
An Algebraic Semantics of Basic MessageSequence ChartsS. Mauw and M. A. ReniersDepartment of Mathematics and Computing Science, Eindhoven University of Technology,P.O. Box 513, 5600 MB Eindhoven, The Netherlands.Message Sequence Charts are a widely used technique for the visualization of thecommunications between system components. We present a formal semantics ofBasic Message Sequence Charts, exploiting techniques from process algebra. Thissemantics is based on the semantics of the full language as being proposed forstandardization in the International Telecommunication Union.1. INTRODUCTIONMessage Sequence Charts are a graphical language,being standardized by the ITU{TS (the Telecommu-nication Standardization section of the InternationalTelecommunication Union, the former CCITT), for thedescription of the interactions between entities. ITUrecommendation Z.120 [9] contains the syntax and aninformal explanation of the semantics. The current goalin the process of standardization is the de�nition of aformal semantics of the language. The need for a formalsemantics became evident since even experts in the �eldof Message Sequence Charts could not always agree onthe interpretation of speci�c features. Furthermore val-idation of computer tools for Message Sequence Chartsonly makes sense if an exact meaning is available. Fi-nally a formal semantics will help to harmonize the useof Message Sequence Charts.There exist several attempts towards such a formalsemantics. We mention approaches based on automatontheory [10], Petri net theory [5] and on process algebra[4, 12]. None of these papers contain a formal semanticsof the complete language. Although all approaches havetheir advantages and disadvantages, it has been decidedby the standardization committee to use process algebrafor the formal de�nition. The semantics in this paperis based on a complete algebraic semantics of MessageSequence Charts, which is the proposal for Z.120. Wewill not present the complete semantics here, but werestrict us to the core of the Message Sequence Chartslanguage, which we will call Basic Message SequenceCharts.This work is related to the formal semantics of In-terworkings [12]. A di�erence is that we will considerasynchronous communication whereas the theory of In-terworkings only contains synchronous communication.Furthermore, Message Sequence Charts and Interwork-ings have a di�erent approach with respect to their tex-tual representation. Interworkings are event oriented,

which means that an Interworking is a list of commu-nications and other events, whereas Message SequenceCharts are instance oriented. This means that a Mes-sage Sequence Chart is described by giving the behaviorof every instance in separation.The formal semantics presented is based on the al-gebraic theory of process description ACP (Algebra ofCommunicatingProcesses) [2]. ACP is an algebraic the-ory in many ways related to the algebraic process the-ories CCS (Calculus of Communicating Systems) [11]and CSP (Communicating Sequential Processes) [7].This process algebra is a useful framework for the de-scription of the formal semantics of Message SequenceCharts since all features incorporated in the theory ofMessage Sequence Charts are related to topics alreadystudied in process algebra such as the state operator andthe global renaming operator. Since we consider asyn-chronous communication and since Message SequenceCharts may be `empty', we use PA", i.e. ACP withoutcommunication and with the empty process [2].This paper is structured in the following way. Firstwe will introduce Basic Message Sequence Charts. Afterthat, we de�ne the algebraic theory we use as a frame-work and the algebraic features speci�cally needed forBasic Message Sequence Charts. Next we will de�ne thesemantic function which maps Basic Message SequenceCharts into process terms and we will give an opera-tional semantics. Finally we will prove a representationtheorem which shows the relation between the instanceoriented notation and an event oriented notation.2. BASIC MESSAGE SEQUENCE CHARTS2.1. IntroductionMessage Sequence Charts provide a graphical notationfor the interaction between system components. Theirmain application, in addition to SDL [8], is in the areaof telecommunication systems. Their use, however, isThe Computer Journal, Vol. 37, No. 4, 1994



