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Abstract

We study one of the many aspects of privacy, which is referred to as data anonymity, in a formal context.
Data anonymity expresses whether some piece of observed data, such as a vote, can be attributed to a
user, in this case a voter. We validate the formal treatment of data anonymity by analyzing a well-known
electronic voting protocol.
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1 Introduction

The privacy of users of electronic services is certainly not a matter of course. Elec-

tronic services like loyalty schemes and payment systems (e-auctions and electronic

tolling for instance) may have severe consequences in the field of privacy. Currently

foreseen developments like RFID [4] lead to a growing concern in this respect.

In the framework of “privacy” several aspects can be discerned. In the Common

Criteria [31] the functional class FPR distinguishes between four aspects of privacy:

anonymity, pseudonymity, unlinkability and unobservability. Anonymity, the topic

of our research, ensures that a someone may use a resource or service without

disclosing its identity. Pseudonymity ensures that someone may use a resource or

service without disclosing its identity, but can still be hold accountable for that

use. Unlinkability ensures that a someone may make multiple uses of resources or

services without others being able to link these uses together. Unlinkability differs

from pseudonymity in the sense that, although in pseudonymity the user is also

not known, relations between different actions can be provided. Unobservability

ensures that someone may use a resource or service without others, especially third
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parties, being able to observe that the resource or service is being used. Informal

definitions, as the above, are essential for the understanding of the different notions

of privacy, but will only allow to investigate a system informally. In addition to [31],

informal definitions of anonymity are given in [34,16,42].

Concerning formal definitions of anonymity several ways of expressing anonymity

have been proposed in the literature. Halpern and O’Neill [33] and also Syver-

son, Stubblebine and Gray [51,27] define information-hiding properties in terms of

knowledge known to the agents of the system. They formalize information-hiding

requirements and in particular anonymity. Reasoning about these properties is pos-

sible using epistemic logic. Hughes and Shmatikov [30] describe the behaviour of

a system as a set of functions. Information-hiding properties like anonymity are

formalized by means of the knowledge an attacker has about these functions. In

this respect Hughes and Shmatikov talk about the function view of the attacker.

The authors show that the function view framework is able to specify information

hiding properties for any protocol formalism and arbitrary attacker models. Infor-

mation theoretic approaches to characterize anonymity and unlinkability aspects

are described, e.g., in articles written by Serjantov and Danezis [47], Diaz et al. [22]

and by Steinbrecher and Köpsell [49].

Another way of expressing forms of anonymity is done by means of process al-

gebras. Schneider and Sidiropoulos [46] use CSP when proposing a definition of

anonymity. They define anonymity with respect to a set A of events. Anonymity

with respect to A means that if any event in A occurs, it could equally well have been

any other event in A. In [37], following Pfitzmann et al. [42], the present authors

give a formal definition of anonymity by introducing the concept of an anonymity

group AG. An anonymity group precisely indicates a group of users who are identi-

cal from the viewpoint of an intruder. An intruder cannot distinguish a certain user

from other users of the anonymity group. Subsequently, in [37], it was analyzed to

what extent and under what conditions the onion routing network [26,50,52] realized

“anonymity” of users making use of the network. Probabilistic analysis of protocols

for network anonymity, along the lines of work by Shmatikov [48] for Crowds [44],

for the path set-up in Onion Routing [50] and Tarzan [24] has been reported in [3].

In this article it is shown that there exists another aspect of anonymity not

formally addressed in articles [46] and [37]. There the focus is on the definition of

what can be called control anonymity. This refers to hiding the originator of an

event. This anonymity aspect plays an important role in anonymizing communica-

tion networks.

When considering other systems (e-voting systems for instance) one wants to

prove that some piece of information (a specific vote) cannot be related to its

originator (i.e. the voter). In other words, the originator of data must be kept

secret. This property is called data anonymity here. In order to reason about data

anonymity we need a model where it is not only possible to reason about the occur-

rence of events but where it is also possible to reason about the information within

an event. In other words, a more sophisticated model is needed than the models

introduced in [46] and [37]. In this paper we will concentrate on data anonymity
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and define a formal framework to reason about this concept.

As already mentioned, data anonymity plays an essential role in voting systems.

Electronic voting systems aim to provide a convenient, efficient and secure facility

for recording and tallying votes. E-voting can be used in order to realize elections

at a small local scale such as share holder meetings to full-scale national elections.

Lipmaa [36] discerns two instances of e-voting: kiosk voting (voting in some fixed

location using special hardware) or Internet voting using generally available devices,

e.g. a PC or a mobile phone. In the literature several sets of requirements are

found applicable to e-voting schemes [6,25,20]. These requirements are not identical.

In [19] Cranor and Cytron made a survey of the literature and formulated four

security related core properties.

accuracy (1) It should not be possible to alter votes. (2) It should be impossible

to cause a situation where a valid vote is not taken into account. (3) On the other

hand, an invalid vote should not be counted in the final tally.

invulnerability (1) Only eligible voters are allowed to vote. (2) These voters are

only allowed to vote once.

verifiability Everyone should be able to verify independently that counting of the

votes has been done correctly.

privacy (1) It is not possible for anyone to link a vote to a voter. (2) Moreover, a

voter cannot prove that she voted in a specific manner.

In order to fulfill the above mentioned requirements the designers of e-voting

systems have devised security protocols between different entities in the system.

The goal of these protocols is to guarantee that the system fulfills the requirements

even in the presence of an intruder. It is clear that our notion of data anonymity

refers to the first part of the privacy requirement.

Broadly spoken, two groups of e-voting schemes can be discerned: (i) schemes

that use homomorphic encryption (see, for example, [6,17,18,29]); (ii) schemes re-

quiring an anonymous channel which is used to hide the identity of the voter when

casting his vote (including [14,25,40,11]).

The voting scheme of Fujioka, Okamoto and Ohta [25] – which we concentrate

on and which we refer to hereafter as the FOO voting scheme – makes use of blind

signatures. In voting schemes using blind signatures, the voter obtains a token from

the Administrator, which is a message blindly signed by the Administrator. After

this registration phase, the voter can unblind the token and send his encrypted vote

(signed by the administrator) to the Counter via an anonymous channel. Finally,

the voter sends her decryption key – again via an anonymous channel – to the

counter. After decryption, the counter adds the vote to the tally. The complete

e-voting protocol will both informally and formally be described in Section 3 below.

As said before, the FOO scheme makes use of an anonymous channel. In their

paper Fujioka, Okamoto and Ohta do not formulate explicit requirements concerning

the anonymous channel however. Several anonymous channels have been proposed

and analyzed. We mention [12,44,41,32,26,50,52] and [21,43].

Informal analysis of the FOO voting scheme [25,45] indicates that it fulfills the
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data anonymity requirement. Herschberg, Cranor and Cytron perform informal

analyses of the voting systems EVOX and Sensus [28,19], that are based on FOO.

