
Re�nement in InterworkingsS. Mauw and M.A. ReniersDepartment of Mathematics and Computing Science, Eindhoven University ofTechnology, P.O. Box 513, NL{5600 MB Eindhoven, The Netherlands.sjouke@win.tue.nl , michelr@win.tue.nlAbstract. Interworkings is a graphical language for displaying the in-teraction between system components. In this paper we give a formalsemantics for Interworkings based on process algebra. A notion of re�ne-ment on Interworkings will be de�ned.1 IntroductionThe Interworking language (IW) is a graphical formalism for displaying thecommunication behaviour of system components. It was developed in orderto support the informal diagrams used at Philips Kommunikations Industrie(N�urnberg) which were used for requirements speci�cation and design.One of the reasons for developing an explicit language was that it showedvery hard to maintain a large collection of diagrams by hand. Several problemswere encountered. First of all, manually drawing and updating large diagramsis an expensive activity. Secondly, diagrams that are linked to each other mustbe updated consistently. Therefore, consistency checks are needed. Thirdly, therelation between the diagrams in a collection is only implicit. Some diagrams de-scribe successive behaviour of one part of the system, other diagrams de�ne theconcurrent behaviour of di�erent parts of the system, while still others describethe same behaviour of the same part of the system, but from a di�erent levelof abstraction. Thus, diagrams may be a re�nement of other diagrams. Finally,there existed di�erent interpretations of the meaning of even simple Interwork-ings.In order to solve above mentioned problems, a tool set was developed [10] anda formal semantics was proposed [9]. The semantics are given via a translationinto process algebra [4, 3, 2].The proposed semantics does not consider the notion of re�nement betweenInterworkings. Furthermore, it has some minor shortcomings. The purpose ofthis paper is to extend and improve upon the semantics treated in [9] such thatre�nement can be de�ned. Thereto, we will extend the process algebra used andthe bisimulation model. We will prove soundness and completeness of our theoryand derive some useful properties.The Interworking language is a member of a large class of similar graphicalnotations, most of which are only informally de�ned, such as Signal SequenceCharts, Use Cases, Information Flow Diagrams, Message Flow and Arrow Di-agrams. Interworkings are similar to Message Sequence Charts [5], which are

standardized by the International Telecommunication Union (ITU). The maindi�erence is that Interworkings describe synchronous communication, whereasMessage Sequence Charts describe asynchronous communication. The semanticsof MSC as described in [7, 6] is also very similar to the semantics of IW.This paper is organized as follows. In Sect. 2 we give a short introduction tothe Interworking language and the Interworking operators. Section 3 contains aformal de�nition of the Interworking operators and several properties. Completeproofs can be found in [8]. The Interworking re�nement is de�ned in Sect. 4.Acknowledgements. We would like to thank Thijs Winter and Mark van Wijkfor cooperating on a preliminary, although never published, version of Inter-workings with re�nement. Furthermore, we thank Jos Baeten, Twan Basten,Loe Feijs, Hans Mulder, Jan Gerben Wijnstra and the anonymous referees fortheir criticism.2 InterworkingsIn this section, we will explain the graphical Interworking language and twoways of composing Interworkings, namely the Interworking-sequencing and theInterworking-merge. Although Interworkings can also be expressed in a textualnotation, we will not discuss this.Aq r s t Bp r s tm1 m2m3 m4 m5 m6 s t um2 m7m8m4CFig. 1. Interworkings A, B and CFigure 1 shows a collection of three Interworkings, named A, B and C. In-terworking C, for instance, describes the communication between three entities,called s, t and u. Every entity is represented by a vertical axis. Along one axis,time runs from top to bottom, but there is no global time ordering assumed.Messages exchanged between entities are represented by arrows. The interpre-tation of Interworking C is simple: �rst s sends message m2 to t, then t sendsm7 to u, next, u sends m8 to t, and �nally t sends m4 to s. Due to the timeordering per entity axis, the messages in Interworking C are totally ordered.Interworking B shows two unrelated messages m5 and m6. Although m6 isdrawn above m5, they may occur in any order. In Interworking A messages m1