2 S. Mauw and M. A. Reniersnot restricted to the SDL methodology or to telecom-munication environments.A Message Sequence Chart is not a description ofthe complete behavior of a system, it merely expressesone execution trace. A collection of Message SequenceCharts may be used to give a more detailed speci�ca-tion of a system. Message Sequence Charts and relatednotations, such as Interworkings and Arrow Diagramshave been applied in systems engineering for quite sometime. They are used in several phases of system de-velopment, such as requirement speci�cation, interfacespeci�cation, simulation, validation, test case speci�ca-tion and documentation.A Message Sequence Chart contains the descriptionof the asynchronous communication between instances.The complete Message Sequence Chart language, in ad-dition, has primitives for local actions, timers (set, resetand time-out), process creation, process stop and core-gions. Furthermore sub Message Sequence Charts andconditions can be used to construct modular speci�ca-tions.For brevity, we restrict ourselves in this paper tothe core language of Message Sequence Charts, whichwe will call Basic Message Sequence Charts. A BasicMessage Sequence Chart concentrates on communica-tions and local actions only. These are the featuresencountered in most languages comparable to MessageSequence Charts.2.2. Graphical notationA Basic Message Sequence Chart contains a (partial)description of the communication behavior of a num-ber of instances. An instance is an abstract entity ofwhich one can observe (part of) the interaction withother instances or with the environment. The �rst BasicMessage Sequence Chart in Figure 1 de�nes the com-munication behavior between instances i1, i2, i3 andi4. An instance is denoted by a vertical axis. The timealong each axis runs from top to bottom.A communication between two instances is repre-sented by an arrow which starts at the sending instanceand ends at the receiving instance. In Figure 1 we con-sider the messages m1, m2, m3 and m4. Message m0is sent to the environment. The behavior of the envi-ronment is not speci�ed. For instance i2 we also de�nea local action a.Although the activities along one single instance axisare completely ordered, we will not assume a notion ofglobal time. The only dependencies between the tim-ing of the instances come from the restriction that amessage must have been sent before it is received. InFigure 1 this implies for example that message m3 isreceived by i4 only after it has been sent by i3, and,consequently, after the reception of m2 by i3. Thus m1and m3 are ordered in time, while for m4 and m3 noorder is speci�ed. The execution of a local action is onlyrestricted by the ordering of events on its own instance.
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msc example1FIGURE 1. Example Basic Message Sequence ChartsThe second Basic Message Sequence Chart in Figure 1de�nes the same Basic Message Sequence Chart, but inan alternative drawing.
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i1 i2FIGURE 2. Basic Message Sequence Chart with overtakingSince we have asynchronous communication, it wouldeven be possible to �rst send m3, then send and receivem4, and �nally receive m3. Another consequence of thismode of communication is that we allow overtaking ofmessages, as expressed in Figure 2.2.3. Textual notationAlthough the application of Message Sequence Charts ismainly focussed on the graphical notation, they have aconcrete textual syntax. This representation was origi-nally intended for exchanging Message Sequence Chartsbetween computer tools only, but in this paper we willuse it for the de�nition of the semantics.The textual representation of a Basic Message Se-quence Chart is instance oriented. This means that aBasic Message Sequence Chart is de�ned by specifyingthe behavior of all instances. A message output is de-noted by \out m1 to i2;" and a message input by \inm1 from i1;". The Basic Message Sequence Charts ofFigure 1 have the following textual representation.msc example1;instance i1;out m0 to env;out m1 to i2;in m4 from i2;endinstance;instance i2;in m1 from i1;out m2 to i3;action a;The Computer Journal, Vol. 37, No. 4, 1994



