
User Guide of ASSA-PBN Version 1.0

July 27, 2015

Contents

1 Introduction 2

2 Modules 2

3 Installation 3

4 Input Files 3
4.1 PBN definition files . 3
4.2 Parameter definition files . 4
4.3 Property specification files . 4

5 Running ASSA-PBN with Command Line 6
5.1 Example 1: generating a PBN . 10
5.2 Example 2: loading a PBN from Matlab-PBN-toolbox format . . 11
5.3 Example 3: loading a PBN and exporting it to a file 12
5.4 Example 4: performing the numerical methods 12
5.5 Example 5: performing the perfect simulation approach 13
5.6 Example 6: performing the two-state Markov chain approach . . 13
5.7 Example 7: performing the Skart method 14
5.8 Example 8: changing the default Java heap size 15
5.9 Example 9: performing the two-state Markov chain approach in

parallel . 15

6 Update log of ASSA-PBN 16

1

1 Introduction

ASSA-PBN is a tool specially designed for approximate steady-state analysis
of large probabilistic Boolean networks (PBNs). The approximate steady-state
analysis is crucial for large PBNs, which naturally arise in the domain of Systems
Biology. We refer to [5] for the theoretical background of the steady-state anal-
ysis of PBNs. ASSA-PBN provides different solutions for different size PBNs.
For small PBNs, ASSA-PBN supports with two numerical methods, i.e., the
Jacobi method and the Gauss-Seidel method, and one statistical method, i.e.,
the perfect simulation approach [6]. For large PBNs, ASSA-PBN provides the
two-state Markov chain approach [1, 2] and the Skart method [3].

2 Modules

ASSA-PBN contains three major parts (see Figure 1): a PBN constructor, a
PBN simulator, and a PBN analyser. Based on the specified parameters or
model file, the constructor can build a PBN. The simulator takes a PBN gen-
erated by the constructor as input and performs simulation of the PBN ef-
ficiently to produce trajectories. The key function of ASSA-PBN is to com-
pute the steady-state probability for a set of states of the PBN which is de-
fined in a property file. This is achieved by the analyser in either a nu-
merical manner (for small PBNs) or a statistical manner (for large PBNs).
The implemented numerical methods require the transition matrix of a PBN
as input, which is supplied by the constructor; while the implemented sta-
tistical methods require simulated trajectories of the PBN as input, which
are supplied by the simulator. Simulation does not suffer from the state-
space explosion problem even in terms of large PBNs since it is not based on
the transition matrix. The ASSA-PBN program package can be downloaded
at http://satoss.uni.lu/software/ASSA-PBN/assa-pbn-1.0.zip. The cur-

Figure 1: Structure of ASSA-PBN.

rent version ASSA-PBN provides the following 4 functions:

1. generating a random PBN model;

2. loading a PBN model defined in the ASSA-PBN format or the Matlab-
PBN-toolbox (optPBN toolbox1) format [4];

1In the later part of the user guide, we will only mention the Matlab-PBN-toolbox. But we
consider the Matlab-PBN-toolbox also covers the optPBN toolbox since the optPBN toolbox is
an extension of the Matlab-PBN-toolbox and it uses the same format as Matlab-PBN-toolbox.

2

3. exporting a PBN model from ASSA-PBN to Matlab-PBN-toolbox;

4. computing the steady-state probabilities of a PBN using different methods,
e.g., the Jacobi method, the Gauss-Seidel, the perfect simulation approach,
the two-state Markov chain approach, and the Skart method;

See Section 5 for the detailed instructions for running ASSA-PBN.

3 Installation

ASSA-PBN does not require installation. It can be run in command line after
extracted from the downloaded package. Figure 2 shows an example of extract-
ing and running ASSA-PBN. ASSA-PBN can be run on Mac OS, Linux and

unzip assa-pbn-1.0.zip

./assa -v

Figure 2: Extracting and running ASSA-PBN.

Windows 7 or later. It requires Java 6 (also called version 1.6) or later. To run
ASSA-PBN in Linux or Mac OS, use the command ./assa <parameters>. For
Windows, use the command assa <parameters>.