and m2 are not related, but they have to occur before m3, which in turn occursbefore m4.In practice, Interworking diagrams may become very large. Therefore, com-position and decomposition techniques are introduced that help to keep the sizeof an Interworking manageable. For vertical composition of Interworkings weintroduce the Interworking-sequencing operator (�iw). Applying this operatormeans that the operands are simply concatenated below each other, taking carethat common entities are linked in the right way. Interworking D from Fig. 2 issimply the vertical composition of Interworkings A and B (A �iwB).Eq t um3 m4m2srm1 m7m8Dp q r s tm1 m2m3 m4m5 m6Fig. 2. Interworkings D (= A �iwB) and E (= A kiw C)Please notice that every non-empty Interworking is equal to the sequentialcomposition of a number of Interworkings that consist of one message each. So,given the semantics of one message, the Interworking-sequencing operator de�nesthe semantics of a given Interworking diagram.Next, we will explain the Interworking-merge operator (kiw), which is usedfor horizontal composition of Interworkings. The easiest case is that the operandshave no entities in common. In this case, the Interworkings are simply put nextto each other. In the case that the merged Interworkings have entities in commonwe will interpret this as an overlap between the Interworkings that should notbe duplicated. The common entities of the operands are identi�ed. Likewise, themessages between the common instances of the operands are identi�ed.Interworking E from Fig. 2 is the horizontal composition of the InterworkingsA and C (A kiw C). The common entities are s and t. Notice that the communi-cation behaviour between s and t from A is exactly equal to the communicationbehaviour between s and t from C.In case that the communication behaviour between the common entities isnot equal for both operands, this is considered as an inconsistency. It indicatesthat in the description of a part of the system assumptions are made aboutanother part of the system, which are not met.Among other things, the tool set described in [10] can be used to composeInterworkings both horizontally and vertically. It will report all inconsistencies

with respect to horizontal composition. The next section contains a formal treat-ment of Interworking-sequencing and Interworking-merge operators. The toolsalso support the re�nement of Interworkings. This notion will be explained inSect. 4.3 Process Algebra for Interworkings3.1 Basic Process Algebra with Deadlock and Empty ProcessWe will give a brief introduction to the process algebra BPA�"(A) [2, 3]. Thisprocess algebra will be our starting point towards the more complex algebraswhich are introduced in the following sections. The parameter A of the processalgebra represents the set of atomic actions. Besides the atomic actions from theset A, the process algebra has the additional constants � and ", which representdeadlock and the empty process, respectively. The process deadlock is incapableof executing any actions and can moreover not terminate successfully. The emptyprocess can also execute no actions, but it terminates successfully. The set ofthe atomic actions and the deadlock constant is denoted by A� .From these constants more complex processes can be built by using the op-erators + and �. The + is called alternative composition and � is called sequentialcomposition. The process x + y can execute either process x or process y, butnot both. The process x � y starts executing process x, and upon terminationthereof starts the execution of process y. These operators are axiomatized bythe axioms from Table 1. In these axioms the variables x, y and z denote arbi-trary processes. In order to reduce the number of brackets in processes we havethe following priorities on operators: � binds stronger than all other operatorsand + binds weaker than all other operators.Table 1. Axioms of BPA�"(A)x+ y = y + x � + x = x(x+ y) + z = x+ (y + z) � � x = �x+ x = x x � " = x(x+ y) � z = x � z + y � z " � x = x(x � y) � z = x � (y � z)To the process algebra BPA�"(A) we associate a structured operational se-mantics in the form of the term deduction system T (BPA�"(A)) in Table 2. Forthe deduction rules in this table we require that a 2 A and that x, y, and zare arbitrary processes. A deduction rule is of the form HC where H is a setof hypotheses and C is the conclusion. The formula x a! x0 expresses that theprocess x can perform an action a and thereby evolves into the process x0. The

