
Language-Driven System Design

S. Mauw, W.T. Wiersma, T.A.C. Willemse

Eindhoven University of Technology, Department of Mathematics and Computer
Science, P.O. Box 513, NL–5600 MB Eindhoven, The Netherlands

Abstract

Studies have shown significant benefits of the use of Domain-Specific Languages.
However, designing a DSL still seems to be an art, rather than a craft following
a clear methodology. In this paper, we discuss a first step towards a methodology
for designing such languages. The presented approach, which is referred to as the
Language-Driven Approach, is rooted in formal techniques and independent of ac-
cepted software engineering process models. We illustrate the approach with a small
and instructive case study.

Key words: Software Engineering, Domain-Specific Languages, Language-Driven
Approach, Operational Semantics, Traffic Light Control.

1 Introduction

The complexity of software has steadily increased over the past decades. This
necessitated the development of techniques to master the difficulties and prob-
lems due to this increase. Over the years, several process models have been
introduced, for structuring the design process of software. Many different vari-
ants of these process models exist, e.g. Boehm’s spiral model [3], and the
incremental model [30].

Although the differences between these models can be large, all models pre-
scribe a partitioning of the software engineering process into a number of
stages. These stages are distinguished on the basis of the activities that have
to be conducted. The order in which these stages must be addressed, along
with the deliverables that can be expected in each stage are prescribed by the
process model.

Email addresses: s.mauw@tue.nl (S. Mauw), w.t.wiersma@stud.tue.nl (W.T.
Wiersma), t.a.c.willemse@tue.nl (T.A.C. Willemse).

In theory, most process models are fairly general with respect to the means
that must be used to obtain the deliverables in each stage, although some of
the process models define best practices for a number of stages. In practice,
however, the tools that are used are often determined by external influences,
such as a company’s policies. This traditional approach to software engineering
focuses mainly on a software product that must be developed. Alternatively,
the focus could be on a language (or a class of languages) that is tailored to
the software product. These languages are often referred to as Domain-Specific
Languages.

Domain-Specific Languages (DSLs) have emerged as a tool for tackling the
complexity of software development projects. Many studies (e.g. [12]) have
shown significant benefits of using DSLs in software development. Noteworthy
are the increase in the reliability and the maintainability of the produced
software, but also improved reusability of a software product’s code and design
(see e.g. [12,15]).

Although the use of DSLs and their benefits have been well documented, there
is only little literature available on the relation between process models and
software engineering methods on the one hand and the use of DSLs on the
other hand. Moreover, developing a DSL still seems to be an ad-hoc process,
rather than a clearly defined process with a clearly defined methodology. In
order to support the acceptance of the ideas and concepts of DSLs, a clear
methodology needs to be defined. This methodology must focus on the aspects
for developing a DSL, with a clear emphasis towards the intended application
of the DSL for a specific problem domain.

In this paper, we discuss the language-driven approach to software engineer-
ing. This approach can be considered as a first step to a general methodology
for designing a DSL. The emphasis of the approach is on the interplay be-
tween standard software engineering methods and its best practices, various
process models and the concepts and ideas behind DSLs. The key issue in this
approach is the focus on the development of a suitable DSL for writing (part
of) a software product, rather than the development of the software product
itself.

The language-driven approach combines and extends well-known and accepted
methods from software engineering. It inherits techniques and concepts from
the area of formal methods (in its broadest sense), but also the basic ideas and
notions behind various programming paradigms are incorporated. Moreover,
the language-driven approach relies heavily on the expertise and the techniques
that are needed to conduct a domain analysis. Also for these techniques, there
is ample literature available (e.g. [6,20]).

A major reason for incorporating techniques from specialist areas such as

2

formal methods is our firm believe that a language consists not only of a
syntax, but also of an (unambiguous) semantics. Moreover, every language
has its own pragmatics that needs to be clear to its users. The techniques that
have been studied and developed in the area of formal methods are essential in
analysing and defining an understandable language, its syntax, its semantics
and its pragmatics. The tool ASF+SDF [16,26], for instance, can be used to
define and analyse the semantics of programming languages. Apart from this,
the use of a formal semantics for validating programs is a key issue in formal
methods’ research.

The traditional scalability problems often encountered when applying formal
methods in the design of software are not likely to be an issue in the language-
driven approach. The problem of scalability is often caused by the large gap
between the methods that are used to describe a software product and the key
concepts of the software product. For the language-driven approach, this gap
is relatively small, as the software product is defined in terms of its natural
concepts.

In this paper, we introduce and discuss the phases of the language-driven ap-
proach. In each phase, we mention the deliverables needed and the techniques
for producing them. Additional information is given for selecting alternative
techniques or paradigms. This is needed if special requirements are posed on
the deliverables, like the need for formal verification.

The abstract ideas in this paper are illustrated with a case study. The case
study discusses the design of a language for controlling traffic lights at a junc-
tion.

This paper is organised as follows. Section 2 describes the language-driven
approach in detail. In Section 3 we discuss related work and research that has
already been conducted in this area. Section 4 discusses the case study. In
Section 2, we sometimes refer to the case study to exemplify some of the more
abstract notions we encounter.

2 The language-driven approach

In this section we discuss and elaborate on the ingredients that play a role in
the language-driven approach. These ingredients can all be found in literature.
Wherever possible, we provide pointers to the literature. In our discussion, we
emphasise on the formal aspects of the design approach.

3

2.1 Overview and rationale

In many ways, the language-driven approach resembles a standard software
development process. However, there are some differences. These differences
are due to the fact that in the language-driven approach, the design is centred
around the development of a (formal) language. The language itself, which
will be a Domain-Specific Language (DSL), constitutes the major result of
the design process. Moreover, the centre of activities in the software design
process shifts to earlier stages, such as the user requirements and specification
phases. This has several well-known advantages, e.g. reduction of the time-to-
market, early detection of errors, etc.

The development of the DSL is described by a collection of deliverables. These
deliverables include the definition of its syntax and semantics, and define ap-
propriate tool support. The language-driven design approach can be integrated
in today’s software process models, such as the waterfall model [22] or the spi-
ral model [3]. Using proven software process models assists the design of the
language in a structured way.

Figure 1 shows an overview of the artifacts produced during the development
process. We refrain from using a specific process model for the development
of the deliverables. In practice, the final product will be the result of several
iterations of the development process.

semantics

operational
denotational

analysis
...

syntax

abstract
textual
graphical
static requirements

pragmatics methodology

problem space

concepts
problem domain

DSL

case studies

tool support

Fig. 1. The language-driven approach.

Due to the inherent causalities and dependencies between the deliverables,
a natural ordering is imposed on their development. This ordering is made
explicit in the distinction between the following stages in the design process:

4

(1) identification of the Problem Domain,
(2) identification of the Problem Space,
(3) formulation of the Language Definition.

Note that due to the iterative nature of many process models, the actual order
in which these stages are addressed is not fixed, even though there is a clear
and intended dependency between the stages. Also, these stages should not be
considered atomic, i.e. it is possible to start a parallel trajectory on the next
stage if sufficient information from another stage is available.

In the subsequent sections, the three stages are explained in greater detail.
We occasionally refer to the traffic light case study described in Section 4 to
explain some of the more abstract notions discussed in these sections.

2.2 Identification of the Problem Domain

The identification of the problem domain is the first stage in the language-
driven approach. Rather than focusing on the single problem that needs to
be investigated, the language-driven approach focuses on a class of problems
stemming from a common problem domain. A thorough domain analysis is
necessary to give a complete and precise definition of all essential concepts
in the problem domain. Fortunately, there are many existing techniques that
support a domain analysis and domain specification. A proper demarcation
of the problem domain is vital, as all subsequent artifacts depend on the
concepts captured and described by the problem domain. We refer to [20,6]
for an overview of best practices and techniques for conducting the domain
analysis.

The problem domain can be (and usually is) much larger –both in generality
of the concepts and in the number of concepts– than is strictly needed to
solve the actual problem. This has several advantages, e.g. reuse of domain
knowledge and self-containment of the problem domain. A restricted problem
domain often implies that some design decisions have alread been made. An
example of the concepts that are revealed in the domain analysis of the traffic
light case study is given below.

Example 2.1. In the traffic light case study, we describe the domain model
by means of basic mathematical constructs, such as sets and relations. Typical
concepts in our case study are plain entities like road user and lane and rela-
tions like conflict, which describes which lanes may have potentially conflicting
traffic. End example.

5

2.3 Identification of the Problem Space

The second stage of the language-driven approach is the identification of the
problem space. As already remarked, the previously determined problem do-
main is a mostly exhaustive collection of all concepts used and related to the
actual problem. As mentioned, this has definite advantages; however, for solv-
ing the actual problem the problem domain is often too general and too large.
Therefore, a restriction of the problem domain is necessary.

A first observation is that in order to provide a direction for solving the actual
problem, design decisions must be made. These design decisions possibly lead
to concepts that have not been identified in the problem domain. The concepts
thus introduced play a pivotal role in solving the actual problem. The fact that
these concepts are not part of the problem domain follows straightforwardly
from the fact that the identification of the problem domain is not a design-
driven activity.

A second observation is that with respect to the actual problem, the problem
domain contains some inherent redundancy. Whenever concepts do not appear
to play any part in solving the actual problem, we can consider them irrelevant
for solving this problem. Hence, we only need to consider the concepts that
are relevant to our problem. The last observation is that with respect to the
actual problem, many of the identified concepts are too general. Therefore, a
natural second classification of the concepts is to make a distinction between
the concepts that can be constrained in some sense, and the concepts that are
inherently variable.

