
Côte de Resyste in Progress

René de Vries, Jan Tretmans,

Axel Belinfante, Jan Feenstra

University of Twente

Formal Methods and Tools Group

Faculty of Computer Science

P.O. Box 217, NL-7500 AE Enschede

{rdevries|tretmans| belinfan|feenstra}
@cs.utwente.nl

Loe Feijs, Sjouke Mauw, Nicolae Goga

Eindhoven University of Technology

Eindhoven Embedded Systems Institute

P.O. Box 513, NL-5600 MB Eindhoven

{feijs|sjouke|goga}@win.tue.nl

Lex Heerink

Philips Research Laboratories

Prof. Holstlaan 4

NL-5656 AA Eindhoven

lex.heerink@philips.com

Arjan de Heer

Lucent Technologies

R&D Centre Twente

Capitool 5, NL-7521 PL Enschede

arieheer@lucent.com

Abstract— Traditional (manual) testing of software sys-
tems is a costly, laborious and error-prone activity. It
gets even more complicated nowadays with complex reactive
software like embedded system software and communication
protocols. Such software is characterized by a high degree of
interactivity and concurrency. Côte de Resyste aims at devel-
oping methods and an integrated tool environment to sup-
port and, whenever possible, automate the testing process
of reactive systems. Contrary to other test tools, this tool
environment builds on a sound and well-defined theoretical
basis. First results are the implementation of the prototype
test tool TorX and its successful application to the Philips’
A/V Link protocol and to the academic Conference protocol
case study. These experiments show that test automation,
based on formal methods, is feasible and beneficial.

Current work concentrates on improving TorX, on de-
veloping methods for effective selection of test sets and on
generic test execution environments. A major part of the
project is devoted to industrial case studies which are exe-
cuted in close cooperation with Philips, Lucent Technologies
and Interpay.

Keywords— conformance testing, test automation, formal
methods

I. Introduction

Testing is an important activity for checking the correct-
ness of software. Nowadays a lot of software is embedded
in systems. Examples of such embedded systems are con-
sumer electronics equipment and mission critical systems.
Correctness of such embedded systems becomes increasingly
important when the risks of malfunctioning, and the asso-
ciated costs, increase. Since we demand more and more
functionality of these systems, the amount of software and
its complexity increases and as a result it is harder to assure
correctness of the software inside. Several methods can be
applied to guard correctness during the development phase
of the system. Testing is one of these methods. Testing is
performed by applying test experiments to an implementa-
tion under test (IUT) and by making observations during
the execution of the tests. Subsequentially a verdict is as-
signed about the correct functioning of the implementation,
based on its specification and a correctness notion.

Côte de Resyste (COnformance TEsting of REactive
SYSTEms) [1] is an STW project with a 4 year scope that
comprises 21 fte. It has been running for 2 years now. Par-
ticipants in the project are Philips Research Laboratories
Eindhoven, Eindhoven University of Technology, the Uni-
versity of Twente and Lucent Technologies Enschede. The
goal of the project is to develop methods, techniques and
tools for testing reactive software systems based on formal
methods and to validate these by industrial and academic
case studies.

The objective of this paper is to present an overview of
the Côte de Resyste project and the results that have been
achieved so far.

II. Conformance testing

A. Testing

Testing is an operational way to check the correctness of
a system implementation by means of experimenting with
it. Tests are applied to the implementation under test in a
controlled environment, and, based on observations made
during the execution of the tests, a verdict about the cor-
rect functioning of the implementation is given. The spec-
ification is the basis for testing, since it prescribes how the
system should behave.

There are many different kinds of testing, e.g. perfor-
mance testing, stress testing and others. Within the Côte

de Resyste project we consider conformance testing of reac-

tive systems. Conformance testing is used to check whether
an implementation of a system functionally behaves as
specified by its functional specification. It is character-
ized as a black box testing method, i.e. it is assumed that
no information is available about the internal structure of
the implementation. Reactive systems are systems that
respond to stimuli provided by the system environment.
Many systems can be seen as reactive systems, e.g. commu-
nication protocols, embedded software systems and process
control systems. Concurrency and interaction usually play

an important rôle in such systems.