Herschberg [28] concludes that in the EVOX system the data anonymity aspect is

only compromised if the anonymous channel is broken, that is if the channel reveals

information about the origin of votes to the counter. Cranor and Cytron [19] argue

that the system Sensus fulfills the first part of the privacy requirement and does not

realize the second. In other words, Cranor argues that Sensus fulfills data anonymity

whereas it does not prevent a voter to show that he voted in a certain way. In this

paper we will formally analyze the FOO voting scheme. More specifically, we will

verify to what extent FOO is in line with the given definition of data anonymity.

In their paper [35], Kremer and Ryan present a formal analysis of three security

aspects of the FOO voting protocol. Fairness and eligibility are proven using the

ProVerif tool [8,9], while for privacy they give a manual proof in the applied pi

calculus [1,2]. Their privacy proof consists of verifying that two systems are obser-

vationally equivalent. In the first system, voter V1 has vote v1 and voter V2 has

vote v2, while in the second system voter V1 has vote v2 and voter V2 has vote v2.

If these systems cannot be distinguished by an observer, the voters and their votes

are unlinkable. This is reminiscent to the control anonymity of the permutation

based approach of [46].

In [39] Nielsen, Andersen and Nielson present an analysis of the FOO protocol

using the LySa calculus. The LySa calculus is a dialect of the π-calculus centered

around the concept of a global network [10]. In [39] the FOO protocol is formalized

with LySa. It is argued that the protocol satisfies the requirements of accuracy and

verifiability, as well as democracy and fairness. For anonymity, the unlinkability of

voter and vote is considered, but not proven formally.

The main difference between the above approaches and ours is that we define

the attribution set of a voter (complementary to the anonymity set), which contains

all votes that can possibly be attributed to a voter. This allows us to measure the

anonymity of a voter, whereas the approach of Kremer and Ryan provides a yes/no

answer. In the case of the FOO protocol the attribution set is a useful notion,

since Fujioka, Okamoto and Ohta are not completely clear about the status of the

synchronization points they mention. Are these synchronizations required for the

protocol to work? Are there any possible alternative synchronization points that will

do? We will be able to analyze such questions after determining the attribution sets

of the FOO protocol without synchronization points. Our approach also supports to

design alternative approaches to increase the attribution set without providing full

anonymity still. Such practical anonymity is attractive for larger scale application

and may be achievable without the mentioned synchronization points.

Our formalization of the FOO voting scheme exploits an ACP style process

algebra [5,23,7]. In the modeling of [35], the anonymous channel is not made explicit.

In the applied pi calculus, every channel is anonymous unless input and output

can be explicitly linked. By explicitly modeling the anonymous channel here, we

take the opposite stance. Therefore, we can formally show that the level of data

anonymity of the FOO voting scheme depends on two items: (i) the behaviour of
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the anonymous channel; (ii) the way of synchronization after the registration phase.

Our formal analysis reveals that from the viewpoint of data anonymity these items

are interrelated. If no synchronization takes place after the registration phase, data

anonymity can only be obtained if extra requirements are put on the anonymous

channel. In the case voters may only start voting after everyone has registered, the

anonymous channel may be less sophisticated. Finally, as explained in Section 5,

our analysis suggests a weakness in case the publication medium is compromised.

This paper is organized as follows. In Section 2 we provide a formal definition of

data anonymity. In Section 3 we describe and specify the FOO voting scheme. Sec-

tion 4 provides a characterization of anonymity of voters in the FOO voting scheme

in terms of attribution sets, whereas Section 5 presents the resulting vulnerability

analysis. In Section 6 we discuss conclusions and future research.

2 Data Anonymity Framework

Let Data, Keys, Nonces and Users, ranged over by d, k, n and u, be the primitive

classes of (sensitive) data, keys, nonces and users. The class Terms of terms, ranged

over by ϕ, is given by the BNF

ϕ ::= d | k | n | u | (ϕ,ψ) | {ϕ}k | [ϕ ]u

So, a term is either a primitive element, a pair of terms, the encryption of a term ϕ

with the key k, or the term ϕ attributed to the user u. The attribution construc-

tion [ϕ ]u is used to associate a term with a user. In particular, we will be interested

in the sensitive data that can be linked to a specific user. We use d ⊆u ϕ to denote

that the datum d occurs in subterm [ψ ]u of the term ϕ.

We will use the construct [ϕ ]u in a process description to indicate with respect

to which data we are interested in anonymity. Protocols are modeled such that

none of the agents (including the intruder) can inspect or modify the attribution.

It should be considered as a construct at the meta-level; its sole purpose is to

facilitate verification.

The class Event of events, ranged over by e, consists of triples 〈sender, receiver, ϕ〉
representing the communication of the term ϕ from the user sender to the user

receiver. Thus, Event = Users × Users × Terms. In case e = 〈sender, receiver, ϕ〉,
we use msg(e) to denote the term ϕ. In a given setting we fix a class Obs ⊆ Event

of observables.

The class Traces of traces, given by Traces = Event∗ and ranged over by t,

consists of all finite traces of events. The semantics of a system S is given by the set

of traces traces(S) ⊆ Traces. We refer to traces(S) as the trace set of the system S.

The function obs : Traces → Traces is defined by

obs(ε) = ε

obs(e · t) = e · obs(t) if e ∈ Obs

obs(e · t) = obs(t) if e /∈ Obs.

Clearly, for any t ∈ Traces, it holds that obs(t) ∈ Obs∗. We use the notation ϕ ∈ t
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for a term ϕ and trace t if, for some sender sender and receiver receiver the event

〈sender, receiver, ϕ〉 is an event of t. We use the notation d ∈u t for a datum d and

trace t if d ⊆u ϕ for some term ϕ ∈ t. We write, for a trace t, ⊥ ∈u t if for no

datum d it holds that d ∈u t. We use a as typical element of Data⊥ = Data ∪ {⊥}.

The class Know of knowledge sets, ranged over by K, is the collection of sub-

sets of terms, i.e. Know = P(Terms). For a particular situation we fix a knowl-

edge set I ∈ Know called the initial intruder knowledge. The auxiliary function

know : Know × Traces → Know, to be given in a minute, returns for a knowledge

set K and trace t the knowledge that is built up starting from the knowledge K

along the trace t. First, we need a notion of closure for knowledge sets. We say that

the term ϕ can be derived from the knowledge set K, notation K 	 ϕ, if ϕ can be

derived from K by repetitive use of the derivation rules in Table 1.

ϕ, ψ 	pair (ϕ,ψ) ϕ, k 	enc {ϕ}k

(ϕ,ψ) 	left ϕ {ϕ}k, k 	dec ϕ

(ϕ,ψ) 	right ψ [ϕ ]u 	user ϕ

Table 1: Knowledge derivation rules

The closure closure(K) of a knowledge set K is then given by

closure(K) = { ϕ | K 	 ϕ }.