These observations lead to a classification of all concepts into the following
three categories:

• concepts that are irrelevant to the actual problem,
• concepts that are variable, and
• concepts that have been fixed for the actual problem.

As already remarked, a concept is irrelevant whenever it does not play any
part in the solution to the actual problem. Moreover, concepts can often be
classified as irrelevant due to abstraction and aggregation.

Variable concepts come in two flavours. A concept is called variable whenever
it varies depending on the actual problem instance, e.g. when its actual values
are fixed at run-time. Whenever a concept varies within the actual problem
instance, we also refer to this concept as variable. The variable concepts that
vary depending on the actual problem instance can often be considered as
problem parameters; every (allowed) instantiation of the problem parameters
calls for its own solution. These problem parameters are the part of the ac-

6

tual problem which will be specified by means of an expression in the DSL.
As a result, this collection of variable concepts determines the syntax of the
language. The variable concepts that vary within the actual problem deter-
mine the behaviour of the system. In an operational semantics, these concepts
reappear as a part of the state space. They cannot be specified by means of
expressions in the syntax.

The category of the fixed concepts consists of the concepts which are identical
for all problems considered. This can be caused by the fact that the notion
is inherently constant (e.g. a law of nature), but more often it concerns a
variable notion which is restricted to simplify the problem setting. Moreover,
by classifying concepts as fixed important steps towards a design are taken.

The class containing all variable concepts and all fixed concepts is referred to
as the problem space. Obviously, this part of the problem space is more con-
crete compared to the problem domain. This, however, reduces the complexity
of the basic notions that are relevant to the actual problem, while still retain-
ing enough information to describe the actual problem accurately. Since the
notions discussed in this section are rather abstract, the four types of concepts
are exemplified below.

Example 2.2. In our case study, we have introduced the concept of prior-
ities. This concept is derived from our desire to model the traffic lights as a
competitive system. However, the notion of priorities is not a notion that could
have been derived during the identification of the problem domain. Note that
different design decisions might have led to the introduction of other concepts.

The concept of a road user turns out to be irrelevant in our case study. Al-
though a road user plays a vital role in the domain analysis, it does not
re-occur in any of the subsequent phases. This is because road users are not
important to the goals set for solving our actual problem; their presence can
only be detected indirectly by sensors.

An example of a variable concept, is the notion of a conflict matrix. The conflict
matrix describes the actual situation at a particular traffic intersection. In
order to deal with more than one fixed intersection, we require this concept
to be variable. This means that this concept also reappears in the syntax of
the language, as it is needed there to describe the intersection in terms of its
conflicts. An example of a concept which is variable within a problem instance
is the current colour of a traffic light. This will change during operation and
is, therefore, included in the state of the system.

When we fix the order in which a traffic light displays its colours, e.g. from
green to yellow to red, this concept can be considered as an example of a fixed
concept. Not determining the order of the colours in advance would support
any ordered list of colours and therefore would be much more general. However,

7

this would also increase the complexity of the syntax, because it would need
constructs for specifying the order of the colours. Since the order for traffic
light colours is more or less standardised, fixing the order is not a severe
restriction. End example.

2.4 Formulation of the Language Definition

The design of the language concretises the notions and concepts that can be
found in the problem domain. In this section, we discuss the constituent parts
of a DSL. We advocate a formal treatment for the specification of both the
syntax and semantics of a DSL.

The language definition stage is divided into three sub-phases in which the
syntax, the semantics and the pragmatics of the language are defined.

2.4.1 Syntax

The appearance of a language is defined by means of its syntax. In the language-
driven approach, the constructs of the language are related to the concepts
that have been identified in the domain space. The syntax of the language con-
sists of expressions of the variable concepts that have been identified in the
problem space. Unlike the variable concepts, fixed concepts are not defined in
the syntax.

The syntax serves several purposes. It supports the user in expressing the
properties of the problems the user wants to solve using the language. Second,
the semantics is based on the syntactical expressions. Moreover, the language
constructs serve as a basis for applying analysis techniques on both the lan-
guage and the problems described using the language.

The format of the language is constrained in several ways. Most importantly,
it must be susceptible to interpretation and/or transformation by means of a
computer. Moreover, the syntax is often constrained by a number of generally
accepted requirements such as readability and writeability of the language
constructs. Finally, we stress the importance of choosing syntax expressions
for which the mathematical semantics correspond to the intuitive semantics.

In general, a language can have one or more syntactical descriptions. These
descriptions depend on the required use of the language. Three of the more
popular formats are the following:

• the abstract syntax,
• the textual or linear syntax,

8

• the graphical syntax.

The abstract syntax is often used to express all semantically relevant informa-
tion in a minimal way (e.g. without keywords or superfluous transitions in the
defining grammar). Moreover, the data structure that is used by computers
to store the information that is obtained while processing programs is often
strongly related to the abstract syntax. The expressions in the abstract syntax
are generally not meant for human processing or usage, but they are useful
during design of the language.

The textual or linear syntax is the description that is most often encountered
in language descriptions. The information in the textual syntax is essentially
the same as in the abstract syntax. However, the textual syntax is easier to
read and use. This is best exemplified by constructs such as the if-then-else
construct. This construct will have all the appropriate keywords in the textual
syntax, but in the abstract syntax it will simply be a triplet.

The third format, the graphical syntax, is gradually gaining popularity. Graph-
ical, or visual languages have several benefits over linear languages, such as the
ability to express spatial properties or complex relations in a more intuitive
fashion. The general availability of graphical workstations makes it possible
for regular users to work with visual languages. Although a graphical syntax
may seem capable of expressing more than the textual or abstract syntax, the
semantically relevant information should be identical.

The abstract syntax and the textual syntax can be partly defined by means
of BNF grammars, or BNF-like grammars (i.e. BNF grammars enhanced with
simple (mathematical) structuring mechanisms such as sets or records). For
the graphical syntax, no generally accepted format for defining the language
exists. The most popular way of defining the graphical language is by means
of graph grammars [21].

In most cases BNF-like grammars are not expressive enough to exactly de-
scribe which expressions in the language are well-formed. Context-sensitive
properties, such as the declare-before-use property of variables, must be ex-
pressed in a different way. These additional requirements on well-formedness of
expressions are often referred to as the static semantics. This title is somewhat
misleading as it deals with syntactical properties of the language. The notion
of static semantics also has a different interpretation, namely the semantics
of the static (i.e. non-behavioural) part of a language. Therefore, we prefer to
use the term static requirements whenever we refer to these additional syntax
requirements. Most often, attribute grammars [17] are used for specifying the
static requirements, but logical predicates can also be applied.

To conclude this section on syntax, we mention that there are several other
syntactical aspects which can be specified. A requirement that is often posed

9

on expressions in a graphical languages is to have a layout that is transparent
to tools. It is not likely that the detailed layout will have any semantical mean-
ing, so one may not expect that the textual syntax is capable of expressing
such properties. This is resolved either by extending the textual syntax with
information that is semantically irrelevant, or by defining an additional syntax
which is tailored to expressing such details. The latter approach is often called
a tool interchange format (see e.g. the Common Interchange Format CIF for
the SDL language [14]).

Not all three formats may be necessary: one might skip e.g. the textual syntax.
Two issues must be kept in mind, namely, that there has to be a syntactical
representation which covers all semantically relevant issues and that a formal
definition of the syntactical ingredients should be given.

2.4.2 Semantics

A semantics for a language is a mathematical model that reflects the intended
computational behaviour of expressions in the language. In essence, one can
classify language components in two ways:

• Components dealing with dynamic behaviour,
• Components describing purely static information.

This distinction is also reflected in the semantics of the language.

As for general-purpose languages, various approaches exist to defining a se-
mantics for a language. The choice of a suitable semantical approach depends
largely on the characteristics of the language itself, i.e. the class to which the
language belongs. However, the practical use of the semantics is important
as well. Dependent on the type of semantics, techniques such as behavioural
analysis, invariant analysis or simulation of expressions in the language can
be used. Most designers of a language are biased towards certain approaches.

Basic to most semantical approaches is the existence of a semantical domain.
Such a domain often consists of a set (or collection of sets) with an additional
structure defined by relations. Expressions in the language relate to entities in
this domain and obtain their meaning via the properties of the related entities.

Although the different approaches are all variations on a similar theme, each of
these approaches emphasises on a different aspect and has its own benefits. We
subsequently give a short overview of the main advantages of three commonly
used approaches in the next paragraphs. For an overview of other semanti-
cal approaches such as Abstract State Machines and attribute grammars, see
e.g. [10,24].

10

Operational semantics Operational semantics is used to give meaning to
the dynamic part of a language. It is centred around the notions of a state and
the transitions between the states (see e.g. [11]). The transitions between the
state can be described by means of a transition function. Various ways exist
for defining the operational semantics, e.g. by means of SOS-rules [1].

The operational semantics of a language is quite close to the intuition behind
the language. It is often used by implementors. An operational semantics pro-
vides the means for performing simulations of expressions in the language by
considering runs of the transition function. This is useful in areas of testing, or
even automated testing. Moreover, there is also the possibility of analysing the
transition graph that is induced by a language expression. This is often used
in verification efforts. Finally, tools, such as ASF+SDF [16,26] or Maude [4]
may be used to develop prototypes of the language.

Denotational semantics A denotational semantics is centred around the
idea of a mathematical function that describes the meaning of an expression by
means of a translation to a well-understood mathematical model, as described
in the beginning of this section (see e.g. [23]). Its virtue is the use of this
mathematical model for the analysis and comparison of expressions in the
language.