4 Input Files

ASSA-PBN accepts three types of input files, namely the PBN definition file, the
parameter definition file, and the property specification file. ASSA-PBN does
not require the file name to have a special suffix, but the “.pbn” is recommended
for the PBN definition files, the “.par” is recommended for parameter definition
files and the “.pro” is recommended for the property specification files.

4.1 PBN definition files

We will use an example to show the format of the PBN definition file. This
example PBN contains 3 nodes. Node 1 has one Boolean function and each
of node 2 and 3 has two Boolean functions. The Boolean functions and their
selection probabilities are shown in Table 1. The corresponding truth table is
shown in Table 2. In ASSA-PBN, the node of a PBN is defined by non-negative
integers. Therefore, the node name x0, x1, x2 will be named as 0, 1, 2 in the
definition file. The Boolean functions are converted to a sequence of binary
numbers, known as Boolean sequence, in ASSA-PBN. For example, the first

boolean function f
(0)
1 = x0∧x1 is converted to 0 1 1 1. This function is affected

by node x0 and x1; so its parent nodes indices are 0 and 1. The parent nodes
indices will be given after the Boolean sequences in the definition file.

3

node name function probability

x0 f
(0)
1 = x0 ∧ x1 1

x1 f
(1)
1 = ¬x2 ∧ (x1 ∨ x0) 0.3

x1 f
(1)
2 = ¬x0 ∧ x1 ∧ x2 0.7

x2 f
(2)
1 = ¬x0 ∧ x1 0.4

x2 f
(2)
2 = x0 ∧ x1 ∧ ¬x2 0.6

Table 1: Boolean functions and their selection probabilities of a 3 nodes PBN

x2x1x0 f
(0)
1 f

(1)
1 f

(1)
2 f

(2)
1 f

(2)
2

000 0 0 0 0 0
001 1 1 0 0 0
010 1 1 0 1 0
011 1 1 0 0 1
100 0 0 0 0 0
101 1 0 0 0 0
110 1 0 1 1 0
111 1 0 0 0 0

c
(i)
j 1 0.3 0.7 0.4 0.6

Table 2: Truth table corresponding to the predictor functions in Table 1.

The corresponding ASSA-PBN definition file is shown in Figure 3. In the
definition file, comments are indicated with //. The comments can only be
added at the beginning of a line. Note that the node index starts from 0.

ASSA-PBN accepts two types of PBN definition files. One is shown above;
the other one is exported from the Matlab-PBN-toolbox. In the downloaded
package of this software, there is a Matlab file named exportPBNtoASSA.m,
which can be run in Matlab to export a PBN model defined in the Matlab-
PBN-toolbox to the ASSA-PBN format. For example, a PBN model can be
exported to a file named PBNfromMatlab.pbn by running the following code in
Matlab: exportPBNtoASSA(‘PBNfromMatlab.pbn’).

4.2 Parameter definition files

The parameter definition files are used to specify parameters for generating
random PBNs. See Section 5.1 for a detailed explanation.

4.3 Property specification files

The property specification file defines the set(s) of states whose steady-state
probability(ies) is(are) to be computed. It contains even number of lines and
every two lines define one set of states. For each two lines, the first line specifies
those indices of the nodes, whose values should be 1 (active); while the second

4

//The first line is the number of nodes in the PBN.

3

//The second line indicates the number of Boolean functions for each

//node.

1 2 2

//The third line indicates the number of variables for each Boolean

//function.

2 3 3 2 3

//Boolean functions are listed below. One function per line.

0 1 1 1

0 1 1 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 1 0

0 0 0 1 0 0 0 0

//Then variable (parent nodes) indices of the Boolean functions are

//then listed. One function per line.

0 1

0 1 2

0 1 2

0 1

0 1 2

//The selection probabilities for each Boolean function are listed.

//One node per line.

1

0.3 0.7

0.4 0.6

//perturbation rate. Please put 0 if there is no perturbation.

0.001

//If you want to disable the perturbation of certain nodes, please

//provide the node indices below.

