ATTACK TREES

Olga Gadyatskaya

MSSI: Communication, traitement et persistance des informations 1

23 March 2018

AGENDA

- Context: risk management and threat modelling
- ► Attack trees
- ► Quantitative analysis of attack trees
- ► ADTool
- ► Gap between theory and practice

SECURITY RISK PARLANCE: RECAP

- ► Asset smth of value to an organisation.
- Vulnerability a weakness of an asset or control that can be exploited by a threat agent.
- Threat exploitation of a vulnerability by a threat agent that may lead to an unwanted incident.
- ► Unwanted incident creates damage to an asset.
- ► Risk quantification of a threat (probability and impact).
- ► Control a measure that reduces risk.

EXAMPLE THREAT SCENARIO

Scenario: Facebook friend Bob discloses your very personal, friends-only post

EXAMPLE THREAT SCENARIO

Scenario: friend drank your beer at a party

EXAMPLE OF THREAT SCENARIOS: CORAS DIAGRAMS

http://coras.sourceforge.net/

ANOTHER THREAT DIAGRAM

http://coras.sourceforge.net/

THREAT MODELLING: ACTIVITY TO MODEL THREAT SCENARIOS

► Point of view:

+ System-centric

- * What are the threat agents?
- * Which vulnerabilities are present?
- * What kinds of threats are relevant?

Attacker-centric

- * What is the goal?
- * Who is the attacker?
- * What are the attack steps?

ATTACK TREES

GRAPHICAL THREAT MODELLING: ATTACK TREES

- Goal: represent a *collection of attacks* in a tree structure, with the main attacker's goal as the root node, and different ways of achieving this goal as sub-nodes
- Originally proposed by Bruce Schneier in "Attack trees. Modelling security threats", Dr. Dobb's Journal, 1999.

https://www.schneier.com/academic/archives/1999/12/attack_trees.html

- Formalisation defined by Mauw and Oostdijk in "Foundations of attack trees", ICISC'2005
- ► *Threat trees* are close siblings of attack trees
- ► *Fault trees* are cousins of attack trees

GRAPHICAL THREAT MODELLING: ATTACK TREES II

Mauw and Oostdijk "Foundations of attack trees" in ICISC'2005

REFINEMENT

- Refinement structure: one of the biggest advantages of attack trees
- ► Classical refinement operators: AND and OR

Mauw and Oostdijk "Foundations of attack trees" in ICISC'2005

REFINEMENT II

- Refinement structure: one of the biggest advantages of attack trees
- ► More refinement operators: SAND, KofN

Mauw and Oostdijk "Foundations of attack trees" in ICISC'2005

BANK ACCOUNT ATTACK EXAMPLE

WHY ATTACK TREES: INDUSTRY

- Structured brainstorming means
 - ► think *mind-maps*
- ► Facilitate communication across stakeholders
- ► Allow to reason about quality of the analysis
- ► Enable *what-if* analysis
 - ► before and after estimations for scenarios

WHY ATTACK TREES: RESEARCH

- Allow to develop underlying theoretical models that precisely define meaning (*semantics*)
 - Several semantics exist already!

Semantics enable further studies of the attack tree formalism

SEMANTICS

MEANING OF ATTACK TREES

How do we know if two attack trees represent the same collection of attacks?

P. Schweitzer "Attack-defense trees" PhD thesis, University of Luxembourg, 2013

ARE THESE TWO TREES EQUIVALENT?

SEMANTICS OF ATTACK TREES II

Meaning of a tree is typically defined through a combination of its *leaf nodes*

- ► Propositional semantics:
 - ► an attack tree is defined as a propositional formula
 - two trees are *equivalent* if corresponding propositional formulae are equivalent

PROPOSITIONAL SEMANTICS

Image courtesy: Sjouke Mauw

MULTISET SEMANTICS

- ► Multiset semantics:
 - an attack tree is a set of multisets. Each multiset is a possible way to attack the system.
 - two attack trees are equivalent if the corresponding sets of multisets are equal.

SERIES-PARALLEL GRAPHS SEMANTICS

- ► For SAND refinement operator we need an order of events
- Captured by series-parallel graphs (SP graphs)
 - ► SAND: actions are done in sequence
 - ► AND: actions can be done in parallel
 - ► OR: any of the actions is done
- Jhawar et al. "Attack trees with sequential conjunction" in SEC'2015

EXAMPLE OF SAND TREE

The SP semantics of the attack tree t depicted in Figure 1 is

$$\llbracket t \rrbracket_{\mathcal{SP}} = \{ \xrightarrow{ftp} \xrightarrow{rsh} \xrightarrow{lobf} , \xrightarrow{ssh} \Vert \xrightarrow{rsa} \}.$$

Jhawar et al. "Attack trees with sequential conjunction" in SEC'2015 24

ADDING CONTROLS TO THE PICTURE

- ► Attack trees show only attacker's view
- Attack-defense trees allow to add also defender's perspective in the same model
 - attack and defence nodes can be interleaved
 - attack tree semantics extended for attack-defence trees
- ► Kordy et al. "Foundations of attack-defence trees" in FAST'2010
- ► Alternatives: attack-countermeasure trees

BANK ACCOUNT ATTACK WITH COUNTERMEASURES

QUANTITATIVE ANALYSIS

HOW TO ANALYSE ATTACK TREES?