The theory of the denotational semantics is mathematically very rigorous. It
is often used by language designers, as it precisely expresses the requirements
on the language. Techniques to prove two expressions in the language equiv-
alent are easily formulated using the underlying mathematical model. Such
techniques can also be automated, using theorem provers.

Axiomatic semantics The axiomatic semantics is given by means of a
number of axioms relating expressions in the language. The axioms can be
based on some underlying logic. The axiomatic semantics is often used in
combination with a denotational or operational semantics to provide for an
underlying mathematical model and a suitable notion of equivalence.

The axioms defining the semantics of a language provide the possibility to in-
terpret the axioms as a set of rewrite rules. This allows for rapid prototyping
of the language. Moreover, based on the axiomatic system, there is an option
for theorem proving. Examples of an axiomatic semantics are the pre-and post
conditions used for programming languages [13] or the use of axioms in the
context of concurrency [2].

The semantics of the language are mostly defined on the abstract syntax rep-

11

resentation. In case the language has a graphical syntax, its semantics can
be defined directly on the graphical syntax, but it is often more convenient
to define a mapping from the graphical syntax onto the abstract syntax and
formalise the semantics of the latter.

As may be expected, the definition of a (formal) semantics is crucial to unam-
biguously understand the programs and to define analysis techniques, together
with proper support tools. More than one semantics may be defined, as long
as these are consistent.

Analysis techniques are used for the semantical analysis of expressions in a
language. We consider these techniques as part of the semantical development
of the language, as these techniques are largely dependent on the choices made
in defining the semantics of the language. The analysis techniques provide an
increased insight into the meaning of possible expressions. Moreover, correct-
ness of the language is better understood by determining the properties of
expressions in the language.

Often, the analysis techniques follow some standard mathematical approach.
However, it is conceivable that new theory needs to be developed for perform-
ing the desired analysis.

2.4.3 Pragmatics

The pragmatics of a language deals with all aspects of the use of the lan-
guage. Obviously, a language design is not finished without guidelines on how
to properly use the language. A collection of examples may show the appli-
cation of typical features, case studies will prove usefulness for real examples.
Moreover, documentation, including tutorials and educational material, to-
gether with rules of thumb, etc. are needed to advocate the proper use of the
language. These guidelines are called the methodology of the language.

Apart from the methodology of the language, tools need to be defined for in-
terpreting or compiling the language, and to support the analysis of programs
written in the language. Ideally, these tools should follow from the semantical
definitions. For instance, an interpreter of a language needs to show exactly the
behaviour described by the operational semantics. Several meta-tools support
the generation of parsers and scanners based on the formally defined syntax.
Dependent on the type of semantics, the generation of interpreters and other
language processing tools is also viable (see e.g. [16,4,8]).

12

3 Related Work

There are many publications describing the development of some specific DSL
or which describe a set of (meta-) tools to support such development. There
is, however, only little literature on methodological aspects of the design of
domain-specific languages (see [27] for an overview of existing literature). We
discuss some relevant work below.

Consel and Marlet [5] describe a methodology for developing DSLs. It relates
two orthogonal perspectives (a programming language perspective and a soft-
ware architecture perspective) and describes a staged development of DSLs.
The methodology is based on the formal framework of denotational semantics,
and uses techniques to obtain dedicated abstract machines from the denota-
tional semantics of a language. See also Thibault’s thesis [25], which describes
a methodology, similar to the methodology of [5].

Weiss [29] has proposed the FAST process, which is a program family oriented
software development process. This approach introduces a software engineer-
ing process called commonality analysis. This process yields information about
the terminology that is used, commonalities between the members of a pro-
gram family and variabilities of a program family. The FAST process consists
of a set of procedures that are followed by domain engineers to produce a stan-
dard set of intermediate and final documents. This provides for a systematic
way for defining a program family.

Montages and its graphical tool environment Gem-Mex (see [18]) form a suite
for describing several aspects of programming languages, such as syntax, static
analysis and semantics, and dynamic semantics. Syntax is described by BNF
rules, and Abstract State Machines (formerly known as evolving algebras) are
used to define the semantics of a language. The system is able to generate
a visual programming environment for the specified language. The Montages
methodology has no support for domain analysis.

In [9], Gupta and Pontelli start reasoning from the observation that any soft-
ware system can be understood in terms of how it interacts with the outside
world. Thus, every system is in essence defined by its input language, which
in turn can be considered a Domain-Specific Language. They use Horn logic
to give a denotational definition of such DSL, which automatically yields a
parser, an interpreter and tools to support verification. The focus of their re-
search is on applying Horn logic for these purposes, without developing a more
generally applicable methodology.

Pfahler and Kastens [19] discuss issues related to the maintenance of a DSL.
Rather than updating a language by going through a new language devel-
opment cycle again, they propose to develop DSLs in such a way that small

13

maintenance can be performed easily. Thereto, they consider a language design
based on a collection of components, which can be glued together in different
ways, thus making for a more flexible language definition, or rather a language
family. This DSL life-cycle is called the Jacob approach. Corresponding tool
support makes it possible to automatically generate substantial parts of an
implementation. The authors do not describe a methodology for designing a
language family (i.e. an appropriate set of components). We expect that the
methodology outlined here will also be applicable to language families.

4 The Case Study

We illustrate the language-driven approach by developing a domain-specific
language for the regulation of traffic lights (see e.g. [28]). The case study is
discussed in great detail in the subsequent sections.

The problem deals with traffic junctions and the traffic passing the junction.
We can distinguish between traffic junctions that do not need any control and
traffic junctions that do need control. The former are often traffic junctions
that have only little traffic passing it, whereas the latter are often junctions
that have many conflicting traffic streams. Regulation of traffic streams is done
by means of traffic lights and division of roads into lanes.

A standard approach to controlling these traffic lights is to fix an order in
which these traffic lights allow traffic to cross the junction. This, however,
leads to sub-optimal throughput, traffic congestion, etc. To overcome such
problems, sensors are used that register the presence of traffic per lane. The
sensors’ information is the basis for the order in which these traffic lights
allow traffic to cross the junction. Notice that the addition of sensors renders
systems that can respond to events from their environments, i.e. the traffic
light controllers we consider are dynamic, reactive systems.

In order to cope with high-priority vehicles (e.g. police vehicles), special care
must be taken to make sure these vehicles are allowed to cross the junction as
soon as possible. However, it is not allowed to have unsafe situations at the
traffic junction at any moment in time. Hence, conflicting traffic streams are
not allowed to cross the traffic junction at the same time. Moreover, we cannot
a priori assume that a traffic stream has cleared the junction immediately after
a traffic light has changed to red. Therefore, to each traffic light a clearance
duration is associated. The clearance duration of a traffic light is the time
that is needed to clear the junction from traffic. In order to prevent a traffic
light from switching colours too fast, we associate a minimal duration to each
colour of the traffic light.

14

The goal is to obtain autonomous traffic junction regulators that are more
efficient than the controllers defined by the standard approach and still guar-
antee safety. To achieve this goal, we develop a DSL that is tailored to the
control of traffic lights as we envision it.

Our presentation of the case study will be in a linear way. However, it must
be noticed that the results described in this section are the product of several
iterations. In our presentation of the deliverables for our case study, we closely
follow the order prescribed by the language-driven approach. In Section 4.1 we
focus on the problem domain. The concretisation of the problem domain into
the problem space is discussed in Section 4.2. Finally, in Sections 4.3 to 4.6,
the language definition is presented.

4.1 The Problem Domain

The first step of the language-driven approach to software engineering is a
proper identification of all concepts that are essential in the problem domain.
As most people are familiar with traffic junctions, obtaining an initial set of
concepts is rather straightforward (e.g. by means of a brainstorm session and
interviews). We assume that the introductory text in the previous section is
sufficient for a basic understanding of the problem domain.

The concepts that are a natural consequence of the characterisation of a traffic
junction, made in the previous section, are discussed in the subsequent para-
graphs. Notice that we have already marked the concepts (using (f) for fixed
and (v) for variable) that are part of the problem space, as to avoid duplication
of information. In Section 4.2 we provide a motivation for our choice for these
concepts.

Time. A traffic light controller is a dynamic, time-dependent system. The
concept of time is therefore indispensable. There are two different types of
time, i.e. relative time and absolute time. Relative time is usually employed
if one wants to refer to periods of time (e.g. a traffic light must be green for
at least ten seconds). Absolute time is used to model that events must occur
at specific moments (e.g. a traffic light is out of order until May 1, 2001). For
traffic light controllers, both types of time are possible. Hence, we introduce
the following concepts:

Duration(f) Lapse of time (relative)

Time(v) ‘Calendar’ time (absolute)

15

Participants. As mentioned before, the traffic light controller is a reactive
system. It responds to the events it receives from its environment. These en-
vironmental events are triggered by traffic participants, i.e. road users. These
road users can be of a specific type, e.g. car, pedestrian, train, etc.

Roadusers Set of all possible traffic participants

T Roadusers Set of all possible types of traffic participants

UserType : Roadusers → T Roadusers

Junctions. One of the most natural concepts of our problem domain is the
concept of a junction. For junctions, we can recognise three levels of concrete-
ness: the physical topology of the intersection, the traffic rules that apply to
the intersection and the logical characteristics of the intersection. These three
levels are explained in greater detail below.

The physical topology of the intersection consists of several crossing roads.
Roads can be divided into a number of lanes. We define lanes as stretches of
road that have identical behaviour (lanes can also be sidewalks or rail tracks),
i.e. a lane consists of a number of (parallel) strips. The users of a lane are
supposed to follow the same route (or set of routes) on an intersection. For
traffic junctions, we consider two types of lanes, viz. lanes entering and lanes
leaving an intersection. Since we are interested in traffic crossing an intersec-
tion, we must consider the possibilities for doing so. From the perspective of
the physical topology, we arrive at the notion of possible continuations for
every lane entering an intersection.