Table 2. Structured operational semantics of BPA�"(A) (a 2 A)" # x #x+ y # y #x+ y # x #; y #x � y #a a! " x a! x0x+ y a! x0 y a! y0x+ y a! y0 x a! x0x � y a! x0 � y x #; y a! y0x � y a! y0formula x # expresses that process x has an option to terminate immediately andsuccessfully. For a formal de�nition of term deduction systems we refer to [2].De�nition1 (Bisimulation). A symmetric relation R on closed BPA�"(A)terms is a bisimulation relation, if and only if, for every pair (p; q) 2 R anda 2 A, the following conditions hold:1. if p a! p0, then there exists a closed BPA�"(A) term q0 such that q a! q0 and(p0; q0) 2 R,2. if p #, then q #.The closed BPA�"(A) terms x and y are bisimilar, notation x$ y, if and only ifthere exists a bisimulation relation R relating them.Finally, we would like to mention the following well-known result from liter-ature, e.g. [3]. The process algebra BPA�"(A) is a sound and complete axioma-tization of bisimulation equivalence on closed BPA�"(A) terms. This result willbe used in the following sections when relating the extended process algebras toBPA�"(A).3.2 Interworking-sequencing and Interworking-mergeIn this section, we will extend the process algebra BPA�"(A) from the previoussection. First, we will instantiate the parameter A of BPA�"(A) by the actualatomic actions occurring in Interworkings. Next, we de�ne the Interworking-sequencing operator �iw, and the E-Interworking merge operator kEiw . We willextend the process descriptions with sets of entities and call them entity-labeledprocesses. Finally, we de�ne the Interworking-merge on these extended processes.The Entity Function and the Interworking-sequencing. In an Interwor-king diagram there are two types of objects: entities and messages. Entitiescome from a set EID and messages from a set MID. We use c(i; j;m) to denotethe sending of message m from entity i to entity j. Thus, parameter A fromBPA�"(A) will be instantiated by fc(i; j;m) j i; j 2 EID;m 2 MIDg.We want to determine for each process description which entities are activelyinvolved in it. Thereto, we de�ne the entity function E (see Table 3).

Table 3. Active entities of an Interworking (i; j 2 EID, m 2MID, a 2 A)E(") = ;E(�) = ;E(c(i; j;m)) = fi; jg E(a � x) = E(a) [E(x)E(x+ y) = E(x) [E(y)The Interworking-sequencing of two processes x and y (x �iwy) is their parallelexecution with the restriction that the right-hand process may execute an actiononly if the entities of that action are disjoint from the entities of the left-handprocess. The Interworking-sequencing operator is similar to the weak sequentialcomposition operator from [11].The axiomatization of �iw is basically the one presented in [9], but extendedwith axioms for the empty process (see Table 4). We use the two auxiliary op-erators L�iw and R�iw . The process xL�iw y behaves like the process x �iwy withthe restriction that the �rst action to be executed must originate from processx. The process xR�iw y also behaves like the process x �iwy but this time withthe restriction that the �rst action to be executed must be from process y. Inthis case, the �rst action from y can only be executed if it is not blocked by anyof the actions from x. The operator p is used to obtain a proper treatment ofthe empty process (i.e., we want " �iw" = ").Table 4. Axioms of Interworking-sequencing (a 2 A�)x �iwy = xL�iw y + xR�iw y +p(x) � p(y)"L�iw x = �a � xL�iw y = a � (x �iwy)(x+ y)L�iw z = xL�iw z + y L�iw zxR�iw " = �xR�iw a � y = a � (x �iwy) if E(a) \ E(x) = ;xR�iw a � y = � if E(a) \ E(x) 6= ;xR�iw (y + z) = xR�iw y + xR�iw zp(") = "p(a � x) = �p(x+ y) = p(x) +p(y)The structured operational semantics of the Interworking-sequencing and theauxiliary operators is given in Table 5.The E-InterworkingMerge. The axiomatizationof the S-Interworking mergeas presented in [9] uses the auxiliary operators left S-Interworking merge k Siwand synchronization Interworking-merge jSiw with S a set of atomic actions. We

Table 5. Structured operational semantics of Interworking-sequencing (a 2 A)x #; y #x �iwy # x a! x0x �iwy a! x0 �iwy y a! y0; E(a)\ E(x) = ;x �iwy a! x �iwy0x #p(x) # x a! x0xL�iw y a! x0 �iwy y a! y0; E(a)\ E(x) = ;xR�iw y a! x �iwy0will use similar auxiliary operators only now labeled with a set of entities insteadof a set of atomic actions. This set represents the entities on which communi-cation actions must synchronize. The process x kEiw y is the parallel execution ofthe processes x and y with the restriction that the processes must synchronizeon all atomic actions which are de�ned on entities from the set E. The processxkEiw y behaves like the process x kEiw y with the restriction that the �rst actionmust come from process x and that action cannot synchronize with an actionfrom y. The process x jEiw y behaves as the process x kEiw y with the restrictionthat the �rst action to be executed must be a synchronization. Again we will usethe termination operator p to make sure that the E-Interworking merge behavescorrectly for empty processes (Interworkings), i.e., " kEiw " = " for all E � EID.The de�nition of the E-Interworking merge operator is given in Table 6. Recallthat the axioms for the termination operator are given in Table 4.Table 6. Axioms of E-Interworking merge (a; b 2 A�)x kEiw y = xkEiw y + ykEiw x+ x jEiw y +p(x) � p(y)"kEiw x = �a � xkEiw y = a � (x kEiw y) if E(a) 6� Ea � xkEiw y = � if E(a) � E(x+ y)kEiw z = xkEiw z + ykEiw z" jEiw x = �x jEiw " = �a � x jEiw b � y = a � (x kEiw y) if a � b ^E(a) � Ea � x jEiw b � y = � if a 6� b _E(a) 6� E(x+ y) jEiw z = x jEiw z + y jEiw zx jEiw (y + z) = x jEiw y + x jEiw zTable 7 presents the structured operational semantics of the E-Interworkingmerge and the auxiliary operators introduced. The process algebra consisting ofall operators and axioms introduced so far is called IW". The term deduction