Intuitively, conformance testing of reactive systems is
carried out by offering stimuli to the implementation un-
der test, i.e. give input, and observe the responses to these
inputs, i.e. observe its output. When the responses are
not as expected according to the behavioural specification
(i.e. the implementation under test does not conform to
its specification), it is concluded that the implementation
under test is incorrect.

B. The conformance testing process

In the process of conformance testing there are two main
phases: test generation and test execution. Test generation
involves: analysing the specification and determining the
functionalities to be tested, defining a strategy how to test
these functionalities, and specifying and developing a set
of test experiments (test suite). Test execution involves:
developing a test environment in which the test suite can be
executed, executing the test suite, analysing the execution
results, and assigning a verdict about the correctness of the
implementation based on the execution results.

C. Problems of testing

Many problems in the testing process occur because
specifications are unclear, imprecise, incomplete and am-
biguous. Without a specification which clearly, precisely
and unambiguously prescribes how a system implementa-
tion shall behave, any testing will be very difficult because
it is unclear what to test for. Additionally, one should
also have a notion of correctness, i.e. have a precise no-
tion of what behaviour conforms to such a specification.
Note that specifications may leave implementation free-
dom; many correct implementations can be associated to
the same specification. A clear specification and correct-
ness notion are the basic ingredients for derivation of valid
test experiments. Test derivation based on an ambiguous
specification and correctness notion is likely to result in an
erroneous test suite that, after execution, can lead to an
incorrect judgment concerning the correctness of the im-
plementation under test.

The development of valid tests from a specification and
a correctness notion is usually a complicated task. For
complex systems that are characterized by a high degree
of interactivity and concurrency this is even more difficult
due to the huge amount of different states in which the
system can be (this is known as the state space explosion

problem).

Once a test suite is obtained, it should be executed on
the implementation under test. For this we need a test ex-
ecution environment. A test execution environment is the
environment in which the tester interfaces with the IUT.
The tester then executes the test suite (either manually or
automatically). The interface between the tester and IUT
is not always trivial, e.g., when the IUT cannot be accessed
directly, but only via an intermediate environment (the test

context). Building such an environment is often a difficult
task.

Manual test derivation and execution usually is very la-
borious, costly and error-prone, so automation may help
solving part of these problems. Automation of test deriva-
tion and test execution activities may help in making the
testing process faster, in making it less susceptible to hu-
man error by automating routine or error-prone tasks, and
in making it more reproducible by making it less depen-
dent on human interpretation. Furthermore, new releases
of the system can benefit from automation by reusing the
developed tests and test environment (regression testing).

III. Côte de Resyste’s approach

One of the Côte de Resyste’s solutions of the identified
problems is to use Formal Methods. Formal methods are
concerned with mathematical modelling of software and
hardware systems. Due to their mathematical underpin-
ning, formal methods allow to specify systems with more
precision, more consistency and less ambiguity. More-
over, formal methods allow to simulate, validate and reason
about system models, i.e. to prove with mathematical pre-
cision the presence or absence of particular properties in a
design or specification. This makes it possible to detect de-
ficiencies earlier in the development process. An important
aspect is that specifications expressed in a formal language
are processable by tools, hence allowing automation in the
software development trajectory, e.g. the testing activity.

When using formal methods in conformance testing we
use a specification as basis, i.e. a specification given in a
formal specification language. This allows us to reason
mathematically about testing. The notion of correctness
is defined precisely, which is an implementation relation.
Consequently, we try to derive a test suite algorithmically
from a formal specification following a well-defined and pre-
cisely specified algorithm. Well-defined test derivation al-
gorithms guarantee that tests are valid, i.e. that derived
tests really test what they should test.

There are several theories of formal testing. Côte

de Resyste adopts the so-called ioco testing theory [2].
The underlying formalisms are labelled transition systems,
which model systems in terms of sequences of events (po-
tential test actions). This theory enables us to discriminate
among systems not only based on (erroneous) output, but
also on absence of output, called quiescence.

The test suite derivation algorithm of this theory has
been proven to generate a sound test suite. A test suite is
called sound if the verdict never rejects a correct implemen-
tation. For practical application, a minimal requirement on
a test suite is that it is sound.