InLanes(v) Set of all traffic lanes entering a junction

OutLanes(v) Set of all traffic lanes leaving a junction

Lanes = InLanes ∪OutLanes

requirement: InLanes ∩OutLanes = ∅

PossibleLaneUsers : Lanes→ P(T Roadusers)

PossibleContinuations : InLanes→ (P(OutLanes)− {∅})

Observing the traffic laws that hold for an intersection, we see that these
laws restrict traffic in an essential way. Rather than considering all possible
continuations of a lane entering an intersection, we should in fact consider
a subset thereof. This is motivated by the fact that, although the physical
possibilities are there, the law forbids these continuations. We thus arrive at
the notion of continuations.

16

LaneUsers : Lanes→ P(T Roadusers)

requirement: ∀l∈Lanes LaneUsers(l) ⊆ PossibleLaneUsers(l)

Continuations : InLanes→ (P(OutLanes)− {∅})

requirements:

∀l∈InLanes Continuations(l) ⊆ PossibleContinuation(l), and

∀a∈InLanes,b∈Continuations(a) LaneUsers(a) ⊆ LaneUsers(b)

From a logical point of view, the intersection can still exhibit unsafe behaviour.
This unsafe behaviour has two causes. On the one hand, traffic entering the
intersection via one lane can be in conflict with traffic entering the intersection
via another lane. This conflict is dependent on the physical location of the
lanes and the continuations of lanes entering the intersection. In order to
reason about such lanes, we describe which lanes are conflicting, i.e. which
lanes cannot simultaneously have a green light. Such a conflict relation is
often called a conflict matrix.

On the other hand, we can observe that it takes some time for a traffic stream
to clear the intersection after it has received a red light. This period needs to
be taken into account in order to guarantee safety. We refer to this period as
the clearance duration. Clearance duration is a binary function on the lanes
entering and the lanes leaving an intersection. We can consider a more abstract
notion of clearance duration, i.e. one that determines for an incoming lane the
maximum clearance duration over all its continuations.

Conflict ⊆ (Inlanes×Outlanes)2

requirement: Conflict is symmetric and irreflexive

Conflict(v) ⊆ InLanes2

where Conflict is derived as:

{(i1, i2) | ∃o1∈Continuations(i1)

∃o2∈Continuations(i2) Conflict((i1, o1), (i2, o2))}

ClearanceDuration : InLanes × OutLanes → Duration

requirement: ClearanceDuration is a partial function

defined on all (i, o), for which i ∈ InLanes, and

o ∈ Continuations(i)

ClearanceDuration(v) : InLanes → Duration

where ClearanceDuration(l) is derived as:

max{ClearanceDuration(l, o) | o ∈ Continuations(l)}

17

Traffic lights. Various important characteristics of traffic lights can be iden-
tified. A main characteristic is the set of colours the traffic light has. A traffic
light usually changes colour in a fixed order, i.e. a notion of state cycle can
be identified. The state of a traffic light is tightly coupled to the traffic light
itself, i.e. a current state can be identified. We are also interested in how long
the light is already in this state. Traffic lights are often required to be in a
state for a minimum time (e.g. a traffic light is required to show a green light
for at least three seconds).

TL State(f) Non-empty set of all possible traffic

light states

StateCycle(f) ∈ TL State+

TLights Set of all traffic lights

CurrentTLightState(v) : TLights→ TL State

TL Loc : TLights→ InLanes

MinStateTime(v) : TL State→ Duration

CurrentDuration(v) : TLights→ Duration

Sensors. To obtain information about their environment, traffic lanes must
be equipped with sensors. When a sensor is triggered, it produces an input
event that changes the state of that sensor. Thus, sensors have a notion of
state. Moreover, at each moment in time, we can inspect the state of a sensor,
hence, we can identify the current state for sensors.

Sensors can be placed at lanes for detecting specified types of road users. This
is convenient for detecting speeding ambulances or police vehicles.

Sensors(v) Set of all sensors

SensorState(f) Set of all possible sensor states

CurrentSensorState(v) : Sensors→ SensorState

SensorLoc(v) : Sensors→ InLanes

SensorRecog : Sensors→ P(T Roadusers)

4.2 The Problem Space

An important step in the language-driven approach is the identification of the
problem space. As mentioned before, the problem space is both a restriction

18

of concepts of the problem domain and an extension of the problem domain
with concepts due to design decisions. The restriction of the problem domain
is discussed in Section 4.2.2. First, the design decisions (i.e. the extensions of
the problem domain) are discussed in Section 4.2.1.

4.2.1 Design Decisions

We will model the traffic lights as a competitive system. This means that every
traffic light competes with other lights for the right to change colour. So we
have to keep information local to the traffic stream to reach a global decision
which lights can change colour. For this reason we introduce the concept of
assigning priorities to traffic streams. These priorities can dynamically change,
based on the progress of time or the detection of traffic. We assume a totally
ordered set Prio of priority values. Then we have for every sensor the priority
value to which the corresponding lane will be initialised if traffic is detected by
that sensor. For sensor s, this will be denoted by InitPrio(s). Finally, we have
a priority update function, which determines the new priority value of a lane
after the elapse of one time unit. This function will be denoted by UpdatePrio.

Prio(f) Totally ordered set of priority values

InitPrio(v) : Sensors→ Prio

UpdatePrio(v) : InLanes× Prio→ Prio

CurrentLanePrio(v) : Inlane→ Prio

4.2.2 Reduction of the Problem Domain

The concepts that are irrelevant to traffic light control are the concepts of
Section 4.1 that are not marked with (f) or (v). The concepts that turn out to
be relevant, but can be fixed have been marked with (f), whereas the concepts
that need to be variable are marked with (v). In this section, we restrict our
discussion to only a few examples of irrelevant, fixed and variable concepts.

Irrelevant concepts. An example of an irrelevant notion is TLights. Al-
though this notion is at the right level of abstraction, we observe that it
would not be a severe restriction if there is exactly one element of TLights for
every element of InLanes. Therefore, we can simply identify these two notions
and discard TLights.

A second example of an irrelevant concept is the concept of Roaduser. This
concept is irrelevant to our actual problem, since we have decided to build a
system in which individual road users do not play a role. Traffic participants

19

can only be detected indirectly by a sensor. They might play a role, however, in
case one of the goals was to build a simulator showing behaviour of individual
road users.

Variable concepts. The variable concepts that depend on the actual prob-
lem instance can be defined using the syntax. An example of such a variable
concept is the conflict matrix (i.e. the concept Conflict). In our goal to de-
scribe traffic light control for more than a single fixed traffic junction, we need
to take the conflict matrix into account. This is due to the fact that, depen-
dent on the junction, the conflict matrix can differ. Hence, fixing the conflict
matrix would be unwise, as it would restrict our language to describing only
junctions with identical conflicting traffic streams.

Another example of a variable concept is the concept of clearance duration. As
we have seen, the notion of clearance duration is important to guarantee safety
of the traffic junction. Hence, the concept cannot be considered irrelevant.
If we consider this clearance duration as a fixed concept, then we restrict
our language to describing intersections that have a single (fixed) clearance
duration for all traffic streams. This, of course, is too restrictive. Hence, the
concept of clearance duration must be defined as a variable concept and can
thus be defined using the syntax of the language.

For the other variable concepts (InLanes, Continuations, Outlanes, MinState-
Time, Sensors, SensorLoc, InitPrio, and UpdatePrio), a similar reasoning
holds.

An example of a variable concept that is variable within the problem instance
is the concept CurrentSensorState. This concept defines the relation between
the concepts of Sensors and the concepts of State. This relation, however, is
not static, as the state of a sensor can change over time (e.g. by means of
traffic passing the sensor). In fact, this relation clearly illustrates the dynamic
nature of traffic light control.

Similarly, the concept of CurrentTLightState is a variable concept.

Fixed concepts. We have fixed several notions to a concrete value in order
to make the problem less abstract. First of all, we will restrict the colours
that a traffic light can have by defining TL State = {green, yellow, red}, which
also determines the standard order StateCycle = green ◦ yellow ◦ red. Such
a decision may come from the fact that the system is only to be applied in
countries where this is the standard order of operation. It might be considered
a severe restriction that this also implies that special operation of traffic lights
(e.g. a flashing yellow light) is not supported.

20

For ease of reasoning, we will take Prio = N. We will assume a discrete time
domain, and set Time = Duration = N

4.3 Syntax

This section describes the syntax of the traffic regulation language. We provide
a definition of the abstract syntax and we give examples of expressions in the
concrete and graphical syntax. We refrain from providing the definitions of
the concrete and graphical syntax, as these do not add to the understanding
of the language.

The abstract syntax serves to express in a minimal format the semantically
relevant information which a designer of an intersection should provide in
order to obtain an operational system. The abstract syntax has a clear corre-
spondence with the variable concepts identified in the problem space.

Words between angular brackets, 〈 〉, are the non-terminals of the language.
We assume that the non-terminals 〈inlaneid〉, 〈outlaneid〉, and 〈sensorid〉 pro-
duce disjoint sets of identifier symbols. Furthermore, 〈updateprio〉 produces
a natural expression (possibly containing occurrences of a variable, say x)
which represents the priority update function. The initial priority of a sensor
is captured by 〈initprio〉. Non-terminals 〈initprio〉, 〈clearance〉, 〈greentime〉,
〈yellowtime〉, and 〈redtime〉 produce a natural numeric constant.