An Algebraic Semantics of Basic Message Sequence Charts 3out m4 to i1;endinstance;instance i3;in m2 from i2;out m3 to i4;endinstance;instance i4;in m3 from i3;endinstance;endmsc;The grammar de�ning the syntax of textual BasicMessage Sequence Charts is given in Table 1. The non-terminals <mscid>, <iid>, <mid> and <aid> representidenti�ers. The symbol <> denotes the empty string.The following identi�ers are reserved keywords: action,endinstance, endmsc, env, from, in, instance, msc,out and to.TABLE 1. The concrete textual syntax of Basic Message Se-quence Charts<msc> ::= msc <mscid>;<msc body> endmsc;<msc body> ::= <> |<inst def> <msc body><inst def> ::= instance <iid>;<inst body> endinstance;<inst body> ::= <> |<event> <inst body><event> ::= in <mid> from <iid>; |in <mid> from env; |out <mid> to <iid>; |out <mid> to env; |action <aid>;The language generated by a nonterminal X in thegrammar of Table 1 will be denoted by L(X).We formulate two static requirements for Basic Mes-sage Sequence Charts. The �rst is that an instance maybe declared only once. The second is that every messageidenti�er occurs exactly once in an output action andonce in a matching input action, or in case of a com-munication with the environment a message identi�eroccurs only once.3. PROCESS ALGEBRA PA"3.1. IntroductionThe process algebra PA" is an algebraic theory for thedescription of process behavior [2, 3]. Such an algebraictheory is given by a signature de�ning the processes anda set of equations de�ning the equality relation on theseprocesses. In Subsection 3.2. we will give the signature�PA" and the set of equations EPA" will be given inSubsection 3.3.

PA" is parameterized with the set of atomic actions.In the following section we will instantiate this set ofatomic actions and extend the theory.The signature of PA" speci�es the constant and func-tion symbols that may be used in describing processes.Also variables from some set V may be used in processdescriptions.3.2. The signature of PA"Before we turn to the signature of PA" we will de�ne theterms associated to a signature � and a set of variablesV . A signature � is a set of constant and functionsymbols. For every function symbol in the signature itsarity is speci�ed.De�nition 3.1 Let � be a signature and let V be aset of variables. Terms over signature � with variablesfrom V are de�ned inductively by1. v 2 V is a term2. if c 2 � is a constant symbol, then c is a term3. if f 2 � is an n-ary (n � 1) function symbol andt1; : : : ; tn are terms, then f(t1; : : : ; tn) is a termThe set of all terms over a signature � with variablesfrom V is denoted by T (�; V ). A term t 2 T (�; V ) iscalled a closed term if t does not contain variables. Theset of all closed terms over a signature � is denoted byT (�).Now we are ready to turn to the signature �PA" ofPA". The signature �PA" consists of1. the special constants � and "2. the set of unspeci�ed constants A3. the unary operator p4. the binary operators +, �, k and kThe special constant � denotes the process that hasstopped executing actions and cannot proceed. Thisconstant is called deadlock. The special constant " de-notes the process that is only capable of terminatingsuccessfully. It is called the empty process.The elements of the set of unspeci�ed constants A arecalled atomic actions. These are the smallest processesin the description. This set is considered a parameterof the theory. We will specify this set as soon as weconsider an application of the theory.The binary operators + and � are called the alterna-tive and sequential composition. The alternative compo-sition of the processes x and y is the process that eitherexecutes process x or y but not both. The sequentialcomposition of the processes x and y is the process that�rst executes process x, and upon completion thereofstarts with the execution of process y.The binary operator k is called the free merge. Thefree merge of the processes x and y is the process thatexecutes the processes x and y in parallel. For a �-nite set D = fd1; � � � ; dng, the notation k d2DP (d) isThe Computer Journal, Vol. 37, No. 4, 1994



4 S. Mauw and M. A. Reniersan abbreviation for P (d1) k � � � kP (dn). If D = ; thenk d2DP (d) = ". For the de�nition of the merge we usetwo auxiliary operators. The termination operator papplied to a process x signals whether or not the pro-cess x has an option to terminate immediately. The bi-nary operator k is called the left merge. The left mergeof the processes x and y is the process that �rst hasto execute an atomic action from process x, and uponcompletion thereof executes the remainder of process xand process y in parallel.3.3. The equations of PA"The set of equations EPA" of PA" speci�es which pro-cesses are considered equal. An equation is of the formt1 = t2, where t1; t2 2 T (�PA" ; V ). For a 2 A [ f�gand x; y; z 2 V , the equations of PA" are given in theTable 2. TABLE 2. Axioms of PA"x+ y = y + x A1(x+ y) + z = x+ (y + z) A2x+ x = x A3(x+ y) � z = x � z + y � z A4(x � y) � z = x � (y � z) A5x+ � = x A6� � x = � A7x � " = x A8" � x = x A9x ky = xk y + yk x+p(x) � p(y) TM1"k x = � TM2a � xk y = a � (x ky) TM3(x+ y)k z = xk z + yk z TM4p(") = " TE1p(a � x) = � TE2p(x + y) = p(x) +p(y) TE3Axioms A1{A9 are well known. The axioms TE1{TE3 express that a process x has an option to terminateimmediately if p(x) = ", and that p(x) = � otherwise.In itself the termination operator is not very interesting,but in de�ning the free merge we need this operator toexpress the case in which both processes x and y areincapable of executing an atomic action. Axiom TM1expresses that the free merge of the two processes xand y is their interleaving. This is expressed in thethree summands. The �rst two state that x and y maystart executing. The third summand expresses that ifboth x and y have an option to terminate, their mergehas this option too.Lemma 3.1 For x; y; z 2 T (�PA" ) and a 2 A[f�g1. x k " = x2. x ky = y kx