There are two main phases in the testing process: test

derivation, i.e. obtaining a test suite, and test execution,
i.e. applying the test suite to the IUT. Both phases can be
automated. This can be done in two ways: as two separate
phases, which is called batch testing, or in an integrated
manner, which is called on-the-fly testing.

batch testing. In the test derivation phase a test suite
is derived and stored in some representation, usually the
test notation language TTCN. In the test execution phase
this test suite is executed along with the IUT. Batch test

derivation is computationally expensive and suffers from
the state space explosion problem. This complexity can be
reduced by user guidance and on-the-fly derivation tech-
niques [3].

on-the-fly testing. As opposed to batch testing, test
derivation and test execution occur simultaneously. Sel-
dom, all the information in a test case (one test scenario
in a test suite) is needed during an execution. In fact just
a minor part is needed. Instead of deriving a complete test

case (one test scenario in a test suite), the test derivation
process derives test primitives from the specification. Test
primitives are basic building blocks for test cases that can
be applied immediately to the IUT. Examples of test prim-
itives are inputs (that can be used as stimuli) and outputs
(that can be used to check observations). While executing
a test case, only the necessary part of a test case is consid-
ered: the test case is derived lazily. Observations during
the test execution allows us to reduce the effort needed
to derive test information from the specification compared
with batch derivation; see also [4].

Batch testing and on-the-fly testing have both their ad-
vantages and disadvantages. Firstly, the batch-wise ap-
proach is better suited for manual test suite preparation
and for semi-automatic test suite preparation. Humans
are good at test selection but they are not fast enough to
do it at run-time which is required for on-the-fly testing.

Secondly, test implementation is easier in the batch-wise
approach. Translation of test actions is necessary to inter-
face the tester with the IUT. For batch-wise test derivation
it is possible to compile the abstract test cases into concrete
test cases which have all the mapping details encoded. For
the on-the-fly approach the translation has to be done at
run-time. Such a run-time translator has to meet timing
constraints and should be generic enough to allow reuse.

Thirdly, in case of on-the-fly testing all computations
have to be done at run-time, whereas batch-wise testing
allows some of the work to be moved to compile-time. So,
the batch-wise approach has an advantage which makes it
easier to satisfy the IUT’s real-time requirements. But the
price to pay is that many test-steps which will not happen
at run-time are pre-computed. This leads to test-suites
of an enormous size, and the amount of pre-computation
work and the storage demands involved may well undo the
advantage. On-the-fly testing is here of help to fight this
state space explosion.

To reduce the effort for engineering a test environment,
Côte de Resyste develops the TorX architecture and im-
plements a prototype according to this architecture, also
called TorX. TorX is discussed in the next section.

Côte de Resyste validates the developed theory, meth-
ods, techniques and tools for practical applicability. This
is done by executing industrial and academic case stud-
ies. The results obtained by these studies are steering the
development of new theory and improved tools.

IV. TorX

TorX is a test tool architecture which can be instan-
tiated in two ways: to support on-the-fly testing and to

support batch-wise testing. First, we discuss the architec-
ture, next we discuss the existing configurations in which
this architecture has been instantiated.

A. TorX Architecture

The main characteristics of TorX are its flexibility and
openness. Flexibility is obtained by requiring a modular
architecture with well-defined interfaces between the com-
ponents – this allows easy replacement of a component by
an improved or modified version (e.g. one that supports an-
other specification language or test generation algorithm).
Openness is achieved by using, when possible, industrial
standard interfaces to link the components in our tool en-
vironment – this enables integration of ‘third party’ compo-
nents that implement these interfaces. When no standard
interface is available we connect components by pipes over
which textual commands and responses are exchanged –
these textual interfaces make it simple to debug and test
individual components, to experiment using (Unix style)
filters to massage the information exchanged, and even to
split the tool over several machines.

TTCN

batch execution

batch derivation

Driver

Adaptor

SUT

batch derivation

... execution
... and ...

batch execution

Combinator

Primer

Explorer

SPEC

Open Caesar

Primer

Explorer

SPEC

Open Caesar

Primer

Explorer

SPEC

Open Caesar

Promela
Lotos

SDL

O
n-the-fly derivation...