〈junction〉 ::= 〈lane〉∗ 〈conflict〉∗ 〈mintime〉
〈lane〉 ::= 〈inlaneid〉 〈continuation〉∗ 〈sensor〉∗ 〈updateprio〉
〈continuation〉 ::= 〈outlaneid〉 〈clearance〉
〈sensor〉 ::= 〈sensorid〉 〈initprio〉
〈conflict〉 ::= 〈inlaneid〉 〈inlaneid〉
〈mintime〉 ::= 〈greentime〉 〈yellowtime〉 〈redtime〉

As an example of a static requirement defined on this abstract syntax, we
specify the predicate irreflexive-conflict. This static requirement follows from
the requirement on the conflict matrix as specified in Section 4.1, and in fact
expresses the irreflexivity of the conflict matrix.

irreflexive-conflict(lane-list conflict-list mintime) = irreflexive-conflict(conflict-list)
irreflexive-conflict(ε) = true
irreflexive-conflict(inlaneid1 inlaneid2 conflict-list) =

(inlaneid1 6= inlaneid2) ∧ irreflexive-conflict(conflict-list)

We have overloaded the predicate name such that it accepts expressions of
type 〈junction〉 and 〈conflict〉∗. With ε we denote the empty list. Typing of
the other variables follows from their naming scheme.

21

In the same way we can define auxiliary functions to extract information from
the abstract syntax, such as the function sensors which determines for each
lane l the set of available sensors.

sensors(l, lane-list conflict-list mintime) = sensors(l, lane-list)
sensors(l, inlaneid continuation-list sensor-list updateprio lane-list) ={

sensors(sensor-list) if l = inlaneid
sensors(l, lane-list) if l 6= inlaneid

sensors(ε) = ∅
sensors(sensorid initprio sensor-list) = {sensorid} ∪ sensors(sensor-list)

This function will be used in the definition of the semantics.

There are many ways in which the abstract syntax can be represented in a
more readable format. The textual representation of the example in Figure 2
is slightly more verbose. This example describes a junction with two incoming
lanes (a and b) and two outgoing lanes (c and d). Lane a continues at lanes
c and d. The clearance duration of the path from lane a to lane c is 3. Lane
a has two sensors, called normal and bus. The initial priority of the normal
sensor is 10, while detection of a bus sets the priority to 100. The sensor at
lane b cannot make a distinction between the type of traffic detected. The
priorities of the lanes a and b are updated every time unit with the update
functions 1 λx.x+ 1 and λx.x+ 2, respectively. The two lanes a and b have a
conflict. Finally, the minimal state time of the traffic light colours is set to 1,
1, 3 (for red, yellow, and green).

We leave it to the reader to interpret the graphical symbols in Figure 2.

4.4 Semantics

In this section we provide an operational semantics for the traffic light control
system. We define a state space (see Section 4.4.1) and transition functions
(see Section 4.4.2).

4.4.1 State

In order to give an operational semantics based on state transitions, we will
first define the state of the system. The state is based on the concepts which
are variable within a problem instance, i.e. the priorities of the lanes, the
states of the traffic lights, the time that the traffic lights have their current

1 We denote a function f with parameter x by λx.f(x).

22

c

x + 2

b

d

x + 1

a

normal(10)

bus(100)

3

1

1

normal(10)

2

23

lanes
a to c(3), d(2);
b to c(2);

sensors
a: normal(10),

bus(100);
b: normal(10);

priorities
a: x+ 1;
b: x+ 2;

conflicts
a|b;

mintime
red 1;
yellow 1;
green 3;

Fig. 2. Example junction in textual and graphical syntax.

colour, the states of the sensors, and the absolute time. We define state domain
Σ = Π× Γ×∆× Ξ× Time, where

1. Π = InLanes→ Prio

2. Γ = InLanes→ TL State

3. ∆ = InLanes→ Duration

4. Ξ = Sensors→ SensorState

5. Time is the absolute time domain

Then the state of the system is represented by a five-tuple σ = (π, γ, δ, ξ, τ) ∈
Σ. Henceforth, we will use the notations σ and (π, γ, δ, ξ, τ) interchangebly.
Without making it explicit, e.g. the function γ2 will denote the second com-
ponent of state σ2. The initial state of the system is σ0 = (π0, γ0, δ0, ξ0, τ0),
where

π0 = λl.0

γ0 = λl.red

δ0 = λl.0

ξ0 = λs.false

τ0 = 0

23

4.4.2 Transition rules

There are three ways in which the state of the system can be changed. First,
there can be an input event (i.e. a sensor changes its state). Secondly, an output
event can be generated (i.e. a traffic light changes colour). And thirdly, time
can progress. These three events give rise to three types of transitions.

To simplify matters, we assume a slotted operation. By this, we mean that
during each time interval first all sensor inputs are collected (if any), then
all traffic light outputs are generated (if any), and finally, time progresses to
the next time slot. Henceforth, we will consider only transition graphs which
satisfy this restriction on the order of transitions.

A transition generated by an input event is denoted by
i→, where i ⊆ Sensors

denotes the set of sensors which have detected traffic during the time slot. A

transition based on an output event is denoted by
〈tr,ty,tg〉−→ , where tr, ty, tg ⊆

InLanes denote the sets of lanes whose traffic lights should advance to red,

yellow, and green, respectively. Finally,
t→ denotes progress of time with one

time unit.

Now, we will discuss the three transition rules which define the transition
system.

Check for input. We consider an input from a sensor as the indication
that traffic has been detected during the just finished time slot. This does not
mean that the traffic is (still) waiting. Sensor information is kept in the state
variable ξ, which is set to true for a given sensor every time that the sensor
yields an input. Since the system cannot control its inputs, every possible
collection of sensor inputs should be accepted. This is modelled by having a
transition for every subset of Sensors.

For every i ⊆ Sensors, we have the following transition:

(π, γ, δ, ξ, τ)
i→ (π′, γ, δ, ξ′, τ),

where

π′ = λl.

max(π(l),max{InitPrio(s) |

s ∈ sensors(l) ∧ (ξ(s) ∨ s ∈ i)}) if γ(l) = red

0 otherwise

ξ′ = λs.(ξ(s) ∨ s ∈ i)

The priority of lane l is set to the maximum value of the initial priorities

24

from all triggered sensors that belong to the lane. However, if the priority
is already larger than the initial priority, the old value remains. The sensor
status is changed as explained above. All other components in the state remain
unchanged.

Generate output. The transition rule in which the output to the traffic
lights is generated has the following appearance.

(π, γ, δ, ξ, τ)
〈TRσ ,TYσ ,TGσ〉−→ (π′, γ′, δ′, ξ′, τ),

The sets TRσ,TYσ, and TGσ are defined below in such a way that the lane
with highest priority can go first, while allowing non-conflicting traffic of lower
priority to pass too.

In order to calculate these sets, we define Mσ ⊆ InLanes as the set of all
lanes that, based on their priorities, should receive green light. Possibly, not
all lights from Mσ will be set to green in the current state, because conflicting
streams may be crossing the junction. Mσ is a conflict-free subset of InLanes
with maximal priority. A set has maximal priority if it contains at least a lane
with highest priority, but it also contains lanes with possible next-highest
priorities.

In order to choose a unique conflict-free subset Mσ, we impose an arbitrary
total ordering � on the set of InLanes. This ordering is necessary to avoid
complications with fairness that could otherwise arise in a situation where
more than one set has maximal priority. The total order �̇ is then induced
by �, defining a lexicographical ordering on finite sets. This lexicographical
ordering is obtained by associating to each set A a list, consisting of the
elements of A in �-decreasing order. Then, A�̇B iff the list associated to A
is lexicographically smaller than the list associated to B.

Based on the priority function π, we define an extended priority function,
π̇ : P(InLanes) → M(Prio), where M(Prio) denotes the multi-sets of Prio,
defined as π̇(A) = [π(a)|a ∈ A], for A ⊆ InLanes. Let ≤ be the total multi-set
ordering for M(Prio), (see e.g. [7]). We subsequently define the set NC of
non-conflicting subsets of lanes, i.e.

NC = {A ⊆ InLanes | ∀l,m∈A ¬Conflict(l,m)}

This yields a lattice (NC,.), where we define the ordering . for all A,B ∈
NC as A . B iff either π̇(A) < π̇(B) or π̇(A) = π̇(B) ∧ A�̇B. In words,
two elements A,B of NC are ordered A . B in the following two cases.
First, A . B if the multi-set of priorities for B is greater than the multi-
set of priorities for A (according to the multi-set ordering). Second, A . B
if the multi-sets of priorities for A and B are equivalent (which means both

25

A and B have (relative) maximal priority), but B is lexicographically larger
than A. The lexicographical ordering essentially resolves the non-determinism
in chosing the set with maximal priority. It follows from standard set-theory
that the thus defined lattice (NC,.) is also a complete lattice.

Since (NC,.) is a complete lattice, we know the set NC has a unique max-
imum with respect to .. We therefore define Mσ as the maximum of the set
NC. The reader is invited to check that, by construction, Mσ is a conflict-free
subset of InLanes with maximal priority.

Example 4.1. Let us consider a junction with five InLanes, e.g. InLanes =
{A,B,C,D,E}. We consider an arbitrary state σ of this junction. Let the
conflict-matrix, and the priority function π of the state σ be given by the
matrix as defined by Table 1.

Table 1
Configuration of the conflict-matrix.

A B C D E π

A × × × × 5

B × × 5

C × × 5

D × × 3

E × × 2

For the computation of Mσ, we must first determine the set of all non-
conflicting subsets NC. Note that for every program written in our language,
this set can be computed at the start of the system. Below, the set NC and
the multi-sets of priorities, associated to each element in NC are listed.

