆF +∑n2N ";z =∑o2O 
o � zo + ÆG +∑q2Q ";for some �nite index sets I;K;L;N;O;Q, ai; bl; 
o 2 A, E;F;G � EID and basi
 terms xi; yl; zo.We only give the proofs for (6) and (8). The proof for (6) uses indu
tion on the general form ofbasi
 terms x, y, and z.



43From AE(x) � E1, AE(y) � E2, and AE(z) � E3 we obtain AE(xi) � E1, AE(yl) � E2, andAE(zo) � E3 for all i 2 I, l 2 L, and o 2 O. This means that we are allowed to use(xi kE12[Siw yl) kE13[E23[Siw zo = xi kE12[E13[Siw (yl kE23[Siw zo):First, we give a number of sub
omputations. These are used in proving equation (6).Sub
omputation 1:(ai � xi jE12[Siw bl � yl) jE13[E23[Siw 
o � zo={ai � (xi kE12[Siw yl) jE13[E23[Siw 
o � zo if ai � bl ^AE(ai) � E12 [ SÆAE(ai �xi)[AE (bl�yl) jE13[E23[Siw 
o � zo otherwise=














ai � ((xi kE12[Siw yl) kE13[E23[Siw zo) if ai � bl ^AE(ai) � E12 [ S^ ai � 
o ^AE (ai) � E13 [E23 [ SÆAE(ai)[AE (xi)[AE(yl)[AE(
o�zo) if ai � bl ^AE(ai) � E12 [ S^ (ai 6� 
o _AE(ai) 6� E13 [E23 [ S)ÆAE(ai�xi)[AE(bl�yl)[AE(
o�zo) otherwise=




ai � ((xi kE12[Siw yl) kE13[E23[Siw zo) if ai � bl ^AE(ai) � E12 [ S^ ai � 
o ^AE (ai) � E13 [E23 [ SÆAE(ai�xi)[AE(bl�yl)[AE(
o�zo) otherwise={ai � ((xi kE12[Siw yl) kE13[E23[Siw zo) if ai � bl � 
o ^AE(ai) � SÆAE(ai �xi)[AE (bl�yl)[AE (
o�zo) otherwise={ai � (xi kE12[E13[Siw (yl kE23[Siw zo)) if ai � bl � 
o ^AE(ai) � SÆAE(ai �xi)[AE (bl�yl)[AE (
o�zo) otherwise=














ai � (xi kE12[E13[Siw (yl kE23[Siw zo)) if ai � bl ^AE(ai) � E12 [E13 [ S^ bl � 
o ^AE(bl) � E23 [ SÆAE(ai�xi)[AE(bl)[AE(yl)[AE(zo) if (ai 6� bl _AE(ai) 6� E12 [E13 [ S)^ bl � 
o ^AE(bl) � E23 [ SÆAE(ai�xi)[AE(bl�yl)[AE(
o�zo) otherwise={ai � xi jE12[E13[Siw bl � (yl kE23[Siw zo) if bl � 
o ^AE(bl) � E23 [ Sai � xi jE12[E13[Siw ÆAE(bl�yl)[AE(
o�zo) otherwise=ai � xi jE12[E13[Siw (bl � yl jE23[Siw 
o � zo)Sub
omputation 2: (ÆE jE12[Siw y) jE13[E23[Siw z = ÆE[AE(y) jE13[E23[Siw z= ÆE[AE(y)[AE (z)= ÆE jE12[E13[Siw (y jE23[Siw z)



44 6 THE E-INTERWORKING MERGESimilarly we obtain (x jE12[Siw ÆF ) jE13[E23[Siw z = x jE12[E13[Siw (ÆF jE23[Siw z)and (x jE12[Siw y) jE13[E23[Siw ÆG = x jE12[E13[Siw (y jE23[Siw ÆG):Sub
omputation 3: (" jE12[Siw y) jE13[E23[Siw z = ÆAE(y) jE13[E23[Siw z= ÆAE(y)[AE (z)= " jE12[E13[Siw (y jE23[Siw z)Similarly we obtain (x jE12[Siw ") jE13[E23[Siw z = x jE12[E13[Siw (" jE23[Siw z)and (x jE12[Siw y) jE13[E23[Siw " = x jE12[E13[Siw (y jE23[Siw "):Then, using these sub
omputations, we obtain(x jE12[Siw y) jE13[E23[Siw z=∑i2I∑l2L∑o2O(ai � xi jE12[Siw bl � yl) jE13[E23[Siw 
o � zo+ (ÆE jE12[Siw y) jE13[E23[Siw z + (x jE12[Siw ÆF ) jE13[E23[Siw z+ (x jE12[Siw y) jE13[E23[Siw ÆG +∑k2K(" jE12[Siw y) jE13[E23[Siw z+∑n2N(x jE12[Siw ") jE13[E23[Siw z +∑q2Q(x jE12[Siw y) jE13[E23[Siw "=∑i2I∑l2L∑o2O ai � xi jE12[E13[Siw (bl � yl jE23[Siw 
o � zo)+ ÆE jE12[E13[Siw (y jE23[Siw z) + x jE12[E13[Siw (ÆF jE23[Siw z)+ x jE12[E13[Siw (y jE23[Siw ÆG) +∑k2K " jE12[E13[Siw (y jE23[Siw z)+∑n2N x jE12[E13[Siw (" jE23[Siw z) +∑q2Qx jE12[E13[Siw (y jE23[Siw ")=x jE12[E13[Siw (y jE23[Siw z):Finally, equation (8) is proven as follows:



45(x kE12[Siw y) kE13[E23[Siw z=(x kE12[Siw y)kE13[E23[Siw z + zkE13[E23[Siw (x kE12[Siw y) + (x kE12[Siw y) jE13[E23[Siw z=(xkE12[Siw y + ykE12[Siw x+ x jE12[Siw y)kE13[E23[Siw z + zkE13[E23[Siw (x kE12[Siw y)+ (xkE12[Siw y + ykE12[Siw x+ x jE12[Siw y) jE13[E23[Siw z=(xkE12[Siw y)kE13[E23[Siw z + (ykE12[Siw x)kE13[E23[Siw z + (x jE12[Siw y)kE13[E23[Siw z+ zkE13[E23[Siw (x kE12[Siw y) + (xkE12[Siw y) jE13[E23[Siw z + (ykE12[Siw x) jE13[E23[Siw z+ (x jE12[Siw y) jE13[E23[Siw z=xkE12[E13[Siw (y kE23[Siw z) + ykE12[E23[Siw (x kE13[Siw z) + x jE12[E13[Siw (ykE23[Siw z)+ zkE13[E23[Siw (y kE12[Siw x) + z jE13[E23[Siw (xkE12[Siw y) + z jE13[E23[Siw (ykE12[Siw x)+ x jE12[E13[Siw (y jE23[Siw z)=xkE12[E13[Siw (y kE23[Siw z) + ykE12[E23[Siw (z kE13[Siw x) + x jE12[E13[Siw (ykE23[Siw z)+ (zkE23[Siw y)kE12[E13[Siw x+ (z jE13[Siw x)kE12[E23[Siw y + (z jE23[Siw y)kE12[E13[Siw x+ x jE12[E13[Siw (y jE23[Siw z)=xkE12[E13[Siw (y kE23[Siw z) + (ykE23[Siw z)kE12[E13[Siw x+ x jE12[E13[Siw (ykE23[Siw z)+ (zkE23[Siw y)kE12[E13[Siw x+ (x jE13[Siw z)kE12[E23[Siw y + (y jE23[Siw z)kE12[E13[Siw x+ x jE12[E13[Siw (y jE23[Siw z)=xkE12[E13[Siw (y kE23[Siw z) + (ykE23[Siw z + zkE23[Siw y + y jE23[Siw z)kE12[E13[Siw x+ x jE12[E13[Siw (ykE23[Siw z) + x jE12[E13[Siw (zkE23[Siw y) + x jE12[E13[Siw (y jE23[Siw z)=xkE12[E13[Siw (y kE23[Siw z) + (y kE23[Siw z)kE12[E13[Siw x+ x jE12[E13[Siw (ykE23[Siw z + zkE23[Siw y + y jE23[Siw z)=xkE12[E13[Siw (y kE23[Siw z) + (y kE23[Siw z)kE12[E13[Siw x+ x jE12[E13[Siw (y kE23[Siw z)=x kE12[E13[Siw (y kE23[Siw z):
⊠By taking E1 = E2 = E3 we obtain asso
iativity of kEiw .The �nal property whi
h we prove is the 
orresponden
e between the Æiw and kEiw operators. Thisformalises the resemblan
e between the axiomati
 de�nitions of these operators.Proposition 8 For 
losed IWD(Æ;+; �; kE)-terms x and y su
h that AE (x)\AE(y) = ; we havex k;iw y = x Æiw y:Proof. Let x =∑i2I ai � xi + ÆE +∑k2K ";



46 6 THE E-INTERWORKING MERGEy =∑l2L bl � yl + ÆF +∑n2N "for some �nite index sets I;K;L;N , ai; bl 2 A, E;F � EID and basi
 terms xi; yl. The indu
tionhypotheses are xi k;iw y = xi Æiw y for all i 2 I and x k;iw yl = x Æiw yl for all l 2 L. Thenxk ;iw y =∑i2I ai � xik ;iw y + ÆEk ;iw y +∑k2K "k ;iw y=∑i2I ai � (xi k;iw y) + ÆE[AE(y) +∑k2K "k ;iw y=∑i2I ai � (xi Æiw y) + ÆE[AE(y) +∑k2K∑n2N "+ ÆAE(y)=∑i2I ai � (xi Æiw y) + ÆE LÆiwy +∑k2K "LÆiwy=∑i2I ai � xi LÆiwy + ÆE LÆiwy +∑k2K "LÆiwy=xLÆiwy:In the following 
omputations we use that AE(bl) � AE(y) and AE(x) \ AE(y) = ; implyAE(bl) \AE(x) = ;:yk ;iw x =∑l2L bl � ylk ;iw x+ ÆF k ;iw x+∑n2N "k ;iw x=∑l2L bl � (yl k;iw x) + ÆF[AE(x) +∑n2N∑k2K "+ ÆAE (x)=∑l2L bl � (x k;iw yl) + ÆF[AE(x) +∑n2N∑k2K "+ ÆAE (x)=∑l2L bl � (x Æiw yl) + xRÆiwÆF +∑n2N xRÆiw"=∑l2L xRÆiwbl � yl + xRÆiwÆF +∑n2N xRÆiw"=xRÆiwy;x j;iw y =∑i2I∑l2L ai � xi j;iw bl � yl + ÆE j;iw y + x j;iw ÆF +∑k2K " j;iw y +∑n2N x j;iw "=∑i2I∑l2L ÆAE(ai �xi)[AE (bl�yl) + ÆE[AE(y) + ÆF[AE(x) + ÆAE(y) + ÆAE (x)=ÆAE(x)[AE (y);and therefore x k;iw y =xk ;iw y + yk ;iw x+ x j;iw y=xLÆiwy + xRÆiwx+ ÆAE(x)[AE (y)=x Æiw y + ÆAE(x)[AE (y)



47=x Æiw y:
⊠

7 Pro
ess Algebra for InterworkingsIn the previous se
tion we introdu
ed the E-interworking merge. This operator was parameterisedwith the set of entities on whi
h the pro
esses should syn
hronise. In order for the interwork-ing merge to be generally appli
able, the set E must be determined from the a
tual operandsof the interworking merge. Therefore, we have to generalise the E-interworking merge to theinterworking merge operator.There is a te
hni
al 
ompli
ation whi
h makes this generalisation non-trivial: we have to expli
itlyattribute every pro
ess term with the set of entities that it 
ontains. The reason for this is revealedby the examples in Figures 12 and 13 (see Se
tion 2.4).Using the de�nitions from the previous se
tions, interworkingX2 from Figure 12 has the followingsemanti
al representation: 
(
; d;m). There is no expli
it mention of the empty entity b. Indeed,this interpretation is exa
tly the same as the interpretation of interworking X20 from Figure 13.In a 
ontext with only + and Æiw operators, this identi�
ation would be 
ompletely harmless,however Figures 12 and 13 show that there is a merge 
ontext whi
h makes a distin
tion betweenX2 and X20.The reason for this anomaly is that we did not take empty entities into 
onsideration. Therefore, inorder to properly de�ne the interworking merge, we have to extend our semanti
al representationwith information about the entities 
ontained.There are several ways to a
hieve this. A �rst option would be to attribute the empty pro
ess "with a set of entities. Empty entity b would then be represented by "fbg. A se
ond option wouldbe to label a 
omplete pro
ess term with the set of entities whi
h it ranges over. The semanti
alrepresentation of X2 would then be
ome h
(
; d;m); fb; 
; dgi, whereas X20 would be representedby h
(
; d;m); f
; dgi.For te
hni
al reasons we 
hoose to elaborate on the se
ond option. An Interworking with adynami
al behaviour denoted by x over the entities from E is denoted by hx;Ei. Su
h a tuplehx;Ei will be 
alled an entity-labeled pro
ess.De�nition 11 (Signature) The signature of the pro
ess algebra IWE(Æ;+; k) 
onsists of theoperators h ; i, +, Æiw, and kiw .For hx;Ei to be a well-formed expression we do not require that the a
tive entities from x areall 
ontained in E. All entities in E whi
h are not a
tive entities in x are empty entities. The
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tive entities of hx;Ei 
an be determined from x solely. The 
omplete set of entities of hx;Ei,denoted by Ent(hx;Ei), 
ontains the a
tive entities from x and the entities from E.
De�nition 12 (A
tive entities, entities) For 
losed IWD(Æ;+; �; kE)-term x, E � EID , and
losed IWE(Æ;+; k)-terms s and t we de�ne the mappings AE : C(�IWE(Æ;+; k))! IP(EID) andEnt : C(�IWE(Æ;+; k))! IP(EID) indu
tively as follows:

AE(hx;Ei) = AE(x);AE(s+ t) = AE(s) [AE (t);AE(s Æiw t) = AE(s) [AE (t);AE(s kiw t) = AE(s) [AE (t);Ent(hx;Ei) = E [AE(x);Ent(s+ t) = Ent(s) [ Ent(t);Ent(s Æiw t) = Ent(s) [ Ent(t);Ent(s kiw t) = Ent(s) [ Ent(t):
On entity-labeled pro
esses we de�ne the operators interworking sequen
ing and interworkingmerge. The set of all entity-labeled pro
esses is 
alled IWE(Æ;+; k). The de�nition of the inter-working sequen
ing on entity-labeled pro
esses is straightforward.Before we give axioms for the pro
ess algebra IWE(Æ;+; k), we de�ne a operational semanti
s.The operational semanti
s of entity-labeled pro
esses, as expressed in Table 10, is similar to theoperational semanti
s of non-labeled pro
esses.The �rst two rules relate the domains of non-labeled pro
esses and entity labeled pro
esses. In these
ond rule we have to take 
are that we do not loose information about the involved entities afterexe
uting an a
tion. It may happen that some a
tive entity from x whi
h does not o

ur in E isnot a
tive anymore in x0 sin
e the last a
tion from that entity has been exe
uted. Therefore, wehave to extend the entity label of x0 with the a
tive entities of x. The rules for the interworkingmerge 
orrespond to the rules for the E-interworking merge but the 
ondition AE(a) � E isrepla
ed by AE(a) � Ent(s) \ Ent(t). The set Ent(s) \ Ent(t) 
ontains the shared entities froms and t, so this is the set of entities whi
h should syn
hronise.
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x #hx; Ei # x a!x0hx; Ei a!hx0; E [ AE (x)is #s+ t # t #s+ t # s a! s0s + t a! s0 Æiw h";Ent(t)i t a! t0s+ t a! t0 Æiw h";Ent(s)is # t #s Æiw t # s a! s0s Æiw t a! s0 Æiw t AE (a) \ AE (s) = ; t a! t0s Æiw t a! s Æiw t0s a! s0 AE (a) 6� Ent(s) \ Ent(t)s kiw t a! s0 kiw t t a! t0 AE (a) 6� Ent(s) \ Ent(t)s kiw t a! s kiw t0s # t #s kiw t # s a! s0 t a! t0 AE (a) � Ent(s) \ Ent(t)s kiw t a! s0 kiw t0Table 10: Operational semanti
s of entity-labeled pro
esses (a 2 A, E � EID , x; x0IWD(Æ;+; �; kE)-terms, s; s0; t; t0 entity-labeled pro
esses)For the \
orre
tness" of the dedu
tion rules for interworking merge it is ne
essary that the setof entities of a pro
ess does not 
hange by exe
uting a
tions (Lemma 8). This is guaranteed bythe dedu
tion rules. We �rst prove that the set of a
tive entities does not expand due to theexe
ution of a
tions.Lemma 7 For all a 2 A and 
losed IWD(Æ;+; �; kE)-terms x and x0 we have: if x a!x0, thenAE(x) � AE(x0).Proof. This lemma is proven with indu
tion on the stru
ture of 
losed IWD(Æ;+; �; kE)-term x.Suppose that x a!x0.1. x � ". This 
ase 
annot o

ur as " a

9 .2. x � ÆE for some E � EID . This 
ase 
annot o

ur as ÆE a
9 .3. x � b for some b 2 A. Then it must be the 
ase that b � a and x0 � ". ClearlyAE(x) = AE(b) � ; = AE(") = AE(x0).4. x � x1 + x2 for some 
losed IWD(Æ;+; �; kE)-terms x1 and x2. Then it must be the 
asethat either x1 a!x0 or x2 a!x0. By indu
tion we thus have either AE (x1) � AE (x0) orAE(x2) � AE (x0). In either 
ase we have AE(x) = AE(x1 + x2) = AE(x1) [ AE(x2) �AE(x0).