0

Figure 3: The corresponding PBN definition file of the PBN shown in Table 1.

line specifies those indices of the nodes, whose values should be 0 (inactive).
The indices in the same line are separated with a space. Figure 4 shows two
examples of a PBN with three nodes. In the first example, we are interested
in those states that nodes 0 and 2 are active and node 1 is inactive. In fact,
there is only one interested state, i.e., 101. In the second example, we are
interested in those states that node 1 is active. The second line of Figure 4b is
-1, indicating that those inactive nodes are not relevant in this property. This
property file defines 4 states, i.e., 010, 011, 110, 111. In most cases, ASSA-
PBN only requires an input of one set of states, which means that the property
specification file contains only two lines. Starting from version 2.0.1, ASSA-PBN
supports checking several properties at the same time using the same trajectory.

In this case, the property specification file is required to define more than one
set of states. Each set of states is defined with two lines in the above mentioned
way. For example, if we put the two sets of states defined in Figure 4 and 4b

5

in one file, we form a new property specification file which defines two sets of
states. See figure 4c for this property specification file.

0 2

1

(a) The value of nodes 0
and 2 is 1 and the value of
node 1 is 0.

1

-1

(b) The value of node 1 is
1 and those inactive nodes
are not relevant.

0 2

1

1

-1

(c) Two properties in one
file.

Figure 4: Example of property specification files.

5 Running ASSA-PBN with Command Line

ASSA-PBN provides a command line version at the moment. Below is a list of
commands for ASSA-PBN.

1. -ge <number of node> <perturbation rate> <export file name>
<export type> [<max function number> <min function number>
<max parents node> <min parents node>]
Generate a random PBN and export it to a file in the ASSA-PBN format
or the Matlab format.
number of node: The number of nodes in the to be generated PBN.
perturbation rate: The perturbation rate in the to be generated PBN.
export file name: The name of the file to store the to be generated
PBN.
export type: The exported type can be either 0, meaning the ASSA-
PBN format, or 1, meaning the Matlab format (we call it Matlab format
for short).
max function number: The maximal number of predictor functions one
node can have.
min function number: The minimal number of predictor functions one
node can have.
max parents node: The maximal number of parent nodes one predictor
function can have.
min parents node: The minimal number of parent nodes one predictor
function can have.

2. -gef <parameter file name> <export file name> <export type>
Generate a PBN with parameters given in a file and export it to a file.
parameter file name: The name of the file that stores the parameters.
export file name: The name of the file to store the generated PBN.
export type: The exported type can be 0, meaning the ASSA-PBN for-
mat, or 1, meaning the Matlab format.

6

3. -io <import file name> <isMatlab> <export file name> <export
type>
Load a PBN from a file and export it to a file in the ASSA-PBN format
or the Matlab format.
import file name: The name of the file that stores the PBN to be im-
ported.
isMatlab: True if the model is exported from Matlab-PBN-toolbox and
false otherwise. The value is false by default.
export file name: The name of the file to store the generated PBN.
export type: The exported type can be 0, meaning the ASSA-PBN for-
mat, or 1, meaning the Matlab format.

4. -gauss <model file name> [isMatlab] <property file name> [<
precision> <max iteration>]
Perform the Gauss-Seidel method.
model file name: The name of the file that stores the PBN.
isMatlab: True if the model is exported from Matlab-PBN-toolbox and
false otherwise. The value is false by default.
property file name: The name of the property specification file.
precision: The accuracy precision of the Gauss-Seidel method. By de-
fault, the precision is 10−6. This parameter must be used together with
the parameter max iteration.
max iteration: The maximal allowed iteration number. If the result is
not got within the maximal iteration number, the program will be stopped.
By default, the max iteration number is 10,000. This parameter must be
used together with the parameter precision.

5. -jacobi <model file name> [isMatlab] <property file name> [<
precision> <max iteration>]
Perform the Jacobi method.
The meanings of the parameters are the same as those in the -gauss

command.