3. (x ky) k z = x k (y k z)4. ak x = axProof See [2].We can use this lemma to derive the following exam-ple. a k (b+ ") =ak (b+ ") + (b+ ")k a+p(a)p(b+ ") =a(b + ") + bk a+ "k a + �(� + ") =a(b + ") + ba+ � + � =a(b + ") + ba4. A PROCESS ALGEBRA FOR BASICMESSAGE SEQUENCE CHARTSIn this section we will extend the process algebra PA" toa process algebra PABMSC . We do this by specifyingthe set of atomic actions A and by introducing the aux-iliary operator �M .4.1. Specifying the atomic actionsIn dealing with Basic Message Sequence Charts weencounter a number of signi�cantly di�erent atomicactions. These are, with their representations inPABMSC :1. the execution of an action aid by instance i:action(i; aid)2. the sending of a message m by instance s to instancer: out(s; r;m)3. the sending of a message m by instance s to theenvironment: out(s; env;m)4. the receiving of a message m by instance r from in-stance s: in(s; r;m)5. the receiving of a message m by instance r from theenvironment: in(env; r;m)In Table 3 the sets of atomic actions are given. Weuse IID for L(<iid>), AID for L(<aid>) andMID forL(<mid>).TABLE 3. The atomic actions of PABMSCAa = faction(i; aid) j i 2 IID; aid 2 AIDgAo = fout(s; r;m) j s; r 2 IID;m 2MIDgAi = fin(s; r;m) j s; r 2 IID;m 2MIDgAe = fout(s; env;m) j s 2 IID;m 2MIDg[fin(env; r;m) j r 2 IID;m 2MIDgA = Aa [Ao [Ai [Ae4.2. The state operator �MA Basic Message Sequence Chart speci�es a (�nite)number of instances that communicate by sending andreceiving messages. A message is divided into two parts:The Computer Journal, Vol. 37, No. 4, 1994



An Algebraic Semantics of Basic Message Sequence Charts 5a message output and a message input. The correspon-dence between message outputs and message inputs hasto be de�ned uniquely by message name identi�cation.A message input may not be executed before the cor-responding message output has been executed. We in-troduce an operator �M that enables only those exe-cution paths that respect the above constraint. Theoperator �M is an instance of the state operator as canbe found in [2]. This operator remembers all messageoutputs that have been executed in a set M and onlyallows a message input if its corresponding message out-put is in that set.For all M � Ao, x; y 2 V , a 2 A, i; j 2 L(<iid>),and m 2 L(<mid>), we de�ne the state operator �M inTable 4.TABLE 4. Axioms for the state operator �M�M (") = " if M = ;�M (") = � if M 6= ;�M (�) = ��M (a � x) = a � �M (x) if a 62 Ao [Ai�M (out(i; j;m) � x) =out(i; j;m) � �M[fout(i;j;m)g(x)�M (in(i; j;m) � x) =in(i; j;m) � �Mnfout(i;j;m)g(x) if out(i; j;m) 2M�M (in(i; j;m) � x) = � if out(i; j;m) 62M�M (x+ y) = �M (x) + �M (y)Note that the state operator �M can be eliminatedfrom every closed PABMSC term. This means thatwe have not introduced new processes. Furthermorewe have not introduced new identities between existingprocesses, thus PABMSC is a conservative extension ofPA".5. THE SEMANTICS OF BASIC MESSAGESEQUENCE CHARTS5.1. IntroductionIn this section we will de�ne a semantic function S thatassociates to every Basic Message Sequence Chart intextual format a closed PABMSC term. An example ofthis construction is given in Subsection 5.3. Before wegive the de�nition of this semantic function we need toexplain some auxiliary functions. The powerset of a setS is denoted by IP (S).The functionInstances : L(<msc>)! IP (L(<inst def>))that associates to a Basic Message Sequence Chart theset containing all instance de�nitions of the instancesde�ned in the chart, is de�ned byInstances(msc <mscid>; <msc body> endmsc;) =Instancesbody (<msc body>)