50 7 PROCESS ALGEBRA FOR INTERWORKINGS5. x � x1 � x2 for some 
losed IWD(Æ;+; �; kE)-terms x1 and x2. Then we 
an distinguish two
ases. First, x1 a!x01 for some 
losed IWD(Æ;+; �; kE)-term x01 su
h that x0 � x01 � x2. Byindu
tion we have AE(x1) � AE (x01). Then AE(x) = AE(x1 � x2) = AE(x1) [ AE(x2) �AE(x01)[AE(x2) = AE(x01 �x2) = AE(x0). Se
ond, x1 # and x2 a!x0. By indu
tion we haveAE(x2) � AE (x0). Then AE(x) = AE(x1 � x2) = AE(x1) [AE(x2) � AE(x1) [AE(x0) �AE(x0).6. x � x1Æiwx2 for some 
losed IWD(Æ;+; �; kE)-terms x1 and x2. Then we 
an distinguish two
ases. First, x1 a!x01 for some 
losed IWD(Æ;+; �; kE)-term x01 su
h that x0 � x01 Æiw x2. Byindu
tion we have AE(x1) � AE(x01). Then AE (x) = AE (x1 Æiw x2) = AE(x1)[AE(x2) �AE(x01) [ AE(x2) = AE(x01 Æiw x2) = AE(x0). Se
ond, AE (a) \ AE(x1) = ; and x2 a!x02for some 
losed IWD(Æ;+; �; kE)-term x02 su
h that x0 � x1 Æiw x02. By indu
tion we haveAE(x2) � AE(x02). Then AE(x) = AE(x1 Æiw x2) = AE(x1) [ AE(x2) � AE(x1) [AE(x02) = AE (x1 Æiw x02) = AE(x0).7. x � x1 kEiw x2 for some E � EID and 
losed IWD(Æ;+; �; kE)-terms x1 and x2. Then we 
andistinguish three 
ases. First, AE(a) 6� E and x1 a!x01 for some 
losed IWD(Æ;+; �; kE)-term x01 su
h that x0 � x01 kEiw x2. By indu
tion we have AE(x1) � AE (x01). Then AE(x) =AE(x1 kEiw x2) = AE(x1)[AE (x2) � AE(x01)[AE (x2) = AE(x01 kEiw x2) = AE (x0). Se
ond,AE(a) 6� E and x2 a!x02 for some 
losed IWD(Æ;+; �; kE)-term x02 su
h that x0 � x1 kEiw x02.By indu
tion we have AE(x2) � AE(x02). Then AE(x) = AE (x1 kEiw x2) = AE(x1) [AE(x2) � AE(x1) [AE(x02) = AE(x1 kEiw x02) = AE(x0). Third, AE (a) � E, x1 a!x01, andx2 a!x02 for some 
losed IWD(Æ;+; �; kE)-terms x01 and x02 su
h that x0 � x01 kEiw x02. By indu
-tion we have AE(x1) � AE(x01) and AE(x2) � AE(x02). Then AE(x) = AE(x1 kEiw x2) =AE(x1) [AE(x2) � AE(x01) [AE(x02) = AE (x01 kEiw x02) = AE(x0).
⊠Lemma 8 For all 
losed IWE(Æ;+; k)-terms s and t and all a 2 A we have: if s a! s0, thenEnt(s) = Ent(s0).Proof. This lemma is proven with indu
tion on the stru
ture of 
losed IWE(Æ;+; k)-term s.1. s � hx;Ei for some 
losed IWD(Æ;+; �; kE)-term x and E � EID . Then s a! s0 must bedue to x a!x0 for some x0 su
h that s0 � hx0; E [ AE(x)i. Clearly we have Ent(s) =Ent(hx;Ei) = E [ AE (x) and Ent(s0) = Ent(hx0; E [ AE(x)i) = E [ AE (x) [ AE(x0).Using Lemma 7 we obtain Ent(s) = Ent(s0).2. s � s1 + s2 for some 
losed IWE(Æ;+; k)-terms s1 and s2. We 
an distinguish two 
ases.First, s1 a! s01 for some 
losed IWE(Æ;+; k)-term s01 su
h that s0 � s01 Æiw h";Ent(s2)i. Byindu
tion we have Ent(s1) = Ent(s01). Therefore, Ent(s) = Ent(s1 + s2) = Ent(s1) [Ent(s2) = Ent(s01) [ Ent(s2) = Ent(s01) [ Ent(h";Ent (s2)i) = Ent(s01 Æiw h";Ent(s2)i) =Ent(s0). Se
ond, s2 a! s02 for some 
losed IWE(Æ;+; k)-term s02 su
h that s0 � s02 Æiwh";Ent(s1)i. This 
ase is symmetri
al to the �rst 
ase.



513. s � s1 Æiw s2 for some 
losed IWE(Æ;+; k)-terms s1 and s2. We 
an distinguish two 
ases.First, s1 a! s01 for some 
losed IWE(Æ;+; k)-term s01 su
h that s0 � s01 Æiw s2. By indu
tionwe have Ent(s1) = Ent(s01). Therefore, Ent(s) = Ent(s1 Æiw s2) = Ent(s1) [ Ent(s2) =Ent(s01) [ Ent(s2) = Ent(s01 Æiw s2) = Ent(s0). Se
ond, AE(a) \ AE(s2) = ; and s2 a! s02for some 
losed IWE(Æ;+; k)-term s02 su
h that s0 � s1 Æiw s02. By indu
tion we haveEnt(s2) = Ent(s02). Therefore, Ent(s) = Ent(s1 Æiw s2) = Ent(s1) [ Ent(s2) = Ent(s1) [Ent(s02) = Ent(s1 Æiw s02) = Ent(s0).4. s � s1 kiw s2 for some 
losed IWE(Æ;+; k)-terms s1 and s2. We 
an distinguish three
ases. First, AE(a) 6� Ent(s1) \ Ent(s2) and s1 a! s01 for some 
losed IWE(Æ;+; k)-term s01su
h that s0 � s01 kiw s2. By indu
tion we have Ent(s1) = Ent(s01). Therefore, Ent(s) =Ent(s1 kiw s2) = Ent(s1) [ Ent(s2) = Ent(s01) [ Ent(s2) = Ent(s01 kiw s2) = Ent(s0). Se
-ond, AE(a) 6� Ent(s1) \ Ent(s2) and s2 a! s02 for some 
losed IWE(Æ;+; k)-term s02 su
hthat s0 � s1 kiw s02. By indu
tion we have Ent(s2) = Ent(s02). Therefore, Ent(s) =Ent(s1 kiw s2) = Ent(s1) [ Ent(s2) = Ent(s1) [ Ent(s02) = Ent(s1 kiw s02) = Ent(s0).Third, AE(a) � Ent(s1) \ Ent(s2), s1 a! s01, and s2 a! s02 for some 
losed IWE(Æ;+; k)-terms s01 and s02 su
h that s0 � s01 kiw s02. By indu
tion we have Ent(s1) = Ent(s01)and Ent(s02) = Ent(s2). Therefore, Ent(s) = Ent(s1 kiw s2) = Ent(s1) [ Ent(s2) =Ent(s01) [ Ent(s02) = Ent(s01 kiw s02) = Ent(s0).
⊠Next, we adapt the de�nition of IWD-bisimilarity to take into a

ount the set of entities of apro
ess.De�nition 13 (Entity bisimilarity) A symmetri
 relation R on 
losed IWE(Æ;+; k)-terms isan entity bisimulation, if and only if, for every pair (s; t) 2 R and a 2 A, the following 
onditionshold:1. AE(s) = AE(t),2. if s #, then t #,3. if s a! s0, then there is a 
losed IWE(Æ;+; k)-term t0 su
h that t a! t0 and (s0; t0) 2 R,4. Ent(s) = Ent(t).The 
losed IWE(Æ;+; k)-terms s and t are entity bisimilar, notation s $ t, if and only if thereexists an entity bisimulation R relating them.Theorem 20 (Equivalen
e) Entity bisimilarity is an equivalen
e relation.Proof. The proof is similar to the proof that IWD-bisimilarity is an equivalen
e (Theorem 1)and therefore omitted. ⊠