6. -ps <model file name> [isMatlab] <precision> <confidence
level> <property file name> [-log <log file name>] [useCost]

Perform the perfect simulation approach.
model file name: The name of the file that stores the PBN.
isMatlab: True if the model is exported from Matlab-PBN-toolbox and
false otherwise. The value is false by default.
precision: The precision accuracy of the computed probability.
confidence level: The confidence level of the computed probability.
property file name: The name of the property specification file.
-log <log file name>: This option allows the user to store the log in
a specified file. If not specified, the log file name will be decided by the
software itself.

7

useCost: This option allows the user to turn on the cost function mode.
In the cost function mode, each state is assigned with a cost value based
on the property specification file. As long as the costs couple, the states
are considered coupled.

7. -ts <model file name> [isMatlab] <precision> <confidence
level> [-epsilon <epsilon>] <property file name> [-log <log
file name>] [useGlobalAlias]

Perform the two-state Markov chain approach.
-epsilon <epsilon>: This option allows the user to change the value
of ε used in the two-state Markov chain approach. By default, the value
of ε is 10−10. For example, -epsilon 10−12 can change the value of ε to
10−12.
useGlobalAlias: The ASSA-PBN simulator can operate in two modes:
1) the global alias mode and 2) the local alias mode. By default, ASSA-
PBN will use the global alias mode if there are enough memory. This
option allows to change it to the local alias mode. To make this change,
add false at the end of the command line. In the global mode, a joint
probability distribution is considered on all possible combinations of pre-
dictor function selections for all the nodes and a single alias table for this
distribution is constructed. In the local mode, the independence of the
PBN is exploited: individual alias tables are constructed for each node
of the PBN. In both cases the consecutive state is generated by updating
the value of each node with the predictor function selected for this node.
However, in the global mode predictor functions for all nodes are selected
simultaneously with the use of only two random numbers, while in the
local mode the number of random numbers used is twice the number of
nodes. In consequence, the generation of the next state is faster in the
global mode, but more expensive in terms of memory usage. For large
networks, the local mode is always recommended.
The meanings of the rest parameters are the same as in the -ps command.

8. -tspa <model file name> [isMatlab] <precision> <confidence

level> [-epsilon <epsilon>] <property file name> [-log <log

file name>] <number of chains>

Perform the multi CPU cores parallel two-state Markov chain approach. If
the model file is exported from Matlab, please add true after the model file
name. If you want the simulator to use global alias table for simulation,
please add true at the end of the command.
number of chains: define how many chains (trajectories) are used in the
parallel run. For more details about the meaning of the number of chains,
please refer to the Gelman & Rubin method in [?].
The meanings of the rest parameters are the same as in the -ts command.

9. -tspam <model file name> [isMatlab] <precision> <confidence

level> [-epsilon <epsilon>] <property file name> [-log <log

file name>] <number of chains>

8

Perform the multi CPU cores parallel two-state Markov chain approach
for checking multiple properties at the same time. If the model file is
exported from Matlab, please add true after the model file name. If you
want the simulator to use global alias table for simulation, please add true
at the end of the command.
This command allows to check several properties using the same trajectory
and therefore saving the simulation time.
The meanings of the parameters are the same as in the -ts command.

10. -skart <model file name> [isMatlab] <precision> <confidence
level> <property file name> [-log <log file name>]
[useGlobalAlias]

Perform the Skart method. To simulate as fast as possible, the sim-
ulated trajectory generated with this command has a maximal length
of 231(2, 147, 483, 648). In case of bigger trajectory size, please use the
-skartfull command.
The meanings of parameters are the same as that in the -ts command.

11. -skartfull <model file name> [isMatlab] <precision> <
confidence level> <property file name> [-log <log file name

>] [useGlobalAlias]

Perform the Skart method. This command is needed for those cases that
the -skart command cannot handle. This command can handle huge
trajectory size without the maximal length limit, but the computation
time is slower than that of the -skart command.
The meanings of the parameters are the same as those in the -skart

command.