Fig. 1. TorX tool architecture

The TorX architecture consists of the following com-
ponents: Explorer, Primer, Combinator, Driver,
Adaptor, and TTCN storage. Figure 1 depicts how

these components are linked for batch derivation (with
Explorer, Primer Combinator, Driver and TTCN
storage), batch execution (with TTCN storage, Driver,
Adaptor), and on-the-fly derivation and execution (in-
volving all components without storage of TTCN). The
SUT is the system under test, i.e. it is the IUT together
with a surrounding environment, the so called test context.
We now discuss each component of the TorX architecture
and its interfaces in specific.

Explorer. The Explorer is a specification language-
specific component that offers functions (to the Primer)
to explore the transition-graph of a specification and to
provide, for a given state, the set of transitions (actions).
Currently, we have several interfaces between Explorer
and Primer. One of them is the Open/Caesar interface [5],
which is a C API that provides exactly such state and tran-
sition functions for labeled transition systems. This implies
that we can use existing tools that support this interface
to implement the Explorer. For LOTOS such a tool ex-
ists and is available; for SDL such a tool exists, but, to our
knowledge, is not publicly available. The other Explorer-
Primer interfaces are ad hoc; we will discuss them in the
section on TorX Configurations.

Primer. The Primer uses the functions provided by
the Explorer (in particular, to receive sets of enabled ac-
tions) to implement the test derivation algorithm. It offers
test primitives to the Driver (or Combinator), e.g. func-
tions to generate inputs (stimuli) for the implementation,
and to check outputs (observations) from the implementa-
tion.

Combinator. The optional Combinator can be used
to steer the on-the-fly derivation process. The Combina-
tor is connected between the Driver and one or more
Primers. One Primer represents the formal specifica-
tion. Each other Primer represents a property of interest,
a test purpose. The Combinator combines the test prim-
itives from the Primers and offers them to the Driver.
From the Primers point of view the combinator plays the
role of a Driver, and vice versa.

Driver. The Driver is the central component of the
tool architecture. It controls the progress of the testing
process. It decides whether to do an input action or to ob-
serve and check an output action from the implementation.
The Driver can be run in two modes: a manual mode, in
which the user is in full control, and an automatic mode, in
which the Driver makes all necessary choices randomly.
The test trace that is derived and executed can be logged
and replayed during a subsequent test run. The Driver
uses the Primer to obtain an input and to check whether
the output of the implementation is correct. It uses the
Adaptor to execute inputs by sending these inputs to the
IUT, and to observe outputs that are generated by the
IUT. For batch testing the derived tests are first stored in
a file system (indicated as “TTCN” in Figure 1). To exe-
cute tests in batch mode the test actions are obtained from
storage rather than from the Primer.

The Primer-Driver interface is a textual one.

Adaptor. The Adaptor provides the connection with

the SUT. It is responsible for sending inputs to and receiv-
ing outputs from the SUT on request of the Driver. The
Adaptor is also responsible for encoding and decoding
of abstract actions from the Driver to concrete bits and
bytes for the SUT, and vice versa, including the mapping of
time-outs onto quiescent actions, see [2]. The connection
part of the Adaptor is specification independent. The
en/decoding routines are specification dependent: they de-
pend on the abstract actions that they have to en/decode,
which will vary between specifications.

Currently, We use two interfaces between Driver and
Adaptor. The first one is a API of calling conventions
for (Tcl) functions that implement en/decoding functions.
The second one supports (a subset of) the C language bind-
ings (API) of the Generic Compiler/Interpreter Interface
(GCI) [6].

We plan to decouple the Driver and Adaptor into sep-
arate (Unix) processes connected by pipes. The interface
between these components will be similar to the Primer-
Driver interface. This should make it easier to connect
a simulator as SUT (see below), and to connect a filter
between Driver and Adaptor, e.g. to translate between
abstract Promela actions from the specification, and ab-
stract LOTOS actions from a simulator that is used as
SUT.

