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Abstract. Interworkings is a graphical language for displaying the in-
teraction between system components. In this paper we give a formal
semantics for Interworkings based on process algebra. A notion of refine-
ment on Interworkings will be defined.

1 Introduction

The Interworking language (IW) is a graphical formalism for displaying the
communication behaviour of system components. It was developed in order
to support the informal diagrams used at Philips Kommunikations Industrie
(Niirnberg) which were used for requirements specification and design.

One of the reasons for developing an explicit language was that it showed
very hard to maintain a large collection of diagrams by hand. Several problems
were encountered. First of all, manually drawing and updating large diagrams
is an expensive activity. Secondly, diagrams that are linked to each other must
be updated consistently. Therefore, consistency checks are needed. Thirdly, the
relation between the diagrams in a collection is only implicit. Some diagrams de-
scribe successive behaviour of one part of the system, other diagrams define the
concurrent behaviour of different parts of the system, while still others describe
the same behaviour of the same part of the system, but from a different level
of abstraction. Thus, diagrams may be a refinement of other diagrams. Finally,
there existed different interpretations of the meaning of even simple Interwork-
ings.

In order to solve above mentioned problems, a tool set was developed [10] and
a formal semantics was proposed [9]. The semantics are given via a translation
into process algebra [4, 3, 2].

The proposed semantics does not consider the notion of refinement between
Interworkings. Furthermore, it has some minor shortcomings. The purpose of
this paper is to extend and improve upon the semantics treated in [9] such that
refinement can be defined. Thereto, we will extend the process algebra used and
the bisimulation model. We will prove soundness and completeness of our theory
and derive some useful properties.

The Interworking language is a member of a large class of similar graphical
notations, most of which are only informally defined, such as Signal Sequence
Charts, Use Cases, Information Flow Diagrams, Message Flow and Arrow Di-
agrams. Interworkings are similar to Message Sequence Charts [5], which are



standardized by the International Telecommunication Union (ITU). The main
difference is that Interworkings describe synchronous communication, whereas
Message Sequence Charts describe asynchronous communication. The semantics
of MSC as described in [7, 6] is also very similar to the semantics of TW.

This paper is organized as follows. In Sect. 2 we give a short introduction to
the Interworking language and the Interworking operators. Section 3 contains a
formal definition of the Interworking operators and several properties. Complete
proofs can be found in [8]. The Interworking refinement is defined in Sect. 4.
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2 Interworkings

In this section, we will explain the graphical Interworking language and two
ways of composing Interworkings, namely the Interworking-sequencing and the
Interworking-merge. Although Interworkings can also be expressed in a textual
notation, we will not discuss this.
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Fig. 1. Interworkings A, B and C

Figure 1 shows a collection of three Interworkings, named A, B and C'. In-
terworking C', for instance, describes the communication between three entities,
called s, t and u. Every entity is represented by a vertical axis. Along one axis,
time runs from top to bottom, but there is no global time ordering assumed.
Messages exchanged between entities are represented by arrows. The interpre-
tation of Interworking C' is simple: first s sends message m2 to ¢, then ¢ sends
m7 to u, next, u sends m8 to ¢, and finally ¢ sends m4 to s. Due to the time
ordering per entity axis, the messages in Interworking C' are totally ordered.

Interworking B shows two unrelated messages mb and m6. Although m6 is
drawn above mb, they may occur in any order. In Interworking A messages ml



and m2 are not related, but they have to occur before m3, which in turn occurs
before mA4.

In practice, Interworking diagrams may become very large. Therefore, com-
position and decomposition techniques are introduced that help to keep the size
of an Interworking manageable. For vertical composition of Interworkings we
introduce the Interworking-sequencing operator ( qy). Applying this operator
means that the operands are simply concatenated below each other, taking care
that common entities are linked in the right way. Interworking D from Fig. 2 is
simply the vertical composition of Interworkings A and B (A4 gy B).
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Fig. 2. Interworkings D (= AawB) and F (= A|jiw C)

Please notice that every non-empty Interworking is equal to the sequential
composition of a number of Interworkings that consist of one message each. So,
given the semantics of one message, the Interworking-sequencing operator defines
the semantics of a given Interworking diagram.