NC = { ∅, {A}, {B}, {C}, {D}, {E}, {B,D}, {B,E}, {C,D}, {C,E}}

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

[] [5] [5] [5] [3] [2] [5, 3] [5, 2] [5, 3] [5, 2]

If we apply the extended priority function π̇ to the elements in NC and use the
multi-set ordering ≤, we obtain the following ordering between these induced
multi-sets:

[] ≤ [2] ≤ [3] ≤ [5] ≤ [5, 2] ≤ [5, 3]

which is derived from the following chain:

π̇(∅) ≤ π̇({E}) ≤ π̇({D}) ≤ π̇({A}), π̇({B}), π̇({C})

≤ π̇({E,B}), π̇({E,C}) ≤ π̇({D,B}), π̇({D,C})

26

Note that π̇({D,B}) = π̇({D,C}) = [5, 3], and therefore, the multi-set or-
dering is not sufficient to find the set with maximal priority. As our arbitrary
ordering, we assume the well-known alphabetic ordering, i.e. A � B. This
induces the (complete) lattice (NC, �̇), which is spelled out below:

∅�̇{A}�̇{B}�̇{C}�̇{D}�̇{D,B}�̇{D,C}�̇{E}�̇{E,B}�̇{E,C}

Now, the set with maximal priority is the set {D,C}, which is the lexico-
graphically largest of the two sets having maximal priority (i.e. {D,B} and
{D,C}). End example.

The set TRσ contains all yellow lights for which the minimal yellow time has
elapsed. The set TYσ contains all green lights for which the minimal green
time have elapsed and which are in conflict with one of the InLanes in Mσ.
The set TGσ contains all red lights from Mσ for which the minimal red time
have elapsed and which are not in conflict with any of the currently crossing
traffic streams.

TRσ = {l ∈ InLanes | γ(l) = yellow ∧ δ(l) ≥ MinStateTime(yellow)}

TYσ = {l ∈ InLanes | γ(l) = green ∧ δ(l) ≥ MinStateTime(green)∧

∃m∈MσConflict(l,m)}

TGσ = {l ∈Mσ | γ(l) = red ∧ δ(l) ≥ MinStateTime(red)∧

¬∃m∈InLanes(Conflict(l,m) ∧ crossingσ(m))}

We use the predicate crossingσ, which states that there can be traffic on a
certain lane due to either a green or yellow light, or a red light for which
the clearance duration has not yet expired. Below, the predicate crossingσ is
defined.

crossingσ(m) = (γ(m) = red⇒ δ(m) < ClearanceDuration(m))

Next, we define the state resulting after an output transition.

The priorities of the lights that switch to green are reset to zero:

π′ = λl.

0 if l ∈ TGσ

π(l) otherwise

27

The switching lights receive their new colours:

γ′ = λl.

red if l ∈ TRσ

yellow if l ∈ TYσ

green if l ∈ TGσ

γ(l) otherwise

If a light changes its colour, the colour duration of this light should be reset
to zero:

δ′ = λl.

0 if l ∈ TRσ ∪ TYσ ∪ TGσ

δ(l) otherwise

The sensor states of the lights that switch to yellow are reset:

ξ′ = λs.

false if for some l ∈ TYσ, s ∈ sensors(l)

ξ(s) otherwise

Delay. When time advances, we have to update the priorities and the dura-
tion of the current colours. This is expressed in the following transition rule.

(π, γ, δ, ξ, τ)
t→ (π′, γ, δ′, ξ, τ + 1),

where

π′ = λl.

UpdatePrio(l, π(l)) if γ(l) = red

0 otherwise

δ′ = λl.δ(l) + 1

4.5 Analysis

This phase deals with the development of (mathematical) techniques which
aid in validating expressions in our language. We have already mentioned
some important properties of a good traffic regulation system. Three of these
properties will be discussed in some detail: safety, fairness and redundancy.

28

Safety. The basic safety property of a regulated junction is that never two
conflicting traffic streams are allowed to pass the intersection at the same
time. Since we do not have any knowledge of states, prior to the initial state,
we can only prove something slightly weaker: two conflicting traffic streams
are never allowed to pass the intersection and as long as we cannot guarantee
the initial safety of the traffic streams, we do not allow any traffic to enter the
junction.

We subsequently introduce some additional notation to ease the reasoning
about our system. We define the set of states ΣR, as the set of states that are
reachable via zero or more transitions (denoted by →∗), starting in the initial
state σ0.

ΣR = {σ ∈ Σ | σ0 →∗ σ}
The set of traces, starting in the initial state and formed by the sequence of
states that are reachable from the initial states and for which a stream has
had a red light continuously is referred to as the initialisation of this stream.
Then, a state σ is part of an initialisation of a traffic stream l iff initialisingσ(l)
holds, where initialising is defined as:

initialisingσ(l) = (∀σ′∈ΣR σ0 →∗ σ′ →∗ σ ⇒ γ′(l) = red)

Then, the safety property is formulated as follows: for all reachable states
σ ∈ ΣR and all traffic lanes l,m ∈ InLanes, where Conflict(l,m), we have
either

(1) initialisingσ(l) ∧ initialisingσ(m), or
(2) ¬(crossingσ(l) ∧ crossingσ(m)).

where the predicate crossing is as defined in Section 4.4,

The safety property holds for every expression in our language. We give an
outline of the inductive proof. The safety property clearly holds for the initial
state, as for the initial state requirement (1) holds for all lanes. Assume either
(1) or (2) holds for state σ1, and a successor state σ2 is reached by one of the
three transitions defined in Section 4.4. An input transition does not change
the functions γ and δ, leaving both (1) and (2) unchanged, so the safety
property also holds for state σ2. If σ2 is reached via an output transition,
possibly (1) and (2) are violated. Violation of (1) is only serious if (2) does
not hold. However, we observe that the only way in which (2) can be violated
is when a lane becomes crossing, while it was not crossing before (i.e. in σ1).
A lane becomes crossing because it is in the set TGσ1 . Then this lane must
be in Mσ, which is conflict-free by definition, and, moreover, it can not be
in conflict with any other lane that is at that moment crossing. Thus, (2)
holds, thereby guaranteeing our safety property. Finally, if σ2 was reached
via a delay transition, remark that δ is incremented (but γ stays the same,
leaving (1) unchanged). This will at best cause some incoming lanes not to

29

be crossing any more, i.e. (2) only becomes “more true”. Therefore, again our
safety property holds.

Note that in general there can be a number of states for which both (1) and
(2) hold simultaneously. The bound Tmax for the time it takes for (2) to hold
for all lanes, is defined as

Tmax = max{t ∈ Duration | t = ClearanceDuration(l) ∧ l ∈ InLanes}

The lower bound Tmin defines the first moment since the start-up of the system,
for which there is a subset of lanes A ∈ NC for which (2) holds for all lanes in
A. In other words, from time Tmin we can start expecting to see green lights in
(subparts of) the traffic junction. Note that up to time Tmin, all traffic lights
have had red lights.

Tmin = min{ t ∈ Duration | t = ClearanceDuration(l) ∧ l ∈ InLanes∧

t ≥ max{ClearanceDuration(m) | Conflict(l,m)} }

Remark that lanes will be able to start receiving a green light only after time
Tmin, but it may still take some time before the first green light is received,
possibly up to (and including) time Tmax.

Fairness. A desirable property of traffic regulation is fairness. In this case,
by fairness we mean that all traffic lanes must always eventually receive a green
light. We again first introduce some auxiliary notation. The set of all infinite
runs of our system is the set R, where a run ρ ∈ R takes on the following
form, reflecting the three types of transitions as defined in Section 4.4.2:

ρ = (i · 〈TG, TY, TR〉 · t)ω

Derived from the set of all runs R is the set Ro, obtained from all runs from
R where both the input events and the delay transitions are removed from the
runs. As a shorthand, we refer to the kth element in a run ρ as ρk. The fairness
requirement, is then translated to the following mathematical expression:

∀l∈InLanes ∀ρ∈Ro ∀k∈N ∃k′∈N (k′ > k ∧ ρk′ = 〈TG, TY, TR〉 ∧ l ∈ TG)

Notice that for poor instances of the UpdatePrio function, the property cannot
hold (e.g. if UpdatePrio is represented by a decreasing function). Therefore,
the fairness property relies strongly on the choice for UpdatePrio. Here, we
restrict our attention to update functions characterised by strictly increasing
linear functions, i.e. functions of the form ax+b, where a ≥ 1 and b > 0. Notice
that the x in the update function represents the previous value of the priority
function, so in fact we are dealing with simple linear recursive equations.

30

Without giving a proof, we first state that our traffic regulation always eventu-
ally switches a number of traffic lights to green when using strictly increasing
linear functions as update functions. This property is weaker than the fairness
property, but is useful in proving fairness, as it expresses that it cannot be the
case that our regulation prevents traffic lights from obtaining a green light.

∀ρ∈Ro ∀k∈N ∃k′∈N (k′ > k ∧ ρk′ = 〈TG, TY, TR〉 ∧ TG 6= ∅)

We now give a sketch of the fairness proof. Let l ∈ InLanes be an arbitrary
lane, and ρ an (infinite) run in Ro, containing only output events. Let k be
an arbitrary natural number. It suffices to show there always exists a k′ > k,
such that ρk′ = 〈TG, TY, TR〉 and l ∈ TG.

Now, let M be the set of natural numbers m > k, where ρm = 〈TG, TY, TR〉
such that π(l) is strictly maximal (i.e. there is no other lane l′, with π(l) ≤
π(l′)). Note that whenever M = ∅, this means that the priority of l is reset
to zero at least once. This, however, can only happen when l receives a green
light. Hence, we can safely assume M 6= ∅.