Based on this notion of closure, the function know can be given by

know(K, ε) = K

know(K, e · t) = know(J, t)

where J = closure(K ∪ {msg(e)}).

Note that the accumulation of knowledge in the definition above, ignores sender

and receiver roles. So, all communication of a trace can be observed. To compensate

for this, we use the function obs to prevent that particular traffic is collected.

In order to deal with encrypted terms we introduce the notion of tagging, an

auxiliary technical mechanism to mark terms that cannot be decrypted by the

observer or intruder. In essence, with keys k, �,m not in the particular knowledge

set, it helps to distinguish, for terms ϕ, ψ and ρ, the two traces {ϕ}k · {ψ}� from

{ρ}m · {ρ}m while identifying the two traces {ϕ}k · {ψ}� and {ψ}� · {ϕ}k. First

we introduce the class Tags of tags with typical element τ . The class TagTerms

is constructed similar to the class Terms but with Tags added as a new primitive

ingredient. Thus, TagTerms, also ranged over by ϕ, is given by the BNF

ϕ ::= d | k | n | u | τ | (ϕ,ψ) | {ϕ}k | [ϕ ]u.
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The class TagTraces is the collection of finite strings of tagged events, i.e. finite

strings of triples 〈sender, receiver, ϕ〉 where ϕ ∈ TagTerms. A tagging is an injec-

tive mapping θ : Terms → Tags. Given a knowledge set K and a tagging θ, the

interpretation function intθ
K : Terms → TagTerms is given as follows:

intθ
K(p) = p for p = d, k, n, u

intθ
K((ϕ,ψ)) = (intθ

K(ϕ), intθ
K(ψ))

intθ
K({ϕ}k) = {intθ

K(ϕ)}k if k ∈ K

intθ
K({ϕ}k) = θ({ϕ}k) if k /∈ K

intθ
K([ϕ ]u) = [ intθ

K(ϕ) ]u.

So, if a term ϕ is encrypted with a key k that does not belong to the knowledge set

under consideration, the composed term {ϕ}k is interpreted as a tag, viz. the tag

θ({ϕ}k) ∈ Tags yielded by the tagging θ. Now, two traces t, t′ ∈ Traces are consid-

ered equivalent with respect to a knowledge set K, notation t ∼K t′, if they yield the

same knowledge and are equal upto renaming of tags, i.e. know(K, t) = know(K, t′)

and there exists a bijection β : Tags → Tags such that intθ
L(t) = int

β◦θ
L (t′), for any

tagging θ and L = know(K, t).

For example, for traces t1 = {d1}k ·d2 · {d3}�, t2 = {d3}� ·d2 · {d1}k, a knowledge

set K such that k, � /∈ K, and an arbitrary tagging θ, we have intθ
K(t1) = θ({d1}k) ·

d2 ·θ({d3}�) = τ1 ·d2 ·τ3 where τ1 = θ({d1}k) and τ3 = θ({d3}�). If β : Tags → Tags is

a bijection of tags that switches τ1 and τ3, we obtain int
β◦θ
K (t2) = β(t3) · d2β(t1) =

τ1 · d2 · τ3. Hence, t1 ∼K t2. On the other hand, no bijection γ : Tags → Tags

will, assuming τ1 �= τ3, verify γ(τ1) = τ1 and γ(τ3) = τ1. So, for t1 above and

t3 = {d1}k · d2 · {d1}k, we have t1 �∼Kt3.

The idea behind tagging is that different bit strings in different runs of the

system can represent the same encrypted information. The difference can be due

to non-essential phenomena, in particular a different choice of nonces in the other

run. The identification of bitstrings does not make sense within the same system

run where different bit strings represent really different data.

Finally, we are in a position to give the definition of our notion of an attribution

set.

Definition 2.1 Let S be a system with set of traces traces(S), set of observ-

ables Obs and initial intruder knowledge I. The attribution set ASt(u) of a user u

with respect to the trace t ∈ traces(S) is given by

ASt(u) = { a | ∃t′ ∈ traces(S) : obs(t) ∼I obs(t′) ∧ a ∈u t′ }.

Thus, given a system run t, a datum d can be attributed to user u if for some

trace t′, that is the same as the trace t from the intruder’s perspective, i.e. t ∼I t′,

d is in fact associated with u, i.e. d occurs in a subterm that is associated with u in

some message in t′.
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For instance, if u is a voter and t is a run of a voting protocol, then u’s vote

is anonymous in this run if from the viewpoint of the intruder every collected vote

could have been attributed to u. This is the case if ASt(u) contains all votes collected

in t.

The special element ⊥ can be assigned to a user u if in a trace t′, observational

equivalent to the trace t, no datum d is associated with the user u.

In case traces(S) = { t1, t2, t3 } where t1 = [{d1}k ]u · [d2 ]v · {[d3 ]w}�, t2 =

{[d3 ]u}� · [d2 ]v · {[d1 ]u}k, t3 = {[d1 ]u}k · [d2 ]v · {[d1 ]w}k and d2 �= k, � /∈ I, we have,

for user u, ASt1(u) = { d1, d3 } as d1 ⊆u [d1 ]u ∈ t1, 1 ∼I t2 and d3 ⊆u {[d3 ]u}� ∈ t2.

For user v it holds that ASt1(v) = {d2} as only d2 is associated with v. Also, for

user w, we have ASt1(w) = {d3} is a singleton. In t2 no data is associated with w,

whereas the trace t3 is not observably equivalent to the reference trace t1.

3 The FOO Voting Scheme

In this section we will present the voting scheme proposed by Fujioka, Okamoto and

Ohta in 1992. First, we give an informal explanation, that is used as a basis for an

formal description that follows.

3.1 Informal Description

In this section we will explain the electronic voting protocol proposed by Fujioka,

Okamoto and Ohta [25], also known as the FOO voting scheme. This scheme is

claimed to satisfy a number of security requirements, one of which is privacy of

the voter. We will use the informal representation of the protocol in the Message

Sequence Chart in Figure 1 to explain the protocol. The symbols occurring in the

explanation are summarized in Table 2.

The protocol describes the communication between an administrator, a number

of voters and a counter. The role of the administrator is to check if the voter is

eligible to vote and to sign the (blinded) ballot of the voter. The role of the counter

is to collect all (anonymous) ballots and to publish them.

We focus on the protocol interactions of an individual voter. Voter v starts

by selecting his random secret key k(v) and a random nonce n(v) and he fills in

his ballot b(v). By encrypting his ballot with his key, he constructs a committed

ballot cb. At a later stage the voter will make his ballot public by (anonymously)

providing cb and k(v). Next, the voter blinds his ballot with his secret nonce, which

yields bcb. For this purpose, he uses the blinding operation denoted by ∗. In order

to ensure that this is his blinded ballot, he signs the result, which gives sv.

