
User Guide of ASSA-PBN Version 3.0

Qixia Yuan

May 4, 2018

Contents

1 Introduction 3

2 Modules 3

3 Installation guide 4
3.1 System Requirement . 4
3.2 Installation . 4

4 Input Files 5
4.1 PBN definition files . 5
4.2 Parameter definition files . 11
4.3 Property specification files . 11
4.4 Parameter specification file . 11
4.5 Experiment data file . 12

5 Running ASSA-PBN with GUI 12
5.1 Starting the GUI of ASSA-PBN 12
5.2 Generating a random PBN . 12
5.3 Defining and Loading a PBN . 14
5.4 Converting a PBN from Matlab 15
5.5 Simulate a PBN . 15
5.6 Computing steady-state probabilities 15
5.7 Long-run influence analyses . 17
5.8 Long-run sensitivity analyses . 18
5.9 Parameter estimation for instantaneously random PBNs 21
5.10 Parameter estimation for context-sensitive PBNs 23
5.11 One-parameter profile likelihood 25
5.12 Detecting attractors . 26
5.13 Cancelling a running job . 27

1

6 Running ASSA-PBN with Command Line 27
6.1 Generating a PBN . 34
6.2 Converting a PBN from Matlab-PBN-toolbox format to ASSA-

PBN format . 35
6.3 Loading a PBN and exporting it to a file 36
6.4 Simulate a PBN . 37
6.5 Performing the numerical methods 37
6.6 Performing the perfect simulation approach 37
6.7 Performing the two-state Markov chain approach 38
6.8 Performing the Skart method . 39
6.9 Changing the default Java heap size 39
6.10 Performing the two-state Markov chain approach in parallel . . . 40
6.11 Performing the long-term influence analysis 40
6.12 Performing the long-term sensitivity analysis 41
6.13 Performing parameter estimation 41

7 Update log of ASSA-PBN 42

2

1 Introduction

ASSA-PBN is a software tool for modelling, simulation and analysis of proba-
bilistic Boolean networks (PBNs), especially for large PBNs, which naturally
arise in the domain of Systems Biology. ASSA-PBN provides several methods
for analysing a PBN. This includes the basic steady-state computation, and the
in-depth long-term influence and sensitivity computation, attractor detection,
and parameter estimation of a PBN. We distinguish two types of PBNs: instan-
taneously random PBNs (IPBNs) and context-sensitive PBNs (CPBNs) [9].

2 Modules

ASSA-PBN contains three major parts (see Figure 1): modeller, simulator, and
analyser. They interact with each other to provide a full support for PBN analy-
sis. The modeller provides a simple way to construct a real-life biological system,
e.g., gene regulatory network (GRN), into a PBN and supports visualisation and
dynamically changing of a PBN. The simulator takes the PBN constructed in
the modeller and performs simulation to produce samples. Simulation does not
suffer from the state-space explosion problem even in terms of large PBNs since
it is not based on the transition matrix. Based on the constructed model and
generated samples, the analyser performs basic and in-depth analysis of the
PBN. The analysis results can be used either to interpret the original system
or to optimise the modelling of the system. Figure 1 shows the structure of
ASSA-PBN. The analyser requires different input files depending on the analy-
sis task. While simulator and analyser rely on modeller as input, the simulation
and analysing results can be used to optimise modelling construction.

modeller simulator

analyser

PBN

sample request

samples
feedback

transition
 matrix

feedback
PBN file

input files

analysis
 result

Figure 1: Structure of ASSA-PBN.

The ASSA-PBN program package can be downloaded at http://satoss.

uni.lu/software/ASSA-PBN/. Currently, ASSA-PBN provides the following
functions (those hightlighted in bold are newly added functions in version 3.0.*):

• modelling of PBNs in high-level ASSA-PBN format for CPBN and IPBN;

• various asynchronous updating schemes;

• random generation of PBNs;

• efficient simulation of a PBN;

• computation of steady-state probabilities of a CPBN and IPBN;

3

• parameter estimation of a CPBN and IPBN;

• long-run influence and sensitivity analysis of an IPBN;

• fit-score sensitivity analysis of an IPBN;

• heat map plot of the parameter estimation results;

• attractor detection;

• a command-line tool and a GUI.

3 Installation guide

3.1 System Requirement

1. Platform: x86 compatible 32 bit or 64 bit processor;

2. Operating system: Windows, Linux and Mac OSX (10.4 and above);

3. Required environment: Java SE Development Kit 8 or higher;

4. Required compilers (for attractor detection): flex 2.5.4 or higher, GNU bi-
son 2.3 or higher, GNU g++ 4.0.1 or higher; Cygwin 1.5.25-14 or higher
(Windows platform only); NVIDIA’s CUDA Compiler (for GPU computa-
tion only).

3.2 Installation

For basic usage, ASSA-PBN does not require installation operation. For usage
in Windows, the software can be run by double clip on the assa.jar file after
extracting the downloaded file. For usage in Mac OS of Linux, the software
can be run with the command “./xassa” in the “bin” folder. Alternatively, the
command line version can be run with the command “./assa <parameters>”
in the “bin” folder. More examples on running ASSA-PBN can be found in
Sections 5 and 6.

Installation for attractor detection function. If the user wants to use the
attractor detection function, an additional installation is required. It can be
down by the following two steps.

1. (Windows platform only) Install cygwin and the packages g++, flex and
bison on Windows. Detailed instructions can be found from http://www.cygwin.com/.

2. In a terminal (please use the cygwin terminal for Windows), navigate
to the mcmas folder. Simply use the command make to the compile MCMAS.
We now give an example in Windows. Assume the downloaded ASSA-PBN is
extracted in the folder “C:\assa-pbn-3.0.1”. Open the cygwin terminal, run “cd
C:\assa-pbn-3.0.1” and then run “make”. On Windows, the directory “bin” in
the cygwin installation must be added to the system path. For example, append
c:\cygwin64\bin to the system path if cygwin is installed in c:\cygwin64.

4

Installation for computation with GPUs. If the user wants to benefit from
the parallel computation power of GPU codes, the NVIDIA’s CUDA Compiler
(NVCC) (https://developer.nvidia.com/cuda-downloads) are required. The par-
allel computation of GPU is currently only supported for Mac OS and Linux.
In addition, an additional installation step (see below) is required in order to
enable the GPU-based parallel computation.

• In a terminal, navigate to the ASSA-PBN folder and run make.

ASSA-PBN can be run either in command line or in a GUI.

4 Input Files

The newest ASSA-PBN supports definition of a PBN in a high level format,
which is easier for the user to define a PBN. See section 4.1 for more details.

ASSA-PBN version 1.0 accepts five types of input files, namely the PBN def-
inition file, the parameter definition file, and the property specification file. The
PBN definition file is used to store the PBN in ASSA-PBN format; the gener-
ation definition file is used to specify the parameters for randomly generating
a PBN; and the property specification file is used to specify an interested set
of states. In version 2.0, ASSA-PBN accepts another two input files to support
parameter estimation: the parameter specification file and the experiment data
file. The parameter specification file is used to specify the nodes indices whose
function selection probabilities are to be fitted and the experiment data file is
used to specify the lab experiment data.

4.1 PBN definition files

In version 1.0, ASSA-PBN uses a low level PBN definition file, in which PBNs
are specified with a list of numbers. In version 2.0, ASSA-PBN supports a high
level PBN definition format, which is much easier for users to define a PBN.
We will use an example to show the two different formats of the PBN definition
file. This example PBN contains 3 nodes. Node 1 has one Boolean function
and each of node 2 and 3 has two Boolean functions. The Boolean functions
and their selection probabilities are shown in Table 1. The corresponding truth
table is shown in Table 2. In addition, this PBN has a perturbation rate 0.001.

High level definition format. We describe this model using high level PBN
definition format as in Figure 2. In this file, a line starting with “//” indicates
a comment line. The high level definition format contains four parts. The
first part is the header, specifying the model type, the number of nodes and the
perturbation rate. ASSA-PBN supports seven kinds of update modes, including
synchronous, asynchronous ROG, asynchronous RMG, asynchronous RMG-RM,
asynchronous RMG-RO, asynchronous RMG-RO-RM, asynchronous AG-RO.
The details of the six asynchronous modes are explained as follows.

5

node name function probability

x0 f
(0)
1 = x0 ∨ x1 1

x1 f
(1)
1 = ¬x2 ∧ (x1 ∨ x0) 0.3

x1 f
(1)
2 = ¬x0 ∧ x1 ∧ x2 0.7

x2 f
(2)
1 = ¬x0 ∧ x1 0.4

x2 f
(2)
2 = x0 ∧ x1 ∧ ¬x2 0.6

Table 1: Boolean functions and their selection probabilities of a 3 nodes PBN

x2x1x0 f
(0)
1 f

(1)
1 f

(1)
2 f

(2)
1 f

(2)
2

000 0 0 0 0 0
001 1 1 0 0 0
010 1 1 0 1 0
011 1 1 0 0 1
100 0 0 0 0 0
101 1 0 0 0 0
110 1 0 1 1 0
111 1 0 0 0 0

c
(i)
j 1 0.3 0.7 0.4 0.6

Table 2: Truth table corresponding to the predictor functions in Table 1.