system T (IW") consists of the deduction rules of Tables 2, 5 and 7.Table 7. Structured operational semantics of E-Interworking merge (a 2 A)x #; y #x kEiw y # x a! x0; y a! y0; E(a) � Ex kEiw y a! x0 kEiw y0 x a! x0; E(a) 6� Ex kEiw y a! x0 kEiw yy a! y0; E(a) 6� Ex kEiw y a! x kEiw y0 x a! x0; E(a) 6� ExkEiw y a! x0 kEiw y x a! x0; y a! y0; E(a) � Ex jEiw y a! x0 kEiw y0It turns out that bisimulation equivalence is a congruence for the functionsymbols in the signature of IW". Furthermore, IW" is a sound and completeaxiomatization of bisimulation equivalence on closed IW" terms. In [8] theseresults are proven in more detail. These proofs are based on the meta-theorypresented in [2, 12].The Interworking-merge. Now that we have given the axioms and struc-tured operational semantics of the E-Interworking merge we will de�ne theInterworking-merge operator. The Interworking-merge of two processes is theirparallel execution with the restriction that the processes must synchronize onall atomic actions which are de�ned on the common entities of the processes.For the Interworking-merge operator it is necessary to determine the commonentities of the operands. The entities of an operand cannot be obtained from theprocess term representing it (as was done in [9]), since empty entities are notrepresented in the process term. Therefore, we label every process term by a setof entity names over EID. For an Interworking x, this set represents the entitiesof the Interworking (including the empty entities). An Interworking with a dy-namical behaviour denoted by x over the entities from E is denoted by hx;Ei.Such a tuple hx;Ei will be called an entity-labeled process.On entity-labeled processes we de�ne the operators Interworking-sequencingand Interworking-merge. The set of all entity-labeled processes is called LP. Thede�nition of the Interworking-sequencing on entity-labeled processes is straight-forward. As was done in [9] the Interworking-merge is expressed in terms of theE-Interworking merge operator and the common entities of the operands. Tech-nically speaking, we can axiomatize the Interworking-merge without using theE-Interworking merge. But, to stay as close as possible to the existing axiomati-zation of the Interworking-merge, we use the E-Interworking merge. The axiomsfor entity-labeled processes are given in Table 8 for E;F � EID. The extensionof IW" with entity-labeled processes is denoted by IWE".Next, we de�ne a structured operational semantics of entity-labeled pro-cesses. In order to make a clear distinction between the transition relation andtermination predicate on non-labeled processes and on entity-labeled processes,

Table 8. Axioms of entity-labeled processeshx;Ei �iwhy; F i = hx �iwy;E [F i hx;Ei kiw hy; F i = hx kE\Fiw y;E [F iwe denote the latter by a) and +, respectively. The structured operational seman-tics of entity-labeled processes is related directly to the structured operationalsemantics of non-labeled processes as expressed in Table 9 (s; t represent entity-labeled processes). Thereto, two auxiliary functions �p and �e are introducedfor entity-labeled processes. Intuitively, �p(s) denotes the process-part of s, and�e(s) denotes the entity-part of s.Table 9. Structured operational semantics of entity-labeled processes (a 2 A)�p(hx;Ei) = x�p(s �iwt) = �p(s) �iw�p(t)�p(s kiw t) = �p(s) k�e(s)\�e(t)iw �p(t) �e(hx;Ei) = E�e(s �iwt) = �e(s) [�e(t)�e(s kiw t) = �e(s) [�e(t)�p(s) a! ys a) hy; �e(s)i �p(s) #s +De�nition2 (Entity bisimulation). A symmetric relation R on closed LPterms is an entity bisimulation relation, if and only if, for every pair (s; t) 2 Rand a 2 A, the following conditions hold:1. if s a) s0, then there is a closed LP term t0 such that t a) t0 and (s0; t0) 2 R,2. if s +, then t +,3. �e(s) = �e(t).The closed LP terms s and t are entity bisimilar, notation s! t, if and only ifthere exists an entity bisimulation relation R relating them.It is also possible to de�ne entity bisimulation in terms of bisimulation of theprocess-parts and set equality of the entity-parts.Lemma3. For closed LP terms s and t we haves! t i� �p(s)$ �p(t) and �e(s) = �e(t) (1)Proof. Suppose that s! t. Then there exists an entity bisimulation relation Ron closed LP terms that relates s and t. Then the relation R0 = f(�p(p); �p(q)) j(p; q) 2 Rg is a bisimulation relating �p(s) and �p(t). From the de�nition ofentity bisimulation we also obtain �e(s) = �e(t).