Next, we will explain the Interworking-merge operator (||iw ), which is used
for horizontal composition of Interworkings. The easiest case is that the operands
have no entities in common. In this case, the Interworkings are simply put next
to each other. In the case that the merged Interworkings have entities in common
we will interpret this as an overlap between the Interworkings that should not
be duplicated. The common entities of the operands are identified. Likewise, the
messages between the common instances of the operands are identified.

Interworking E from Fig. 2 is the horizontal composition of the Interworkings
A and C (4 |liw ). The common entities are s and ¢. Notice that the communi-
cation behaviour between s and ¢ from A is exactly equal to the communication
behaviour between s and ¢ from C.

In case that the communication behaviour between the common entities is
not equal for both operands, this is considered as an inconsistency. It indicates
that in the description of a part of the system assumptions are made about
another part of the system, which are not met.

Among other things, the tool set described in [10] can be used to compose
Interworkings both horizontally and vertically. It will report all inconsistencies



with respect to horizontal composition. The next section contains a formal treat-
ment of Interworking-sequencing and Interworking-merge operators. The tools
also support the refinement of Interworkings. This notion will be explained in
Sect. 4.

3 Process Algebra for Interworkings

3.1 Basic Process Algebra with Deadlock and Empty Process

We will give a brief introduction to the process algebra BPAs.(A) [2, 3]. This
process algebra will be our starting point towards the more complex algebras
which are introduced in the following sections. The parameter A of the process
algebra represents the set of atomic actions. Besides the atomic actions from the
set A, the process algebra has the additional constants 6 and ¢, which represent
deadlock and the empty process, respectively. The process deadlock 1s incapable
of executing any actions and can moreover not terminate successfully. The empty
process can also execute no actions, but it terminates successfully. The set of
the atomic actions and the deadlock constant is denoted by As.

From these constants more complex processes can be built by using the op-
erators 4+ and -. The + is called alternative composition and - is called sequential
composition. The process x + y can execute either process & or process y, but
not both. The process x - y starts executing process z, and upon termination
thereof starts the execution of process y. These operators are axiomatized by
the axioms from Table 1. In these axioms the variables x, y and z denote arbi-
trary processes. In order to reduce the number of brackets in processes we have
the following priorities on operators: - binds stronger than all other operators
and + binds weaker than all other operators.

Table 1. Axioms of BPAs.(A)

r+y =y+z b+x=x
(z+y)+z=2+(y+2) -z =6
r+x =z r-e =z
(x4+y)-z =2 -z24+y- -z c-x =z

(x-y)-z =x-(y-2)

To the process algebra BPAs.(A) we associate a structured operational se-
mantics in the form of the term deduction system T(BPAs.(A)) in Table 2. For
the deduction rules in this table we require that a € A and that x, y, and 2

H

are arbitrary processes. A deduction rule is of the form & where H is a set

of hypotheses and C'is the conclusion. The formula & — #’ expresses that the
process z can perform an action a and thereby evolves into the process z’. The



Table 2. Structured operational semantics of BPAs.(A) (a € A)

o x| yl x|yl
el r+yl r+yl vyl

r —z Ly r =z ]y =y
a a / / a / /

formula z | expresses that process x has an option to terminate immediately and
successfully. For a formal definition of term deduction systems we refer to [2].

Definition1 (Bisimulation). A symmetric relation R on closed BPAs.(A)
terms is a bisimulation relation, if and only if, for every pair (p,q¢) € R and
a € A, the following conditions hold:

1. if p % p/, then there exists a closed BPAs.(A) term ¢’ such that ¢ = ¢ and

(' q') € R,
2. 1f p |, then ¢ |.

The closed BPAs.(A) terms # and y are bisimilar, notation « — y, if and only if
there exists a bisimulation relation R relating them.