Then, due to our definition of Mσ, we know that for all ρm, l ∈Mσ. Moreover,
we have an upper bound to the time it takes for l to be consecutively in Mσ

without being set to green (i.e. l 6∈ TG). This bound is defined as τmin, where

τmin = MinStateTime(green) + MinStateTime(yellow)

+max{ClearanceDuration(l′)|l′ ∈ InLanes ∧ Conflict(l, l′)}

Hence, if there is an interval where I = [t, t+ τmin] ⊆M, for some t, then we
know for sure that ρt+τmin = 〈TG, TY, TR〉 and l ∈ TG.

Now, suppose there is no such interval I, i.e. for all intervals I of M, we
have |I| < τmin. This can only be the case if there are other traffic lights, that
have priority functions that always overtake the priority function of l. Since
all priority functions are linear functions, eventually one of these lanes must
receive a green light (since always eventually some traffic light is set to green)
and its priority is reset to zero. Although this can happen very often, it can
only happen a finite number of times, as eventually π(l) becomes so large it
cannot be overtaken in τmin time units. Therefore, there must exist an interval
I where |I| ≥ τmin, and subsequently, l is set to green.

Redundant Traffic Lights. Apart from verifying whether our language
satisfies the design criteria, such as fairness and safety, there are many more
interesting conclusions that can be drawn when analysing the language, such
as throughput and other efficiency measures. As an example, we show that
our language is capable of efficiently dealing with redundant traffic lights.

31

More concretely: if a traffic lane has no conflicts with other traffic lanes, it
will eventually receive a continuous green light. Formally, this is expressed as
follows:

∀l∈InLanes (∀m∈InLanes ¬Conflict(l,m)⇒

(∃σ1∈ΣR ∀σ2∈ΣR σ1 →∗ σ2 ∧ γ2(l) = green))

For every expression in the language, redundant traffic lights are detected.
We proceed as follows. First, we show that traffic lanes for which there are
no conflicts are always nominated to be set to green. Suppose l ∈ InLanes
and for all m ∈ InLanes, we have ¬Conflict(l,m). This means that l ∈ A
for all A ∈ NC \ {∅}, where NC is as defined in section 4.4.2. Note that
∅ . {k} for all k ∈ InLanes. Hence, l ∈ Mσ, for all states σ, no matter the
distribution of the priorities. Second, we show that always being nominated
to get a green light culminates in eventually receiving a green light. Now, for
all states σ ∈ ΣR with τ = TMinStateTime(red), we have l ∈ TGσ (this is the first
moment we can guarantee safe passage over the crossing via l). This means
that in the immediate successor state of state σ, the colour of lane l will be
green, i.e. for all σ1 ∈ ΣR, with σ → σ1, we know γ1(l) = green. Now, it suffices
to prove that for all successor states σ2 ∈ ΣR of σ1, we have γ2(l) = green.
This, however, follows from the fact that never l ∈ TRσ2 ∪ TYσ2 , as l has no
conflicts with any other lane. Hence, we know that for all σ2, reachable from
σ1 in zero or more steps, γ2(l) = green holds, and in effect, the traffic light for
l is redundant.

4.6 Pragmatics

Now that we have constructed the actual language, we can have a look at
the pragmatics of using the language. As stated before, the pragmatics is
concerned with all aspects of using the language. We restrict our discussion
to a few interesting aspects.

4.6.1 Methodology

An important part of the methodology is the documentation of the language.
This is needed to make clear what well-formed programs are and what they
mean. This has already been described in some detail in the previous sections
on syntax and semantics. However, for proper use of the language, a designer
of a regulated intersection will need more information.

The first step a designer has to take is to determine the physical layout of the
intersection. One can derive this from the existing situation, or in some cases

32

it must be developed from scratch. A designer will need guidelines in order to
be able to determine the physical structure, e.g. concerning optimal through-
put for a given traffic intensity, side conditions due to legislation, cost, etc.
Although this is not part of the language proper, the language cannot be effec-
tively used without such methodological issues. The layout of the intersection
is (in an abstract way) represented in the program. Since also the grouping of
lanes is taken into account, there must be guidelines of how to sensibly form
such groups.

Given the physical layout, it is not necessary that all traffic streams that cross
each other are in conflict. Some crossings may be considered harmless, e.g. be-
cause there is only little traffic. Therefore, the developer also needs to develop
the conflict matrix, as a subset of all possible conflicts. Guidelines with respect
to this issue should also be covered in a methodology handbook. The notion
of a priority update function is very specific to our developed language and
not likely to be generally known by developers of intersections. Furthermore,
the selected function will have quite some impact on the actual behaviour
of the system. A priority function which grows linearly will make a traffic
stream less important than one with exponential growth. Therefore, a number
of guidelines on which functions to use in which situations are necessary.

From a different perspective, one should not only describe proper use of the
language, but also discourage improper use. One could, for instance, use the
value of the clearance duration of one traffic stream to regulate the relative
priority of conflicting streams. This could be considered bad style.

Another important function of the methodology is to explain when to use
which tools to obtain certain results.

4.6.2 Tool support

Clearly, a set of tools should come with the language in order to facilitate
the development of a regulated intersection. Ideally, these tools form an In-
tegrated Development Environment (IDE). Here, we just mention some in-
teresting tools. In section 4.6.3, we describe our experiences in developing a
prototype of a simulation tool.

The first step is to design tool support for producing expressions in our lan-
guage. Normally, one would expect tools for (syntax directed) editing, parsing,
static checking, etc. Since part of the language is concerned with describing
a two-dimensional layout, a graphical editor will show useful. There could
be standard components like traffic lights, lanes, and sensors that can be
“dragged-and-dropped” to the desired locations. This tool should be able to
transform the visual model into the correct program text, and vice versa.

33

After a model of a traffic junction has been constructed or an existing model
is loaded, we want to be able to analyse the model with respect to some of
the issues that were raised in Section 4.5.

Two concepts that influence the throughput of the junction are the update
functions and clearance duration. To optimise the throughput of the junction
we have to build a tool that can assign stochastic distribution functions to the
traffic streams so the mean, variance, and other statistical data for the waiting
times of these streams can be calculated. Apart from writing a new tool to
do this, we can also export the parameters of the junction into an existing
statistical tool. Once we have the statistical data we can use this information
to recommend values for clearance durations and the update functions. This
can be done by building an expert system to calculate the optimal throughput
for the given junction.

Finally, the given model must be implemented to control the target junc-
tion. Ideally, the behaviour represented in the model could be compiled into
the command language of the device actually controlling a junction. Alterna-
tively, an interpreter of the language could be run which controls the sensors
and actuators via an appropriate interface. The latter option would allow for
remote control of intersections (e.g. via Internet).

4.6.3 Experiences with building a simulation tool

In order to validate the work on syntax and semantics as expressed in the
previous paragraphs, we have built a prototype of a simulation tool. After
explaining the basic functionality of the tool, we discuss what we have learnt
from this implementation effort.

The purpose of the simulation tool is to support a user in understanding
and fine-tuning the behaviour of a controlled traffic junction. The prototype
supports the following features:

• Specification input and output
The program can read an existing specification, check its syntax and static
requirements. It can save a specification.
• Specification display and editing

The program can display a specification, supports graphical editing of the
specification, and allows to interactively create a new specification.
• Graphical simulation and dynamic control The program can graph-

ically simulate the dynamic behaviour of a specification, while giving the
user control over e.g. simulation speed. Traffic arrives at random at the
junction. During simulation the user can modify non-structural parts of the
specification, such as the clearance duration.

34

We implemented the prototype in Java, using the parser generator Javacc to
define the parser and the Java Swing library for developing the user interface.
The prototype runs on any machine supporting a recent Java environment.
The performance of the simulator is approximately 500 transition per second
(on a Pentium II processor) when running the simulator on a junction of 7
lanes. Developing the simulation kernel (i.e. implementing the transition rules
and appropriate data structures) took about two days of work. The imple-
mentation of the parser and the Graphical User Interface (GUI) took several
weeks. Figure 3 shows a screen-shot of the simulation window of the tool. It
displays a traffic junction after 75 time units (three transitions are taken every
time unit). The vertical bar to the right of each traffic light dynamically dis-
plays its priority. The number within a traffic light displays the time a traffic
light already has the current colour.

Fig. 3. Screen-shot of the prototype simulator

Building the simulator and experimenting with it gave us several new insights.
First of all, it gave evidence that the semantical definitions in our case study
were sound. The simulation engine, being an implementation of the transition
rules, did not reveal any errors in these rules. However, the implementation of
the simulation kernel was less direct than expected. The main reason is that

35

the formal definitions are mostly declarative, whereas we used an imperative
language for implementation. The step from the mathematical definitions to
the implementation language was performed in an ad-hoc manner, without
paying much attention for efficiency and formal correctness. We expect that
formal techniques for program transformation and derivation will be essential
to make a correct and efficient implementation of the simulation kernel.

The development of the prototype implied some minor modifications of the
proposed syntax of our language. We decided e.g. to restrict the priority up-
date functions to the class of linear functions. More interestingly, it showed
necessary to extend the syntax with graphical information, having no seman-
tical interpretation. We decided e.g. to remember the position of the traffic
lights on the computer screen by adding their coordinates to the specification.