52 7 PROCESS ALGEBRA FOR INTERWORKINGSTheorem 21 (Congruen
e) Entity bisimilarity is a 
ongruen
e for the fun
tion symbols in thesignature of IWE(Æ;+; k) whi
h are de�ned on IWE(Æ;+; k)-terms.Proof. Suppose R : x $iwd y and Ex = Ey. Now we must prove that there exists an entitybisimulation R0 su
h that R0 : hx;Exi $ hy;Eyi. Let R0 = f(hp;Ei; hq; F i) j pRq;E = Fg. Let pand q be 
losed IWD(Æ;+; �; kE)-terms su
h that pRq and E;F � EID su
h that E = F . Sin
ep $iwd q we have AE(p) = AE(q).1. AE(hp;Ei) = AE(p) = AE(q) = AE(hq; F i).2. Suppose that hp;Ei a! s for some 
losed IWE(Æ;+; k)-term s. This must be due to p a! p0for some 
losed IWD(Æ;+; �; kE)-term p0 su
h that s � hp0; E [ AE(p)i. As p $iwd q, wehave the existen
e of 
losed IWD(Æ;+; �; kE)-term q0 su
h that q a! q0 and p0Rq0. Then wealso obtain hq; F i a!hq0; F [AE(q)i. Clearly hp0; E [AE(p)iR0hq0; F [AE(q)i.3. Suppose that hp;Ei #. This must be due to p #. As p $iwd q, we have q #. Therefore,hq; F i #.4. Ent(hp;Ei) = E [AE(p) = F [AE(q) = AE(hq; F i).SupposeR1 : s1 $ t1 andR2 : s2 $ t2. Let R = f(s1+t1; s2+t2); (p1Æiwh";Ei; q1Æiwh";Ei); (p2Æiwh";Ei; q2Æiwh";Ei) j p1R1q1; p2R2q2; E � EIDg. Obviously, this relation is an entity bisimulation.SupposeR1 : s1 $ t1 and R2 : s2 $ t2. Let R = f(p1Æiwp2; q1Æiwq2) j p1R1q1; p2R2q2g. Obviouslythis relation R is an entity bisimulation. The proof is similar to the proof that IWD-bisimilarityis a 
ongruen
e for interworking sequen
ing (see Theorem 2).Suppose R1 : s1 $ t1 and R2 : s2 $ t2. Let R = f(p1 kiw p2; q1 kiw q2) j p1R1q1; p2R2q2g. Obvi-ously this relation R is an entity bisimulation. ⊠As was done in [MvWW93℄, the interworking merge is expressed in terms of the E-interworkingmerge operator and the 
ommon entities of the operands. The axioms for entity-labeled pro
essesare given in Table 11 for E;F � EID . The extension of IWD(Æ; �;+) with entity-labeled pro
essesis denoted by IWE(Æ;+; k).Axiom IWE1 des
ribes the 
onvention dis
ussed before that the entity-part of an IWE(Æ;+; k)-term 
ontains at least the empty entities of the Interworking. Axioms IWE2-IWE4 des
ribehow the other operators on IWE(Æ;+; k)-terms 
an be de�ned in terms of their 
ounterpartson IWD(Æ;+; �; kE)-terms. It is also possible to de�ne entity bisimulation in terms of IWD-bisimilarity of the pro
ess-parts and set equality of the entity-parts. Also for our �nal pro
essalgebra, IWE(Æ;+; k), we prove soundness and 
ompleteness.Theorem 22 (Soundness) The pro
ess algebra IWE(Æ;+; k) is a sound axiomatisation of IWD-bisimilarity on 
losed IWD(Æ;+; �; kE)-terms. The pro
ess algebra IWE(Æ;+; k) is a sound ax-iomatisation of entity bisimulation on 
losed IWE(Æ;+; k)-terms.



53IWE1 hx; Ei = hx; E [ AE (x)iIWE2 hx; Ei+ hy; F i = hx+ y; E [ F iIWE3 hx; Ei Æiw hy; F i = hx Æiw y; E [ F iIWE4 hx; Ei kiw hy; F i = hx kE\Fiw y; E [ F i if AE (x) � Eand AE (y) � FTable 11: Axioms of entity-labeled pro
esses (E; F � EID)Proof. For the proof of the �rst proposition observe that we did not add any axioms relating
losed IWD(Æ;+; �; kE)-terms. We will prove the se
ond proposition. Sin
e entity bisimulationis a 
ongruen
e for the 
losed IWE(Æ;+; k)-terms (Theorem 21) we only have to show that theaxioms from Table 11 are sound. Thereto, we provide an entity bisimulation relation for ea
haxiom. For IWE1, the relation R = f(hx;Ei; hx;E [AE(x)i)gS [ I is an entity bisimulation. Forthe axiom IWE2 the relation R = f(hp;Ei+ hq; F i; hp+ q;E [F i); (hp;Ei Æiw h"; F i; hp;E [F i) jp; q 2 C(�IWD(Æ;+; �; kE)); E; F � EIDgS is an entity bisimulation. For axiom IWE3 the rela-tion R = f(hp;E0iÆiw hy; F i; hpÆiwy;E0[F [AE(y)i); (hx;EiÆiw hq; F 0i; hxÆiw q;E0[F 0[AE(x)i) jp; q 2 C(�IWD(Æ;+; �; kE)); E0; F 0 � EIDgS is an entity bisimulation. For IWE4, the relationR = f(hp;Ei kiw hq; F i; hp kE\Fiw q;E [ F i j p; q 2 C(�IWD(Æ;+; �; kE)); E; F � EID ;AE(p) �E;AE (q) � FgS is an entity bisimulation. ⊠De�nition 14 (Basi
 terms) The set of basi
 terms is the smallest set that satis�es: if xis a 
losed IWD(Æ;+; �; kE)-term and E � EID su
h that AE(x) � E, then hx;Ei is a basi
IWE(Æ;+; k)-term. The set of all basi
 terms over the signature of IWE(Æ;+; k) is denoted byB(�IWE(Æ;+; k)).Theorem 23 (Elimination) For every 
losed IWE(Æ;+; k)-term s we have the existen
e of abasi
 IWE(Æ;+; k)-term t su
h that IWE(Æ;+; k) ` s = t.Proof. This theorem is proven with indu
tion on the stru
ture of a 
losed IWE(Æ;+; k)-term.First, 
onsider the 
ase s � hx;Ei for some 
losed IWD(Æ;+; �; kE)-term x and E � EID . Thens = hx;Ei = hx;E [ AE(x)i. Clearly AE(x) � E [ AE(x) and hen
e hx;E [ AE(x)i is abasi
 IWE(Æ;+; k)-term. Then, 
onsider the 
ase s � s1 + s2 for some 
losed IWE(Æ;+; k)-terms s1 and s2. By indu
tion we have the existen
e of basi
 terms hx1; E1i and hx2; E2ifor some 
losed IWD(Æ;+; �; kE)-terms x1 and x2 and E1; E2 � EID su
h that AE(x1) � E1and AE(x2) � E2. Then, s = s1 + s2 = hx1; E1i + hx2; E2i = hx1 + x2; E1 [ E2i. ClearlyAE(x1 + x2) � E1 [ E2. Next, 
onsider the 
ase s � s1 Æiw s2 for some 
losed IWE(Æ;+; k)-terms s1 and s2. By indu
tion we have the existen
e of basi
 terms hx1; E1i and hx2; E2i forsome 
losed IWD(Æ;+; �; kE)-terms x1 and x2 and E1; E2 � EID su
h that AE(x1) � E1 andAE(x2) � E2. Then s = s1 Æiw s2 = hx1; E1i Æiw hx2; E2i = hx1 Æiw x2; E1 [ E2i. Clearly