Finally, we would like to mention the following well-known result from liter-
ature, e.g. [3]. The process algebra BPAs.(A4) is a sound and complete axioma-
tization of bisimulation equivalence on closed BPAs.(A) terms. This result will
be used in the following sections when relating the extended process algebras to

BPAs.(A).

3.2 Interworking-sequencing and Interworking-merge

In this section, we will extend the process algebra BPAs.(A) from the previous
section. First, we will instantiate the parameter A of BPAs.(A4) by the actual
atomic actions occurring in Interworkings. Next, we define the Interworking-
sequencing operator oy, and the E-Interworking merge operator ||£ . We will
extend the process descriptions with sets of entities and call them entity-labeled
processes. Finally, we define the Interworking-merge on these extended processes.

The Entity Function and the Interworking-sequencing. In an Interwor-
king diagram there are two types of objects: entities and messages. Entities
come from a set EID and messages from a set MID. We use ¢(, j, m) to denote
the sending of message m from entity ¢ to entity j. Thus, parameter A from
BPAs:(A) will be instantiated by {e(¢,j,m) | ¢,j € FID,m € MID}.

We want to determine for each process description which entities are actively
involved in it. Thereto, we define the entity function F (see Table 3).



Table 3. Active entities of an Interworking (¢,7 € FID, m € MID, a € A)

Ee) =0 Fla-z) =F(a)U E(x)
H(5) =0 Eaz+y) = Ez)UEy)
Ele(i, j,m)) = {i,j}

The Interworking-sequencing of two processes x and y (& gwy) is their parallel
execution with the restriction that the right-hand process may execute an action
only if the entities of that action are disjoint from the entities of the left-hand
process. The Interworking-sequencing operator is similar to the weak sequential
composition operator from [11].

The axiomatization of g is basically the one presented in [9], but extended
with axioms for the empty process (see Table 4). We use the two auxiliary op-
erators Loy and Ry . The process z Lay y behaves like the process # qwy with
the restriction that the first action to be executed must originate from process
x. The process = Ray y also behaves like the process x gy but this time with
the restriction that the first action to be executed must be from process y. In
this case, the first action from y can only be executed if it is not blocked by any
of the actions from z. The operator / is used to obtain a proper treatment of
the empty process (i.e., we want € qwe = €).

Table 4. Axioms of Interworking-sequencing (a € As)

x Yy =zLawy+2Rawy+V(2) V(v)
clow @ =4

a-xloyy =a-(xawy)
(l‘-l-y)LqWZ:l‘IDle-l-yIDle

x Royw ¢ =6

tRawa-y =a-(rawy) if F(a)N E(z) =10
rRowa-y =6 if B(a)N E(z) #0

xRQlW(y‘i‘Z):xRQlwy‘i‘ngwz
V(€) =e

Via-x) )

Viet+y) =@ +V()

The structured operational semantics of the Interworking-sequencing and the
auxiliary operators is given in Table 5.

The E-Interworking Merge. The axiomatization of the S-Interworking merge
as presented in [9] uses the auxiliary operators left S-Interworking merge ||:
and synchronization Interworking-merge | with S a set of atomic actions. We



Table 5. Structured operational semantics of Interworking-sequencing (a € A)

x|,y x =2 y =y, E(a)N E(x) =0
Tawy | Tawy — ' owy T AWy — T qwy

x| =z y =y, Ela)N E(z)=10
V@)l zlawy > 2 awy 2 Raw y = T owy/

will use similar auxiliary operators only now labeled with a set of entities instead
of a set of atomic actions. This set represents the entities on which communi-
cation actions must synchronize. The process z [|£ y is the parallel execution of
the processes x and y with the restriction that the processes must synchronize
on all atomic actions which are defined on entities from the set E. The process
l‘I_I_fv y behaves like the process z||Z y with the restriction that the first action
must come from process x and that action cannot synchronize with an action
from y. The process z |£ y behaves as the process z||Z y with the restriction
that the first action to be executed must be a synchronization. Again we will use
the termination operator 1/ to make sure that the E-Interworking merge behaves
correctly for empty processes (Interworkings), i.e., ¢||£ ¢ = ¢ for all E C EID.
The definition of the F-Interworking merge operator is given in Table 6. Recall
that the axioms for the termination operator are given in Table 4.