12. -skartpa <model file name> [isMatlab] <precision> <
confidence level> <property file name> [-log <log file name

>] [useGlobalAlias]

Perform the multi CPU core parallel Skart approach. If the model file is
exported from Matlab, please add true after the model file name. If you
want the simulator to use global alias table for simulation, please add true
at the end of the command.
The meanings of the parameters are the same as those in the -tspa com-
mand.

13. -v

Show version information.

14. -h

Show help information.

Note that the input and output files used in ASSA-PBN cannot be named as
“true” or “false” (case insensitive).

ASSA-PBN is launched with default settings of the Java virtual machine
(JVM). It also supports to change the Java heap size of the JVM when launching

9

the program. This can be done by adding the standard Java command at the
beginning of ASSA-PBN command line. It supports the following three options
and allows them to be used at the same time. See Section 5.8 for examples.

• -Xms〈size〉 set initial Java heap size

• -Xmx〈size〉 set maximal Java heap size

• -Xss〈size〉 set Java thread stack size

All the example files used in this section can be found in the folder “exam-
ples” in the downloaded package.

5.1 Example 1: generating a PBN

We give an example in figure 5 to show how to generate a random PBN by
providing parameters directly in the command line. The example generates a
PBN with 8 nodes, which has a maximum of 8 predictor functions for each node
and a maximum of 7 parent nodes for each function, and we store it to a file
named PBN-test1.pbn. This can be easily done with the following command
line: "assa -ge 8 0.01 PBN-test1.pbn 0 8 1 7 1", where the first number
8 indicates the number of nodes in the PBN, 0.01 denotes the perturbation
rate, PBN-test1.pbn is the file name to store the generated PBN, the number 0
denotes the exported type is in the ASSA-PBN format, the two numbers 8 and
1 define the possible maximum and minimum predictor functions of each node,
and the last two numbers define the possible maximum and minimum numbers
of parent nodes of the predictor functions. ASSA-PBN will choose for each node
a random number between 1 and 8 as the number of predictor functions and
for each predictor function a random number between 1 and 7 as the number of
parents nodes. Since a node has to have at least one predictor function and a
predictor function has to have at least one parent node, their minimum values
are given as 1 in case there is no explicit requirements on the minimum values.
The number 0 in the command line refers to the ASSA-PBN format. It’s also
possible to use number 1, which means the Matlab format. The density D in
the output information is computed with the following formula:

D = 1
n

NF∑
i=1

ω(i),

where n is the number of nodes in the PBN, NF is the total number of functions
in the PBN, ω(i) is the number of parents node for the ith function.

It’s also possible to generate a random PBN by providing parameters in a file.
The file defining parameters should contain four lines to provide the number of
nodes, the number of predictor functions for each node, the number of variables
for each Boolean function and the perturbation rate. We show in Figure 6 an
example of parameter definition file and in Figure 7 how to generate a random
PBN using this parameter file.

10

./assa -ge 8 0.01 PBN-test1.pbn 0 8 1 7 1

One 8 nodes PBN is generated. Its density is 19.0.

The 8 nodes PBN is exported to file PBN-test1.pbn in ASSA-PBN
format.

Figure 5: Output of generating a random PBN by providing parameters in
command line.

//number of nodes

3

//number of functions for each node

1 2 2

//number of parent nodes for each function

2 1 1 2 1

//perturbation rate

0.01

Figure 6: Example of parameter definition file.

./assa -gef parameters.txt PBNFromParameter.m 1

One 3 nodes PBN is generated. Its density is

2.3333333333333335.

The 3 nodes PBN is exported to file PBNFromParameter.m in

Matlab format.

Figure 7: Output of generating a random PBN by providing parameters in a
file.