where the functionInstancesbody : L(<msc body>)! IP (L(<inst def>))is de�ned byInstancesbody (<>) = ;Instancesbody (<inst def><msc body>) =f<inst def>g [ Instancesbody(<msc body>)Next we de�ne the following two functionsName : L(<inst def>)! L(<iid>)Body : L(<inst def>)! L(<inst body>)These functions associate to an instance de�nition itsname and body.Name(instance <iid>;<inst body> endinstance;) = <iid>Body(instance <iid>;<inst body> endinstance;) = <inst body>5.2. The semantic functionThe general idea is that the semantics of a Basic Mes-sage Sequence Chart is the free merge of the seman-tics of its constituent instances. By this constructionwe enable all interleavings of the message outputs andmessage inputs. However, a message input can onlybe performed after its corresponding message output.In order to rule out all interleavings where a messageoutput is preceded by the corresponding message inputwe use the state operator �M . We de�ne the functionS : L(<msc>)! T (�PABMSC ) byS[[msc]] = �; � k idef 2Instances(msc) Sinst[[idef ]]�The semantic function Sinst : L(<inst def>) !T (�PABMSC ) is de�ned to express the semantics of oneinstance in separation. In the textual representation ofan instance the atomic actions are speci�ed in the or-der they are to be executed, thus the semantics of aninstance de�nition is the sequential composition of itsactions.Sinst[[idef ]] = SName(idef )body [[Body(idef )]]where for i 2 L(<iid>) the functionSibody : L(<inst body>)! T (�PABMSC )is de�ned bySibody [[<>]] = "Sibody [[<event><inst body>]] =Sievent[[<event>]] � Sibody[[<inst body>]]and for every i 2 L(<iid>) the functionSievent : L(<event>)! T (�PABMSC )is de�ned byThe Computer Journal, Vol. 37, No. 4, 1994



6 S. Mauw and M. A. ReniersSievent[[in <mid> from <iid>;]] =in(<iid>; i; <mid>)Sievent[[in <mid> from env;]] = in(env; i; <mid>)Sievent[[out <mid> to <iid>;]] =out(i; <iid>; <mid>)Sievent[[out <mid> to env;]] = out(i; env; <mid>)Sievent[[action <aid>;]] = action(i; <aid>)Note that application of the state operator gives thepossibility that the semantics of a Basic Message Se-quence Chart contains a deadlock. This can be inter-preted as the fact that every execution trace containsan input before the corresponding output.5.3. An exampleWe consider the Basic Message Sequence Chart fromFigure 3. It consists of three instances which exchangetwo messages.
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msc example3FIGURE 3. Example Basic Message Sequence Chartmsc example3;instance a;out k to b;out l to c;endinstance'instance b;in k from a;endinstance;instance c;in l from a;endinstance;endmsc;The interpretation of this Basic Message SequenceChart is that along instance a the ordering of the outputof messages k and l is �xed and furthermore that theoutput of message k comes before the input of message kand, likewise, that the output of message l comes beforethe input of message l. These are the only restrictionsthat apply.When using the textual syntax, the Basic MessageSequence Chart is represented by describing the behav-ior of every instance in separation. After applying thesemantic function Sinst to these instances we obtainSinst[[a]]= out(a; b; k) � out(a; c; l)Sinst[[b]] = in(a; b; k)Sinst[[c]] = in(a; c; l)