SUT. Most implementations that we use are “real” ones,
that we connect to TorX using an Adaptor. In addition
to these, we have made a LOTOS simulator that we can
use as implementation. It is mainly used for educational
purposes, to illustrate the testing power of TorX: when
we have a LOTOS specification of a system, it is now very
easy to make a “mutant” that behaves in a slightly different
way. The challenge is then to predict whether TorX can
detect the difference.

The simulator is currently connected to the Driver via
its own Adaptor. The simulator supports a subset of the
Primer-Driver interface but it also requires a simulator-
specific Adaptor. Changing the Driver-Adaptor in-
terface to a Primer-Driver compatible interface makes
the simulator-specific Adaptor superfluous.

B. TorX Configurations

As Figure 1 shows, the components can be put together
in three different ways: for on-the-fly testing, for batch test
derivation and for batch test execution. We now describe
how these configurations have been used for testing based
on formal specifications in LOTOS, Promela and SDL.
We will pay special attention to the differences and simi-
larities in the use of the basic building blocks.

On-the-fly testing for LOTOS and Promela is based
on the implementation relation ioco [2]. In both cases, the
same Driver is used, and major parts of the Adaptor,
but the Explorer and Primer are different. We use a
single Expect implementation of the Driver. In our ex-
perience, Expect allows rapid prototype development and
interaction with external programs. The Adaptor is im-
plemented as a (Tcl) library of the Driver, and uses sep-
arate programs (in Expect style) to connect to the SUT,

one for each supported protocol (e.g. TCP, UDP). Those
connection programs can be controlled via standard input
and output.

TorX has been instantiated with configurations based
on specifications in LOTOS (both non-symbolic and sym-
bolic), Promela (on-the-fly only) and SDL (batch only).
These configurations are discussed below.

LOTOS, non-symbolic. The specification-dependent
Explorer component can be automatically generated
from a LOTOS specification using the CADP tool set.
This Explorer component is linked with the ioco-
Primer using the Open/Caesar interface. The Primer
component is independent of the specification, and is in
principle even specification language independent (for all
specification languages for which there is a compiler that
compiles to the Open/Caesar interface).

The CADP generated Explorer has not-so-nice state
space explosion properties, because it cannot handle free
variables. CADP expands expands free variables by enu-
merating the values in the domains of the variables after
which it generates an action for each possible combination
of these values, which may lead to a state space explosion.

LOTOS, symbolic. We are currently performing ini-
tial experiments using the Smile symbolic LOTOS simu-
lator [7] as Explorer component, in an attempt to over-
come the problems attached to the non-symbolic approach.
The actions generated by Smile may contain free variables,
which are instantiated during test execution, which helps
to reduce the state space explosion problem. A new, sym-
bolic, Primer is connected to Smile using its (ad hoc) Tcl
scripting interface. This is on-going research.

Promela. For Promela on-the-fly testing, we can au-
tomatically generate a single component that implements
both the Explorer and Primer (thereby hiding the in-
terface between them). This is done by the Trojka tool
which is described in detail in [4]. If the tool Spin were
able to supply an Open/Caesar interface for Promela, we
would have been able to use the same Primer as for LO-
TOS. Such an extension is left for future work. The actions
derived by the Trojka generated Explorer may contain
free variables, which are instantiated during test execution,
which helps to reduce the state space explosion problem.

Batch LOTOS testing. For LOTOS batch derivation
we use the TGV tool [3] which covers the functionality
of the Explorer, Primer and (derivation) Driver. It
derives tests in a format that can be read by the CADP
tool set.

For LOTOS batch execution we treat these TGV-
generated tests as specifications that contain precomputed
test primitives. We execute the tests using our on-the-fly
derivation and execution method, with one important dif-
ference: we don’t use an ioco-Primer, but instead we use
a Primer that directly uses the precomputed test primi-
tives from the specification (via the Explorer). As before,
the Explorer is automatically generated using the CADP
tool set, and the same Driver and Adaptor can be used
as for the on-the-fly testing.

Batch SDL testing. For SDL batch testing we use the

Tau tool set to derive and execute test suites in TTCN.
The functionality of the Explorer, Primer and Driver
is covered by Tau’s Autolink test derivation tool [8]. It
generates TTCN test suites, guided by message sequence

charts (MSCs) that have to be provided by the user. These
MSCs can be derived by hand from the SDL specification
using the SDL simulator that is integrated in Tau, or in a
fully automatic way for predefined paths in the specifica-
tion.