Next, suppose that �p(s) $ �p(t) and �e(s) = �e(t). Then there exists abisimulation relation R that relates �p(s) and �p(t). Then the relation R0 =f(hp;Ei; hq; Ei) j (p; q) 2 R;E � EIDg is an entity bisimulation relating s andt. Hence, s! t. utTheorem4 (Congruence). Entity bisimulation equivalence is a congruencefor the function symbols in the signature of IWE" which are de�ned on LP terms.Proof. Suppose s1! s2 and t1! t2. By Lemma 3 we have (1) �p(s1)$ �p(s2),(2) �e(s1) = �e(s2), (3) �p(t1)$ �p(t2), and (4) �e(t1) = �e(t2).From (1) and (3) and the fact that $ is a congruence for �iw on closedIW" terms, it follows that �p(s1 �iwt1) = �p(s1) �iw�p(t1) $ �p(s2) �iw�p(t2) =�p(s2 �iwt2). From (2) and (4) we obtain �e(s1 �iwt1) = �e(s1)[�e(t1) = �e(s2)[�e(t2) = �e(s2 �iwt2). Hence, by Lemma 3, s1 �iwt1! s2 �iwt2.From (2) and (4) we have that �e(s1)\�e(t1) = �e(s2)\�e(t2). From (1) and(3) and the fact that $ is a congruence for kEiw on closed IW" terms, it followsthat �p(s1 kiw t1) = �p(s1) k�e(s1)\�e(t1)iw �p(t1) $ �p(s2) k�e(s2)\�e(t2)iw �p(t2) =�p(s2 kiw t2). From (2) and (4) we obtain that �e(s1 kiw t1) = �e(s1) [�e(t1) =�e(s2) [�e(t2) = �e(s2 kiw t2). Hence, by Lemma 3, s1 kiw t1! s2 kiw t2. utTheorem5 (Soundness). The process algebra IWE" is a sound axiomatiza-tion of bisimulation equivalence on closed IW" terms. The process algebra IWE"is a sound axiomatization of entity bisimulation on closed LP terms.Proof. For the �rst proposition observe that we did not add any axioms relatingclosed IW" terms. We will prove the second proposition. Since entity bisimulationis a congruence for the closed terms of LP (Theorem 4) we only have to show thatthe axioms from Table 8 are sound. Thereto, we provide a bisimulation relationfor each axiom. For both axioms relate the left-hand side to the right-hand sideand additionally relate each term to itself. utTheorem6 (Conservativity). The process algebra IWE" is a conservative ex-tension of the process algebra IW".Proof. The proof of this theorem uses the approach of [12]. The conservativityfollows from the following observations:1. bisimulation is de�nable in terms of predicate and relation symbols only,2. IW" is a complete axiomatization of bisimulation on closed IW" terms,3. IWE" is a sound axiomatization of bisimulation on closed IW" terms (seeTheorem 5),4. T (IW") is pure, well-founded and in path format, and5. T (IWE") is in path format. utDe�nition7 (Basic terms). Basic LP terms are de�ned inductively by:1. if x is a closed IW" term and E � EID, then hx;Ei is a basic LP term2. no other closed LP terms are basic LP terms

