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1 Attack–Defense Trees

Attack–defense trees (ADTrees) have been introduced in [1]. They constitute a
natural extension of attack trees that were popularized by Bruce Schneier [3]
and formalized by Sjouke Mauw and Martijn Oostdijk in [2].

ADTrees are an intuitive, graphical representation of possible actions

that an attacker might take in order to attack a system and the counter-

measures that a defender can employ to protect the system.

Consequently, an ADTree has nodes of two opposite types: attack nodes and
defense nodes. The root of an ADTree represents the main goal of the attacker.
Every node of an ADTree may have one or more children of the same type repre-
senting a refinement into sub-goals of the node’s goal. The refinement of a node
can be either disjunctive or conjunctive. The goal of a disjunctively refined node
is achieved when at least one of its refining children goals is achieved. The goal
of a conjunctively refined node is achieved when all of its refining children goals
are achieved. The nodes without any children of the same type are called non-
refined nodes, and they represent basic attack or defense actions. Every node
may also have one child of the opposite type, representing a countermeasure.
Thus, an attack node may have several children which refine the attack and one
child which defends against the attack. A defense node in turn may have several
children which refine the corresponding defense and one child being an attack
node and countering the defense.

To distinguish between attack nodes and defense nodes, we represent the
former by red circles and the latter by green rectangles. Furthermore, every
disjunctive node is labeled with the or operator, and every conjunctive node
is labeled with the and operator. Additionally, an arc connects the edges going
out from a conjunctive node to its refining children. Finally, the refinements are
indicated by solid lines and the countermeasures by dotted lines.

1.1 Example

The ADTree depicted in Figure 1 describes a possible scenario of how to steal a
lion. The main goal of an attacker — stealing a lion — is represented by the root
‘Lion’. The red circle indicates that stealing a lion is an attack. In this example
the ‘Lion’ node is labeled with the or operator. This means that in order to get a
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Fig. 1. An ADTree for stealing a lion

lion it is sufficient for the attacker to only fulfill one of the two possible sub-goals:
get a lion from a zoo (attack node ‘Zoo’) or hunt a wild lion in Africa (attack
node ‘Africa’). In the scenario traveling to Africa is not considered further but
instead the emphasis is placed on snatching a lion from a zoo. The zoo heist is
refined into two sub-goals — the break-in and the get-away vehicle (the ‘Truck’
node) — that both have to be fulfilled. Thus the ‘Zoo’ node is labeled with and,
and its refining children are connected with an arc. To successfully commit the
break-in, a bolt cutter is needed to get into the cage and a tranquilizer gun for
obvious reasons.

The scenario considered in the previous paragraph describes only attacks.
However, in order to prevent a zoo heist, there are security measures in place.
Hence, a defense node ‘Security’, depicted by a green rectangle, is attached to the
‘Zoo’ node. This defense node is connected to the ‘Zoo’ attack node via a dotted
line. In our scenario several security measures are possible, so the ‘Security’ node
is refined into: surveillance cameras (defense node ‘Cameras’) or guards (defense
node ‘Guards’). The defense node ‘Security’ is labeled with or to indicate that
only one of the sub-defenses has to be present so that there is sufficient security
to prevent the lion robbery from the zoo. Then, in turn, the attacker can attack
those defenses. In order to disable the security measures, the attacker has to
spray-paint the lenses of the cameras (attack node ‘Paint’).
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2 Attributes for Attack–Defense Trees

To analyze an attack–defense scenario represented by an ADTree, we use at-
tributes. An attribute is a value assigned to the ADTree, expressing a useful
property, such as the minimal cost of an attack, the expected impact, whether
special equipment is required, or whether a considered scenario is feasible. In [3],
Schneier introduced an intuitive, bottom-up algorithm to calculate the value of
an attribute on an attack tree. This idea was extended to ADTrees in [1]. To
illustrate the concept of the bottom-up evaluation, let us consider the feasibility
of the scenario from Subsection 1.1.

Example 1. In order to express whether a given component is feasible or not, we
first assign Boolean values to all non-refined nodes in the tree. Let us assume
that, on the one hand, it is feasible for the attacker to have a cutter, a tranquilizer
and a truck, and that he can spray-paint the cameras. On the other hand, it is
not possible for him to go to Africa. We also assume that both defensive measures
— cameras and guards — are in place. Thus, we have

feas(Cutter) = ⊤, feas(Tranquilizer) = ⊤, feas(Truck) = ⊤,

feas(Paint) = ⊤, feas(Africa) = ⊥, feas(Cameras) = ⊤,

feas(Guards) = ⊤.

Now, we can compute the feasibility value for the entire scenario, by extending
the feasibility function feas to subtrees. Let us denote by tv the subtree rooted
in node v. The feasibility function is then defined recursively, as follows.

– If v is a leaf, then feas(tv) = feas(v).
– If all the children v1, . . . , vk of v have the same type as v, then

feas(tv) =

{

∧k

i=1
feas(tvi

), if the label of v is and,
∨k

i=1
feas(tvi

), if the label of v is or.

– If w is the unique child of v, and the nodes w and v have opposite types,
then

feas(tv) = feas(v) ∧ ¬ feas(tw).

– If v has k children v1, . . . , vk of the same type, and one child w of the opposite
type, then

feas(tv) =

{

∧k

i=1
feas(tvi

) ∧ ¬ feas(tw), if the label of v is and,
∨k

i=1
feas(tvi

) ∧ ¬ feas(tw), if the label of v is or.

Thus, we obtain that a break-in sub-attack is feasible, since

feas(tBreak−in) = feas(tCutter) ∧ feas(tTranquilizer)

= feas(Cutter) ∧ feas(Tranquilizer) = ⊤ ∧⊤ = ⊤.
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Using a similar reasoning, we can deduce that a zoo sub-attack is not feasible:

feas(tZoo) = feas(tBreak−in) ∧ feas(tTruck) ∧ ¬(tSecurity) =

feas(Cutter) ∧ feas(Tranquilizer) ∧ feas(Truck)

∧ ¬[(feas(Cameras) ∧ ¬ feas(Paint)) ∨ feas(Guards)] = ⊥.

Finally,
feas(tLion) = feas(tZoo) ∨ feas(tAfrica) = ⊥ ∨⊥ = ⊥,

which shows that stealing a lion according to our scenario is not feasible.

Example 1 presents a very simple attribute over a discrete domain. In reality,
there are many other possible discrete as well as continuous attribute domains,
including the probability of success of a given attack, the likelihood that an
attacker will try a given attack, and so on.

3 Project Goals

The main purpose of the project is to make an exhaustive study of interesting
attributes for attack–defense trees. The student’s task will be to:

– determine interesting attributes and describe the corresponding attribute
domains;

– define new semantics for ADTrees compatible with the introduced attribute
domains;

– classify which attributes can and which can not be evaluated using the
bottom-up approach;

– propose an approach which allows the evaluation of attributes that can not
be computed using the bottom-up procedure;

– analyze and illustrate the results on an interesting case study.
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