The batch test execution Driver component is automat-
ically generated from the complete TTCN suites by the
TTCN compiler of Tau. This Driver is linked with an
Adaptor component using the GCI interface; the result
is a single program that can execute the test suites. The
Adaptor differs from the one for the on-the-fly testers in
the following aspects. Firstly, the Adaptor uses the GCI
interface. Secondly, the Adaptor does not use external
programs to provide the connection to the SUT because
generic support for several connection types (protocols) has
been built in. Finally, the en/decoding routines are imple-
mented in C instead of Tcl.

V. The EasyLink case study

This section describes a case study that has been exe-
cuted as part of the Côte de Resyste project. The aim of
the case study was to check whether Audio Video (AV) de-
vices are able to correctly communicate with each other by
applying the TorX tool, that is being developed in Côte

de Resyste, to identify potential problems in applying the
tool, and to suggest and implement improvements in order
to overcome these deficiencies.

A. Context

Customers of AV devices often purchase their devices
from many different manufacturers, connect them in dif-
ferent combinations, at different moments in time. This
requires an interconnection system that is extendable and
suited for the interconnection of existing devices as well
as new devices. The AV.Link standard specifies a protocol
for control-oriented data communication between a chain of
AV devices (such as a TV, a VCR, a satellite decoder, etc.)
that meet these requirements. Communication is defined
over a single, unused pin of the peritelevision connector
(which is present on most AV devices). Figure 2 depicts
three AV devices hooked up by means of AV.Link.

Fig. 2. An example AV.Link configuration

The AV.Link standard allows the definition of specific
application protocols on top of AV.Link. One of these ap-

plication protocols is EasyLink. This proprietary protocol
has first been defined in 1996 by Philips to facilitate com-
munication between a TV and one or more VCRs, and
has been licensed under applicable patents as a defacto
standard to many other Consumer Electronics companies
since then. Commercial implementations of the EasyLink
protocol are available under different names from different
vendors, e.g. EasyLink (Philips), ShowView (Sharp), etc.

B. Formal testing of the EasyLink protocol using TorX

EasyLink has been developed to provide the user of AV
devices with additional services that make them easy to
program and use in combination. One of the features pro-
vided by EasyLink (v1.3) is the Preset Download feature.
This feature allows for the automatic download of prede-
fined settings (presets) such as channel number, frequency,
etc. from the TV to one or more VCRs. It can be ini-
tiated either by one of the connected VCRs (by issueing
a request to the TV to send its presets) or by the TV
(autonomously, e.g. if the preset list of the TV changes it
automatically informs the connected devices about these
changes). The Preset Download, in combination with user
behaviour to modify the preset list of the TV, has been
tested with TorX in this case study.

To test the Preset Download feature of the EasyLink
protocol a test environment has been set up. The test en-
vironment consists of a TV that is indirectly connected to
a single VCR via an intermediate device (MBB). This in-
termediate device is also connected to, and controlled by,
a host computer running our tester (TorX) via a serial
link. The MBB allows the host to monitor the messages
between the TV and the VCR. It also allows the host to
upload messages to the TV or VCR. The TV can be op-
erated by a uni-directional remote control remote control.
The remote control is controlled by the host computer via
a human interface. Figure 3 depicts the test environment
that was used.

Fig. 3. EasyLink test environment

To test the Preset Download feature the relevant be-
haviour of the TV has been modelled as a formal specifi-
cation in the language Promela. From this specification,
TorX is able to generate automatically the stimuli to the

MBB or the remote control on-the-fly. The stimuli to the
MBB are executed automatically, for the stimuli to the re-
mote control a human interface is needed. The responses
of the TV obtained as a result to these stimuli are detected
by TorX and checked for correctness. In that way, TorX
is able to (semi)automatically check the correctness of the
EasyLink implementation for the TV.