54 7 PROCESS ALGEBRA FOR INTERWORKINGSAE(x1Æiwx2) = AE (x1)[AE(x2) � E1[E2. Finally, 
onsider the 
ase s � s1 kiw s2 for some s1; s2
losed IWE(Æ;+; k)-terms. By indu
tion we have the existen
e of basi
 terms hx1; E1i and hx2; E2ifor some 
losed IWD(Æ;+; �; kE)-terms x1 and x2 and E1; E2 � EID su
h that AE(x1) � E1 andAE(x2) � E2. Then s = s1 kiw s2 = hx1; E1i kiw hx2; E2i = hx1 kE1\E2iw x2; E1 [ E2i. ClearlyAE(x1 kiw x2) = AE (x1) [AE(x2) � E1 [E2. ⊠Lemma 9 For basi
 IWE(Æ;+; k)-terms hx;Ei and hy; F i we havehx;Ei $ hy; F i i� x $iwd y and E = F:Proof. First, suppose that R : hx;Ei $ hy; F i. Let R0 = f(p; q) j hp;E0iRhq; F 0i; E0 = F 0g. Ashx;EiRhy; F i, AE (x) � E, and AE(y) � F , we have E = E [ AE(x) = Ent(x) = Ent(y) =F [AE(y) = F . We will prove that R0 is an IWD-bisimulation.1. AE(p) = AE(hp;E0i) = AE(hq; F 0i) = AE(q).2. p # i� hp;E0i # i� hq; F 0i # i� q #.3. Suppose that p a! p0 for some 
losed IWD(Æ;+; �; kE)-term p0. Then hp;E0i a!hp0; E0 [AE(p)i. So we have hq; F 0i a!hq0; F 0[AE(q0)i for some 
losed IWD(Æ;+; �; kE)-term q0 su
hthat hp0; E0[AE(p)iRhq0; F 0[AE(q0)i. From this we obtain that E0[AE(p0) = F 0[AE(q0).Thus p0R0q0.The proof in the other dire
tion is trivial. ⊠Theorem 24 (Completeness) The pro
ess algebra IWE(Æ;+; k) is a 
omplete axiomatisationof entity bisimulation on 
losed IWE(Æ;+; k)-terms.Proof. By the elimination theorem (Theorem 23) we only have to prove this theorem for ba-si
 IWE(Æ;+; k)-terms. Let hx;E1i and hy;E2i be arbitrary basi
 IWE(Æ;+; k)-terms su
h thathx;E1i $ hy;E2i. By Lemma 9 we have x $iwd y and E1 = E2. Sin
e IWD(Æ;+; �; kE) is a
omplete axiomatisation of IWD(Æ)-bisimilarity on 
losed IWD(Æ;+; �; kE)-terms, we have x = y,and hen
e hx;E1i = hy;E2i. ⊠Theorem 25 (Conservativity) The pro
ess algebra IWE(Æ;+; k) is a 
onservative extensionof the pro
ess algebra IWD(Æ;+; �; kE).Proof. With respe
t to IWD(Æ;+; �; kE)-terms, the pro
ess algebra IWE(Æ;+; k) and the pro
essalgebra IWD(Æ;+; �; kE)have exa
tly the same axioms. Then 
learly the same equalities 
an bederived between 
losed IWD(Æ;+; �; kE)-terms. ⊠



55We end our treatment of the semanti
s of Interworkings with some properties of Interworkings.The interworking sequen
ing is 
ommutative under the assumption that the a
tive entities of theoperands are disjoint. Furthermore, it is asso
iative. The interworking merge is both 
ommutativeand asso
iative.Proposition 9 (Unit elements) For 
losed IWE(Æ;+; k) terms s,s Æiw h"; ;i = s; (9)h"; ;i Æiw s = s; (10)s kiw h"; ;i = s; (11)h"; ;i kiw s = s: (12)Proof. By the elimination theorem it is allowed to restri
t the proof of the statements tobasi
 terms. Let s = hx;Ei for some 
losed IWD(Æ;+; �; kE)-term x and E � EID su
h thatAE(x) � E. Thens Æiw h"; ;i = hx;Ei Æiw h"; ;i = hx Æiw ";E [ ;i = hx;Ei = s;h"; ;i Æiw s = h"; ;i Æiw hx;Ei = h" Æiw x; ; [Ei = hx;Ei = s;s kiw h"; ;i = hx;Ei kiw h"; ;i = hx kE\;iw ";E [ ;i = hx k;iw ";Ei = hx;Ei = s;h"; ;i kiw s = h"; ;i kiw hx;Ei = h" k;\Eiw x; ; [Ei = h" k;iw x;Ei = hx;Ei = s:
⊠Proposition 10 (Commutativity and asso
iativity of Æiw and kiw ) For arbitrary 
losedIWE(Æ;+; k)-terms s, t, u we haves Æiw t = t Æiw s; if AE(s) \AE (t) = ; (13)(s Æiw t) Æiw u = s Æiw (t Æiw u); (14)s kiw t = t kiw s; (15)(s kiw t) kiw u = s kiw (t kiw u): (16)Proof. By the elimination theorem it is allowed to restri
t the proof of the statements to basi
terms. Let s = hx1; E1i, t = hx2; E2i, and u = hx3; E3i for some E1; E2; E3 � EID and 
losedIWD(Æ;+; �; kE)-terms x1, x2, and x3 su
h that AE(x1) � E1, AE(x2) � E2, and AE(x3) � E3.Then s Æiw t = hx1; E1i Æiw hx2; E2i= hx1 Æiw x2; E1 [E2i= hx2 Æiw x1; E2 [E1i