5.2 Example 2: loading a PBN from Matlab-PBN-toolbox
format

For the convenience of the user, we design the function for converting models
which have already been defined in the Matlab-PBN-toolbox [4] to the ASSA-
PBN format. As described in 4.1, defining a PBN model in ASSA-PBN is not
a difficult task; therefore, we recommend to define the model directly in the
ASSA-PBN format if it’s not defined in Matlab-PBN-toolbox. We use the file
PBNFromParameter.m generated in Section 5.1 to define a PBN in Matlab-PBN-
toolbox. To export the PBN model, one needs to copy the exportPBNtoASSA.m

file to the working directory of Matlab and run the command as shown in Fig-
ure 8. A PBN definition file named exportedFromMatlab.pbn will be generated
and it can be analysed with ASSA-PBN.

exportPBNtoASSA(‘exportedFromMatlab.pbn’)

Figure 8: Exporting a PBN from Matlab-PBN-toolbox.

11

5.3 Example 3: loading a PBN and exporting it to a file

We will load the file exportedFromMatlab.pbn generated in Section 5.2 and
export it to a file named exportedFromASSA.m. See Figure 9 for the input
and output for running this command in ASSA-PBN. Theoretically, the con-
tent of the exported file exportedFromASSA.m should be the same as that of
PBNFromParameter.m since exportedFromASSA.m is got by two converting op-
erations from PBNFromParameter.m. We observed a slight difference in the cij
values. This difference is due to that the precision used in the tool ASSA-PBN is
smaller than that in Matlab. After loading the model to Matlab, the difference
will disappear.

./assa -io exportedFromMatlab.pbn true exportedFromASSA.m 1

Start loading model...

Finish loading model. Time cost: 0.001635s.

Start exporting model...

The 3 nodes PBN is exported to file exportedFromASSA.m in

Matlab format.

Figure 9: Loading a PBN and exporting it to a file.

5.4 Example 4: performing the numerical methods

Currently, ASSA-PBN supports two numerical methods, i.e., the Gauss-Seidel
method and the Jacobi method. We show in Figure 10 for the command line in-
put and output of performing the Gauss-Seidel method. The parameter -gauss
indicates that the analyser uses the Gauss-Seidel method, PBN-test1.pbn is the
PBN file that we have generated in Section 5.1 and property-1.pro is the prop-
erty specification file. The iteration number, the time cost and the steady-state
probability that we want to check are outputted. By default, the accuracy of
the probability is 10−6. It can be changed by adding at the end of the command
the new accuracy and the max iteration numbers. It is also possible to output
the steady-state distribution for all states in the PBN by changing the property
specification file name to -dis in the command line. The Jacobi method can
be called similarly by changing -gauss to -jacobi in the command line.

./assa -gauss PBN-test1.pbn property-1.pro

Start loading model...

Finish loading model. Time cost: 0.004908s.

Performing the Gauss-Seidel method on the PBN from file

PBN-test1.pbn

The Gauss-Seidel method ends within 12 iterations.

CPU Time cost: 0.10797s.

The probability to check is 0.02916671121948796.

Figure 10: Example of running the Gauss-Seidel method.

12

5.5 Example 5: performing the perfect simulation ap-
proach

The perfect simulation approach can be run using the following command line:
"assa -ps PBN-test1.pbn 0.01 0.95 property-1.pro -log psOutput.log",
where -ps indicates that the analyser uses the perfect simulation algorithm. The
first two numbers 0.01 and 0.95 define the precision and the confidence level
respectively, and the last pat -log ps1.log shows that the log information is
stored in the file psOutput.log. Figure 11 shows the output of the perfect sim-
ulation algorithm on the 8 node PBN. The total simulation steps in the output
are computed using the following formula:

2n
Ns∑
i=1

c(i),

where n is the number of nodes in the PBN, Ns is the number of required
samples (1046 in this example), c(i) is the coupling step of the ith sample.
The probability given by the perfect simulation method differs by about 0.006
with the one given by the Gauss-Seidel method in Section 5.4, which can be
considered as the theoretical value. The difference, i.e., about 0.0014, is still
within the precision requirement 0.01. Note that a smaller precision requirement
will result in a probability closer to the theoretical value.

./assa -ps PBN-test1.pbn 0.01 0.95 property-1.pro -log

psOutput.log

Start loading model...

Finish loading model. Time cost: 0.004479s.

Performing the perfect simulation algorithm on the PBN from

file PBN-test1.pbn

Detailed information is stored in the file psOutput.log.