Theorem8 (Elimination). For every closed LP term s there exists a basic LPterm t such that IWE" ` s = t.Proof. This theorem is proven with induction on the structure of a closed LPterm. First, consider the case s � hx;Ei (x a closed IW" term and E � EID).Then s is a basic LP term. Next, consider the case s � s1 �iws2 (s1; s2 closedLP terms). Then we have by induction that there exist basic LP terms t1; t2such that s1 = t1 and s2 = t2. From the de�nition of basic LP terms we thenalso have the existence of closed IW" terms x1; x2 and E1; E2 � EID such thatt1 � hx1; E1i and t2 � hx2; E2i. Then we derive s � s1 �iws2 = t1 �iwt2 �hx1; E1i �iwhx2; E2i = hx1 �iwx2; E1 [E2i which is a basic LP term. Finally,consider the case s � s1 kiw s2 (s2; s2 closed LP terms). Again by inductionand the de�nition of basic LP terms, we have the existence of closed IW" termsx1; x2 and E1; E2 � EID such that s1 = hx1; E1i and s2 = hx2; E2i. Then wederive s � s1 kiw s2 = hx1; E1i kiw hx2; E2i = hx1 kE1\E2iw x2; E1 [E2i which is abasic LP term. utTheorem9 (Completeness). The process algebra IWE" is a complete axiom-atization of entity bisimulation on closed LP terms.Proof. By the elimination theorem (Theorem 8) we only have to prove this the-orem for basic LP terms. Let hx;E1i and hy;E2i be basic LP terms such thathx;E1i! hy;E2i. By Lemma 3 we have x $ y and E1 = E2. Since IW" is acomplete axiomatization of bisimulation equivalence on closed IW" terms, wehave x = y, and hence hx;E1i = hy;E2i. utThe proofs of the following properties can be found in [8]. The Interworking-sequencing is commutative under the assumption that the active entities of theoperands are disjoint. Furthermore, it is associative. The Interworking-merge isboth commutative and associative. The Interworking-merge as de�ned in [9] didnot have the associativity property. This di�erence is a direct consequence ofour decision to maintain the entities of an Interworking statically.Proposition10 (Commutativity of �iw and kiw). For closed IW" terms x,y, closed LP terms s, t and a set of entities E we havex �iwy = y �iwx if E(x) \ E(y) = ; (2)s �iwt = t �iws if E(�p(s)) \ E(�p(t)) = ; (3)x kEiw y = y kEiw x (4)s kiw t = t kiw s (5)Proposition11 (Associativity of �iw and kiw). For closed IW" terms x, y,z, closed LP terms s, t, u and sets of entities E1, E2, E3 we have(x �iwy) �iwz = x �iw(y �iwz) (6)(s �iwt) �iwu = s �iw(t �iwu) (7)(x kE1\E2iw y) k(E1[E2)\E3iw z = x kE1\(E2[E3)iw (y kE2\E3iw z) (8)(s kiw t) kiw u = s kiw (t kiw u) (9)

4 Algebraic De�nition of Interworking Re�nementInterworking re�nement is the replacement of one entity by a number of entitiessuch that the behaviour of the re�ning Interworking is identical, in a sense to bemade precise shortly, to the original Interworking. It is used for enabling a top-down design strategy. In this way, a system can be viewed from the right levelof abstraction. Figure 3 shows an example of such a re�nement. Interworking Ais a re�nement of Interworking B, because A contains entities q1 and q2 thatre�ne the bahaviour of entity q from B.The relation between the entities in both Interworkings is given by a partialmapping f : EID ,! EID from entities to entities. An entity e from rng(f) isre�ned by the set of all entities e0 satisfying f(e0) = e. If Interworking s is an f-re�nement of Interworking t, i.e., s re�nes t with respect to the entity mappingf , we denote this by svf t. The mapping f is partial in order to distinguishbetween an entity p which is not re�ned at all (p 62 rng(f)) and an entity pwhich is re�ned by (amongst others) an entity p (f(p) = p).vfA Bm1 m5 m3m6m4p q1 q2 r p q rm1 m2m3m4m2Fig. 3. Interworking re�nement (f(q1) = f(q2) = q)The intuition is that the external behaviour of a single entity within theInterworking t can be re�ned into, or implemented by, the collective behaviourof a number of entities within the Interworking s. Besides the singular re�nementdiscussed above, it is also allowed to consider a number of re�nements at thesame time. An example of such a multiple re�nement is given in Fig. 4. Theentity p is re�ned by the entities p1 and p2, and the entity q is re�ned by theentities q1 and q2.In the following, we will give the formal de�nitions involved with Interworkingre�nement. The operational view basic to the de�nition of Avf B is as follows(see Fig. 3). First, we rename all re�ning entities of A (i.e. q1 and q2) that occurin messages of A into the re�ned entity q. For this purpose, we will de�ne the