Table 6. Axioms of E-Interworking merge (a,b € As)

ellfiy = elly ol e+ lf v+ V) V)
Egvx =4

axllly =a @Iy  fEeZE
a~xu_5vy =6 if E(a) CFE
(x—i—y)u_fvz:x 5\,'2‘1‘3/“_5\,'2

elf x =6

z|Z e =0

a-z|Bb.y =a (z]|Ey) ifa=bAE(@)CFE
a-x|Bb.y =6 ifaZbVE@YEE

e+l z=2lf 2 +vlE -
el (y+z) =elly+all -

Table 7 presents the structured operational semantics of the F-Interworking
merge and the auxiliary operators introduced. The process algebra consisting of
all operators and axioms introduced so far is called IW,. The term deduction



system T'(IW,) consists of the deduction rules of Tables 2, 5 and 7.

Table 7. Structured operational semantics of E-Interworking merge (a € A)

x|yl x =2 y=y Ea)CE v =2 Ea)g E
iyl ellfy =215y el y = 15y
yiy’,E(a)ZE xix’,E(a)ZE xix’,yiy’,E(a)gE
a B a a
z |y =I5y |,y = 15y zlhy =2 |5y

It turns out that bisimulation equivalence is a congruence for the function
symbols in the signature of IW,. Furthermore, IW, is a sound and complete
axiomatization of bisimulation equivalence on closed W, terms. In [8] these
results are proven in more detail. These proofs are based on the meta-theory
presented in [2; 12].

The Interworking-merge. Now that we have given the axioms and struc-
tured operational semantics of the E-Interworking merge we will define the
Interworking-merge operator. The Interworking-merge of two processes is their
parallel execution with the restriction that the processes must synchronize on
all atomic actions which are defined on the common entities of the processes.
For the Interworking-merge operator it is necessary to determine the common
entities of the operands. The entities of an operand cannot be obtained from the
process term representing it (as was done in [9]), since empty entities are not
represented in the process term. Therefore, we label every process term by a set
of entity names over EID. For an Interworking x, this set represents the entities
of the Interworking (including the empty entities). An Interworking with a dy-
namical behaviour denoted by x over the entities from E is denoted by (z, E).
Such a tuple {z, F) will be called an entity-labeled process.

On entity-labeled processes we define the operators Interworking-sequencing
and Interworking-merge. The set of all entity-labeled processes is called LP. The
definition of the Interworking-sequencing on entity-labeled processes is straight-
forward. As was done in [9] the Interworking-merge is expressed in terms of the
E-Interworking merge operator and the common entities of the operands. Tech-
nically speaking, we can axiomatize the Interworking-merge without using the
E-Interworking merge. But, to stay as close as possible to the existing axiomati-
zation of the Interworking-merge, we use the E-Interworking merge. The axioms
for entity-labeled processes are given in Table 8 for E, F' C FID. The extension
of IW, with entity-labeled processes is denoted by IWE..

Next, we define a structured operational semantics of entity-labeled pro-
cesses. In order to make a clear distinction between the transition relation and
termination predicate on non-labeled processes and on entity-labeled processes,



Table 8. Axioms of entity-labeled processes

(#, B) aw(y, F) = (xawy, EU F) (@, B) lliw (y, F) = (& [y, EUT)

1w

we denote the latter by = and |}, respectively. The structured operational seman-
tics of entity-labeled processes is related directly to the structured operational
semantics of non-labeled processes as expressed in Table 9 (s, represent entity-
labeled processes). Thereto, two auxiliary functions 7, and 7. are introduced
for entity-labeled processes. Intuitively, m,(s) denotes the process-part of s, and
7e(s) denotes the entity-part of s.