The �rst step in deriving the expression which we aimat is putting the instances a, b and c in parallel.Sinst[[a]] kSinst[[b]] kSinst[[c]]After some calculations, we arrive at the following nor-malized expression.out(a; b; k) �(in(a; b; k) � (out(a; c; l) � in(a; c; l)+in(a; c; l) � out(a; c; l))+out(a; c; l)�(in(a; b; k) � in(a; c; l)+in(a; c; l) � in(a; b; k))+in(a; c; l) � (in(a; b; k) � out(a; c; l)+out(a; c; l) � in(a; b; k)))+in(a; b; k) � (out(a; b; k)� (in(a; c; l) � out(a; c; l)+out(a; c; l) � in(a; c; l))+in(a; c; l) � out(a; b; k) � out(a; c; l))+in(a; c; l) � (out(a; b; k)� (in(a; b; k) � out(a; c; l)+out(a; c; l) � in(a; b; k))+in(a; b; k) � out(a; b; k) � out(a; c; l))This expression clearly shows execution traces whichare not desirable, such as in(a; b; k) � out(a; b; k) �in(a; c; l) � out(a; c; l). These traces can be removed byapplying the state operator �; to this expression. Thisresults inout(a; b; k)�(in(a; b; k) � out(a; c; l) � in(a; c; l)+out(a; c; l)� (in(a; b; k) � in(a; c; l)+in(a; c; l) � in(a; b; k)))6. STRUCTURAL OPERATIONAL SEMAN-TICSIn this section we de�ne a structural operational se-mantics of Basic Message Sequence Charts in the styleof Plotkin [14]. For this purpose we de�ne action rela-tions on closed PABMSC terms. Then we give a graphmodel for the theory PABMSC .6.1. Action relations for PABMSCOn the set of PABMSC terms we de�ne a predicate #�T (�PABMSC ) and binary relations a!� T (�PABMSC )�T (�PABMSC ) for every a 2 A. These predicates are de-�ned by means of inference rules, which have the fol-lowing form. p1; : : : ; pnqThis expression means that for every instantiationof variables in p1; : : : ; pn; q we can conclude q fromThe Computer Journal, Vol. 37, No. 4, 1994



An Algebraic Semantics of Basic Message Sequence Charts 7p1; : : : ; pn. If q is a tautology, we omit p1; : : : ; pn andthe horizontal bar.The intuitive idea of the predicate # is as follows: t#denotes that t has an option to terminate immediately,i.e. " is a summand of t. For x; y 2 T (�PABMSC ), andM � Ao, the predicate # is de�ned in Table 5.TABLE 5. The predicate #" #x # x # ; y # y #(x+ y) # (x � y) # (x+ y) #x # x # ; y # x #(p(x)) # (x ky) # (�M (x)) #The intuitive idea of the binary operator a! is asfollows: t a! s denotes that the process t can executethe atomic action a and after this execution step theresulting process is s. For x; x0; y; y0 2 T (�PABMSC ),a 2 A, M � Ao, i; j 2 L(<iid>), and m 2 L(<mid>),the binary relations a! are de�ned in Table 6.We will illustrate the use of these action relationswith an example. Consider the following expression.�;(out(a; b; k) k in(a; b; k))We have out(a; b; k)out(a;b;k)! ", so we can deriveout(a; b; k) k in(a; b; k)out(a;b;k)! " k in(a; b; k). From thiswe can conclude�;(out(a; b; k) k in(a; b; k))out(a;b;k)!�fout(a;b;k)g(" k in(a; b; k))Next we have in(a; b; k)in(a;b;k)! ", and we can derive" k in(a; b; k)in(a;b;k)! " k ". Thus we have�fout(a;b;k)g(" k in(a; b; k))in(a;b;k)! �;(" k ")In order to see that this expression has the possibilityto terminate, we derive " # and thus (" k ") #, so�;(" k ") #Finally we conclude that the given process�;(out(a; b; k) k in(a; b; k)) can �rst execute out(a; b; k),then execute in(a; b; k) and �nally terminate. Note thatthis is the only execution sequence that can be derivedfrom the inference rules.6.2. Graph model for PABMSCWe will present a model for the theory PABMSC . Thismodel is a graph model, a set of process graphs modulobisimulation, that provides a visualization of the actionrelations from the previous subsection.A process graph is a �nite acyclic graph in which theedges are labeled with an atomic action, and in which