Avg. coupling steps 13.520076481835565

Simulation steps 3620352.0

Number of samples 1046.0

CPU time cost 0.647181s

Probability 0.027724665391969407

Figure 11: Example of running the perfect simulation approach.

5.6 Example 6: performing the two-state Markov chain
approach

The two-state Markov chain approach can be launched using the following
command line: "assa -ts PBN-test1.pbn 0.01 0.95 property-1.pro -log

ts.log". The parameter ts indicates that the analyser uses the two-state
Markov chain approach. The numbers 0.01 and 0.95 define the precision and
the confidence level, respectively. PBN-test1.pbn is the PBN file that we have

13

generated previously. The ASSA-PBN simulator can operate in two modes:
1) the global alias mode and 2) the local alias mode. By default, ASSA-PBN will
use the global alias mode if there is enough memory. One can change it to the
local alias mode by adding false at the end of the command line. In the global
mode, a joint probability distribution is considered on all possible combinations
of predictor function selections for all the nodes and a single alias table for this
distribution is constructed. In the local mode, the independence of the PBN is
exploited: individual alias tables are constructed for each node of the PBN. In
both cases the consecutive state is generated by updating the value of each node
with the predictor function selected for this node. However, in the global mode
predictor functions for all nodes are selected simultaneously with the use of only
two random numbers, while in the local mode the number of random numbers
used is twice the number of nodes. In consequence, the generation of the next
state is faster in the global mode, but more expensive in terms of memory usage.
For large networks, the local mode is always recommended. Information about
this execution will be shown in the command window as in Figure 12. Besides,
a log file with more detailed information, e.g., the number of extensions of the
two-state Markov chain approach on this particular model will also be generated
and stored in the file ts.log.

Figure 12 shows the example to perform the two-state Markov chain ap-
proach. The two-state Markov chain approach poses an own parameter named
ε, which is set to 10−10 by default in ASSA-PBN. It can be changed by adding
-epsilon <epsilon value> after the confidence level in the command. Gen-
eral information about this execution will be output in the command window as
shown in Figure 12. Besides, a log file with more detailed information, e.g., the
number of extensions of the two-state Markov chain approach on this particular
model will also be generated.

./assa -ts PBN-test1.pbn 0.01 0.95 property-1.txt -log ts.log

Start loading model...

Finish loading model. Time cost: 0.004423s.

Performing the two-state Markov chain approach on the PBN from

file PBN-test1.pbn.

Detailed information is stored in the file ts.log.

Sample size 1262

Probability 0.027156549520766772

CPU time cost 0.09973s

Figure 12: Example of running the two-state Markov chain approach.

5.7 Example 7: performing the Skart method

Similar to the two-state Markov chain approach, the Skart method can be
launched using the following command line: "assa -skart PBN-test1.pbn

0.01 0.95 property-1.pro -log skart1.log". The parameter -skart indi-
cates that the analyser uses the Skart method. There are also an output in the

14

command window and a more detailed output stored in a log file skart1.log

for the Skart method. Figure 13 shows the output in the command window.
The Skart method will compute a confidence interval which satisfies the preci-
sion requirement. The confidence interval corresponds to the CI half-length

in the output. In this case, the confidence interval is [0.02952587482158517,
0.03424365642841483]. If the analysis requires a trajectory size bigger than 231,
the -skartfull command is needed. The usage of the -skartfull command
is the same as the -skart command.

./assa -skart PBN-test1.pbn 0.01 0.95 property-1.pro -log

skart1.log

Start loading model...

Finish loading model. Time cost: 0.005912s.

Performing the Skart method on the PBN from file

PBN-test1.pbn.

Detailed information is stored in the file skart1.log.

Sample size 20480

Probability 0.031884765625

CI half-length0.00235889080341483

CPU time cost 0.302707s

Figure 13: Output of the Skart method.

5.8 Example 8: changing the default Java heap size

ASSA-PBN allows to change the default Java heap size when launching the
program by adding the standard Java command at the beginning of ASSA-PBN
command line. We show an example for changing the initial Java heap size to
256M and the maximum Java heap size to 2G in Figure 14.