Table 9. Structured operational semantics of entity-labeled processes (a € A)

(e, B) =« 7.((z, B)) = E
Tp(s0mt) = mp(s) A mp(t) Te(s ot) = me(s) U me(t)
(s lliwt) = mp(s) ([ (1) mels [l ) = me(s) Ume(D)
7TP(S) = Y 7Tp(5) J
5 = (y, me(s)) s

Definition 2 (Entity bisimulation). A symmetric relation R on closed LP
terms is an entity bisimulation relation, if and only if, for every pair (s,t) € R
and a € A, the following conditions hold:

1. if s = &, then there is a closed LP term ¢’ such that ¢t = ¢ and (s, € R,
2. if s |}, then t |,
3. we(s) = me(2).

The closed LP terms s and t are entity bisimilar, notation s e ¢, if and only if
there exists an entity bisimulation relation R relating them.

It is also possible to define entity bisimulation in terms of bisimulation of the
process-parts and set equality of the entity-parts.

Lemma 3. For closed LP terms s and t we have
semt Mt m(s) = mp(t) and we(s) = 7w (t) (1)

Proof. Suppose that s« ¢. Then there exists an entity bisimulation relation R
on closed LP terms that relates s and ¢. Then the relation R’ = {(7,(p), 7p(q)) |
(p,q) € R} is a bisimulation relating m,(s) and m,(¢). From the definition of
entity bisimulation we also obtain me(s) = me(t).



Next, suppose that m,(s) < mp(¢) and 7e(s) = 7(t). Then there exists a
bisimulation relation R that relates mp(s) and wp(¢). Then the relation R/ =
{Up, EY, {q, E)) | (p,q) € R, E C EID} is an entity bisimulation relating s and
t. Hence, s e 1. ad

Theorem 4 (Congruence). Entily bisimulation equivalence is a congruence
for the function symbols in the signature of IWE, which are defined on LP terms.

Proof. Suppose s1 e~ s5 and t1 e 9. By Lemma 3 we have (1) mp(s1) <= mp(s2),
(2) m(s1) = Te(52), (3) Mp(ts) = mp(t), and (4) m(tr) = 7 (1)

From (1) and (3) and the fact that < is a congruence for gy on closed
IW, terms, it follows that mp(s1 qwt1) = 7p(s1) awmp(t1) = Tp(s2) awmp(tz) =
Tp(82 awta). From (2) and (4) we obtain 7c(s1 awt1) = 7e(s1)Ume(t1) = me(s2) U
Te(t2) = Te($2 awta). Hence, by Lemma 3, 51 aywly v 89 qyla.

From (2) and (4) we have that me(s1)N7e(t1) = me(s52) Nwe(t2). From (1) and
(3) and the fact that < is a congruence for [|£ on closed TW, terms, it follows

that (s [ 1) = mp(s0) 77wy (01) = wp(s0) 175720 mp(t2) =
Tp(82 |Jiw t2). From (2) and (4) we obtain that 7.(s1 [|iw 1) = 7e(s1) U me(t1)

Te($2) U Te(t2) = me(s2 ||iwt2). Hence, by Lemma 3, 51 [|iw t1 &~ 82 ||iw t2. O

Theorem 5 (Soundness). The process algebra IWE, is a sound axiomatiza-
tion of bistmulation equivalence on closed IW, terms. The process algebra IWE,
15 a sound axtomatization of entity bisimulation on closed LP terms.

Proof. For the first proposition observe that we did not add any axioms relating
closed W, terms. We will prove the second proposition. Since entity bisimulation
is a congruence for the closed terms of LP (Theorem 4) we only have to show that
the axioms from Table 8 are sound. Thereto, we provide a bisimulation relation
for each axiom. For both axioms relate the left-hand side to the right-hand side
and additionally relate each term to itself. a

Theorem 6 (Conservativity). The process algebra IWE, is a conservalive ex-
tension of the process algebra IW;.