every node may have a label #. This label # indicateswhether or not the state represented by the node hasan option to terminate immediately. In every processgraph there is one special node, the root node.Two process graphs will be identi�ed if they arebisimilar. Two graphs are bisimilar if there is a bisim-ulation which relates the root nodes. A bisimulation isa binary relation R, satisfying:� if R(p; q) and p a!p0, then there is a q0 such that q a!q0and R(p0; q0)� if R(p; q) and q a!q0, then there is a p0 such that p a!p0and R(p0; q0)� if R(p; q) then p# if and only if q#.Theorem 6.1 Bisimulation is a congruence forthe signature of PABMSC.Proof The action rules �t into the syntactical for-mat that is called the path format. As a consequencebisimulation is a congruence for the function symbolsfor which the action rules are de�ned. We refer to [1, 6]for both the syntactical format and the congruence the-orem.Every operator in the signature of PABMSC can beinterpreted in the graph model. Without proof westate that PABMSC is a complete axiomatization of thegraph model.To every closed process expression we can associate aprocess graph using the action relations for PABMSC.We will give the process graph for the example of thesemantics in Figure 4.
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in(a,b,k)FIGURE 4. Process graph7. A CHARACTERIZATION THEOREMIn this section we will relate our semantics for instanceoriented Message Sequence Charts to the event orientedsemantics from [4, 12]. To this end we will show that aBasic Message Sequence Chart can be represented by asingle trace.First we will de�ne three functions and a predicateon processes. These are the alphabet function �, whichThe Computer Journal, Vol. 37, No. 4, 1994



8 S. Mauw and M. A. ReniersTABLE 6. The action relations a!a a! "x a! x0 y a! y0 x a! x0 x # ; y a! y0x+ y a! x0 x+ y a! y0 x � y a! x0 � y x � y a! y0x a! x0 y a! y0 x a! x0x ky a! x0 ky x k y a! x ky0 xk y a! x0 k ya62Ao[Ai ; x a! x0�M (x) a! �M (x0) x out(i;j;m)�! x0�M (x) out(i;j;m)�! �M[fout(i;j;m)g(x0) out(i;j;m)2M ; x in(i;j;m)�! x0�M (x) in(i;j;m)�! �Mnfout(i;j;m)g(x0)determines the atomic actions involved in a process, thefunction "I (for I � A) which renames the atomic ac-tions that are in the set I into " and the function trwhich determines the collection of completed traces ofa process. The predicate df determines whether a pro-cess is free of deadlocks. For x and y arbitrary processesand a 2 A, we give the axioms for those functions inTable 7. Note that the predicate x 6= � can be de�nedeasily. TABLE 7. Axioms for �, "I , tr, and df�(") = ;�(�) = ;�(a � x) = fag [ �(x)�(x+ y) = �(x) [ �(y)"I(") = ""I(�) = �"I(a � x) = a � "I (x) if a 62 I"I(a � x) = "I (x) if a 2 I"I(x+ y) = "I(x) + "I(y)tr(") = f"gtr(�) = f�gtr(a � x) = fa � t j t 2 tr(x)gtr(x+ y) = tr(x) [ tr(y) if x 6= � ^ y 6= �df("):df(�)df(a � x) = df(x)df(x+ y) = df(x) ^ df(y) if x 6= � ^ y 6= �First observe the following general properties.Lemma 7.1 For x; y 2 T (�PABMSC ), M � Ao andI � A1. df(y) ^�(y) � I ) "I (x ky) = "I (x)2. �(x) \ I = ; ) "I (x) = x3. 8t2tr(x) "I (t) 2 tr("I(x))4. df(�M (x)) ) tr(�M (x)) � tr(x)