./assa -Xms256M -Xmx2G -gauss PBN-test1.pbn property-1.pro

Start loading model...

Finish loading model. Time cost: 0.004588s.

Performing the Gauss-Seidel method on the PBN from file

PBN-test1.pbn.

The Gauss-Seidel method ends within 12 iterations.

CPU Time cost: 0.105934s.

The probability to check is 0.02916671121948796.

Figure 14: Changing default Java heap size.

5.9 Example 9: performing the two-state Markov chain
approach in parallel

Starting from the version 2.0.1, ASSA-PBN supports to analysing a steady-state
property of a PBN in a parallel way using multiple CPU cores. Figure 15 shows

15

an example to check a single property using the two-state Markov chain ap-
proach in a parallel way. ASSA-PBN also supports to check multiple properties
at the same time using the two-state Markov chain approach in a parallel way.
This function can be launched using the command -tspam. The multiple prop-
erties should be stored in a single file. See Section 4.3 for how to define multiple
properties in one file.

./assa -tspa PBN 50.pbn 0.001 0.95 property-1.pro -log

parallelrun.txt 40

Start loading model...

Finish loading model. Time cost: 2.349563s.

Run the two-state approach in parallel for computing PBN 50.pbn

for property property-1.pro...

number of processors: 4

Required number of chains is 40, the program sets it to 4 (the

number of processors in the computer).

Detailed information is stored in parallelrun.txt

Total extending times: 0

m=4, n=81920, burnIn=81920, Nmax=1360, each chain

length=163840, fetch samples every 1 step(s).

precision=0.001, probability=3.41796875E-4, time

cost=4.213332899s.

Figure 15: Checking a single property using the two-state Markov chain ap-
proach in a parallel way.

6 Update log of ASSA-PBN

1. Version 1.0.4. Updated on: 25/07/2015.
Main changes:
1) add multiple CPU implementations for the two-state Markov chain
approach and the Skart method;
2) fix the bug for losing the order information of the parent nodes indices
when loading a model definition file;
3) removing unnecessary libraries.

2. Version 1.0.3. Updated on: 30/01/2015.
Main changes:
1) add command line parameters for defining Java heap size;
2) optimize the Jacobi method by storing the transition matrix in memory
instead of repeated on-the-fly generating.

3. Version 1.0.2. Updated on: 30/11/2014.
Main changes: 1) fix the bug for not being able to define whether the

16

model is converted from Matlab when running the Skart method.

4. Version 1.0.1. Updated on: 07/11/2014.
Main changes:
1) add optimization for the initial trajectory size used in the two-state
Markov chain approach; 2) add output for loading models.

References

[1] A. Mizera, J. Pang, and Q. Yuan. Reviving the two-state markov chain
approach (technical report). Available online at http://arxiv.org/abs/

1501.01779, 2015.

[2] A.E. Raftery and S. Lewis. How many iterations in the Gibbs sampler?
Bayesian Statistics, 4:763–773, 1992.

[3] A. Tafazzoli, J.R. Wilson, E.K. Lada, and N.M. Steiger. Skart: A skewness-
and autoregression-adjusted batch-means procedure for simulation analysis.
In Proc. of the 2008 Winter Simulation Conference, pages 387–395, 2008.

[4] P. Trairatphisan, A. Mizera, J. Pang, A.-A. Tantar, and T. Sauter. optPBN:
An optimisation toolbox for probabilistic boolean networks. PLOS ONE,
9(7):e98001, 2014.

[5] Panuwat Trairatphisan, Andrzej Mizera, Jun Pang, Alexandru Adrian Tan-
tar, Jochen Schneider, and Thomas Sauter. Recent development and biomed-
ical applications of probabilistic boolean networks. Cell Communication and
Signaling, 4(6):1–25, 2013.

[6] J.-M. Vincent and C. Marchand. On the exact simulation of functionals of
stationary Markov chains. Linear Algebra and its Applications., 385:285–
310, 2004.

17