Proof. The proof of this theorem uses the approach of [12]. The conservativity
follows from the following observations:

1. bisimulation i1s definable in terms of predicate and relation symbols only,
2. IW; is a complete axiomatization of bisimulation on closed TW, terms,
3. IWE, is a sound axiomatization of bisimulation on closed IW. terms (see

Theorem 5),
4. T(IW,) is pure, well-founded and in path format, and
5. T(IWE.) is in path format. a

Definition7 (Basic terms). Basic LP terms are defined inductively by:

1. if # is a closed IW, term and E C FID, then {x, E) is a basic LP term
2. no other closed LP terms are basic LP terms



Theorem 8 (Elimination). For every closed LP term s there exisls a basic LP
term t such that IWE. F s =1t.

Proof. This theorem is proven with induction on the structure of a closed LP
term. First, consider the case s = {(x, F) (z a closed W, term and F C EID).
Then s is a basic LP term. Next, consider the case s = s; qysa (51,82 closed
LP terms). Then we have by induction that there exist basic LP terms t1,ts
such that s; = ¢; and s9 = ¢5. From the definition of basic LP terms we then
also have the existence of closed IW. terms x1,xs and Fq, Fs C FID such that
t1 = {(x1,F1) and t3 = (w9, F3). Then we derive s = s1qyws2 = t1quts =
(z1, F1) aw{wa, E2) = {21 awxa, F1 U E2) which is a basic LP term. Finally,
consider the case s = 1 |liw 82 (s2,52 closed LP terms). Again by induction
and the definition of basic LP terms, we have the existence of closed IW, terms
z1,29 and Ey, Fy C EID such that s; = (21, F1) and s2 = {23, F2). Then we
derive s = s1 ||iw 52 = (21, B1) [liw (2, E2) = (21 ||5V1mLJ2 22, F1 U Fs) which is a
basic LP term. ad

Theorem 9 (Completeness). The process algebra IWE, is a complele aziom-
atization of entity bistmulation on closed LP terms.

Proof. By the elimination theorem (Theorem 8) we only have to prove this the-
orem for basic LP terms. Let (x, 1) and (y, F2) be basic LP terms such that
(z, E1) e~ (y, E2). By Lemma 3 we have # — y and E; = Fs. Since IW, is a
complete axiomatization of bisimulation equivalence on closed W, terms, we
have # = y, and hence {x, E1) = {y, F). a

The proofs of the following properties can be found in [8]. The Interworking-
sequencing is commutative under the assumption that the active entities of the
operands are disjoint. Furthermore, it 1s associative. The Interworking-merge is
both commutative and associative. The Interworking-merge as defined in [9] did
not have the associativity property. This difference is a direct consequence of
our decision to maintain the entities of an Interworking statically.

Proposition10 (Commutativity of oy and ||iw ). For closed IW. terms x,
y, closed LP terms s, t and a set of entities E we have

rawy=yawz il E(z)NEly) =0
sawl =taws if E(mp(s)) N E(mp(t) =0
el y=yllf e

5||iwt :tHiWS

2
3
4

(
(
(
(5

~— e e

Proposition11 (Associativity of g and |liw ). For closed IW, terms x, y,
z, closed LP terms s, t, u and sets of entities By, Fo, E3s we have

( awy) ow? = Gy (Y aw?) (6)

(s awt) awtt = 8 qyw (t awtt) (7)

(|| B2 ) | (FrOFI0Es o = g [|fOUFR0ED) () onBs 4 (8)
(5 i £) [liw = 5 [l (¢ [l ) (9)



4 Algebraic Definition of Interworking Refinement

Interworking refinement is the replacement of one entity by a number of entities
such that the behaviour of the refining Interworking is identical, in a sense to be
made precise shortly, to the original Interworking. It 1s used for enabling a top-
down design strategy. In this way, a system can be viewed from the right level
of abstraction. Figure 3 shows an example of such a refinement. Interworking A
is a refinement of Interworking B, because A contains entities ¢l and ¢2 that
refine the bahaviour of entity ¢ from B.