The voter sends his identity, the blinded committed ballot and the signed blinded

committed ballot to the administrator in order to allow the administrator to check

that the voter is (still) eligible to vote and to verify v’s signature. The administrator

acknowledges the received ballot by signing it and returning the signed blinded

committed vote sa to the voter. The signing algorithm used by the administrator

is a so-called blinding signature technique [13]. The purpose is that the voter can

obtain a signed committed ballot from the signed blinded committed ballot by
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v voter identity

b(v) voter v’s ballot

k(v) voter v’s key

n(v) voter v’s nonce

cb {b}k(v) committed ballot

bcb cb ∗ n(v) blinded committed ballot

sv sigv(bcb) blinded committed ballot signed by v

sa siga(bcb) blinded committed ballot signed by a

check(v) can v (still) vote?

verifyx(p, sp) is sp indeed p signed by x?

scb = sa/n(v) siga(cb) committed ballot signed by a

L1 public list of encrypted votes

L2 public list of opened votes

Table 2: Symbols used

applying the unblinding operator (denoted by /). Formally, this requires that the

signing and blinding operations commute.

Therefore, after verifying the signature of the administrator, the voter can de-

duce scb, which is his committed ballot signed by the administrator. After this, the

role of the administrator ends and the voter communicates to the counter. Messages

sent from the voter to the counter go via an anonymous channel, so that the identity

of the sender of the messages cannot be retrieved.

The voter sends his committed ballot cb and its signed version scb to the counter,

who verifies that it is indeed signed by the administrator. He stores the received

information from all voters in the list L1 and after all voters have voted (or after

some deadline has passed), he publishes this list. Every voter can now verify that

his committed ballot is in the list and sends the key to open the committed ballot

to the counter (again using the anonymous channel). The counter opens the ballots

and finally publishes the second list L2, containing all open ballots.

Note that we only explained the main line of the protocol. We did not specify

exactly what happens if one of the checks fail due to an attempt to disrupt the

voting by one of the participants. The interested reader is referred to [25] for the

details.
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Figure 1: The FOO e-voting protocol.
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3.2 Formal Specification

Next, we provide a formal specification of the FOO voting scheme in process algebra

(see, e.g., [5,23,7]). This process algebra allows us to give a compact and formal

specification of the set of all traces of the FOO voting scheme. However, it should

be noted that, our treatment of anonymity is not tied to any particular specification

formalism, as long as it supports reasoning about traces.

For the reader who is not familiar with the chosen specification language, we

summarize the meaning of the constructs used. A process is specified by means

of a (possibly recursive) equation. A process may be parametrized by a number

of data values. Processes can be combined using operators. We use · to denote

sequential composition, + to denote non-deterministic choice, Σx∈X to denote the

generalization of + over an index set X, ‖ to denote (interleaved) parallel execu-

tion, and ‖x∈X to denote the generalization of ‖ over a index set X. The parallel

composition operator also provides a means to synchronize two processes by syn-

chronizing communicating events. The definition of the communication function

takes the form a | b = c, which expresses that if events a and b occur in parallel,

they will result in event c. In order to encapsulate partial communications (i.e. to

force synchronization of events), the encapsulation operator ∂H is used, where H is

the set of communicating events that have to synchronize.

Apart from these operators at the process level, we will also need some operators

and additional data types at the data level. Most of these have already been defined

above. In addition we define types List1, List2, and Buffer to contain lists of pairs,

lists of triples, and multisets of terms, respectively. We use the operator ⊕ to denote

adding elements to a list as well as to a buffer. The deletion of an element is denoted

by �. We denote projection on the n-th element of a tuple by πn, and we extend

this notation to lists of tuples in the obvious way. By V and Ballots we denote the

set of all (potential) voters, and all ballots, respectively. The voters play the role of

the users as introduced in Section 2.

Since the informal description of the protocol does not specify the precise charac-

teristics of the anonymous channel (surprisingly, no standard definition is available

in the literature) and the publication medium, we will have to take some design

decisions in this respect. Thus, besides the three processes mentioned in the infor-

mal specification, we will define two more processes, representing the anonymous

channel and the publication medium.

Therefore, we consider processes

Admin(S), Counter(L1, L2), Channel(B), Publisher(L1, L2),

and a family of processes Voter(v), for L1 ∈ List1, L2 ∈ List2, S ⊆ V, B ∈
Buffer, and v ∈ V. In addition, we use the subprocesses Counter′, Publisher′, and

Publisher′′. Using shorthand notation c, a, ch, p for these processes, we denote the

set of sources and destinations for messages by Dest = { c, a, ch, p } ∪ V.
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Possible events are taken from the alphabet

E = { sx→y(ϕ), rx→y(ϕ) | x, y ∈ Dest, ϕ ∈ Terms }.

Event sv→a(ϕ), for instance, means that voter v sends a message ϕ, apparently to

the administrator. Likewise, rch→c(ϕ) means that the counter receives a message

ϕ, apparently coming from the channel.

In the formal description, we will use shorthand notation cb for {b}k, bcb for

cb ∗ n, sv for sigv(bcb), sa for siga(bcb), and scb for sa/n(v).

We strive to obtain a minimal specification by leaving out all exceptional be-

haviour. Having understood the informal description of the protocol in the previous

section, the formal algebraic specification is relatively easy to read. However, we

will explain some of the intricacies of the design decisions that we made.

Voter(v) =
∑

b∈Ballots,k∈Keys,n∈Nonces

sv→a(v, bcb, sv) · ra→v(sa) · sv→ch(cb, scb) ·
∑

L1∈List1,(cb,scb)∈L1
rp→v(L1) · sv→ch({[b ]v}k, k) ·

∑
(L1,L2)∈List1×List2 rp→v(L1, L2).

The voter starts by (non-deterministically) selecting his ballot, key, and nonce.

Without making this explicit by the use of an internal event for this selection process,

we assume that this choice is completely under control of the voter. Moreover, we

require that different voters select different keys and different nonces. After having

sent the first message, the voter receives his blinded committed ballot, signed by the

administrator (sa). As an exception, this read event is not preceded by a summation.

The reason is that, although the voter cannot construct this message himself, it is

possible for him to verify whether the received datum satisfies the requirements.

Given a deterministic signing algorithm, there will be only one such term. The

ability to select only such validly signed term is expressed by the syntactic form of

the expansion of sa, which is siga(bcb), where bcb is known to the voter.