• For the ROG (a random selection of one gene) mode, at each time point
t (t ∈ N), one gene is randomly selected for state updating and the other
genes stay unchanged.

• For the RMG (a random selection of m genes with a fixed m) mode, at
each time point t (t ∈ N), m genes are randomly selected for state updating
and the states of other genes remain the same as the current states. In
this mode, m is a fixed value ranging from 1 to n.

• For the RMG-RM (a random selection of m genes with a random m) mode,
at each time point t (t ∈ N), m genes are randomly selected to be updated
and the states of the other genes keep their values. For this mode, the
only difference from RMG is that m is a random number ranging from 1
to n.

• For the RMG-RO (a random selection of m genes in a random order with
a fixedm) mode, at each time point t (t ∈ N), m genes are randomly chosen
for state updating and the state of each of these m genes will be updated
in a random order. The update of the next gene can be influenced by the
states of previously updated genes. And m is a fixed number ranging from
1 to n. For the other genes, their states remain the same as their current
values.

6

//The definition file always starts with the update modes:

//synchronous, rog, rmg, rmgrm, rmgro, rmgrorm, aro.

//For rmg and rmgro, m should be given as the following example:

//type=rmg m=2.

type=synchronous
//specify number of nodes

n=3
//specify perturbation rate

perturbation=0.001
//We list the names of all nodes one by one below.

//Each line specifies one node name.

//The order of the names determines their orders in ASSA-PBN.

//A node name can not start with a number.

//The following characters are not allowed for a node name:

//space, tab, ∗&!| ∧ / : ().
nodeNames
x0

x1

x2

endNodeNames
//If the PBN is a context−sensitive PBN, the contextDistribution

//section should be defined. See the example in Figure 3.

//=====================================

//We list the functions for each node one by one.

//Each line contains 1 Boolean function.

//It starts with a positive number denoting the selection

//probability. The double number is separated with the

//remaining part using ":". "0" is not allowed for probability.

//If the probabilities for a node do not sum up to 1, they will

//be normalised.

node x0

1.0 : x0|x1

endNode
node x1

0.3 : (!x2)&(x1|x0)
0.7 : (!x0)&x1&x2

endNode
node x2

0.4 : (!x0)&x1

0.6 : x0&x1&(!x2)
endNode
npNode
x0

endNpNode

Figure 2: The corresponding PBN high level definition file of the PBN shown
in Table 1.

• For the RMG-RO-RM (a random selection of m genes in a random order

7

//The definition file always starts with the update modes:

//synchronous, rog, rmg, rmgrm, rmgro, rmgrorm, aro.

//For rmg and rmgro, m should be given as the following example:

type=synchronous
//specify number of nodes

n=3
//specify perturbation rate

perturbation=0.001
//We list the names of all nodes one by one below.

//Each line specifies one node name.

nodeNames
x0

x1

x2

endNodeNames
//contextDistribution is used to define the selection probability for

//making the switch between different BNs

contextDistribution=0.1,0.2, 0.7
//We need switch to define the probability that a switch should be

//made at each simulation step

switch=0.001
//We list the functions for each node one by one.

//Each line contains 1 Boolean function.

//The function start with an integer denoting which BN this function

//belongs to. If a function is shared by several BNs, all the BN

//indices should be listed with comma as separator. The BN index

//starts with 0. The integer numbers is separated with the remaining

//part using ":".

node x0

0,1,2 : x0|x1

endNode
node x1

0,1 : (!x2)&(x1|x0)
2 : (!x0)&x1&x2

endNode
node x2

0,2 : (!x0)&x1

1 : x0&x1&(!x2)
endNode
npNode
x0

endNpNode

Figure 3: An example of context-sensitive PBN high level definition file (to be
finished.

with a random m) mode, at each time point t (t ∈ N), the state of ran-
domly chosen m genes will be updated in a random order. The updating
of the current gene has an impact on the update of the next gene. The

8

states of other genes remain unchanged. m is a random number ranging
from 1 to n.

• For the AG-RO (all genes in a random order) mode, at each time point t
(t ∈ N), the states of all genes are updated in a random order. One gene
will be randomly selected and updated until the updating runs through
all genes. The updating of the current gene has an impact on the update
of the next gene.

The format of the update modes are synchronous, rog, rmg, rmgrm, rmgro,
rmgrorm, agro. The second part is between nodeNames and endNodeNames. It
lists the names of all nodes one by one. The order of the names determines
the order of the nodes in ASSA-PBN. In ASSA-PBN, each node will be assigned
a unique non-negative integer as the ID of the node. The order of the nodes
in fact determines the ID of the nodes in ASSA-PBN. A node name can not
start with a number. The following characters are not allowed for a node name:
space, tab, ∗&!| ∧ / : (). The third part specifies the function and selection
probability details for all the nodes. The functions and selection probabilities
of each node are put between the keywords node and endNode. Each line is
specified in the format of “probability : function”. The probabilities of a node
will be normalised if they do not sum up to 1. The functions can be defined
using parenthesis and the four different logical operations, i.e., &, logical and;
|, logical or; !, logical not, and ∧, logical exclusive or. Note that the logical not
operation is required to be surrounded by a pair of parenthesis, e.g., (!x2).

ASSA-PBN allows constant functions. To define a constant true function,
one need to use the format “probability : TRUE” while to define a constant false
function, one need to use the format “probability : FALSE”. For example, if

the Boolean function for node x0 is changed to a constant function f
(0)
1 = true,

we would need to define node x0 as follow:
node x0
1.0 : TRUE
endNode

Please note that the following keywords (case-insensitive) are not allowed
for a node name.

ASSA-PBN keywords: node, true, false, type, synchronous, asyn-
chronous.

Low level definition format. Alternatively, ASSA-PBN accepts defining a
PBN using low level format. In the low level format, node names are removed
and only node IDs are left. Therefore, the node name x0, x1, x2 will be named as
0, 1, 2 in the definition file. The Boolean functions are converted to a sequence
of binary numbers, known as Boolean sequence, in the low level format. For

example, the first boolean function f
(0)
1 = x0 ∧ x1 is converted to 0 0 0 1. This

function is affected by node x0 and x1; so its parent nodes indices are 0 and
1. The parent nodes indices will be given after the Boolean sequences in the
definition file.

9

//The first line is the number of nodes in the PBN.

3

//The second line is optional. When the file is exported from

//Matlab, this code should be added.

source=Matlab

//The third line indicates the number of Boolean functions for each

//node.

1 2 2

//The fourth line indicates the number of variables for each Boolean

//function.

2 3 3 2 3

//Boolean functions are listed below. One function per line.

0 0 0 1

0 1 1 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 1 0

0 0 0 1 0 0 0 0

//Then variable (parent nodes) indices of the Boolean functions are

//then listed. One function per line.

0 1

0 1 2

0 1 2

0 1

0 1 2

//The selection probabilities for each Boolean function are listed.

//One node per line.

1

0.3 0.7

0.4 0.6

//perturbation rate. Please put 0 if there is no perturbation.

0.001

//If you want to disable the perturbation of certain nodes, please

//provide the node indices below.

0

Figure 4: The corresponding PBN low level definition file of the PBN shown in
Table 1.

The corresponding low level ASSA-PBN definition file of the above example
is shown in Figure 4. In the definition file, comments are indicated with //.
The comments can only be added at the beginning of a line. Note that the node
index starts from 0.

In addition, ASSA-PBN also supports definition files exported from the
Matlab-PBN-toolbox. In the downloaded package of this software, there is a
Matlab file named exportPBNtoASSA.m, which can be run in Matlab to export
a PBN model defined in the Matlab-PBN-toolbox to the ASSA-PBN format. For
example, a PBN model can be exported to a file named PBNfromMatlab.pbn by
running the following code in Matlab: exportPBNtoASSA(‘PBNfromMatlab.pbn’).

10

4.2 Parameter definition files

The parameter definition files are used to specify parameters for generating
random PBNs. See Section 6.1 for a detailed explanation.

4.3 Property specification files

The property specification file defines the set(s) of states whose steady-state
probability(ies) is(are) to be computed. A typical property specification file
contains three lines. The first line specifies how the nodes are refereed in the
file, i.e., refer=name means nodes are referred by their name, i.e., refer=ID
means nodes are referred by their ID. By default, we use ID to refer the nodes.
Therefore, refer=ID can be omitted. The second line specifies those nodes,
whose values should be 1 (active); while the third line specifies those nodes,
whose values should be 0 (inactive). The indices in the same line are separated
with a space. Figure 5a shows an example of a property specification file for
the PBN shown in Figure 2. It is specified using the node names. The last
line is -1, indicating that those inactive nodes are not relevant in this property.
This property file defines 4 states, i.e., 100, 101, 110, 111. Similar to the PBN
definition file, property specification files recognise a line starting with “//”
as comments. A same property can be specified using node IDs, as shown in
Figure 5b. In most cases, ASSA-PBN only requires an input of one set of states,
Starting from version 2.0.1, ASSA-PBN supports checking several properties at
the same time using the same trajectory. In this case, the property specification
file is required to define more than one set of states. See figure 5c for a property
specification file specifying two sets of states.