Proof For 2, 3 and 4 we use induction on the struc-ture ", a � x, x + y, whereas for 1 we use induction onthe structure ", �k2K ak � xk, �k2K ak � xk + ".Lemma 7.2 For i 2 L(<inst def>)tr(Sinst[[i]]) = fSinst[[i]]gProof This follows immediately from the construc-tion of the semantic function.In the following lemmas and theorems we will use,for i 2 L(<inst def>), �(i) as an abbreviation of�(Sinst[[i]]) and Inst for Instances(msc) where msc isclear from the context. First we consider traces fromk j2InstSinst[[j]] which do not meet the restriction onthe order of inputs and corresponding outputs. Usingsuch a trace we can reconstruct the behavior of everysingle instance and, therefore, we can reconstruct thecomplete Basic Message Sequence Chart as described inTheorem 7.4. Theorem 7.5 states that this also holds forthe restricted traces from S[[msc]]. So a Basic MessageSequence Chart can be represented either by a collec-tion of instances (the instance oriented approach) or bya single trace (the event oriented approach).Lemma 7.3 For msc 2 L(<msc>) and i 2 Inst8t2tr� k j2InstSinst [[j]]� "An�(i)(t) = Sinst[[i]]Proof Let t 2 tr � k j2Inst Sinst[[j]]�.Then by applying Lemma 7.1.3 we have: "An�(i)(t) 2tr �"An�(i) �k j2Inst Sinst[[j]]��.We calculate"An�(i) � k j2Inst Sinst[[j]]�= f Lemma 7.1.1 g"An�(i)(Sinst[[i]])= f Lemma 7.1.2 gSinst[[i]]So, from Lemma 7.2, we may conclude that "An�(i)(t) =Sinst[[i]].The Computer Journal, Vol. 37, No. 4, 1994



An Algebraic Semantics of Basic Message Sequence Charts 9Theorem 7.4 For msc 2 L(<msc>)8t2tr�k i2InstSinst [[i]]� S[[msc]] = �; � k i2Inst "An�(i)(t)�Proof This follows from Lemma 7.3 and the de�ni-tion of the semantic function S.Theorem 7.5 For msc 2 L(<msc>) such thatdf(S[[msc]])8t2tr(S[[msc]]) S[[msc]] = �; � k i2Inst "An�(i)(t)�Proof This theorem follows immediately fromLemma 7.1.4 and Theorem 7.4.Theorem 7.5 expresses that, in principle, one couldchoose an event oriented textual representation for Ba-sic Message Sequence Charts. The Basic Message Se-quence Chart from Figure 3 may look likemsc example3;out k from a to b;out l from a to c;in l from a to c;in k from a to b;endmsc;8. CONCLUSIONThe de�nition of a formal semantics of Basic MessageSequence Charts based on process algebra as presentedin this paper has turned out to be a very natural andsuccessful method. We used the instance oriented syn-tax to derive a compositional semantics and indicatedthat this yields a semantics which is equivalent to theapproach based on sequencing for an event oriented syn-tax [4, 12].The development of the semantics for the completeMessage Sequence Charts language follows the sameline, applying more elaborate constructs from processalgebra for features such as sub Message SequenceCharts and process creation.The algebraic approach towards the de�nition of theformal semantics of Message Sequence Charts enablesthe use of term{rewriting systems for the rapid proto-typing of speci�cations [13].ACKNOWLEDGEMENTSWe would like to thank Jos Baeten, Jan Bergstra,Ekkart Rudolph and Chris Verhoef for their useful com-ments and suggestions for improvements.REFERENCES[1] J. C. M. Baeten and C. Verhoef. A congruence theoremfor structured operational semantics with predicates. InE. Best, ed., CONCUR'93, Lecture Notes in ComputerScience 715, Springer, Berlin, 1993.[2] J. C. M. Baeten and W. P. Weijland. Process Algebra.Cambridge Tracts in Theoretical Computer Science 18.Cambridge University Press, Cambridge, 1990.
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