When the voter opens his ballot, by sending his key via the channel to the

counter, we will have to model that the vote which is to be opened is attributed to

this particular user. This attribution does not influence the behaviour of the system,

nor is it observable by the intruder. The only reason to include this attribution is

to enable the formal analysis of the system by determining the ballots that could be

possibly attributed to this voter. Please notice that we did not require the voters

to explicitly synchronize with the different phases of the election. The only event

that can play this role is the reception of the lists from the publisher.

Admin(S) =
∑

v∈V,ϕ∈Terms rv→a(v, ϕ, sigv(ϕ)) ·sa→v(siga(ϕ)) · Admin(S \ { v }).

The administration process is parameterized by the set of voters that still have to
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vote. After having sent a signed ballot to a voter, the user is deleted from this set.

Counter(L1, L2) =
∑

ϕ∈Terms rch→c(ϕ, siga(ϕ)) ·Counter(L1 ⊕ (ϕ, siga(ϕ)), L2)

+ sc→p(L1) · Counter′(L1, L2)

Counter′(L1, L2) =
∑

ϕ∈π1(L1),k∈Keys,deck(ϕ)∈Ballots rch→c(ϕ, k) ·Counter′(L1, L2 ⊕ (ϕ, k,deck(ϕ)))

+ sc→p(L2).

The counter proceeds in two stages, which are modeled by two different process

variables. In the first stage the counter receives a term signed by the administrator.

The transition from the first to the second stage is modeled in a non-deterministic

way. This allows us to validate the system in case the counter makes this transition

“too early”. In the second stage the counter accepts keys which allow him to

unpack the committed ballots. We remark that the condition ϕ ∈ π1(L1) should be

interpreted as not to take the user attribution in ϕ into account. The end of the

second stage is also modeled non-deterministically.

Channel(B) =
∑

v∈V,ϕ∈Terms rv→ch(ϕ) · Channel(B ⊕ {ϕ})

+
∑

ϕ∈B sch→c(ϕ) · Channel(B � {ϕ}).

The anonymous channel receives messages from a voter, which are added to the

buffer. Alternatively, the channel can select any message from the buffer and pass

it on to the counter.

Publisher(L1, L2) =
∑

L′

1
∈List1 rc→p(L

′
1) · Publisher′(L′

1, L2)

Publisher′(L1, L2) = ‖v∈V sp→v(L1) ‖ rc→p(L
′
2) · Publisher′′(L1, L

′
2)

Publisher′′(L1, L2) = ‖v∈V sp→v(L1, L2).

The publisher process accepts a list from the counter and sends it to all voters. In

the course of publishing the first list, the publisher can also receive the second list,

after which this list gets distributed too.

Finally, we specify the complete system FOO as the parallel composition of all

its agents. Hence,

FOO = ∂H(‖v∈V Voter(v) ‖ Admin(V) ‖ Counter(∅, ∅) ‖ Channel(∅) ‖ Publisher(∅)).

We initialize the administrator with the set of all voters, and the other processes

with empty lists and buffers. The communication function matches read and sent

events, i.e.

sx→y(ϕ) | rx→y(ϕ) = cx→y(ϕ)
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for x, y ∈ Dest and ϕ ∈ Terms. The events cx→y(ϕ) are the concrete versions of

the abstract events 〈x, y, ϕ〉 introduced in Section 2. The set H of encapsulated or

forbidden events is given by

H = { sx→y(ϕ), rx→y(ϕ) | x, y ∈ Dest, ϕ ∈ Terms }.

The set of traces traces(FOO) of the specified system now easily follows by apply-

ing the familiar operational semantics described in e.g. [5]. The definition of the

anonymous channel requires that its input events cannot be observed by the in-

truder. Therefore, we define the set of observable events Obs = { cx→y(ϕ) | (x, y) �=
(v, ch), ϕ ∈ Terms }. We will not provide a precise definition of the initial intruder

knowledge I. The reason is that we will consider the situation where all voters are

trusted, as well as the situation in which some voters may be untrusted. Untrusted

voters will be modeled by assuming that their chosen ballot, key and nonce are in

the initial knowledge of the intruder.

4 The FOO Attribution Set

For the characterization of the attribution set of a voter we need an auxiliary def-

inition. The predicate acmatch(i, t) holds true iff in trace t upto position i the

number of blinded votes signed by the administrator exactly matches the number

of covered votes received by the counter. The specific property of an index i such

that acmatch(i, t), in a trace t of the FOO system, is that voters that have been

registered no later than position i in t must have sent one of the covered votes

collected by the counter upto this point.

Definition 4.1 The predicate acmatch is given by

acmatch(i, t) ⇐⇒ i ≤ len(t) ∧
#{ j | j < i ∧ ∃v, sa : t[j] = ca→v(sa) } =

#{ j | j ≤ i ∧ ∃cb, scb : t[j] = cch→c(cb, scb) }.

The set of indices chunk(i, t) for an index i and trace t such that i ≤ len(t) is given

by
{ j | (j < i → �h : j ≤ h < i ∧ acmatch(h, t)) ∧

(i < j → �h : i ≤ h < j ∧ acmatch(h, t)) }.

It holds that, if j ∈ chunk(i, t) and t[j] is a registration sent by the administrator

or a covered vote received by the counter, than t[j] is matched by a corresponding

covered vote or registration t[h], respectively, with h ∈ chunk(i, t).

Given the above definition we are in a position to precisely describe the attri-

bution set of a voter v with respect to a trace t of FOO. The characterization

theorem 4.2 states that the attribution set of a voter v with respect to a trace t

of FOO contains a ballot b if a covered vote, that apparently carried b, has been

received by the counter in the same chunk as v’s registration. Moreover, voter v

could possibly not have voted at all (either because her covered vote or her opening
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did not reach the counter in time) if a registration of a voter in the chunk of v

remains unmatched, or all registrations of voters in the chunk of v are matched but

not all are opened in the end.

Theorem 4.2 For all v ∈ V and t ∈ traces(FOO) it holds that

ASt(v) =

{ b | ∃i, j, �, sa , scb, k, v′ :

t[i] = ca→v(sa) ∧
i < j ∧ j ∈ chunk(i, t) ∧
t[j] = cch→c({b}k, scb) ∧
t[�] = cch→c({[b ]v′}k, k) } ∪

{ ⊥ | ∃i, sa :

t[i] = ca→v(sa) ∧
�j : i < j ∧ acmatch(j, t) } ∪

{ ⊥ | ∃i, j, sa , cb, scb, k :

t[i] = ca→v(sa) ∧
i < j ∧ j ∈ chunk(i, t) ∧
t[j] = cch→c(cb, scb)∧
�� : t[�] = cch→c(cb, k))) }

Proof. Directly from Lemma 4.5 and Lemma 4.8 below. �

So, Theorem 4.2 states that the attribution set ASt(v) of a voter v with respect to

a trace t of the FOO system, contains a vote b iff

• the registration of v of her blinded committed vote bcb is confirmed by the ad-

ministrator, i.e. v receives sa = siga(bcb), at some position i in t,

• at some position j in t, the counter received a covered vote {b}k together with

the administrator’s signature scb for {b}k

• that could have matched the registration conformation at position i, i.e. the

position j is later than i in t and is in the same chunk of t as i is,

• whereas the opening of the covered vote {b}k, i.e. the receipt of the counter of

the pair ({b}k, k), at some position � in t, yields the vote b.