Note that when the PBN is defined in a low level definition format, it is
meaningless to define a property with the node names. Therefore, we use only
the IDs to define a property file.

refer=name

x0

-1

(a) The value of nodes x0 is
1 and those inactive nodes
are not relevant.

refer=ID

0

-1

(b) The value of the 0th
node is 1 and those inactive
nodes are not relevant.

refer=ID

0 2

1

1

-1

(c) Two properties in one
file.

Figure 5: Example of property specification files.

4.4 Parameter specification file

The parameter specification file defines the node indices to be estimated in the
parameter estimation run. It contains a node index in each line. Figure 6 shows
an example. It specifies two node indices, i.e., 80 and 91.

11

80

91

Figure 6: Example of the parameter specification file.

4.5 Experiment data file

The experiment data file specifies the lab experiment data which provide steady-
state probabilities of certain nodes and are used to perform parameter estima-
tion. In this file, comments are indicated by “//” at the beginning of a line.
The file should start with “pbnIndex=0” to indicate that the following contents
until the next appearance of “pbnIndex” are for the “0”th PBN. For each PBN,
several steady-state probabilities might be provided. Each steady-state proba-
bility point is specified with four lines. The first two lines define the measured
set of states in the same way as in property specification files. The third line
defines the measured data for the specified set of states and the last line defines
the weight of this data. It happened in the lab that different measured datas
were obtained when the same experiments were performed for a second time.
One can provide all the data information in the third line.w Figure 7 shows an
example of the experiment data file format. Four data steady-state probabilities
for 2 PBNs are specified in this file.

5 Running ASSA-PBN with GUI

ASSA-PBN provides both a graphical user interface (GUI) and a command line
interface. Both use the same underlying simulator. The latter is useful for
running large batches of jobs, leaving long-running steady-state analysis tasks
in the background. We demonstrate how to run ASSA-PBN in a GUI in this
section.

5.1 Starting the GUI of ASSA-PBN

Open a terminal and change the directory to the “bin” folder of ASSA-PBN, and
run the command “./xassa”. The main interface of ASSA-PBN will be launch,
as shown in Figure 8. The interface is divided into three parts: the menu at the
top, three panels in the middle and the status bar at the bottom. The panels
are used to display PBN information and running information, which will be
shown in the following examples.

5.2 Generating a random PBN

Typically, the first step to use ASSA-PBN is to load a PBN specified in ASSA-
PBN. This can be down by the generating operation or by the loading operation.
We first show here the steps to generate a random PBN. After launching the
GUI, select menu option “Model | Generate”. A window will pop up asking for

12

//define data point for the "0"th PBN

pbnindex=0

//states set 1

14

-1

//measurement for set

//multiple measurement values can be specified here

//seperated with blank

0.00 0.10 0.20

//weight for set 1

1

//states set 2

94

-1

//measurement for set 2

0.00 0.50 0.65

//weight for set 2

1

//define properties for the "1"th PBN

pbnIndex=1

//states set 1

14

-1

//measurement for set 1

0.63 0.61 0.62

//weight for set 1

1

//states set 2

95

-1

//measurement for set 2

1.00 0.95 0.90

//weight for set 2

1

Figure 7: Example of the parameter specification file.

details information of the model to be generated. Input the necessary parameter
values, e.g., the number of nodes and perturbation rate, and click “Generate!”,
a PBN is then generated. Information about the generated PBN is shown in
the top left panel. Except for defining parameters in the pop up window, the
parameters can also be specified in a parameter definition file. Figure 29 shows
an example of parameter definition file. To use the parameter definition file, click
“Generate from file” and select the parameter definition file. A PBN is then

13

Figure 8: Screenshot of the ASSA-PBN interface after launch.

generated. To save the generated PBN, select menu option “Model | Export”.
The PBN can then be saved in ASSA-PBN format or in Matlab format.

5.3 Defining and Loading a PBN

Figure 9: Screenshot of loading a PBN in ASSA-PBN.

As explained in section 4.1, ASSA-PBN provides two ways to define a PBN.
We now show how to load the PBN in Figure 2. We save the PBN in a text file
named dummy.pbn. Select the menu option “Model | Load”, and then select the
file “dummy.pbn” and click “Open”. The PBN is then loaded into ASSA-PBN

14

as shown in Figure 9. The general information of the loaded PBN, e.g., the
number of nodes, the network density, the perturbation rate, and the function
details, is shown in the top left panel. The function details are shown as a
tree structure in the panel. When a predictor function is selected, the function
details will be shown in the bottom panel. The top right panel is used to show
all the running information. In this case, the loading operation information
is displayed. As mentioned in Section 4.1, ASSA-PBN supports two types of
definition file. The demonstration of PBNs defined using the the two types
format is slightly different in the GUI. When loading a PBN with high level
PBN definition format, the node name is shown and functions are shown as
expressions on the top left panel; while in the case of a low level PBN definition
format, the node ID is shown and functions are shown as indices on the top left
panel.

5.4 Converting a PBN from Matlab

ASSA-PBN provides a simple way to define a PBN. Alternatively, it provides a
Matlab function to convert a PBN defined in optPBN Matlab toolbox to ASSA-
PBN format. We demonstrate here how to convert a PBN defined in optPBN
Matlab toolbox to ASSA-PBN format and load it into ASSA-PBN. The apoptosis
network [8] is saved as file “apoptosis.mat” in the example folder of the down-
loaded package. Load it in Matlab using the command “load(‘apoptosis.mat’)”
and then run “exportPBNtoASSA(‘apoptosis.pbn’)”. With these two com-
mands, the apoptosis network is converted into ASSA-PBN format and saved in
a file named “apoptosis.pbn”.

5.5 Simulate a PBN

After loading a PBN model, select the menu option “Tools | Simulate”, a window
as shown in Figure 10 will pop up. We set the length to 20, leave the initial
state blank, check the checkbox for showing simulation graph and click the
start button. The simulation process will then be launched and the result will
be output in the top right panel. By default, the update mode is the one defined
in the definition file. User can change it by choosing one listed below update
mode. The graph view of the simulation process will be shown in a separate
window as shown in Figure 11.

5.6 Computing steady-state probabilities

One major function offered by ASSA-PBN is computing steady-state probabili-
ties of a PBN. ASSA-PBN provides two numerical methods and three statistical
methods to perform this task. We demonstrate how to use the two-state Markov
chain approach to compute steady-state probabilities of the previously loaded
apoptosis network. Select the menu option “Analyse | Steady State Probability
| Statistical | Two State Markov Chain”. A window as shown in Figure 12a

15

Figure 10: Screenshot of graph display in ASSA-PBN.

Figure 11: Screenshot of graph display in ASSA-PBN.

pops up. This pop-up window asks for 7 parameters. The precision and confi-
dence level is used to define how precise the computed result should be. We set
precision and confidence level to 0.002 and 0.95 respectively. The “GlobalAlias”
defines how the alias table should be stored [4]. Checking this box could poten-
tially increase the speed of the two-state Markov chain approach at the cost of

16

(a) launch the two-state MC approach (b) create a property

Figure 12: Interfaces of the two-state MC approach.

consuming more memory. “Properties” defines the set of states whose steady-
state probabilities are to be computed. It can be assigned either by clicking
the three dots button, which will lead to a file selection window; or by clicking
the “Set properties” button, which will lead to a window for assigning activated
and deactivated nodes as shown in Figure 12b. We click the“Create” button
and save the property in a file named “dummy property.txt”. The four radio
selections are used to specify how the simulation should be performed. It can
be either in a sequential way, or three different parallel ways. The parallel ways
use different techniques to gain speedup: the CPU-based parallel makes use of
multiple CPU cores; the GPU-based parallel uses multiple GPU cores and the
structure parallel makes use of memory to gain speedup []. If the CPU-based
parallel is selected, the gray text filed box “# cores” will become available and
the text field be filled with the available number of cores in the current ma-
chine. In this demonstration, we perform the computation twice, first with the
“Parallel” checkbox unchecked and then with it checked and “# of cores” set to
2. The main information, i.e., the extending times, the sample size, the proba-
bility, and the time cost of the computation, is shown in the top right panel of
ASSA-PBN main interface, as shown in Figure 13. Clearly, the parallel version
two-state Markov chain approach reduced the time cost from approximately
5.29s to 2.71s. More detailed information about this run can be seen by clicking
the “File View” tab.

5.7 Long-run influence analyses

We demonstrate in this section how to perform long-run influence analyses of
a PBN. For the formal definition of long-run influence, we refer to Section2.2
of [5]. We use the apoptosis network named as “apoptosis.pbn” in the folder
“examples” of the downloaded software package. After loading the model, select

17

Figure 13: Screenshot of computing with the two-state MC approach.

(a) launch the long-run influence anal-
ysis

(b) launch the long-run sensitivity
analysis

Figure 14: Interfaces of long-run analyses.

the menu option “Analyse | Long-run influence”. The sub menu for selecting
either gene level influence or function level influence is shown. We choose the
gene level. A window as shown in Figure 14a pops up, asking for 5 parameters
before the start of the analysis. The first two parameters, i.e., target node and
parent node specify the nodes information to be analysed while the other three
parameters, i.e., the method, the precision and the confidence level, specify the
parameters for computing steady-state probabilities, which are required for the
long-run influence analysis. Assuming we want to analyse the long-run influence
of complex1 (node 26) on complex2 (node 91), we select 91 as the target node
and 26 as the parent node. We keep the other parameters as default values and
click “compute”. The result of this analysis is then shown in the top right panel,
as shown in Figure 15a. The computed influence is approximately 1.00, which
means complex1 has a very strong influence on complex2 in the long-run.