- Propositional semantics allows to analyse satisfiability of attack scenarios
- ► What about other properties of attack trees?
- ► We may want to know:
 - ► probability
 - ► cost
 - ► time
 - ▶ ...

COMPUTING ATTRIBUTES

- Bottom-up algorithm
 - Values assigned to leaf nodes
 - Attribute domain rules specifying how to compute values for other nodes

- Example: minimal cost domain for attack trees
 - $\succ \text{ cost } (a \text{ OR } b) = \min(\text{cost}(a), \text{ cost}(b))$
 - \succ cost (a AND b) = cost(a) + cost(b)

PROBABILITY DOMAIN FOR ATTACK TREES

→ $\Pr(a \text{ OR } b) = 1 - (1 - \Pr(a))(1 - \Pr(b)) = \Pr(a) + \Pr(b) - \Pr(a)\Pr(b)$

► Pr(a AND b) = Pr(a)Pr(b)

MINIMAL ATTACK TIME DOMAIN FOR ATTACK-DEFENCE TREES

MIN TIME FOR THE BANK ACCOUNT ATTACK EXAMPLE

ADTOOL

- ► Open source Java software to work with attack trees
- http://satoss.uni.lu/members/piotr/adtool/
- ► Supports:
 - ► attack-defence trees and SAND-trees
 - > quantitative analysis with many attributes
 - ► ranking of attacks

ADTOOL LIVE

COMPATIBILITY OF SEMANTICS AND ATTRIBUTE DOMAINS

- Semantics defines equivalence relation on attack trees
- ► Intuition: same trees should yield the same value

- Attribute domain *D* is compatible with semantics *S* if all trees equivalent in *S* result in the same value for *D*
- Kordy et al. "Attack-defence trees" in Oxford Journal of Logic 2014

COMPATIBILITY EXAMPLE

COMPATIBILITY EXAMPLE II

 Propositional semantics is compatible with the satisfiability attribute domain

COMPATIBILITY EXAMPLE III

Propositional semantics is not compatible with the minimal cost domain

BRIDGING THE GAP BETWEEN THEORY AND PRACTICE

ISSUES WITH ATTACK TREES

- ► Huge effort
- ► Completeness
- ► Data quality

REDUCE EFFORT

Generate trees automatically from system models

- Gadyatskaya et al. "Refinement-Aware Generation of Attack Trees" in STM'2017
- Generate trees from libraries of attacks
 - Paul "Towards Automating the Construction & Maintenance of Attack Trees: a Feasibility Study" in GraMSec'2014

COMPLETENESS

Can be formally ensured for generated trees

- Rely on industry catalogues of threats
 - ► Fraile et al. "Using attack-defence trees to analyse threats and countermeasures in an ATM: A case study" in PoEM'2016

DATA QUALITY

► Quantitative analysis is as good as the data used

► but data for low-level actions are not available

- Solution: use available statistical data values
 - requires to change the bottom-up approach

EXAMPLE OF CONSISTENT DECORATION FROM HISTORICAL DATA

DECORATED TREE

. .

.

.

. . .

.

.

.

• •

• •

APPLICATIONS OF ATTACK TREES IN LUXEMBOURG

- Cost-benefit analysis is used to select cost-effective countermeasures
 - controls that optimally reduce risks
- Gadyatskaya et al. "Bridging two worlds: Reconciling practical risk assessment methodologies with theory of attack trees" in GraMSec'2016
 - integrated attack trees with the TRICK Service
 - https://www.itrust.lu/trick-service/
 - expert designs an attack tree
 - controls are selected from catalogue and inserted into attack tree

EXAMPLE: ORIGINAL ATTACK TREE

EXAMPLE: ATTACK TREE WITH OPTIMAL COUNTERMEASURES

OPEN CHALLENGES

- ► Best practices for attack trees
 - cognitive complexity versus the formalism power

- Methodology for automated attack trees generation
 - integrated with risk management standards

- ► Theory of attack-defence trees with different controls
 - *cost-effective* countermeasure selection in this theory

THE END

Contact me at

olga.gadyatskaya@uni.lu

Master thesis projects available