The special element ⊥ is included in ASt(v) iff the registration of voter v was

confirmed by the administrator at position i in t, but

• registrations and deposits of committed ballots where never in balance since then,

i.e. for no position j later than i in t the predicate acmatch(j, t) holds, so that

voter v may not have sent her vote to the counter at all or that her vote was lost

underway, or,

• there is a committed ballot that could match v’s registration, i.e. for some posi-

tion j later than i and in the same chunk as i in t, which is never opened, i.e. the

corresponding key k never reached the counter.

Note that an opening ({b}k, k) as described above, may originate from a voter v′
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different from v. Thus, with the meta-level annotation to attribute data to users in

processes (not interpreted at the process level) the action cch→c({[b ]v′}k, k) occurs

at position � in the trace t, rather then cch→c({[b ]v}k, k) or cch→c({b}k, k).

The two inclusions underlying a proof of the theorem have been split over two

lemmas. First we collect a few properties of the traces of FOO that follow straight-

forward from the definitions.

Lemma 4.3

(a) b ∈v t iff ∃i : t[i] = cch→c({[b ]v}k, k).

(b) t[i] = cch→c({[b ]v}k, k) implies ∃g, h, n :

g < h < i ∧ t[h] = cch→c({b}k, siga({b}k)) ∧ t[g] = ca→v(siga({b}k ∗ n)). �

The next lemma states that acmatch and hence chunk respect the equivalence ∼I .

The lemma follows from the observation that the matching is based on the sender-

receiver information and the form, not the content, of events.

Lemma 4.4 Suppose t ∼I t′ and k ∈ know(I, t). If t[i] = cch→c({b}k, siga({b}k)) ∧
acmatch(i, t) then ∃i′ : t′[i′] = cch→c({b}k, siga({b}k)) ∧ acmatch(i′, t′). �

Next we prove half of the characterization theorem.

Lemma 4.5 Let RHSt(v) be short for the concrete characterization of ASt(v) as

given by Theorem 4.2. Then it holds that ASt(v) ⊆ RHSt(v), for every voter v and

trace t of FOO.

Proof. Let t ∈ FOO and v ∈ V. Assume b ∈ ASt(v). Pick t′ ∈ traces(FOO)

such that t′ ∼I t and b ∈v t′. From Lemma 4.3 we obtain that t′[i′] =

ca→v(siga({b}k ∗ n)), t′[j′] = cch→c({b}k, siga({b}k)) and t′[�′] = cch→c({[b ]v}k, k)

for some indices i′, j′ and �′ and suitable key k and nonce n. Note k ∈ know(I, t′),

so the term {[b ]v}k can be interpreted. Since t ∼I t′ if follows that, for suitable

indices i, j and �, t[i] = ca→v(ϕ), t[j] = cch→c(ψ), t[�] = cch→c(ρ) for terms ϕ,

ψ and ρ that correspond to siga({b}k ∗ n), ({b}k, siga({b}k)) and ({[b ]v}k, k), re-

spectively. From the definition of the administrator and voter processes of FOO it

follows that ϕ = siga({b
′}k′ ∗ n′) for some ballot b′, key k′ and nonce n′, as this is

the only type of communication from the administrator to voter v. Since both ψ

and ρ can be completely interpreted by the intruder modulo the user attribution, we

get that ψ = ({b}k, siga({b}k)) and ρ = ({[b ]v′}k, k) for some voter v′. It remains

to show that j ∈ chunk(i, t). As i′ and j′ match in t′, this follows from Lemma 4.4

since t ∼I t′.

Assume ⊥ ∈ ASt(v). Pick again t′ ∈ FOO such that t′ ∼I t and ⊥ ∈v t′.

We distinguish two cases: (i) voter v did only register; (ii) voter v sent in her

covered vote, but did not open it. In the first case, we have, for some index i and

suitable b, k and n, t′[i] = ca→v(siga({b}k ∗ n)) but for no index j, j > i, it holds

that t′[j] = cch→c({b}k, siga({b}k)). So, t′[j] remains unmatched. In the second

case, we can pick indices i and j such that t′[i] = ca→v(siga({b}k ∗ n)), t′[j] =

cch→c({b}k, siga({b}k)). As t′[i] and t′[j] match, it follows that j ∈ chunk(i, t′). By

the assumption on unique keys and ⊥ ∈v t′ we derive that for no index � it holds
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that t′[�] = cch→c({[b ]v}k, k). Exploitation of the equivalence t ∼I t′, similar to

the reasoning above, yields corresponding indices of t. It follows that ⊥ ∈ RHSt(v)

too. �

For the proof of the other half of Theorem 4.2 we need a combinatorial result.

Suppose a’s and b’s come in pairs with the a of a pair preceding the corresponding b

(such as registrations and covered votes in traces of FOO). In general, one can not

change the arrangements of pairs without disturbing the precedence. E.g., in the

trace a1a2b1b2 we can swap b1 and b2 while maintaining a1 ≺ b1 and a2 ≺ b2, but

in a1b1a2b2 we cannot. Roughly speaking, as long as some a is in the same chunk

as any b with a ≺ b, we can find a pairing containing a pair of the occurrences of

the particular a and b that respects the precedence.

Lemma 4.6 Let w be a string of length 2s in which the symbols ar, br, for 1 ≤ r ≤
s, all occur exactly once. If

(i) ar occurs before br, for all r, 1 ≤ r ≤ s, and

(ii) w has no proper prefix with an equal number of a’s and b’s

then, for any two p, q, 1 ≤ p<q ≤ s, there exists a permutation π of {1, . . . , s} such

that π(q) = p for which the string w′ obtained from w by replacing each br by bπ(r)

satisfies properties (i) and (ii).