The relation between the entities in both Interworkings is given by a partial
mapping f : FID — FEID from entities to entities. An entity e from rag(f) is
refined by the set of all entities e’ satisfying f(e’) = e. If Interworking s is an f-
refinement of Interworking ¢, i.e., s refines ¢ with respect to the entity mapping
f, we denote this by sC;¢. The mapping f is partial in order to distinguish
between an entity p which is not refined at all (p € rng(f)) and an entity p
which is refined by (amongst others) an entity p (f(p) = p).

ml

mb ml

m2 m2

m3 m3

mb m4

m4

Fig. 3. Interworking refinement (f(¢l) = f(¢2) = ¢q)

The intuition is that the external behaviour of a single entity within the
Interworking ¢ can be refined into, or implemented by, the collective behaviour
of a number of entities within the Interworking s. Besides the singular refinement
discussed above, it is also allowed to consider a number of refinements at the
same time. An example of such a multiple refinement is given in Fig. 4. The
entity p is refined by the entities pl and p2, and the entity ¢ 1s refined by the
entities ¢1 and ¢2.

In the following, we will give the formal definitions involved with Interworking
refinement. The operational view basic to the definition of AC; B is as follows
(see Fig. 3). First, we rename all refining entities of A (i.e. ¢1 and ¢2) that occur
in messages of A into the refined entity ¢. For this purpose, we will define the
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Fig. 4. Multiple refinement (f(pl) = f(p2) = p, f(ql) = f(q2) = ¢)

renaming function p; . After this step, all messages between entities ¢1 and ¢2
will become message that are internal to entity ¢. Now, we remove all these
internal messages from the renamed Interworking A and from Interworking B.
This is done by applying the operator €7 that renames atomic actions into the
empty process ¢. We say that A refines B if the resulting Interworkings are equal,

First, we define the renaming function p; . This operator renames all occur-
rences of e € EID into f(e). For the axiomatization of this operator it is easier
to have a total function instead of a partial one. Thereto, we extend the partial
function f to the total function f* by asserting that f*(z) = x for all # for which
f 1s not defined.

Let f : EID — FEID be a partial function, then the renaming operator p;
related to f i1s defined by the axioms in Table 10. This renaming operator re-
sembles the renaming operator py from [1]. Note that also the entity component
of an entity-labeled process is renamed with respect to the mapping f.

Table 10. Entity renaming function on processes (¢ € A, i,j € EID, m € MID)

pr (€) = pila-x) = psla)- ps(x)
py (6) 6 pi(x+y) = ps(x)+ pr(y)
ps (e(i, j,m)) = e(f* (@), f*(j),m) py({z, E)) = {ps (), {f*(e) | e € E})

Let F be a set of entities. Then the set of all internal actions with respect to
the entities from F, notation Int(F), is defined as follows:

Int(E) = {c(i,i,m) | i € EID,m € MID} (10)

Let T be a set of atomic actions, then we can define the operator e (see [13])
that renames atomic actions from I into € as in Table 11.



Table 11. Renaming atomic actions into e (I C A, a € Aj)

er(e) =e er(z+y) =er(z) +er(y)
er(a-z) =er(x ifael er({z, EY) = {c1(n), E)
grla-z)=a-er(z)ifagl

Let f : FID — FEID be a refinement mapping, the f-refinement relation on
entity-labeled processes 1s then defined as follows:
sEpt iff Efnt(rng(f))(pf (s) = Efnt(rng(f))(t) (11)

Next, we extend this notion of refinement with a fixed mapping to a notion of
refinement which abstracts from this mapping. This is called entity refinement.
Interworking s is an entity refinement of Interworking ¢, notation sC ¢ if and
only if there exists a refinement mapping f such that sC;¢. This is formally
expressed as follows:

sCt it 3, prp_pp sEst (12)

FEzample 1. As an illustration of this algebraic definition of refinement, the re-
finement relation between the Interworkings in Fig. 4 is computed. Semantically
the Interworkings are represented by