5.8 Long-run sensitivity analyses

We continue to show the long-run sensitivity analysis of the dummy network.
Click “Analyse”, and move the cursor to “Long-run sensitivity”. There are two

18

(a) Result of the long-run influence
analysis

(b) Result of the long-run sensitivity
analysis

Figure 15: Interfaces of long-run analyses.

choices in the sub menu, i.e., “Node / Function” and “w.r.t. Perturbation”.
The first choice corresponds to computing the sensitivity of a specific gene or
function while the second choice corresponds to computing the sensitivity of
a gene with respect to one-bit function perturbations or selection probability
perturbations.

Long run sensitivity of a node. We demonstrate first how to compute the
long-run sensitivity of node x1. Select “Node / Function” to get the pop-up
window for inputting parameters as shown in Figure 14b. There are 5 param-
eters in the pop-up window. We select x1 as the target node. Since we want
to analyse the sensitivity for the node, we use the default value, i.e., All (Node
sensitivity) for the target function. The other three parameters specifies the
parameters for computing steady-state probabilities and we use the default val-
ues. After clicking the compute button, the result will be shown in the top right
panel, as shown in Figure 15b. The result contains the influence to node x1
from its three parent nodes, i.e., node x0, x1 and x2.

Long run sensitivity of a node w. r. t. one-bit function perturbation.
One-bit function perturbation refers to perturb by changing only one bit in the
truth table [6]. We now show how to perturb the first Boolean function of x0
and compute the long-run sensitivity of x0 with respect to this one-bit function
perturbation. Select the menu option “Analyse | Long-run sensitivity | w.r.t.
perturbation | one-bit Function Perturbation”. In the pop-up window, put 0 in
the top text field since the node ID of x0 is 0. Select node x0 and function 0 in
the perturbation function area. The function details of this selected function,
i.e., the 0th function of node x0 will be shown in the table on the right part of
the window. We double click on the first row of the table to change its value
from false to true. See Figure 16 for demonstration. We keep other parameters
as default ones. After clicking the compute button, we get the result in the top
right panel. Figure 18 (first three lines) shows a screenshot of the result.

Long run sensitivity of a node w. r. t. selection probability per-
turbation. The long run sensitivity analysis can also be applied to a node
with respect to the selection probability perturbation. We show how to perturb
the selection probability of the functions of node x1 and analyse the long-run
sensitivity of node x0 with respect to this selection probability perturbation.

19

Figure 16: Interface of the long-run sensitivity w.r.t. one-bit function pertur-
bation.

Figure 17: Interface of the long-run sensitivity w.r.t. selection probability per-
turbation.

Select the menu option “Analyse | Long-run sensitivity | w.r.t. perturbation |
Probability Perturbation”. In the pop-up window, put 1 in the top text field
since the node ID of x1 is 1. Select node x1 in the drop down list and the selec-
tion probabilities of x1’s functions will be shown in the table in the right side of
the window. We edit the selection probabilities of the first function, i.e., f0, to
0.35. After pressing the enter button, the selection probability will be changed.
Meanwhile, the selection probability of the other function, i.e., f1, is changed in
accordance since they have to sum up to 1. See Figure 17 for demonstration.
We keep other parameters as default ones and click the compute button. The
result will be shown in the top right panel of the main window as shown in the

20

last three lines of Figure 18.

Figure 18: Screenshot of the long-run sensitivity w.r.t. perturbation.

5.9 Parameter estimation for instantaneously random PBNs

We distinguish parameter estimation for two types of PBNs: instantaneously
random and context-sensitive. In this section, we demonstrate how to perform
parameter estimation for the instantaneously random PBNs. In terms of pa-
rameter estimation of a PBN, we are interested in estimating the selection prob-
abilities of the Boolean functions of certain nodes. To reach this goal, we first
perform experiments in the lab and measure the steady-state probabilities of
interested nodes in different conditions, e.g., wild type and mutants. Each con-
dition corresponds to one PBN. We then use parameter estimation techniques
to find the optimal parameters which make the PBNs fit the lab experiment
data best. To perform parameter estimation in ASSA-PBN, we need to specify
the different PBN models under different conditions, the nodes whose selection
probabilities are to be estimated, and the lab experiment data. Those infor-
mation are required to be stored in specification files. We use the specification
files in the folder “examples/PE” of the downloaded package to demonstrate
parameter estimation of the apoptosis network.

Select menu option “Analyse | Parameter Estimation” to launch the pa-
rameter estimation window as shown in Figure 22. Click the “Add PBN files”
button and add files “PBN 96 * 1.pbn” in the “examples/PE” folder. Then
click the first three dots button and select the file “PBN 96 parameters.txt” to
assign nodes to be fitted. Click the second three dots button and select the file
“PBN 96 properties 6.txt” to assign experiment data. The parameter estima-
tion method drop down list provides the available parameter estimation meth-
ods. There are two methods available currently: the particle swarm method and
the differential evolution method. If “Start from random points.” is checked,
the parameter estimation will start iteration from randomly generated param-
eters. Otherwise, it will use the parameters specified in the first PBN (usually
all the PBNs should have the same parameter values for the same node). The
“Adaptive update particle” is specially used for the particle swarm method. If it
is checked, the particle swarm method will use the adaptive update method for
calculating the next position. See [1] for more details about the adaptive update
method. If “Allow parallel evaluation?” is checked, the parameter estimation
method will be run in parallel, which means in each iteration, x particles will
be evaluated in parallel, where x is determined by the number of cores. If “Plot
fitted versus measured value” is checked, the parameter estimation result will

21

Figure 19: Interface of parameter estimation.

Figure 20: Screenshot of parameter estimation output.

22

be plotted out at the end of the computation. The last three parameters have
the same meaning as shown previously. After setting all the parameters and
clicking the “Compute” button, the parameter estimation is launched and the
result is shown in the top right panel. The result includes detailed information
of each iteration and the final estimated parameter values. A screenshot of the
result is shown in Figure 23. In addition, a heat map plot of the results pops up
as shown in Figure 21. The heat map is composed of columns (corresponding to

Figure 21: Screenshot of parameter estimation output.

the mutants of the PBN) and rows (corresponding to the measured steady-state
probabilities). In our example, there are 6 columns and 3 rows (not including
the headers). The value in each cell reflects the quality of the fitness for the
corresponding observable of the mutant model. For example, the value in the
cell of observable 3 and model 5 is 30.15% and it reflects that the fitness to
observable 3 of the PBN (used in experiment 5) is very poor since the cell is
flagged as dark and the value is the highest.

5.10 Parameter estimation for context-sensitive PBNs

When performing parameter estimation of a CPBN, we are interested in es-
timating the switching probabilities of the contexts of the PBN. To reach this
goal, we first perform experiments in the lab and measure the steady-state prob-
abilities of interested nodes in different conditions, e.g., wild type and mutants.
Each condition corresponds to one PBN. We then use parameter estimation
techniques to find the optimal parameters which make the PBNs fit the lab ex-
perimental data best. To perform parameter estimation in ASSA-PBN, we need
to specify the different PBN models under different conditions, and the lab ex-
perimental data. Those information are required to be stored in specification
files. We use the specification files in the folder ‘examples’ of the downloaded
package to demonstrate parameter estimation.

To perform parameter estimation, select menu option ‘Analyse | Parame-
ter Estimation’ to launch the parameter estimation window as shown in Fig-
ure 22. Click ‘Add PBN files’ button to add files ‘example-context-sensitive-
highlevel.pbn’ and ‘example-context-sensitive-highlevel 2.pbn’ in the ‘examples’

23

Figure 22: Interface of parameter estimation.

Figure 23: Screenshot of parameter estimation output.

folder. Then click the second three dots button and select the file ‘context-
sensitive-highlevel properties.txt’ to assign experimental data. We do not as-
sign nodes to be fitted. This option is only valid for instantaneously random
PBNs. The format of experimental data file is explained in details in the user
guide. The parameter estimation method drop down list provides the available
parameter estimation methods. Currently only particle swarm method is avail-
able. The following four parameters are related to the particle swarm method.
We set them as shown in Figure 22. If ‘Allow parallel evaluation?’ is checked,
the particle swarm method will be run in parallel, which means that in each
iteration, n particles will be evaluated in parallel, where n is determined by the

24

number of cores. We refer to the user guide for the remaining 5 parameters.
After setting all the parameters and clicking the ‘Compute’ button, the param-
eter estimation is launched and the result is shown in the top-right panel. The
result includes detailed information of each iteration and the final estimated
parameter values. A screenshot of the result is shown in Figure 23.