p1 q1 q2p2 p qm3 m1 m4m5m2m6 m1m2C DvfFig. 4. Multiple re�nement (f(p1) = f(p2) = p, f(q1) = f(q2) = q)renaming function �f . After this step, all messages between entities q1 and q2will become message that are internal to entity q. Now, we remove all theseinternal messages from the renamed Interworking A and from Interworking B.This is done by applying the operator "I that renames atomic actions into theempty process ". We say that A re�nes B if the resulting Interworkings are equal,First, we de�ne the renaming function �f . This operator renames all occur-rences of e 2 EID into f(e). For the axiomatization of this operator it is easierto have a total function instead of a partial one. Thereto, we extend the partialfunction f to the total function f� by asserting that f�(x) = x for all x for whichf is not de�ned.Let f : EID ,! EID be a partial function, then the renaming operator �frelated to f is de�ned by the axioms in Table 10. This renaming operator re-sembles the renaming operator �f from [1]. Note that also the entity componentof an entity-labeled process is renamed with respect to the mapping f .Table 10. Entity renaming function on processes (a 2 A, i; j 2 EID, m 2MID)�f (") = "�f (�) = ��f (c(i; j;m)) = c(f�(i); f�(j);m) �f (a � x) = �f (a) � �f (x)�f (x+ y) = �f (x) + �f (y)�f (hx;Ei) = h �f (x); ff�(e) j e 2 EgiLet E be a set of entities. Then the set of all internal actions with respect tothe entities from E, notation Int(E), is de�ned as follows:Int(E) = fc(i; i;m) j i 2 EID;m 2MIDg (10)Let I be a set of atomic actions, then we can de�ne the operator "I (see [13])that renames atomic actions from I into " as in Table 11.

Table 11. Renaming atomic actions into " (I � A, a 2 A�)"I(") = ""I(a � x) = "I(x) if a 2 I"I(a � x) = a � "I(x) if a 62 I "I(x+ y) = "I(x) + "I(y)"I(hx;Ei) = h"I(x); EiLet f : EID ,! EID be a re�nement mapping, the f-re�nement relation onentity-labeled processes is then de�ned as follows:svf t i� "Int(rng(f))(�f (s)) = "Int(rng(f))(t) (11)Next, we extend this notion of re�nement with a �xed mapping to a notion ofre�nement which abstracts from this mapping. This is called entity re�nement.Interworking s is an entity re�nement of Interworking t, notation sv t if andonly if there exists a re�nement mapping f such that svf t. This is formallyexpressed as follows: sv t i� 9f :EID,!EID svf t (12)Example 1. As an illustration of this algebraic de�nition of re�nement, the re-�nement relation between the Interworkings in Fig. 4 is computed. Semanticallythe Interworkings are represented byC = hc(p1; p2;m3) �iwc(p2; q1;m1) �iwc(q1; q2;m4) �iwc(q2; q1;m5)�iwc(q1; p2;m2) �iwc(p2; p1;m6); fp1; p2; q1; q2gi (13)D = hc(p; q;m1) �iwc(q; p;m2); fp; qgi (14)Elimination of the �iw yields the following equationsC = hc(p1; p2;m3) � c(p2; q1;m1) � c(q1; q2;m4) � c(q2; q1;m5)� c(q1; p2;m2) � c(p2; p1;m6); fp1; p2; q1; q2gi (15)D = hc(p; q;m1) � c(q; p;m2); fp; qgi (16)The re�nement mapping f is given by f(p1) = f(p2) = p and f(q1) = f(q2) = q.First, we rename the entities of Interworking C according to f .�f (C) = hc(p; p;m3) � c(p; q;m1) � c(q; q;m4) � c(q; q;m5) � c(q; p;m2)� c(p; p;m6); fp; qgi (17)The set of actions which should be removed is given byInt(rng(f)) = fc(p; p;m); c(q; q;m) j m 2MIDg (18)Removing these actions from the Interworkings �f (C) and D results in thefollowing equations"Int(rng(f))(�f (C)) = hc(p; q;m1) � c(q; p;m2); fp; qgi (19)"Int(rng(f))(D) = hc(p; q;m1) � c(q; p;m2); fp; qgi (20)We can conclude that Interworking C is an f-re�nement of Interworking D.