Proof. Induction on s. Base case, s = 1: trivial. Induction step, s + 1: Pick

indices p and q, 1 ≤ p < q ≤ s + 1. If aq occurs before bp swapping of bp and bq

clearly satisfies the claim. So, suppose bp occurs before aq in w. By condition (ii),

for some r it holds that bp occurs between ar and br. The string w′ of length 2s

obtained from w by first applying the swapping of bp and br and then removing

the pair ar, br satisfies the two conditions. By induction hypothesis, there exists

a permutation π on {1, . . . , s + 1}\r and a corresponding string w′′ satisfying (i)

and (ii). The permutation π′ that extends π with π′(r) = r and the string w′′′

obtained from w′′ by inserting the pair ar, br back again verifies the claim. �

Example 4.7 Put a1 = w, a2 = x, a3 = y, a4 = z and b1 = W , b2 = X,

b3 = Y , b4 = Z. The string wxXyzZY W satisfies the requirements (i) and (ii) of

Lemma 4.6 above. For indices 1 and 2, we can simply swap W and X obtaining

wzWyzZY X for a permutation that maps 1 to 2. For the indices 2 and 4, we

cannot, on wxXyzZY W , do a similar swapping of X and Z, as z would then no

longer preceed Z. Therefore, we use W as auxilliary permuting element by mapping

2 to 4 (as intended) and 4 to 1, 1 to 2 yielding wxWyzXY Z.

We next prove the remaining part of the characterization of FOO’s attribution set.

Lemma 4.8 It holds that RHSt(v) ⊆ ASt(v), for every voter v and trace t of FOO.

Proof. Suppose t ∈ FOO and v ∈ V. Pick b ∈ RHSt(v). We consider

the typical case that v timely submits its covered vote and opening, leaving the

other two degenerate cases to the reader. Choose suitable indices, data elements

and voter v′ such that t[i′] = ca→v(siga({b
′}k′ ∗ n)), t[j] = cch→c({b}k, scb),
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t[�] = cch→c({[b ]v′}k, k), t[i] = ca→v′(siga({b}k ∗ n)), t[j′] = cch→c({b
′}k′ , scb ′) and

t[�′] = cch→c({[b
′ ]v}k′ , k′). Moreover, i < j and j ∈ chunk(i, t). By the matching

lemma 4.6 we can arrange for a trace t′ of FOO such that t′ ∼I t and voter v

submits a covered vote containing b. It follows that b ∈ ASt(v).

Suppose ⊥ ∈ RHSt(v). Suppose data that t[i] = ca→v(siga({b}k ∗ n)) and for

no j, j > i, it holds that acmatch(j, t), for suitable indices. Then there exists h ∈
chunk(i, t) such that t[h] = ca→v′(siga({b

′}k′ ∗ n′)), but t[j] = cch→c({b
′}k′ , scb ′)

for no j. Hence, for no �, t[�] = cch→c({[b
′ ]v′}k′ , k′). By rearranging the activity

of v and v′ we find a trace t′ ∈ FOO such that t ∼I t′ and, for no �, t′[�] =

cch→c({[b
′ ]v}k′ , k′). Thus ⊥ ∈v t′ and ⊥ ∈ ASt(v). The other case is similar and

omitted. �

5 Vulnerability Analysis

In this section we interpret the results above and discuss (potential) vulnerabilities

of the FOO voting scheme. Rather than providing a yes/no answer to the question

whether the FOO voting scheme satisfies the privacy requirement claimed by Fu-

jioka, Okamoto and Ohta, we have calculated the set of all ballots that could be

attributed to a given user. There are several ways in which we can use this infor-

mation to assess the vulnerability of the FOO voting scheme to privacy attacks.

Synchronization

The precise description provided by Theorem 4.2 is a starting point to look

for ways to influence the privacy of the voter beneficially. In order to avoid the

situation that votes are being submitted to the counter while voters are still able

to register, Fujioka, Okamoto and Ohta suggest, as modeled in [35], to synchronize

the registration, sending and opening of ballots of voters. However, the authors

of [25] make not explicit which synchronizations are essential. The same applies to

the privacy analysis that is part of [35].

One can distinguish three phases in the voting process: all registration takes

place before any sending of ballots; openings are sent only after all votes have

been sent in. This can be arranged by having explicit time lines. Looking at our

specification, we find two places where synchronization may be implemented. The

first way to synchronize affects the behaviour of the voters: they will have to wait

until a certain deadline has passed before they submit their vote to the anonymous

channel. After this deadline they will not try to register anymore. Disadvantage,

when elections take place at a large scale, is that voter processes span a relatively

large time frame. This may be undesirable from a usability point of view if such is

at the responsibility of each individual voter. Therefore, as our formal specification

facilitates, it is better to have the synchronization at another place, viz. to have

the anonymous channel in charge for this. The anonymous channel specified above

already starts producing output while still accepting input. One can adapt the
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process such that it first collects all inputs and only then starts to transmit:

Channel(B) =
∑

v∈V,ϕ∈Terms rv→ch(ϕ) · Channel(B ⊕ {ϕ}) + Channel ′(B)

Channel ′(B) =
∑

ϕ∈B sch→c(ϕ) · Channel ′(B � {ϕ}).

(Further details to deal with time or voter counting have been suppressed here.)

This implements a synchronization point and solves the problem. Note that, the

solution boils down to the plain old ballot box which may only be opened for

counting after collection of the votes.

Active intruder

Taking the intruder’s perspective the goal is to minimize the attribution set for a

(or any) voter. In case of a malicious administrator in a non-synchronized system,

he can distinguish the ballot of the first voter by delaying all other voters until

the first voter’s ballot is transmitted by the anonymous channel. If time allows to

repeat this process, the intruder can jeopardize the privacy of all voters.

In a synchronized system, though, at the publisher side a similar attack is possi-

ble for an active intruder, i.e. a malicious party that also adapts the information sent

out to voters: Instead of presenting the voters with the correct list L1 of commit-

ted ballots, the intruder blocks this communication (or takes over control over the

publisher process) and sends a specific voter v1 with a list with only one entry from

the original list and all other entries garbled. All voters different from v1 receive

a completely garbled list. Now two cases should be distinguished: the remaining

entry indeed was the covered vote of v1 or it was not. In the former case, v1 will be

the only voter sending in his opening, since the other voters will miss their covered

votes from the list. In the latter case, all voter processes block as their covered

votes are missing. Thus, for a population of n voters, chances are 1 out of n that

the privacy of a single voter, v1 in our case, is compromised. In the possibilistic

stance this amounts to stating that an active intruder has for any voter a trace that

violates the voter’s anonymity.

Although havoc may result from complaints of voters missing their covered votes

from the published list, one may even try to stretch the approach a bit further.