5.11 One-parameter profile likelihood

The one-parameter profile likelihood analysis [7] is used to check whether a
parameter can be identified or not. The idea of one-parameter profile likelihood
analysis is that a series of the values are assigned to the parameter and for each
of the assigned value, parameter estimation for other parameters is performed
to minimize the cost function. After the last assigned value has been processed,
the software plot out the estimated differences for all the assigned values. The
estimated difference is calculated as Σn

i=0(Σm
j=0(xij − x̄ij)

2), where n is the
number of mutants, m is the number of measured data for each mutant, xij is
the estimated steady-state probability for the jth data point of mutant i and x̄ij
is its corresponding lab-measured data. If the plotted cost function values do
not change much with the changing of the assigned value of the parameter, then
the parameter is considered as identifiable. Usually, the one-parameter profile
likelihood analysis requires a series of PBN models as the case of parameter
estimation. The PBN models are composed of different mutants. To perform
this analysis, one need to first select one mutant and load it to ASSA-PBN. After
loading the model, the menu item “Analyse | one-parameter profile likelihood”
becomes available. Select the menu item and a window as shown in Figure 24
will pop up. This pop up window shares a lot of contents with the window for
parameter estimation. In fact, only the following three items are different from
the parameter estimation pop-up window: 1) select node for identifiability: this
item is used to assign the node for one-parameter profile likelihood; 2) select
function: when the node for one-parameter profile likelihood is selected, the
corresponding functions will shown up in this choice box and one can then
select the function to be identified here; 3) step length: the step length should
be a value between 0 and 1; it determines the number of values to assign for the
selected paramter (function).

In this example, we still use the 6 PBN files in the “PE” folder as for paramter
estimation. We use the file “PBN 96 parameters identifiability.txt” to assign
nodes to be fitted, the file “PBN 96 properties 6.txt” to assign experiment data.
The rest parameters are kept as in Figure 24. Clicking the button “Compute”
and then the computation will start. At the end of the computation, a plot
shown as figure 25 will pop up. In this plot, the cost value varies with the
changing of the parameter values and sometimes vaires a lot. Therefore, we can
conclude that this parameter is identifiable and its value should be around its
original value 0.079. The computation might be time expensive since parameter
estimation is performed for each of the assigned parameter values.

25

Figure 24: Screenshot of one-parameter profile likelihood window.

Figure 25: Screenshot of one-parameter profile likelihood analysis plot window.

5.12 Detecting attractors

Attractor detection can be performed for a context-sensitive PBN or a BN. After
loading a model, select “Analyse | Attractor Detection”. A pop-up window will
then show up to ask for parameters used in the detection (see Figure 26). There
are three methods for detecting attractors: one non-decomposition method and
two decomposition method. The default one is non-decomposition method. If

26

Figure 26: Screenshot of the starting window of attractor detection.

a model is small (the number of node is smaller than 20), the default one is
usually enough. If a model is big, the default method may be very slow and
one of the decomposition methods is needed. We recommend the decomposi-
tion method 2 for most of the cases. The decomposition method 1 refers to the
technique mentioned in [10] and the decomposition method 2 refers to the tech-
nique mentioned in [3]. Note that if the loaded PBN must be in synchronous or
asynchronous ROG mode and it can only be either a context-sensitive PBN or
a BN. Otherwise, the “Detect” button will become grey.

5.13 Cancelling a running job

It happens that the user wants to cancel a running job. This can be done by
clicking the “Cancel” button close to the status label at the left bottom part of
the interface. See Figure 27 for the screenshot of the cancel button.

Figure 27: Screenshot of cancel button.

6 Running ASSA-PBN with Command Line

Below is a list of commands for ASSA-PBN. A command is indicated by a word
started with “-” and there might be several words starting with “-” in one
command, e.g., the 7th command may contain “-ts”, “-epsilon” and “-log”.

A. -ge <number of node> <perturbation rate> <export file name>
<export type> [<max function number> <min function number>
<max parents node> <min parents node>]
Generate a random PBN and export it to a file in the ASSA-PBN format
or the Matlab format.
number of node: The number of nodes in the to be generated PBN.
perturbation rate: The perturbation rate in the to be generated PBN.

27

export file name: The name of the file to store the to be generated
PBN.
export type: The exported type can be either 0, meaning the ASSA-
PBN format, or 1, meaning the Matlab format (we call it Matlab format
for short).
max function number: The maximal number of predictor functions one
node can have.
min function number: The minimal number of predictor functions one
node can have.
max parents node: The maximal number of parent nodes one predictor
function can have.
min parents node: The minimal number of parent nodes one predictor
function can have.

B. -gef <parameter file name> <export file name> <export type>
Generate a PBN with parameters given in a file and export it to a file.
parameter file name: The name of the file that stores the parameters.
export file name: The name of the file to store the generated PBN.
export type: The exported type can be 0, meaning the ASSA-PBN for-
mat, or 1, meaning the Matlab format.

C. -io <import file name> <isMatlab> <export file name> <export
type>
Load a PBN from a file and export it to a file in the ASSA-PBN format
or the Matlab format.
import file name: The name of the file that stores the PBN to be im-
ported.
isMatlab: True if the model is exported from Matlab-PBN-toolbox and
false otherwise. The value is false by default.
export file name: The name of the file to store the generated PBN.
export type: The exported type can be 0, meaning the ASSA-PBN for-
mat, or 1, meaning the Matlab format.

D. -gauss <model file name> [isMatlab] <property file name> [<
precision> <max iteration>]
Perform the Gauss-Seidel method.
model file name: The name of the file that stores the PBN.
isMatlab: True if the model is exported from Matlab-PBN-toolbox and
false otherwise. The value is false by default.
property file name: The name of the property specification file.
precision: The accuracy precision of the Gauss-Seidel method. By de-
fault, the precision is 10−6. This parameter must be used together with
the parameter max iteration.
max iteration: The maximal allowed iteration number. If the result is

28

not got within the maximal iteration number, the program will be stopped.
By default, the max iteration number is 10,000. This parameter must be
used together with the parameter precision.

E. -jacobi <model file name> [isMatlab] <property file name> [<
precision> <max iteration>]
Perform the Jacobi method.
The meanings of the parameters are the same as those in the -gauss

command.

F. -ps <model file name> [isMatlab] <precision> <confidence
level> <property file name> [-log <log file name>] [useCost]

Perform the perfect simulation approach.
model file name: The name of the file that stores the PBN.
isMatlab: True if the model is exported from Matlab-PBN-toolbox and
false otherwise. The value is false by default.
precision: The precision accuracy of the computed probability.
confidence level: The confidence level of the computed probability.
property file name: The name of the property specification file.
-log <log file name>: This option allows the user to store the log in
a specified file. If not specified, the log file name will be decided by the
software itself.
useCost: This option allows the user to turn on the cost function mode.
In the cost function mode, each state is assigned with a cost value based
on the property specification file. As long as the costs couple, the states
are considered coupled.

G. -ts <model file name> [isMatlab] <precision> <confidence
level> [-epsilon <epsilon>] <property file name> [-log <log
file name>] [useGlobalAlias]

Perform the two-state Markov chain approach.
-epsilon <epsilon>: This option allows the user to change the value
of ε used in the two-state Markov chain approach. By default, the value
of ε is 10−10. For example, -epsilon 10−12 can change the value of ε to
10−12.
useGlobalAlias: The ASSA-PBN simulator can operate in two modes:
1) the global alias mode and 2) the local alias mode. By default, ASSA-
PBN will use the global alias mode if there are enough memory. This
option allows to change it to the local alias mode. To make this change,
add false at the end of the command line. In the global mode, a joint
probability distribution is considered on all possible combinations of pre-
dictor function selections for all the nodes and a single alias table for this
distribution is constructed. In the local mode, the independence of the
PBN is exploited: individual alias tables are constructed for each node
of the PBN. In both cases the consecutive state is generated by updating
the value of each node with the predictor function selected for this node.

29

However, in the global mode predictor functions for all nodes are selected
simultaneously with the use of only two random numbers, while in the
local mode the number of random numbers used is twice the number of
nodes. In consequence, the generation of the next state is faster in the
global mode, but more expensive in terms of memory usage. For large
networks, the local mode is always recommended.
The meanings of the rest parameters are the same as in the -ps command.

H. -tspa <model file name> [isMatlab] <precision> <confidence

level> [-epsilon <epsilon>] <property file name> [-log <log

file name>] <number of chains>

Perform the multi CPU cores parallel two-state Markov chain approach. If
the model file is exported from Matlab, please add true after the model file
name. If you want the simulator to use global alias table for simulation,
please add true at the end of the command.
number of chains: define how many chains (trajectories) are used in the
parallel run. For more details about the meaning of the number of chains,
please refer to the Gelman & Rubin method in [2].
The meanings of the rest parameters are the same as in the -ts command.

I. -tspam <model file name> [isMatlab] <precision> <confidence

level> [-epsilon <epsilon>] <property file name> [-log <log

file name>] <number of chains>

Perform the multi CPU cores parallel two-state Markov chain approach
for checking multiple properties at the same time. If the model file is
exported from Matlab, please add true after the model file name. If you
want the simulator to use global alias table for simulation, please add true
at the end of the command.
This command allows to check several properties using the same trajectory
and therefore saving the simulation time.
The meanings of the parameters are the same as in the -ts command.