56 7 PROCESS ALGEBRA FOR INTERWORKINGS= hx2; E2i Æiw hx1; E1i= t Æiw s;(s Æiw t) Æiw u = (hx1; E1i Æiw hx2; E2i) Æiw hx3; E3i= hx1 Æiw x2; E1 [E2i Æiw hx3; E3i= h(x1 Æiw x2) Æiw x3; (E1 [E2) [E3i= hx1 Æiw (x2 Æiw x3); E1 [ (E2 [E3)i= hx1; E1i Æiw hx2 Æiw x3; E2 [E3i= hx1; E1i Æiw (hx2; E2i Æiw hx3; E3i)= s Æiw (t Æiw u);s kiw t = hx1; E1i kiw hx2; E2i= hx1 kE1\E2iw x2; E1 [E2i= hx2 kE2\E1iw x1; E2 [E1i= hx2; E2i kiw hx1; E1i= t kiw s;(s kiw t) kiw u = (hx1; E1i kiw hx2; E2i) kiw hx3; E3i= hx1 kE1\E2iw x2; E1 [E2i kiw hx3; E3i= h(x1 kE1\E2iw x2) k(E1[E2)\E3iw x3; (E1 [E2) [E3i= hx1 kE1\(E2[E3)iw (x2 kE2\E3iw x3); (E1 [E2) [E3i= hx1; E1i kiw hx2 kE2\E3iw x3; E2 [E3i= hx1; E1i kiw (hx2; E2i kiw hx3; E3i)= s kiw (t kiw u):
⊠Proposition 11 For 
losed IWE(Æ;+; k)-terms s and t su
h that Ent(s) \ Ent(t) = ; we haves kiw t = s Æiw t:Proof. By the elimination theorem it is allowed to restri
t the proof of the statements to basi
terms. Let s = hx;Ei and t = hy; F i for some E;F � EID and 
losed IWD(Æ;+; �; kE)-terms xand y su
h that AE(x) � E and AE (y) � F .s kiw t = hx;Ei kiw hy; F i= hx k;iw y;E [ F i= hx Æiw y;E [ F i



57= hx;Ei Æiw hy; F i:
⊠

8 Con
lusionsThe starting point of the appli
ation des
ribed in this 
hapter was the informal drawing te
hnique,
alled Interworkings. After analysing the informal meaning of the language and the way in whi
husers applied this language, our aim was to formalise the Interworking language.The assets of having a formal semanti
s are well-known. We mention the following. Formalisationyields a thorough understanding of the language and the aspe
ts of the appli
ation domain whi
h
an be modeled; it allows for an unambiguous interpretation of expressions in the language; itenables formal analysis; and it 
an be used to derive, or even automati
ally generate supportingtools.These points dire
tly addressed the problems that users were 
onfronted with when applying thelanguage. The language organi
ally grew from a 
olle
tion of examples and it was not 
lear whi
h
onstru
ts were exa
tly part of the language. For some diagrams even spe
ialists disagreed on theexa
t interpretation. It was not 
lear under whi
h pre
ise 
onditions two Interworkings 
ould bemerged. And, �nally, in order to eÆ
iently work with 
olle
tions of Interworkings tool supportwas required.The resear
h 
arried out helped to solve these issues to a large extent. The kernel of the workwas the des
ription of the formal semanti
s of the language by means of pro
ess algebra. This isthe part of the resear
h 
overed in this 
hapter.Our 
hoi
e was to use pro
ess algebra for the formal de�nition of Interworkings. This worked outquite su

essfully. The pro
ess algebrai
 approa
h even proved suitable to de�ne the semanti
sof a similar, but mu
h larger language (MSC'96). Although it showed very bene�
ial, we donot advo
ate that the pro
ess algebrai
 approa
h is the best or even the only suitable approa
htowards the formalisation of sequen
e 
hart languages. Other te
hniques, su
h as Petri netsand partial orders, have also been su

essfully applied, and when 
onsidering only the 
ore ofthese sequen
e 
hart languages, the several approa
hes do not di�er too mu
h with respe
t toexpressivity and simpli
ity. Only when extending the sequen
e 
hart language with spe
i�
features, su
h as re
ursion and interrupts, some approa
hes o�er a more natural way of modeling.The work presented here only des
ribes the part of the proje
t whi
h has to do with the theoreti
alfoundations of the proje
t. The main point here was to identify the basi
 Interworking 
onstru
tsand operators, and to give their operational and algebrai
 semanti
s. The extension with a theoryof re�nement or the derivation of 
omputer tools is not in the fo
us of this handbook.Although already an overwhelming variety of operators has been des
ribed in pro
ess algebraliterature, we have introdu
ed yet more operators. This is typi
al for the pro
ess algebrai




58 9 BIBLIOGRAPHICAL NOTESapproa
h. For a spe
i�
 appli
ation domain a spe
i�
 algebra is needed. In the 
ase of sequen
e
harts, the standard operators for sequential and parallel 
omposition do not properly des
ribethe user's intuition. Be
ause the syn
hronisation implied by strong sequential 
omposition is in
ontradi
tion with intuition, we developed the interworking sequen
ing. Be
ause the standardparallel 
omposition operator 
ould not deal with overlapping areas of an Interworking, we hadto investigate a variation: interworking merge. Even though these are newly invented operators,their de�nitions resemble the de�nition of well-studied operators.This approa
h of de�ning new operators and variations on existing operators has been illustratedin this 
hapter. We have treated all proof obligations, su
h as soundness and 
ompleteness in fulldetail. We have espe
ially taken 
are of setting up our theory in a modular way. This means thatwe have �rst de�ned the kernel of the theory (i.e. the semanti
s of single Interworking diagrams)and subsequently extended this with other operators.The kernel of our theory just 
onsists of the interworking sequen
ing operator. This singleoperator already allows for the de�nition of the semanti
s of Interworking diagrams. After that,we de�ned the basi
 pro
ess algebra 
onsisting of the standard operators for alternative andsequential 
omposition, extended with a spe
ial 
onstant for expressing partial deadlo
ks. Thealternative 
omposition operator is used to express alternative s
enarios. This pro
ess algebra isindependent of the previous one, and the next module simply 
onsisted of the 
ombination of thesetwo theories. The interworking sequen
ing 
an now be expressed in terms of the other operators.The axioms de�ning the interworking sequen
ing in the �rst pro
ess algebra are now derivableproperties. Finally, we extended this algebra with the interworking merge operator. This requiredtwo separate steps. First we introdu
ed the E-interworking merge, whi
h is parameterised by theset of entities whi
h should syn
hronise. And next, we extended the semanti
al interpretationof Interworkings in order to be able to de�ne the unparameterised interworking merge. Thismodular approa
h is illustrated in Figure 17.In our opinion, su
h a modular approa
h brings several assets. A mathemati
al theory, justlike a pie
e of software, requires maintenan
e. Parts of the theory may be
ome obsolete dueto new insights or new extensions may be required due to additional user requirements. Amodular theory makes it easier to isolate the parts of the theory whi
h are a�e
ted by su
hmodi�
ations. A modular design also redu
es the impa
t of a misdesign of one or more 
on
epts.The modules de�ning the other 
on
epts 
an easily be reused, while repla
ing the inappropriate
on
epts. An example of su
h a misdesign 
ould be the interworking merge. Contrary to theinterworking sequen
ing, whi
h seems to be very stable and well a