C. Results

The aim of the case study was to validate the tool TorX
in a realistic setting and to suggest and implement improve-
ments to the tool as a whole. This case study did led to
several significant improvements to the tool TorX, e.g. a
restructuring of the Adaptor part of TorX (so that it is
easier to use), and the extension of TorX to cope with hu-
man interfaces in a natural way. Furthermore, experiments
to split TorX over multiple machines have been carried
out successfully. Also, improvements to the specification
language have been carried out which led to performance
improvements of the tool. One of these improvements was
the ability to cope with symbolic outputs [4], which led to a
significant reduction in the state space of the specification
(and hence to a significant performance improvement).

Apart from tool improvements some errors have been
found in the protocol as well. These findings will be re-
ported to a dedicated Test Competence Center for AV de-
vices within Philips, and our results will be compared with
theirs.

VI. Conclusions

In this paper we presented the Côte de Resyste project.
We gave an overview of testing, its problems and its ap-
proach to these problems. From the completed case studies
we can conclude that the approach is applicable and that
automation is feasible. Furthermore the test architecture
turns out to be flexible and very modular.

Current project work concentrates on test selection, sym-
bolic test derivation and improving TorX. Testing a re-
alistic implementation exhaustively is practically unfeasi-
ble. Therefore, selections have to be made: which tests
are going to be applied, and which are not? Such selec-
tions can be based on system properties (test purposes),
strategies or coverage measures. Research is needed how
to select suitable test suites based on these selection cri-
teria. Furthermore, to be able to test bigger systems, the
state space explosion problems has to be reduced. Sym-
bolic test derivation is a technique that is able to reduce
the number of states, and research is ongoing to implement
such techniques within Côte de Resyste. Another research
issue concerns the analysis of faults in order to identify and
locate their causes. In particular, we would like to have a
theory to relate faults back to the specification.

Currently, we carry out case studies at Philips, Lucent
Technologies and Interpay to continue validation of the de-
veloped tools, techniques and theory in the Côte de Resyste

project, and to implement improvements.

References

[1] Dutch Technology Foundation STW, “Côte de Resyste – COnfor-
mance TEsting of REactive SYSTEms,” Project proposal STW
TIF.4111, University of Twente, Eindhoven University of Tech-
nology, Philips Research Laboratories, KPN Research, Utrecht,
The Netherlands, 1996, http://fmt.cs.utwente.nl/CdR.

[2] J. Tretmans, “Test generation with inputs, outputs and repetitive
quiescence,” Software—Concepts and Tools, vol. 17, no. 3, pp.
103–120, 1996, Also: Technical Report No. 96-26, Centre for
Telematics and Information Technology, University of Twente,
The Netherlands.

[3] J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho, “Using on-the-fly
verification techniques for the generation of test suites,” in Com-
puter Aided Verification CAV’96, R. Alur and T.A. Henzinger,
Eds. Lecture Notes in Computer Science 1102, 1996, Springer-
Verlag.

[4] Tretmans J. Vries, de R.G., “On-the-fly conformance testing using
Spin,” Software Tools for Technology Transfer, vol. 2, no. 4, pp.
382–393, March 2000.

[5] H. Garavel, “Open/Cæsar: An open software architecture for
verification, simulation, and testing,” in Fourth Int. Workshop
on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’98), B. Steffen, Ed. Lecture Notes in Computer
Science 1384, 1998, pp. 68–84, Springer-Verlag.

[6] F. Brady and R.M. Barker, “Infrastructural tools for informa-
tion technology and telecommunications conformance testing, IN-
TOOL/GCI, generic compiler/interpreter interface (GCI) inter-
face specification, version 2.2,” 1996, INTOOL document number
GCI/NPL038v2.

[7] E.H. Eertink, Simulation Techniques for the Validation of LO-
TOS Specifications, Ph.D. thesis, University of Twente, Enschede,
Netherlands, March 1994.

[8] M. Schmitt, A. Ek, B. Koch, J. Grabowski, and D. Hogrefe, “–
Autolink – Putting SDL-based Test Generation into Practice,”
in 11th Int. Workshop on Testing of Communicating Systems,
A. Petrenko and N. Yevtushenko, Eds. 1998, pp. 227–243, Kluwer
Academic Publishers.