J. -tsOpt <model file name> <precision> <confidence

level> [-epsilon <epsilon>] <property file name> [-log <log

file name>] [-m <number of chains>] [-maxe <maximum # combined

predictor function>] [-maxc <maximum # combined predictor function

per group>] [-sizeone <maximum # of nodes in a group for nodes

with only one Boolean function>] [-psize <maximum # nodes in a

group for perturbations>]

Perform the two-state Markov chain approach based on structure-based
simulation method. -m <number of chains>: structure-based two-state
Markov chain approach simulates multiple chains as in the -tspa com-
mand. This parameter specifies how many chains will be used. The de-
fault value is 20.
-maxe <maximum # combined predictor function>: this parameter spec-
ifies the maximum number of combined predictor function used for group-
ing. This parameter is restricted by the memory size. The default value

30

is 12,288.
-maxc <maximum # combined predictor function per group>: this func-
tion specifies the maximum number of combined predictor function per
group. The default value is 1000. A small value of this could lead to more
groups but faster preparation time of the structure-based method.
-sizeone <maximum # of nodes in a group for nodes with only one

Boolean function>: this parameter is used for grouping nodes with only
one Boolean function. It specifies the maximum number of nodes in such
a group. The default value is 9.
-psize <maximum # nodes in a group for perturbations>: the max-
imum number of nodes in a group for perturbations. The default value is
16.
The meanings of the rest parameters are the same as in the -ts command.

K. -skart <model file name> [isMatlab] <precision> <confidence
level> <property file name> [-log <log file name>]
[useGlobalAlias]

Perform the Skart method. To simulate as fast as possible, the sim-
ulated trajectory generated with this command has a maximal length
of 231(2, 147, 483, 648). In case of bigger trajectory size, please use the
-skartfull command.
The meanings of parameters are the same as that in the -ts command.

L. -skartfull <model file name> [isMatlab] <precision> <
confidence level> <property file name> [-log <log file name

>] [useGlobalAlias]

Perform the Skart method. This command is needed for those cases that
the -skart command cannot handle. This command can handle huge
trajectory size without the maximal length limit, but the computation
time is slower than that of the -skart command.
The meanings of the parameters are the same as those in the -skart

command.

M. -skartpa <model file name> [isMatlab] <precision> <
confidence level> <property file name> [-log <log file name

>] [useGlobalAlias]

Perform the multi CPU core parallel Skart approach. If the model file is
exported from Matlab, please add true after the model file name. If you
want the simulator to use global alias table for simulation, please add true
at the end of the command.
The meanings of the parameters are the same as those in the -tspa com-
mand.

N. -pe <-pbns # model files, model file names separated with space>
<-parameter parameter file name> <-property experiment data file

name> <-precision precision> <-confidence confidence level>
<-sMethod statistical method> [-parallel] [-m <number of parallel

31

unit>] <-evaluateMethod evaluation method> [-sp <starting point>]
<-numParticle number particles> <-numIteration number iterations>
[-stop <stop threshold>] [-adaptive] [-peMethod <parameter estimation

method>]
Perform parameter estimation.
-pbns: This parameter specifies the number of model file names and all
the file names used in this run. The file names should be seperated with
blank.
-parameter: This parameter is used to specify the file which stores the
information of parameters to be estimated.
-property: This parameter specifies the file that stores the lab experi-
ment data.
-precision: This option together with -confidence specifies the preci-
sion and confidence level used in the statistical method to compute the
steady-state probabilities during the parameter estimation process.
-sMethod: This parameter accepts four values. 0 means the two-state
Markov chain approach; 1 means the parallel version two-state Markov
chain approach; 2 means the parallel version two-state Markov chain ap-
proach for checking multiple properties at the same time; 3 means the
two-state Markov chain approach for checking multiple properties at the
same time.
-parallel: When this parameter is provided, the evaluation of particles
is in parallel. Otherwise, the evaluation is performed sequentially.
-m <number of parallel unit>: This parameter should be used to-
gether with the -sMethod option and the -parallel option. If -sMethod
is given value 2, the number of parallel unit means the number of chains
used in the parallel version two-state Markov chain approach; if statisti-
cal method is 3 and the -parallel opiton is given, the number of parallel
unit means the number of parallel evaluations used in the particle swam
algorithm. Other combinations does not gain speed up.
-evaluationMethod: This parameter specifies the evaluation method for
calculating the cost function. Currently, it accepts only 1 value: value 0,
meaning the particle swarm algorithm; value 1, meaning the differential
evolution method.
-sp <starting point>: This option specifies the initial values of the pa-
rameters (selection probability) to be estimated. It accepts two values. 0
means random starting point; 1 means starting from the values defined in
the first PBN.
-numParticle: This parameter specifies the number of particles in the
particle swarm method or the number of agents in the differential evolu-
tion method.
-numIteration: This parameter specifies the maximum number of itera-
tions the parameter estimation round.
-stop <stop threshold>: This parameter specifies the stop threshold
of the parameter estiamtion method. Once the cost function reach the
threshold, the particle swarm algorithm will be stopped.

32

-adaptive: This is used only for the particle swarm method. When this
parameter is set, update each particle in an adaptive way. -peMethod:
This option is used to specify the parameter estimation method. Cur-
rently, there are two options: 0, meaning the particle swarm method; 1,
meaning the differential evolution method.

O. -sim <model file name> [isMatlab] <output file name> <simulation
steps> [-initial initialState] [-updateMode updateMode] [-m m]

Simulate the PBN defined in model file name with the steps specified
with simulation steps and output the simulated trajectory into the
given file output file name. m represents the number of nodes to be up-
dated and is only meaningful for asynchronous rmg and asynchronous mro.
By default, the update mode is the one defined in the model definition file
and m is 0. The format of the update modes are synchronous, rog, rmg,
rrmg, mro, rmro, aro.

P. -infN <model file name> <source node index> <target node index>
[-sm <statistical method >] [precision] [confidence level]

Perform the influence analysis of the source node on the target node.
model file name: This option specifies the PBN file.
source node index: This option specifies the node that the influence is
from.
target node index: This option specifies the node that the influence is
on.
-sm <statistical method>: This option allows to select the statistical
methods used for computing steady-state probabilities. The values it ac-
cepts are the same as in the previous one. By default, the value is set to 3,
which means the two-state Markov chain approach for checking multiple
properties at the same time.
precision: This option together with confidence level specifies the
precision and confidence level used in the statistical method to compute
the steady-state probabilities. By default, the precision is set to 0.01 and
the confidence level is set to 0.95.

Q. -infF <model file name> <source node index> <target node index>
<target function index> [-sm <statistical method >] [precision]

[confidence level]

Perform the influence analysis of the source node on the target function.
The parameters are similar to those in the -infN option. The extra pa-
rameter <target function index> specifies the function index of the target
node.

R. -senN <model file name> <target node index> [-sm <statistical
method >] [precision] [confidence level]

Compute the sensitivity of the target node. The parameters have similar
meanings as in the -infN option.

33

S. -senF <model file name> <target node index> <target function

index> [-sm <statistical method >] [precision] [confidence level]

Compute the sensitivity of the target function. The parameters have sim-
ilar meanings as in the -infF option.

T. -senP <model file name> <perturbed model file name> [-sm <statistical
method>] [-p <precision> <confidence level>] <list of node indices

separated with blank>
compute the long-run sensitivity with respect to 1-bit function/selection
probability perturbations.

U. -v

Show version information.

V. -h

Show help information.

Note that the input and output files used in ASSA-PBN cannot be named as
“true” or “false” (case insensitive).

ASSA-PBN is launched with default settings of the Java virtual machine
(JVM). It also supports to change the Java heap size of the JVM when launching
the program. This can be done by adding the standard Java command at the
beginning of ASSA-PBN command line. It supports the following three options
and allows them to be used at the same time. See Section 6.9 for examples.

• -Xms〈size〉 set initial Java heap size

• -Xmx〈size〉 set maximal Java heap size

• -Xss〈size〉 set Java thread stack size

All the example files used in this section can be found in the folder “exam-
ples” in the downloaded package.

6.1 Generating a PBN

We give an example in figure 28 to show how to generate a random PBN by
providing parameters directly in the command line. The example generates a
PBN with 8 nodes, which has a maximum of 8 predictor functions for each node
and a maximum of 7 parent nodes for each function, and we store it to a file
named PBN-test1.pbn. This can be easily done with the following command
line: "assa -ge 8 0.01 PBN-test1.pbn 0 8 1 7 1", where the first number
8 indicates the number of nodes in the PBN, 0.01 denotes the perturbation
rate, PBN-test1.pbn is the file name to store the generated PBN, the number 0
denotes the exported type is in the ASSA-PBN format, the two numbers 8 and
1 define the possible maximum and minimum predictor functions of each node,
and the last two numbers define the possible maximum and minimum numbers
of parent nodes of the predictor functions. ASSA-PBN will choose for each node
a random number between 1 and 8 as the number of predictor functions and

34

for each predictor function a random number between 1 and 7 as the number of
parents nodes. Since a node has to have at least one predictor function and a
predictor function has to have at least one parent node, their minimum values
are given as 1 in case there is no explicit requirements on the minimum values.
The number 0 in the command line refers to the ASSA-PBN format. It’s also
possible to use number 1, which means the Matlab format. The density D in
the output information is computed with the following formula:

D = 1
n

NF∑
i=1

ω(i),

where n is the number of nodes in the PBN, NF is the total number of functions
in the PBN, ω(i) is the number of parents node for the ith function.