C = {c(pl,p2,m3) awe(p2, ¢1, ml) awe(ql, 42, m4) awe(q2, g1, mb)
awe(ql, p2, m2) awe(p2, pl, m6), {p1, p2, 41, 42}) (13)
D = {c(p, ¢, m1) awe(q, p,m2), {p, ¢}) (14)
Elimination of the qy yields the following equations
C = {e(pl,p2,m3) - c(p2, q1,m1) - ¢(ql, q2,m4) - c(q2, g1, mb)
~c(ql,p2,m2) - e(p2, pl, m6), {p1,p2,q1,42}) (15)
D = {c(p, g, ml) - e(g, p,m2),{p, 4}) (16)

The refinement mapping f is given by f(pl) = f(p2) = p and f(ql) = f(¢2) = q.
First, we rename the entities of Interworking C' according to f.

pi (C) = {c(p,p,m3) - c(p, ¢, ml) - c(q, ¢, m4) - (¢, ¢, m5) - (g, p, m2)

c(papa m6)’{paQ}> (17)
The set of actions which should be removed is given by
Int(rng(f)) = {c(p,p,m), c(q, ¢, m) | m € MID} (18)

Removing these actions from the Interworkings pf (C) and D results in the
following equations

Efnt(rng(f))( pr(C)) = {c(p,q,ml) - c(q, p, m2),{p, q}) (19)
€ Intirng (D) = (e(p, q,ml) - c(q, p, m2), {p, q}) (20)

We can conclude that Interworking C' is an f-refinement of Interworking D.



For the entity refinement relation we have the following properties.

Proposition12 (Reflexivity). For all closed entity-labeled processes s we have
sCs (21)

Proof. We have to show that there exists a partial mapping f such that sC; s.
Take the mapping f with empty domain. Then s i1s an f-refinement of s. a

Proposition13 (Transitivity). For all closed entity-labeled processes s, t, u
we have
sCtandtCu 1implies sCu (22)

Proof. Let F be some set and let f : F' — F be a partial function. For all G C F'
the extension of f with respect to G, notation f¢ is, for all € F', defined by

flx) if x € dom(f)
ffa)y=<« if @ dom(f)Ae € G (23)
undefined if # € dom(f) Ae & G

Suppose that there exist f,g : EID — EID such that sC;¢ and tC, u. Then

define h = ¢"™9F) o fdom(g). It is our claim that s Cp u. The proof of this claim
1s omitted. O

We do not have that the relation C is anti-symmetrical. This is due to
the treatment of internal actions. Consider, for example, the Interworkings s =
{e(p,p,m),{p}) and t = {c(p,p,n),{p}). Then we have sC¢ and tC s, but we
do not have s = ¢. For Interworkings without internal communications we do
have antisymmetry of entity refinement. So, for Interworkings without internal
communication the entity refinement relation is a partial ordering. For the more
general class of Interworkings entity refinement is a pre-order.

5 Conclusions

We have given a semantics of Interworkings in which we solved some problems
encountered in a former semantics and which allows a definition of entity re-
finement. The reformulation of the semantics has the following benefits. First,
it 18 now possible to express an empty Interworking. Its semantics is simply the
empty process. Next, by extending the processes to entity-labeled processes, the
Interworking-merge became an associative operator. Further, we have solved an
anomaly described in [8]. We will explain this in short and refer to [8] for an
example.

Consider Interworkings A and B, where B is an exact copy of A with the
difference that B has one extra entity e without any behaviour. In the old se-
mantics there was no distinction between A and B. However, there is a good
reason to make a distinction between these. Suppose there is an Interworking C'



that contains entity e such that there is a message to e. Now consider placing
A, respectively B in parallel with C'. Intuitively, A and C' can be merged con-
sistently with respect to entity e, whereas B and C' cannot. This is because the
communication behaviour of e in B is different from the behaviour of e in C'.

A refinement check was already implemented in the Interworking ToolSet
based upon an informal explanation by means of examples. The formal defini-
tions provided in this paper seem to correspond well to the existing implemen-
tation.
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