epted, several alternatives forthe interworking merge have been proposed in literature (su
h as the environmental gate merge,see [RGG95℄). The part of the algebra des
ribing the interworking merge 
an easily be repla
edby a de�nition of another similar operator.9 Bibliographi
al notesIn this se
tion we will give a 
omprehensive overview of the relevant literature on Interworkingsand the related language Message Sequen
e Chart (MSC).



59IWD(Æ) BPA(ÆE)
IWD(Æ; �;+)

IWD(Æ;+; �; kE)
IWE(Æ;+; k)Figure 17: Overview of 
onservative extensionsInterworkingsIn [MvWW92℄, Mauw, Van Wijk and Winter give a 
on
rete textual syntax for the language IWand present both an informal and a formal de�nition of its semanti
s. The formal semanti
s doesnot 
onsider entities without events (empty entities). A short version appeared as [MvWW93℄.Based on the work on the formal semanti
s several prototype tools have been developed. Ades
ription of the prototype tool set is given in [MW93℄. This tool set 
onsists of three parts, theinterworking pro
essor (IWP), the intermediate language 
ompiler (ILC) and a term rewritingsystem (TRS).The formal semanti
s of Interworkings is not able to deal with empty entities and re�nement.This has been solved in [MR95a, MR95b, MR96℄.The dedu
tion rules for kEiw are di�erent from the dedu
tion rules used in [MR96℄ in the sense thatthe termination behaviour of kEiw is 
oded in the termination behaviour of kEiw instead of usingthe termination operator p used there to des
ribe the termination behaviour of E-interworkingmerge. There are two reasons for this 
hange. First, in [Vra97℄ and [Ver97℄ also the terminationbehaviour is des
ribed with the left-merge operator. Se
ond, it is easier to de�ne the set of a
tiveentities of a pro
ess term xkEiw y in this 
ase.In [MR96℄ we reported the following. For 
losed IWD(Æ;+; �; kE)-terms x, y, z, and sets of entitiesE1, E2, E3 we have (x kE1\E2iw y) k(E1[E2)\E3iw z = x kE1\(E2[E3)iw (y kE2\E3iw z):



60 9 BIBLIOGRAPHICAL NOTESThis is not true. In the 
ase that x 
an exe
ute an a
tion a su
h that AE(a) 6� E1 and AE(a) �E2 \E3 the equation does not hold.This 
an be explained as follows. The sets E1, E2, and E3 are intended to model the instan
esof x, y, and z respe
tively. In the situation sket
hed above we have that x exe
utes an a
tionde�ned on an instan
e that does not belong to x! Here we presented an improved and 
orre
tversion of this proposition.The interworking merge as de�ned in [MvWW93℄ did not have the asso
iativity property. Thisdi�eren
e is a dire
t 
onsequen
e of our de
ision to maintain the entities of an Interworkingstati
ally.In [BG95℄ the language Interworking is extended with dis
rete absolute time features. Events
an have a dis
rete time stamp or a dis
rete time interval asso
iated with them. The authorsdes
ribe the timed versions of interworking sequen
ing and interworking merge.In [Fei99℄, Feijs uses Interworkings as a starting point for generating �nite state ma
hines. This isuseful for obtaining feedba
k from a set of s
enarios (Interworkings) during a system's de�nitionphase or test phase.In [Fei97℄, possibilities and impossibilities of using Interworkings are studied in the 
ontext ofdes
ribing a servi
e, a proto
ol, or a proto
ol entity in the OSI referen
e model on di�erentlevels of abstra
tion. The author 
on
ludes that Interworkings are useful for analysing a limitednumber of interesting 
ases su
h as test runs, simulation runs, and debug sessions, but also thatInterworkings la
k suÆ
ient power to a
t as a spe
i�
ation formalism.Message Sequen
e ChartsFrom the vast amount of graphi
al languages that resemble Interworking the language MessageSequen
e Chart, whi
h is standardised by Study Group 10 of Question 9 of the Tele
ommuni-
ations Standardisation Se
tor of the International Tele
ommuni
ation Union, is best known.The language MSC des
ribes the asyn
hronous 
ommuni
ation between instan
es (entities). Thelanguage is very ri
h in its syntax and has a standardised formal semanti
s [IT95, Ren99℄. Thisformal semanti
s is inspired by the work on the formal semanti
s of Interworking. In [MR94a℄ apro
ess algebra semanti
s of Basi
 MSC (only simple diagrams) is given. In [MvdM95℄, prototypetools are de�ned based on this formal semanti
s. In [Ren94, MR94b℄ the formal semanti
s of Ba-si
 MSCs is extended to the language MSC92 ex
ept for instan
e de
omposition and 
onditions.Later, this semanti
s is standardised as Annex B to Re
ommendation Z.120 [IT95℄. Also DeMan [Man93℄ gives a pro
ess algebra semanti
s for Basi
 MSC. In [MR97℄, High-level MessageSequen
e Charts are treated. In [MR99, Ren99℄, an operational semanti
s for a large fragmentof MSC96 is presented.Besides the literature on the semanti
s of MSC based on pro
ess algebra, we also mention someother approa
hes. In [GGR93℄, an MSC is transformed into a Petri net. In [LL95℄, a semanti
s ofMessage Flow Graphs is presented that translates an MSC into a B�u
hi automaton. In [AHP96℄,Alur, Holzmann and Peled, present a partial order semanti
s for Basi
 Message Sequen
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