./assa -ge 8 0.01 PBN-test1.pbn 0 8 1 7 1

One 8 nodes PBN is generated. Its density is 19.0.

The 8 nodes PBN is exported to file PBN-test1.pbn in ASSA-PBN
format.

Figure 28: Output of generating a random PBN by providing parameters in
command line.

It’s also possible to generate a random PBN by providing parameters in a file.
The file defining parameters should contain four lines to provide the number of
nodes, the number of predictor functions for each node, the number of variables
for each Boolean function and the perturbation rate. We show in Figure 29 an
example of parameter definition file and in Figure 30 how to generate a random
PBN using this parameter file.

//number of nodes

3

//number of functions for each node

1 2 2

//number of parent nodes for each function

2 1 1 2 1

//perturbation rate

0.01

Figure 29: Example of parameter definition file.

6.2 Converting a PBN from Matlab-PBN-toolbox format
to ASSA-PBN format

For the convenience of the user, we design the function for converting models
which have already been defined in the Matlab-PBN-toolbox [8] to the ASSA-
PBN format. As described in 4.1, defining a PBN model in ASSA-PBN is not

35

./assa -gef parameters.txt PBNFromParameter.m 1

One 3 nodes PBN is generated. Its density is

2.3333333333333335.

The 3 nodes PBN is exported to file PBNFromParameter.m in

Matlab format.

Figure 30: Output of generating a random PBN by providing parameters in a
file.

a difficult task; therefore, we recommend to define the model directly in the
ASSA-PBN format if it’s not defined in Matlab-PBN-toolbox. We use the file
PBNFromParameter.m generated in Section 6.1 to define a PBN in Matlab-PBN-
toolbox. To export the PBN model, one needs to copy the exportPBNtoASSA.m

file to the working directory of Matlab and run the command as shown in
Figure 31. A PBN definition file named exportedFromMatlab.pbn will be gen-
erated and it can be analysed with ASSA-PBN.

exportPBNtoASSA(‘exportedFromMatlab.pbn’)

Figure 31: Exporting a PBN from Matlab-PBN-toolbox.

6.3 Loading a PBN and exporting it to a file

We will load the file exportedFromMatlab.pbn generated in Section 6.2 and
export it to a file named exportedFromASSA.m. See Figure 32 for the input
and output for running this command in ASSA-PBN. Theoretically, the con-
tent of the exported file exportedFromASSA.m should be the same as that of
PBNFromParameter.m since exportedFromASSA.m is got by two converting op-
erations from PBNFromParameter.m. We observed a slight difference in the cij
values. This difference is due to that the precision used in the tool ASSA-PBN is
smaller than that in Matlab. After loading the model to Matlab, the difference
will disappear.

./assa -io exportedFromMatlab.pbn true exportedFromASSA.m 1

Start loading model...

Finish loading model. Time cost: 0.001635s.

Start exporting model...

The 3 nodes PBN is exported to file exportedFromASSA.m in

Matlab format.

Figure 32: Loading a PBN and exporting it to a file.

36

6.4 Simulate a PBN

We demonstrate how to simulate a PBN stored in the file “examples/PE/PBN 96 1 1.pbn”
for 20 steps and export the result to file “simout.txt” with command line.
Run the following command: “./assa -sim ../examples/PE/PBN 96 1 1.pbn
simout.txt 20”. The simulated trajectory will be shown in the terminal and
stored in the file “simout.txt”.

6.5 Performing the numerical methods

Currently, ASSA-PBN supports two numerical methods, i.e., the Gauss-Seidel
method and the Jacobi method. We show in Figure 33 for the command line in-
put and output of performing the Gauss-Seidel method. The parameter -gauss
indicates that the analyser uses the Gauss-Seidel method, PBN-test1.pbn is the
PBN file that we have generated in Section 6.1 and property-1.pro is the prop-
erty specification file. Copy property-1.pro file from the “examples” folder to
the “bin” folder. The iteration number, the time cost and the steady-state prob-
ability that we want to check are outputted. By default, the accuracy of the
probability is 10−6. It can be changed by adding at the end of the command
the new accuracy and the max iteration numbers. It is also possible to output
the steady-state distribution for all states in the PBN by changing the property
specification file name to -dis in the command line. The Jacobi method can
be called similarly by changing -gauss to -jacobi in the command line.

./assa -gauss PBN-test1.pbn property-1.pro

Start loading model...

Finish loading model. Time cost: 0.004908s.

Performing the Gauss-Seidel method on the PBN from file

PBN-test1.pbn

The Gauss-Seidel method ends within 12 iterations.

CPU Time cost: 0.10797s.

The probability to check is 0.02916671121948796.

Figure 33: Example of running the Gauss-Seidel method.

6.6 Performing the perfect simulation approach

The perfect simulation approach can be run using the following command line:
"assa -ps PBN-test1.pbn 0.01 0.95 property-1.pro -log psOutput.log",
where -ps indicates that the analyser uses the perfect simulation algorithm. The
first two numbers 0.01 and 0.95 define the precision and the confidence level
respectively, and the last pat -log ps1.log shows that the log information is
stored in the file psOutput.log. Figure 34 shows the output of the perfect sim-
ulation algorithm on the 8 node PBN. The total simulation steps in the output
are computed using the following formula:

37

2n
Ns∑
i=1

c(i),

where n is the number of nodes in the PBN, Ns is the number of required
samples (1046 in this example), c(i) is the coupling step of the ith sample.
The probability given by the perfect simulation method differs by about 0.006
with the one given by the Gauss-Seidel method in Section 6.5, which can be
considered as the theoretical value. The difference, i.e., about 0.0014, is still
within the precision requirement 0.01. Note that a smaller precision requirement
will result in a probability closer to the theoretical value.

./assa -ps PBN-test1.pbn 0.01 0.95 property-1.pro -log

psOutput.log

Start loading model...

Finish loading model. Time cost: 0.004479s.

Performing the perfect simulation algorithm on the PBN from

file PBN-test1.pbn

Detailed information is stored in the file psOutput.log.

Avg. coupling steps 13.520076481835565

Simulation steps 3620352.0

Number of samples 1046.0

CPU time cost 0.647181s

Probability 0.027724665391969407

Figure 34: Example of running the perfect simulation approach.

6.7 Performing the two-state Markov chain approach

The two-state Markov chain approach can be launched using the following
command line: "assa -ts PBN-test1.pbn 0.01 0.95 property-1.pro -log

ts.log". The parameter ts indicates that the analyser uses the two-state
Markov chain approach. The numbers 0.01 and 0.95 define the precision and
the confidence level, respectively. PBN-test1.pbn is the PBN file that we have
generated previously. The ASSA-PBN simulator can operate in two modes:
1) the global alias mode and 2) the local alias mode. By default, ASSA-PBN will
use the global alias mode if there is enough memory. One can change it to the
local alias mode by adding false at the end of the command line. In the global
mode, a joint probability distribution is considered on all possible combinations
of predictor function selections for all the nodes and a single alias table for this
distribution is constructed. In the local mode, the independence of the PBN is
exploited: individual alias tables are constructed for each node of the PBN. In
both cases the consecutive state is generated by updating the value of each node
with the predictor function selected for this node. However, in the global mode
predictor functions for all nodes are selected simultaneously with the use of only
two random numbers, while in the local mode the number of random numbers
used is twice the number of nodes. In consequence, the generation of the next

38

state is faster in the global mode, but more expensive in terms of memory usage.
For large networks, the local mode is always recommended. Information about
this execution will be shown in the command window as in Figure 35. Besides,
a log file with more detailed information, e.g., the number of extensions of the
two-state Markov chain approach on this particular model will also be generated
and stored in the file ts.log.

Figure 35 shows the example to perform the two-state Markov chain ap-
proach. The two-state Markov chain approach poses an own parameter named
ε, which is set to 10−10 by default in ASSA-PBN. It can be changed by adding
-epsilon <epsilon value> after the confidence level in the command. Gen-
eral information about this execution will be output in the command window as
shown in Figure 35. Besides, a log file with more detailed information, e.g., the
number of extensions of the two-state Markov chain approach on this particular
model will also be generated.

./assa -ts PBN-test1.pbn 0.01 0.95 property-1.pro -log ts.log

Start loading model...

Finish loading model. Time cost: 0.004423s.

Performing the two-state Markov chain approach on the PBN from

file PBN-test1.pbn.

Detailed information is stored in the file ts.log.

Sample size 1262

Probability 0.027156549520766772

CPU time cost 0.09973s

Figure 35: Example of running the two-state Markov chain approach.

6.8 Performing the Skart method

Similar to the two-state Markov chain approach, the Skart method can be
launched using the following command line: "assa -skart PBN-test1.pbn

0.01 0.95 property-1.pro -log skart1.log". The parameter -skart indi-
cates that the analyser uses the Skart method. There are also an output in the
command window and a more detailed output stored in a log file skart1.log

for the Skart method. Figure 36 shows the output in the command window.
The Skart method will compute a confidence interval which satisfies the preci-
sion requirement. The confidence interval corresponds to the CI half-length

in the output. In this case, the confidence interval is [0.02952587482158517,
0.03424365642841483]. If the analysis requires a trajectory size bigger than 231,
the -skartfull command is needed. The usage of the -skartfull command
is the same as the -skart command.