Instead of only presenting voter v1 with a list with only one valid entry, now voter v1

gets a list that is scrambled except for entry e1, voter v2 gets a list that is scrambled

except for entry e2, and so on. The qualitative interpretation then yields that the

intruder has a trace in which all votes are revealed. However, as a variation of

the well-known drunker sailor problem [38], it follows, by linearity of expectation,

that the expectation of the number of voters of which the privacy is breached is 1

only, thus showing no improvement (from the intruder’s perspective) on the earlier

attack. Due to their modeling of the privacy requirement, the analysis of the FOO

protocol by Kremer and Ryan [35] did not reveal this weakness. In future work we

aim at providing a precise analysis in which a Dolev-Yao intruder is modeled at the

same level as the present representation of the processes involved.
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Dummy votes

An alternative manner to enlarge the voter’s attribution set is by exploiting

the anonymous channel. Before any activity of voters, the anonymous channel

accumulates a sufficient amount of signed dummy ballots from the administrator

in the same way an eligible voter would do. Note that, the administrator is aware

of the number of dummy votes that is generated this way. Next, when a regular

voter presents a blinded committed vote to the anonymous channel, the channel not

only outputs any of the regular votes it chooses, but also arbitrary many of its own

registered dummy votes. The team of administrator and counter will not be able

to tell the dummy votes and regular votes apart. As soon as the counter publishes

the blinded committed vote on the first list of received votes, the voter can submit

its opening without endangering its privacy.

The reason of the increased privacy lies in the size of the chunks, or rather,

chunk. The predicate acmatch will only hold after the last bit of dummy votes have

come out of the channel. if plenty of these are at disposal of the channel, this can

be prolongated well after the last voter has sent in both its blinded vote and the

opening thereof. Therefore the attribution set of all voters will be the set of all

opened votes, together with ⊥, if applicable.

As is to be expected, the increased anonymity without a two or three phase vot-

ing regime comes at a price. The anonymous channel needs to be trusted, not only

for prudence when dealing with private information as before, but also regarding the

very outcome of the election. Obviously, the channel can cover the number of votes

for any option on its part and open this after the votes have been collected. The net

outcome will then be the grand total per option minus the number of dummy votes

for this option. However, there is a priori no guarantee that the channel will deliver

the votes it commits itself to, as long as there is no control mechanism in place for

this. It is conjectured that zero-knowledge techniques can help here, a topic for fur-

ther investigation. It is noted though, that the formal description of the attribution

set as given by Theorem 4.2 has catalyzed the above line of reasoning, that is, to

our best knowledge, not conceived before.

Unlinkability

One of the drawbacks of a formal verification is the fact that it considers a for-

mal object, rather than an actual implementation. While implementing the protocol

many decisions have to be made, e.g. with respect to the actual cryptographic prim-

itives. A concrete cryptographic algorithm may have certain properties, which in a

particular setting could be used by an intruder to his advantage. In the FOO voting

scheme anonymity of the voter essentially depends on the unlinkability between two

events: the sending of a blinded committed ballot to the administrator and the

sending of the committed ballot (and its corresponding key) to the counter. Now, if

the implementation allows an observer to link these events, anonymity is breached.

Such vulnerabilities could e.g. be introduced by naive use of a probabilistic sign-

ing algorithm or by including network information of the voter in the payload of

messages and thus to travel unmodified through the supposedly anonymous channel.
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In case a Public Key Infrastructure is adopted when implementing the FOO vot-

ing scheme, then also possibilities might emerge for linking the blinded committed

ballot bcb to the committed ballot cb. More specifically, one could think of an im-

plementation of the FOO voting scheme where the administrator sends the signed

blinded committed vote to the voter together with its public key and corresponding

certificate. The certificate was created by the Certification Authority (CA). The

voter can check the validity and integrity of the received public key by checking the

corresponding certificate.

If the CA is not strictly separated from the administrator, then an attack is

possible in the following way: The administrator generates a public/secret key pair

for each voter and asks the CA to generate a certificate for each public key. The

administrator signs the blinded committed ballot of each voter with a different secret

key. He sends the signed blinded committed vote together with the corresponding

public key and its certificate to the voter.

The voter checks the certificate of the received public key and verifies the sig-

nature of the blinded committed vote. Subsequently, he unblinds the signature and

sends the unblinded signature to the counter. The counter (together with the ad-

ministrator) can determine the identity of the voter by finding out what public key

matches the received signature.

Another problem might arise if the administrator adopts a group signature

scheme. Group signatures, see e.g. [15], denote a signature scheme where each

member of a group can generate a signature. The receiver (i.e. the voter in our

case) cannot find out what group member generated it. When the administrator

uses a group signature scheme he can act as a specific group member. Thus he has

got the possibility to generate a signature specific for a certain voter. This leads to

a link between the blinded committed ballot and the committed ballot.

Conspiring voters

In principle, a flooding attack might be possible in the presence of malicious

and conspiring voters, affecting the availability of the system. However, if the

system is synchronized in any of the two ways indicated above, conspiring agents

can hardly influence the privacy of other agents. In order to model conspiring

voters, we extend the initial intruder knowledge with the ballots, keys and nonces

of the malicious voters. Repeating the calculation of the attribution set with this

extended intruder knowledge will give a reduction of the attribution set as the

ballots from the conspiring voters can be identified and deleted. We will not provide

these calculations, since they are a straightforward extension of the case without

conspiring voters. Care has to be taken to define the acmatch predicate in order to

skip communications of the conspiring voters.

6 Conclusions

The main contribution of this paper is the definition of an attribution set. This

set consists of all objects that can possibly be attributed to some user, given the
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observations of an intruder. It can be considered a measure for the data anonymity

of the user. If, for some system, this attribution set can be calculated in an explicit

form, it will give insight in the vulnerabilities of the system and it can be used to

strengthen the protocol.

The analysis of the FOO voting scheme clearly supports our view. Not only

did it show how an intruder could try to break anonymity, it also showed that a

synchronization point would solve the problem. We indicated two possibilities for

such a synchronization, one of which was not considered by the designers of the

FOO voting scheme. Our analysis also revealed some other possible weakness. If

the communication from the publisher process to the voters is compromised, the

intruder can manipulate this in such a way that at least one vote can be attributed

to its voter. Furthermore, a weakness occurs if the administrator can manipulate

the distribution of his public signing key.

Common experience with the use of formal methods shows that the act of for-

malizing clarifies the assumptions underlying the correctness of a system. The

original description by Fujioka, Okamoto and Ohta suffers from underspecification

(the properties required from the anonymous channel are not made clear) as well

as from overspecification (cryptographic algorithms are chosen, rather than their

relevant properties). Our specification and analysis clarified some of these issues.

Our work can be extended in several directions. First of all, our specification

only considered the main operation of the protocol: whenever an unexpected sit-

uation occurs, the involved agent will simply deadlock. In the original description

such exceptions are treated in a more meaningful way. However, we think that

such exception handling is not essential for reaching privacy, but to satisfy other

properties. A second extension, as mentioned above, is to consider a Dolev-Yao

intruder modeled as a first-class citizen, instead of an eavesdropping intruder as in

the present setting. Our current analysis hints at system flaws in this setting, but

further work on modeling synchronization is needed to make this precise. A last

promising point for follow-up research is to look for zero-knowledge mechanisms for

a secure injection of dummy votes, so that the attribution set of all voters can be

maximized without putting unnecessary trust in the anonymous channel.
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