It was our experience that the larger part of the programming effort was
dedicated to building the graphical user interface. We can think of two reasons
for this. First, building a GUI is –even with an extensive library like Swing– a
non-trivial task 2 . Second, user interfaces did not play any role in the domain
analysis conducted above, as a result of which, the developed language has no
provisions for this aspect. Having learnt now that the GUI is an important
(and time consuming) part of the program, we could start a new cycle in
our language development methodology and focus on additional primitives to
support the proper design of a GUI for a simulator.

Although experimenting with the prototype did not imply any (direct) mod-
ification of the developed semantics, it did result in some new insights with
respect to the domain analysis. As an example, we mention that in the de-
sign the priority update function is attached to a traffic stream. While playing
with the tool, we found out that this is not flexible enough. It would have
been more appropriate to have separate update functions for each sensor.
This again strengthens our believe that language development is not a se-
quential process. Domain analysis, syntax definition, semantics definition and
pragmatics should be developed in an interwoven way.

Finally, the prototype made clear that a language-driven system development
method does not necessarily has to result in language centred tools. In fact, the
prototype can be used without having to see any expression in the language at
all. This is because the GUI allows the user to create, edit, and display a traffic
junction graphically. The syntactical format is just for saving junctions on disk.
When developing e.g. a word processing system using the language-driven
approach, both a language centred system like LaTeX, and a WYSIWYG
system like MS-Word could be the resulting tool.

2 One could consider Swing itself as a DSL for GUIs, and might question whether
it is designed in the best way. An experiment in developing such a system with our
methodology would be an interesting case study.

36

In summary, we can say that our implementation experiment, although only
yielding a simple prototype, strengthened our confidence in the theoretical
development, and thus in our proposed approach.

5 Closing Remarks

The purpose of this paper was to promote the use of Domain-Specific Lan-
guages as a regular part of the software engineering process. Therefore, based
on well known material and published case studies, we described a language-
driven approach for software development.

We identified three phases in this approach: formulation of the problem do-
main, the identification of the problem space and the development of the
language. The problem domain follows from a domain analysis. The problem
domain is necessarily general and abstract and therefore does not focus on the
actual problem exclusively. The problem space adds concepts (concepts due to
design decisions) to the concepts of the problem domain. Moreover, the prob-
lem space separates the relevant concepts from the irrelevant concepts and
considers instances of the relevant concepts, as to better accomodate for the
problem or class of problems that must be solved. The Domain-Specific Lan-
guage being developed must exactly span the problem space. This language is
developed in three sub-phases: syntax, semantics, and pragmatics.

This approach is illustrated by means of a conceptually simple case study. Al-
though the case study is presented in a linear way, the process of developing
the case study was iterative, confirming our believes that language develop-
ment (and software engineering) are iterative activities. It was our experience
that one of the main factors with respect to the quality of the language de-
sign was the consistency of the deliverables involved. For instance, in our case
study, the priority function as a concept was introduced only after developing
the semantics, i.e. it was not obtained as a concept in the initial domain anal-
ysis. An integrated set of support tools covering all phases of the approach
should take care of this consistency checking.

Our approach is centred around the development of a language, however, this
does not result in language centred tools per se. This is also confirmed by our
case study: in a prototype implementation of a simulator for the language, the
defined syntax was only used for storage and retrieval of language expressions.
Other issues could all be resolved graphically.

It is a generally accepted fact that it is preferable to detect errors during the
early and more abstract phases of system design. The language-driven ap-
proach focuses the attention of the developers on the basic concepts of the

37

language and therefore on (the building blocks of) the semantics. When de-
veloping a software system these abstract building blocks must be completely
understood. In our case study, we experienced that the discussion focussed
mainly on the concepts and semantics. A traditional development process
would have focussed more on the design and the implementation of the sys-
tem.

Because the traffic light case study focuses on a relatively small domain, we
cannot assess the applicability of the language-driven approach in a large
domain. It must be investigated whether techniques such as top-down design
and modularisation, which have a natural place in traditional life-cycle models,
also have their counterpart in our approach. A natural way of dealing with
larger problems is to identify substructures in the problem domain, which
can be dealt with in isolation. The sub-domains give rise to a number of
problem spaces, each with their own language. The composition of these partial
solutions can e.g. be defined with a co-ordination language.

Acknowledgements

The authors would like to thank Paul Derksen, Ronald Middelkoop, Felix
Ogg, and Robert Spee for their discussions and help on the case study. Marc
Voorhoeve is acknowledged for his help in clarifying the ideas that led to this
paper. Thanks are due to Michael van Hartskamp for proof reading.

References

[1] L. Aceta, W.J. Fokkink, and C. Verhoef. Structural operational semantics.
In Jan A. Bergstra, Alban Ponse, and Scott A. Smolka, editors, Handbook of
Process Algebra, pages 197–292. Elsevier (North-Holland), 2001.

[2] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1990.

[3] B.W. Boehm. A spiral model of software development and enhancement. IEEE
Computer, 21(5):61–72, 1988.

[4] M. Clavel, F. Duràn, S. Eker, and J. Meseguer. Maude as a formal meta-tool.
In J. Wing and J. Woodcock, editors, The World Congress On Formal Methods,
volume 1709 of LNCS, pages 1684–1703. Springer-Verlag, 1999.

[5] C. Consel and R. Marlet. Architecturing software using a methodology for
language development. In C. Palamidessi, H. Glaser, and K. Meinke, editors,
Proceedings of the 10th International Symposium on Programming Languages,

38

Implementations, Logics and Programs (PLIP/ALP ’98), volume 1490, pages
170–194. Springer-Verlag, 1998.

[6] K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools and
Applications. Addison-Wesley, 2000.

[7] N. Dershowitz and Z. Manna. Proving termination with multiset orderings.
Communications of the ACM, 22(8):465–476, 1979.

[8] R.E. Faith, L.S. Nyland, and J.F. Prins. Khepera: A system for rapid
implementation of domain specific languages. In J.C. Ramming, editor,
Proceedings of the USENIX Conference on Domain-Specific Languages, 1997.

[9] G. Gupta and E. Pontelli. A Horn logic denotational framework for
specification, implementation and verification of domain specific languages.
Technical report, New Mexico State University, 1999.

[10] J. Heering and P. Klint. Semantics of programming languages: A tool-oriented
approach. ACM Sigplan Notices, 35(3):39–48, 2000.

[11] M. Hennessy. The Semantics of Programming Languages: An Elementary
Introduction using Structured Operational Semantics. Wiley, New York, 1991.

[12] R.M. Herndon and V.A. Berzins. The realizable benefits of a language
prototyping language. IEEE Transactions on Software Engineering, 14:803–
809, 1988.

[13] C.A.R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–583, October 1969.

[14] ITU-T. ITU-T Recommendation Z.106: Common Interchange Format for SDL.
ITU-T, Geneva, 1996.

[15] R. Kieburtz, L. McKinney, J. Bell, J. Hook, A. Kotov, J. Lewis, D. Oliva,
T. Sheard, I. Smith, and L. Walton. A software engineering experiment in
software component generation. In Proceedings of the 18th IEEE International
Conference on Software Engineering ICSE-18, pages 542–553. IEEE Computer
Society Press, 1996.

[16] P. Klint. A meta-environment for generating programming environments. ACM
Transactions of Software Engineering and Methodology, 2(2):176–201, 1993.

[17] D.E. Knuth. Semantics of Context-Free Languages, volume 2, pages 127–145.
Springer-Verlag, New York, 1968.

[18] P.W. Kutter and A. Pierantonio. Montages specifications of realistic
programming languages. Journal of Universal Computer Science, 3(5):416–442,
1997.

[19] P. Pfahler and U. Kastens. Configuring component-based specifications
for domain-specific languages. In Proceedings of the 34th Annual Hawaii
International Conference on System Sciences. IEEE Computer Society Press,
2000.

39

[20] R. Prieto-Dı́az. Domain analysis: An introduction. Software Engineering Notes,
15(2):47–54, 1990.

[21] J. Rekers and A. Schürr. A graph grammar approach to graphical parsing. In
Proceedings of the 1995 IEEE Symposium on Visual Languages, 1995.

[22] W.W. Royce. Managing the development of large software systems. In
Proceedings of the IEEE WESCON, 1970.

[23] D.A. Schmidt. Denotational Semantics: A Methodology for Language
Development. Allyn and Bacon, Inc., Newton, MA, 1986.

[24] K. Slonneger and B. Kurtz. Formal Syntax and Semantics of Programming
Languages: A Laboratory Based Approach. Addison-Wesley, 1995.

[25] S. Thibault. Domain-Specific Languages: Conception, Implementation and
Application. PhD thesis, IRISA/University of Rennes 1, 1998.

[26] M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinju, E. Visser,
and J. Visser. The ASF+SDF meta-environment: A component-based language
development environment. In R. Wilhelm, editor, Compiler Construction,
volume 2027 of LNCS, pages 365–370. Springer-Verlag, 2001.

[27] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An
annotated bibliography. SIGPLAN Notices, 35(6):26–36, 2000.

[28] S.F.M. van Vlijmen and A. van Waveren. Algebraic specification of a system
for a traffic regulation at signalized intersections. Technical Report P9313,
Programming Research Group, University of Amsterdam, 1993.

[29] D. Weiss. Creating domain-specific languages: The fast process. In S. Kamin,
editor, First ACM-SIGPLAN Workshop on Domain-Specific Languages;
DSL’97. Technical report, University of Illinois, Department of Computer
Science., 1997. See URL at http://www-sal.cs.uiuc.edu/ kamin/dsl.

[30] R.T. Yeh. An alternate paradigm for software evolution. In P.A. Ng and
R.T. Yeh, editors, Modern Software Engineering: Foundations and Current
Perspectives, New York, NY, 1990. Van Nostrand Reinhold.

40