6.9 Changing the default Java heap size

ASSA-PBN allows to change the default Java heap size when launching the
program by adding the standard Java command at the beginning of ASSA-PBN

39

./assa -skart PBN-test1.pbn 0.01 0.95 property-1.pro -log

skart1.log

Start loading model...

Finish loading model. Time cost: 0.005912s.

Performing the Skart method on the PBN from file

PBN-test1.pbn.

Detailed information is stored in the file skart1.log.

Sample size 20480

Probability 0.031884765625

CI half-length0.00235889080341483

CPU time cost 0.302707s

Figure 36: Output of the Skart method.

command line. We show an example for changing the initial Java heap size to
256M and the maximum Java heap size to 2G in Figure 37.

./assa -Xms256M -Xmx2G -gauss PBN-test1.pbn property-1.pro

Start loading model...

Finish loading model. Time cost: 0.004588s.

Performing the Gauss-Seidel method on the PBN from file

PBN-test1.pbn.

The Gauss-Seidel method ends within 12 iterations.

CPU Time cost: 0.105934s.

The probability to check is 0.02916671121948796.

Figure 37: Changing default Java heap size.

6.10 Performing the two-state Markov chain approach in
parallel

Starting from the version 1.0.4, ASSA-PBN supports to analysing a steady-state
property of a PBN in a parallel way using multiple CPU cores. Figure 38 shows
an example to check a single property using the two-state Markov chain ap-
proach in a parallel way. ASSA-PBN also supports to check multiple properties
at the same time using the two-state Markov chain approach in a parallel way.
This function can be launched using the command -tspam. The multiple prop-
erties should be stored in a single file. See Section 4.3 for how to define multiple
properties in one file.

6.11 Performing the long-term influence analysis

The long-term influence analysis shown in section 5.7 can be launched in com-
mand line with the command shown in Figure 39. The output of this run is
shown as well.

40

./assa -tspa ../examples/PBN 50.pbn 0.001 0.95 property-1.pro

-log parallelrun.txt 40

Start loading model...

Finish loading model. Time cost: 2.349563s.

Run the two-state approach in parallel for computing PBN 50.pbn

for property property-1.pro...

number of processors: 4

Required number of chains is 40, the program sets it to 4 (the

number of processors in the computer).

Detailed information is stored in parallelrun.txt

Total extending times: 0

m=4, n=81920, burnIn=81920, Nmax=1360, each chain

length=163840, fetch samples every 1 step(s).

precision=0.001, probability=3.41796875E-4, time

cost=4.213332899s.

Figure 38: Checking a single property using the two-state Markov chain ap-
proach in a parallel way.

./assa -infN ../examples/PE/PBN 96 1 1.pbn 26 91

Start loading model from file model/PBN 96 6 1.pbn.

This is a model exported from Matlab.

Finish loading model. Time cost: 0.013777s.

The Two state multiple property version is used for computing

steady-state probabilities.

Start analysing the influence of node 26 to node 91.

The influence of node 26 to the 96th function is

0.999023087997855.

The influence of node 26 to the 97th function is

0.9956496066492052.

The influence is 0.9981350879879183.

Figure 39: Long-term influence analysis in command line.

6.12 Performing the long-term sensitivity analysis

The long-term sensitivity analysis shown in section 5.8 can be launched in com-
mand line with the command shown in Figure 40. The output of this run is
shown as well.

6.13 Performing parameter estimation

The parameter estimation shown in section 5.9 can be launched in command
line with the command shown in Figure 41.

41

./assa -senN ../examples/PE/PBN 96 1 1.pbn 91

Start loading model from file model/PBN 96 6 1.pbn.

This is a model exported from Matlab.

Finish loading model. Time cost: 0.015003s.

The Two state multiple property version is used for computing

steady-state probabilities.

Start analysing the influence of node 26 to node 91.

The influence is 0.9965752309079929.

Start analysing the influence of node 42 to node 91.

The influence is 0.0032458966230724823.

Start analysing the influence of node 77 to node 91.

The influence is 9.457500518534018E-4.

The sensitivity of node 91 is 1.0007668775829188.

Figure 40: Long-term influence analysis in command line.

./assa -pe -pbns 6 ../examples/PE/PBN 96 1 1.pbn

../examples/PE/PBN 96 2 1.pbn ../examples/PE/PBN 96 3 1.pbn

../examples/PE/PBN 96 4 1.pbn ../examples/PE/PBN 96 5 1.pbn

../examples/PE/PBN 96 6 1.pbn -parameter

../examples/PE/PBN 96 parameters.txt -property

../examples/PE/PBN 96 properties 6.txt -precision 0.01

-confidence 0.95 -numParticle 10 -numIteration 5

Figure 41: Parameter estimation in command line.

7 Update log of ASSA-PBN

A. Version 3.0.1 Updated on: 03/05/2017.
Main changes:

(a) add support for Windows OS.

B. Version 3.0.0. Updated on: 20/10/2017.
Main changes:

(a) add attractor detection function;

(b) add support for CPBNs, this includes the high-level definition lan-
guage for CPBN, simulation, steady-state computation, parameter
estimation, and attractor detection.

C. Version 2.0.4. Updated on: 01/04/2017.
Main changes:

1) add support for various asynchronous updating schemes;

42

2) add identifiability analysis;

3) add heat map plot for parameter estiamtion;

4) add comparative plot (fitted value vs measured value) for parameter
estimation results;

5) add support for multiple measurment values in parameter estiamtion;

6) add the differential evolution method for parameter estimation;

7) add support for comments in property specification files.

D. Version 2.0.3. Updated on: 07/12/2016.
Main changes:
1) allow constant functions for high level PBN definition files;
2) add display for updating mode (synchronous or asynchronous).

E. Version 2.0.2. Updated on: 29/04/2016.
Main changes:
1) add support for GPU computation;
2) add support for level PBN definition format.

F. Version 2.0.1. Updated on: 9/10/2015.
Main changes:
1) add GUI;
2) add long-term influence analysis;
3) add long-term sensitivity analysis;
4) add parameter estimation.

G. Version 1.0.4. Updated on: 25/07/2015.
Main changes:
1) add multiple CPU implementations for the two-state Markov chain
approach and the Skart method;
2) fix the bug for losing the order information of the parent nodes indices
when loading a model definition file;
3) removing unnecessary libraries.

H. Version 1.0.3. Updated on: 30/01/2015.
Main changes:
1) add command line parameters for defining Java heap size;
2) optimize the Jacobi method by storing the transition matrix in memory
instead of repeated on-the-fly generating.

I. Version 1.0.2. Updated on: 30/11/2014.
Main changes: 1) fix the bug for not being able to define whether the
model is converted from Matlab when running the Skart method.

J. Version 1.0.1. Updated on: 07/11/2014.
Main changes:
1) add optimization for the initial trajectory size used in the two-state
Markov chain approach; 2) add output for loading models.

43

References

[1] Alireza Alfi and Hamidreza Modares. System identification and control us-
ing adaptive particle swarm optimization. Applied Mathematical Modelling,
35(3):1210–1221, 2011.

[2] A. Gelman and D.B. Rubin. Inference from iterative simulation using mul-
tiple sequences. Statistical Science, 7(4):457–472, 1992.

[3] A. Mizera, J. Pang, H. Qu, and Q. Yuan. Taming asynchrony for attractor
detection in large Boolean networks (technical report). Available online at
http://arxiv.org/abs/1704.06530, 2017.

[4] A. Mizera, J. Pang, and Q. Yuan. ASSA-PBN: a tool for approximate
steady-state analysis of large probabilistic Boolean networks. In Proc. 13th
International Symposium on Automated Technology for Verification and
Analysis, volume 9364 of LNCS, pages 214–220. Springer, 2015. Available
at http://satoss.uni.lu/software/ASSA-PBN/.

[5] A. Mizera, J. Pang, and Q. Yuan. Reviving the two-state markov chain
approach (technical report). IEEE/ACM Transactions on Computational
Biology and Bioinformatics (special issue of APBC 2017), pages xx–xx,
2017. to appear.

[6] Xiaoning Qian and Edward R Dougherty. On the long-run sensitivity of
probabilistic Boolean networks. Journal of Theoretical Biology, 257(4):560–
577, 2009.

[7] A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling,
U. Klingmüller, and J. Timmer. Structural and practical identifiability
analysis of partially observed dynamical models by exploiting the profile
likelihood. Bioinformatics, 25(15):1923, 2009.

[8] P. Trairatphisan, A. Mizera, J. Pang, A.-A. Tantar, and T. Sauter. optPBN:
An optimisation toolbox for probabilistic boolean networks. PLOS ONE,
9(7):e98001, 2014.

[9] Panuwat Trairatphisan, Andrzej Mizera, Jun Pang, Alexandru Adrian Tan-
tar, Jochen Schneider, and Thomas Sauter. Recent development and
biomedical applications of probabilistic boolean networks. Cell Commu-
nication and Signaling, 4(6):1–25, 2013.

[10] Qixia Yuan, Hongyang Qu, , Jun Pang, and Andrzej Mizera. Improving
BDD-based attractor detection for synchronous Boolean networks. Science
China Information Sciences, 59(8):080101, 2016.

44