For the entity re�nement relation we have the following properties.Proposition12 (Re
exivity). For all closed entity-labeled processes s we havesv s (21)Proof. We have to show that there exists a partial mapping f such that svf s.Take the mapping f with empty domain. Then s is an f-re�nement of s. utProposition13 (Transitivity). For all closed entity-labeled processes s, t, uwe have sv t and tv u implies sv u (22)Proof. Let F be some set and let f : F ,! F be a partial function. For all G � Fthe extension of f with respect to G, notation fG, is, for all x 2 F , de�ned byfG(x) =8<: f(x) if x 2 dom(f)x if x 62 dom(f) ^ x 2 Gunde�ned if x 62 dom(f) ^ x 62 G (23)Suppose that there exist f; g : EID ,! EID such that svf t and tvg u. Thende�ne h = grng(f) � fdom(g). It is our claim that svh u. The proof of this claimis omitted. utWe do not have that the relation v is anti-symmetrical. This is due tothe treatment of internal actions. Consider, for example, the Interworkings s =hc(p; p;m); fpgi and t = hc(p; p; n); fpgi. Then we have sv t and tv s, but wedo not have s = t. For Interworkings without internal communications we dohave antisymmetry of entity re�nement. So, for Interworkings without internalcommunication the entity re�nement relation is a partial ordering. For the moregeneral class of Interworkings entity re�nement is a pre-order.5 ConclusionsWe have given a semantics of Interworkings in which we solved some problemsencountered in a former semantics and which allows a de�nition of entity re-�nement. The reformulation of the semantics has the following bene�ts. First,it is now possible to express an empty Interworking. Its semantics is simply theempty process. Next, by extending the processes to entity-labeled processes, theInterworking-merge became an associative operator. Further, we have solved ananomaly described in [8]. We will explain this in short and refer to [8] for anexample.Consider Interworkings A and B, where B is an exact copy of A with thedi�erence that B has one extra entity e without any behaviour. In the old se-mantics there was no distinction between A and B. However, there is a goodreason to make a distinction between these. Suppose there is an Interworking C

that contains entity e such that there is a message to e. Now consider placingA, respectively B in parallel with C. Intuitively, A and C can be merged con-sistently with respect to entity e, whereas B and C cannot. This is because thecommunication behaviour of e in B is di�erent from the behaviour of e in C.A re�nement check was already implemented in the Interworking ToolSetbased upon an informal explanation by means of examples. The formal de�ni-tions provided in this paper seem to correspond well to the existing implemen-tation.References1. J.C.M. Baeten and J.A. Bergstra. Global Renaming Operators in Concrete ProcessAlgebra. Information and Computation, 78(3):205{245, 1988.2. J.C.M. Baeten and C. Verhoef. Concrete Process Algebra. In S. Abramsky, D.M.Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science,volume IV: Semantic Modelling, pages 149{268. Oxford University Press, 1995.3. J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theo-retical Computer Science 18. Cambridge University Press, Cambridge, 1990.4. J.A. Bergstra and J.W. Klop. Process Algebra for Synchronous Communication.Information & Control, 60(1/3):109{137, 1984.5. ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS, Geneva, 1994.6. ITU-TS. ITU-TS Recommendation Z.120 Annex B: Algebraic semantics of Mes-sage Sequence Charts. ITU-TS, Geneva, 1995.7. S. Mauw and M.A. Reniers. An Algebraic Semantics of Basic Message SequenceCharts. The Computer Journal, 37(4):269{277, 1994.8. S. Mauw and M.A. Reniers. Empty Interworkings and Re�nement - Semantics ofInterworkings Revised. Computing science report 95-12, Department of Comput-ing Science, Eindhoven University of Technology, 1995.9. S. Mauw, M. van Wijk, and T. Winter. A Formal Semantics of Synchronous Inter-workings. In O. F�rgemand and A. Sarma, editors, SDL'93 Using Objects, Proc.Sixth SDL Forum, pages 167{178, Darmstadt, 1993. Elsevier, Amsterdam.10. S. Mauw and T. Winter. A Prototype Toolset for Interworkings. Philips Telecom-munication Review, 51(3):41{45, 1993.11. A. Rensink and H. Wehrheim. Weak Sequential Composition in Process Algebras.In B. Jonsson and J. Parrow, editors, CONCUR'94: Concurrency Theory, volume836 of Lecture Notes in Computer Science, pages 226{241. Springer-Verlag, 1994.12. C. Verhoef. A General Conservative Extension Theorem in Process Algebra. InE.-R. Olderog, editor, Programming Concepts, Methods and Calculi (PROCOMET'94), volume 56 of IFIP Transactions A, pages 149{168. North-Holland, 1994.13. J.L.M. Vrancken. Studies in Process Algebra, Algebraic Speci�cations and Paral-lelism. PhD thesis, University of Amsterdam, 1991.This article was processed using the LATEX macro package with LLNCS style

